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Abstract

We consider probability measures supported on a finite discrete interval [0, n]. We intro-
duce a new finite difference operator ∇n, defined as a linear combination of left and right finite
differences. We show that this operator ∇n plays a key role in a new Poincaré (spectral gap)
inequality with respect to binomial weights, with the orthogonal Krawtchouk polynomials
acting as eigenfunctions of the relevant operator. We briefly discuss the relationship of this
operator to the problem of optimal transport of probability measures.
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1 Introduction and main results

Many results in functional analysis are better understood in the context of continuous spaces than
discrete. One reason that the real-valued case is more tractable than integer-valued problems is
the existence of a spatial derivative ∂

∂x , well-defined in the sense that the left and right derivatives
coincide for a large class of functions. However, the situation is more complicated for integer-valued
functions f . There exist two competing derivatives ∇l and ∇r, defined as ∇lf(k) = f(k)−f(k−1)
and ∇rf(k) = f(k + 1)− f(k), which are adjoint with respect to counting measure on Z. In this
paper, we define a new finite difference operator for functions on [0, n], which interpolates between
∇l and ∇r.
Definition 1.1. Fix an integer n ≥ 1, and denote by ∇n the finite difference operator defined by

(∇nf)(k) =
k

n
(∇lf)(k) +

n− k
n

(∇rf)(k)

=
k

n
(f(k)− f(k − 1)) +

n− k
n

(f(k + 1)− f(k)). (1)

We will argue that this operator has certain desirable properties, and as such deserves further
attention. In particular, we will show that in two senses it is a natural choice of derivative
in relation to binomial measures bn,t(k) =

(
n
k

)
tk(1 − t)n−k. The question of the uniqueness of

whether this the unique choice of derivate operator with such properties remains open, expect for
the easy cases where n = 1 or 2.

Firstly, in Section 2, we will show that this operator ∇n acts like the translation operator on
the real line. That is, in Equation (10) below, we describe how a probability measure µ on R can
be smoothly translated using a sequence of intermediate measures µt. Equation (10) describes
the effect of this translation action through its effect on arbitrary test functions f . We prove
the following theorem, which acts as a discrete counterpart of (10), with the relationship between
measure bn,t and operator ∇n playing a key role:
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Theorem 1.2. The operator ∇n gives a smooth translation of point masses from point 0 to point
n using the binomial measures bn,t in that

1. bn,t satisfies the initial condition bn,0 = δ0 and the final condition bn,1 = δn.

2. For every function f : Z→ R,

∂

∂t

∑
k∈Z

f(k)bn,t(k) = n
∑
k∈Z

(∇nf)(k)bn,t(k). (2)

Secondly, in Proposition 3.2 below we will show that the map ∇n and its adjoint ∇̃n (with
respect to binomial weights) act as ladder operators for the Krawtchouk polynomials φr (see
Theorem 3.1). This allows us to describe the spectrum of the map

(
∇̃n ◦ ∇n

)
, with φr being

eigenfunctions with eigenvalue r(n−r+1)
n2t(1−t) . In particular, taking the smallest non-zero eigenvalue

leads to a Poincaré (spectral gap) inequality for the binomial law, using the natural derivative
operator ∇n, and gives the case of equality.

Theorem 1.3. Fix t ∈ (0, 1) and consider function f : {0, . . . n} → R satisfying
∑n
k=0 f(k)bn,t(k) =

0. Then
n∑
k=0

bn,t(k)f(k)2 ≤ nt(1− t)
n∑
k=0

bn,t(k) (∇nf(k))2
. (3)

Equality holds if and only if f is a linear combination of φ1(k) = 1
1−t (k − nt) and φn(k) =

n!
(
−t
1−t

)n−k
.

The idea of studying Poincaré inequalities with respect to discrete distributions is not a new
one. For example, Bobkov and co-authors [1, 2, 3, 4] give results concerning probability measures
supported on the discrete cube (with the difference ∇r taken modulo 2). Cacoullos [5], Chen
and Lou [6] and Klaasen [9] give results concerning ∇r on Z and Zn. In particular, Table 2.1 of
Klaassen [9] shows that for Poisson mass function Πλ, if

∑
k f(k)Πλ(k) = 0 then

∞∑
k=0

Πλ(k)f(k)2 ≤ λ
∞∑
k=0

Πλ(k) (∇rf(k))2
. (4)

This can be understood as a consequence of the fact that ∇r (and its adjoint with respect to
Poisson weights ∇̃r) act as ladder operators with respect to Poisson-Charlier polynomials, meaning
that the Poisson-Charlier polynomials are eigenfunctions of

(
∇̃r ◦ ∇r

)
. These results also have

an analogy with the work of Chernoff [7], where the corresponding result was proved for normal
random variables, with the Hermite polynomials acting as eigenfunctions of the corresponding
map.

However, Klaassen does not deduce such a clean result for binomial weights, requiring a weight-
ing term on the right-hand side

n∑
k=0

bn,t(k)f(k)2 ≤ t
n∑
k=0

bn,t(k)(n− k) (∇rf(k))2 (5)

Note that (see Remark 3.3 below) that our Theorem 1.3 is a stronger result than Klaassen’s
Equation (5). Note that as n→∞ with tn = λ, Theorem 1.3 converges to Equation (4).

Note that although we do not directly discuss applications here, in other settings the rate of
convergence in variance of reversible Markov chains can be bounded in terms of the spectral gap
(see for example [10, Lemma 2.1.4]).
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In general, Poincaré inequalities are often viewed as a consequence of log-Sobolev inequalities
(see for example [10, Lemma 2.2.2]). In particular, for Poisson measures Πλ, Bobkov and Ledoux
[4, Corollary 4] prove that for any positive function f ,

EntΠλ(f) ≤ λ
∞∑
k=0

Πλ(k)
(∇rf(k))2

f(k)
, (6)

and show that Klaasen’s Poincaré inequality (4) can be deduced from (6). Here, Entν(f) =∑
k Θ(f(k))ν(k) − Θ (

∑
k f(k)ν(k)), where Θ(t) = t log t. It is natural to conjecture that an

equivalent of Equation (6) should hold for Binomial random variables with our natural derivative
∇n, that is

Entbn,t(f) ≤ nt(1− t)
n∑
k=0

bn,t(k)
(∇nf(k))2

f(k)
. (7)

However, this result (7) is in general false. Consider for example n = 2, t = 1/2, f(0) = f(2) =
9/10, f(1) = 1/10. In this case, Entbn,t(f) = 0.18403 and the right-hand side of Equation (7) is
0.17777, and the inequality fails. The question of natural conditions on f under which Equation
(7) holds remains open.

The structure of the remainder of the paper is as follows. In Section 2, we discuss the translation
problem in Z and prove the existence of a fundamental solution for the problem under the choice
of ∇ as the ∇n from Definition 1.1. In Section 3 we prove Proposition 3.2, the key result leading
to the Poincaré inequality Theorem 1.3.

2 The translation problem in Z
It is clear that there exists an unambiguous definition of translations of real-valued probability
measures, defined as the push-forward of the translation map. That is, let µ be a probability
measure on R (with its Borel σ-algebra) having a smooth density ρ w.r.t. the Lebesgue measure
dx. The n-translation of µ, where n ∈ R, is the family of measures (µt = ρtdx)t∈[0,1], where the
density ρt is defined by

∀x ∈ R, ρt(x) = ρ(x− nt). (8)

In other words, the measure µt is the push-forward of µ by the translation map Tt(x) = x+ nt =
(1− t)x+ t(x+ n). In particular,

∂

∂t
ρt(x) = −n ∂

∂x
ρt(x). (9)

This can be generalized for non absolutely continuous probability measures, writing Equation (9)
in the sense of distributions:

∂

∂t

∫
R
f(x)dµt(x) = n

∫
R

∂

∂x
f(x)dµt(x), for all f ∈ C∞c (R). (10)

This equation means that the measure µt is the convolution of the initial measure µ0 with the
fundamental solution of Equation (10):

µt = µ0 ∗ δ(x− nt). (11)

Notice that this construction of µt allows a smooth interpolation of probability measures. In this
paper we generalize these heuristics to the case of probability measures on Z.

Definition 2.1. A probability measure µ1 on Z is the n-translation of another probability measure
µ0 if

µ1(k + n) = µ0(k) for all k ∈ Z.
In particular, we will consider measures that smoothly interpolate between point masses

µ0 = δ0 and µ1 = δn. (12)
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The non-connectedness of Z makes it impossible to generalize Equation (8) directly. However,
we will adapt the “PDE point of view”, given in Equation (10), to construct the n-translation of
point masses (12), in a way that satisfies

∂

∂t

∑
k∈Z

f(k)µt(k) = n
∑
k∈Z
∇f(k)µt(k). (13)

The main problem in this adaptation is to find the correct derivative operator ∇ on Z. In general,
we make the following definition:

Definition 2.2. A spatial derivative ∇ on Z is a linear operator in the space of functions on Z
that maps any function f to another function ∇f , where, for each k ∈ Z, there exists a coefficient
αk ∈ [0, 1] such that

(∇f)(k) = αk(∇lf)(k) + (1− αk)(∇rf)(k).

In other words, a derivative is defined by a family of coefficients (αk ∈ [0, 1]), for k ∈ Z. Each
of these coefficients tells us how to mix, at a given point k, left and right derivatives. For example,
the left (resp. right) derivative corresponds to the case where all the coefficients are equal to 1
(resp. 0).

First we show that a spatial derivative on Z for which there exists a fundamental solution to the
n-translation problem must follow some necessary conditions. We next show that these necessary
conditions allow us to reduce the translation problem to a more understandable problem of linear
algebra in finite dimensions.

Proposition 2.3. Fix integer n ≥ 1 and a derivative ∇ on Z defined by a family of coefficients
(αk)k∈Z. If there exists a solution µt to the n-translation problem (12), (13) associated with ∇
then α0 = 0 and αn = 1. Moreover, the support of µt is contained in {0, . . . n}.

Proof. Let us first consider the function f : Z → R defined by f(k) = 0 if k < 0, and f(k) = 1 if
k ≥ 0. It is easy to show that (∇f)(−1) = 1− α−1, (∇f)(0) = α0, and (∇f)(k) = 0 elsewhere.
Let us now define the function g : [0, 1]→ R by

g(t) :=
∑
k∈Z

f(k)µt(k) :=
∑
k≥0

µt(k).

The initial and final conditions satisfied by µt show that g(0) = 1 = g(1). On the other hand, the
Equation (2) shows that

g′(t) = n
∑
k∈Z

µt(k)∇f(k) = n[(1− α−1)µt(−1) + α0µt(0)].

In particular g′(t) ≥ 0. The fact that g(0) = g(1) thus implies that g′(t) = 0 for every t ∈ [0, 1],
and the condition g′(0) = 0 can be written α0 = 0. Moreover, the fact that g(t) = 1 for every
t ∈ [0, 1] implies ∑

k≥0

µt(k) = 1,

so µt is supported on Z+.
If we apply the same arguments to the function f defined by f(k) = 1 if k ≤ n, and f(k) = 0

if k > n, we find that αn = 1, and that µt is supported on {k ∈ Z | k ≤ n}.

An interesting consequence of Proposition 2.3 is that the translation problem of Equation (13)
can be restricted to µt supported on [0, n]. That is, we can replace (13) by

∂

∂t

n∑
k=0

f(k)µt(k) = n

n∑
k=0

∇f(k)µt(k). (14)
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Now, let us consider the canonical basis CB := (e0, . . . en) of the linear space of functions
{0, . . . , n} → R. Let X(t) be the column vector representing µt in CB (probability measures are
canonically identified with functions), ie for every k ∈ {0, . . . n}, (X(t))k := µt(k). The initial
(resp. final) condition µ0 = δ0 (resp. µ1 = δn) is equivalent to X(0) = e0 (resp. X(1) = en).
Moreover, Equation (14) is equivalent to the fact that for all vectors Y ∈Mn,1(R)

〈X ′(t), Y 〉 =
∂

∂t
〈X(t), Y 〉 = n〈X(t),∇〉 = n〈∇∗X(t), Y 〉, (15)

where 〈., .〉 is the usual (unweighted) scalar product on column vectors, and where ∇∗ represents
the adjoint with respect to this scalar product. This allows us to deduce that

X ′(t) = n∇∗X(t), (16)

and basic theorems on first-order linear differential systems thus allow us to write the n-translation
problem:

Theorem 2.4. Let n ≥ 1 be an integer, and ∇ be a derivative on Z, with α0 = 0 and αn = 1. Let
A∇ be the matrix of the linear operator ∇ in the canonical basis CB. There exists a fundamental
solution to the n-translation problem associated with ∇ if and only if, for every t ∈ [0, 1], the
column matrix

X(t) := exp(ntA∇)e0

has all its coefficients non-negative, and satisfies the final condition

X(1) = en. (17)

The fundamental solution µt(k) is then given by µt(k) = (X(t))k.

We prove Theorem 1.2 using the properties of the spatial derivative∇n introduced in Definition
1.1. In this case we can be explicit about the form of ∇∗n, and introduce a further map ∇̃n which
will be used to prove Theorem 1.2 and the Poincaré inequality Theorem 1.3.

Definition 2.5.

1. Let ∇∗n be the adjoint operator of ∇n for the unweighted scalar product on l2({0, . . . n}). We
have the formula

∇∗ng(k) =
1
n

((n− k + 1)g(k − 1)− (n− 2k)g(k)− (k + 1)g(k + 1)) ,

where g(−1) = g(n+ 1) = 0.

2. We now fix t ∈ (0, 1). Let ∇̃n be the adjoint operator of ∇n for the scalar product with
respect to the binomial law bn,t (taking t /∈ {0, 1} ensures that it is truly a scalar product on
the space of functions {0, . . . n} → R)). We have:

∇̃nf(k) =
1

bn,t(k)
∇∗n(f(k)bn,t(k))

=
n− k + 1

n

bn,t(k − 1)
bn,t(k)

f(k − 1)− n− 2k
n

f(k)− k + 1
n

bn,t(k + 1)
bn,t(k)

f(k + 1)

=
k

n

1− t
t

f(k − 1)− n− 2k
n

f(k)− n− k
n

t

1− t
f(k + 1). (18)

The equivalence of the last two results follows since for all k,

bn,t(k − 1)
bn,t(k)

=
k

n− k + 1
1− t
t

.
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We can relate properties of ∇̃n and ∇∗n using conjugation by the linear operator D that maps any
function f : {0, . . . , n} → R to the function Df defined by

∀k ∈ {0, . . . , n}, Df(k) = bn,t(k)f(k).

Moreover, as t ∈ (0, 1), D is invertible and

∀k ∈ {0, . . . , n}, D−1f(k) =
1

bn,t(k)
f(k).

This operator is useful to give a very simple relation between ∇∗n and ∇̃n:

∇̃n = D−1 ◦ ∇∗n ◦D. (19)

Proof of Theorem 1.2. We simply verify that (16) holds taking X(t) = bn,t(k) and ∇∗ in the form
given by Definition 2.5. We observe that in this case both sides of (16) have kth component
equal to bn,t(k) (k/t− (n− k)/(1− t)). The fact that ∂

∂tbn,t(k) takes this form is immediate,
and the corresponding result for the right hand side follows by Equations (18) and (19) since
n 1
bn,t(k)∇

∗
nbn,t(k) = n∇̃n1 = k/t−(n−k)/(1−t), where 1 denotes the function which is identically

1.

3 Proof of the Poincaré inequality

From now on, we fix an integer n ≥ 1, and we denote by ∇n the finite difference operator of
Definition 1.1. We recall the definition of the Krawtchouk polynomials from [11].

Theorem 3.1. There exists a basis of polynomials in k, denoted φ0, . . . , φn, “laddered” (i.e. with
deg(φr) = r), and such that

n∑
k=0

φr(k)φs(k)bn,t(k) =
n!r!

(n− r)!

(
t

1− t

)r
δrs := Cn,rδrs. (20)

This family of polynomials is uniquely determined by the generating function in w

P (k,w) :=
n∑
r=0

(1− t)r

r!
φr(k)wr = (1 + (1− t)w)k(1− tw)n−k. (21)

The discrete derivatives in k of P (k,w) can be obtained by using the formulas

P (k − 1, w) = P (k,w)
1− tw

1 + (1− t)w
for all k ≥ 1 (22)

P (k + 1, w) = P (k,w)
1 + (1− t)w

1− tw
for all k ≤ n− 1 (23)

Finally, since ∂
∂ww

r = rwr−1, we obtain

n∑
r=0

(1− t)r

r!
rφr(k)wr = w

∂

∂w
P (k,w) = wP (k,w)

(
(1− t)k

1 + (1− t)w
− t(n− k)

1− tw

)
. (24)

Notice that φ0 is the function identically equal to 1, and so ∇nφ0 = 0, which gives a sense to
Proposition 3.2 when r = 0. To simplify the proof, we will define φ−1 = φn+1 = 0.

Proposition 3.2. For every r ∈ {0, . . . , n}, we have

1. The operator ∇n maps φr to a multiple of φr−1: ∇nφr =
r(n− r + 1)
n(1− t)

φr−1.
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2. The operator ∇̃n maps φr to a multiple of φr+1: ∇̃nφr =
1
nt
φr+1.

3. The Krawtchouk polynomials are eigenfunctions for the linear map
(
∇̃n ◦ ∇n

)
:

(
∇̃n ◦ ∇n

)
φr =

r(n− r + 1)
n2t(1− t)

φr.

Remark that these eigenvalues are not distinct, which does not allows us to deduce directly
that the family (φ0, . . . , φn) is a basis of the space of functions {0, . . . , n} → R. This fact comes
from the orthogonality with respect to the binomial scalar product.

Proof of Proposition 3.2. Part 1: It suffices to check the polynomial identity

n∑
r=0

(1− t)r

r!
∇nφr(k)wr =

n∑
r=0

(1− t)r

r!
r(n− r + 1)
n(1− t)

φr−1(k)wr.

We will use the formula (21) to express both side of the last equation in terms of the polynomial
P (k,w). First, we have by Equations (22) and (23) that

n∑
r=0

(1− t)r

r!
∇nφr(k)wr = ∇nP (k,w)

=
P (k,w)

n

(
k

(
1− P (k − 1, w)

P (k,w)

)
+ (n− k)

(
P (k + 1, w)
P (k,w)

− 1
))

=
P (k,w)

n

(
k

(
1− 1− tw

1 + (1− t)w

)
+ (n− k)

(
1 + (1− t)w

1− tw
− 1
))

=
P (k,w)

n
w

(
k

1 + (1− t)w
+

n− k
1− tw

)
.

For the right hand side, we have using (24) that

n∑
r=0

(1− t)r

r!
r(n− r + 1)
n(1− t)

φr−1(k)wr =
w

n

n∑
r=0

(1− t)r

r!
(n− r)φr(k)wr

=
P (k,w)

n
w

(
n− w

(
(1− t)k

1 + (1− t)w
− t(n− k)

1− tw

))
=

P (k,w)
n

w

(
k

(
1− (1− t)w

1 + (1− t)w

)
+ (n− k)

(
1 +

tw

1− tw

))
=

P (k,w)
n

w

(
k

1 + (1− t)w
+

n− k
1− tw

)
,

which gives the desired result.
Part 2: It suffices to check the polynomial identity

n∑
r=0

(1− t)r

r!
∇̃nφr(k)wr =

n∑
r=0

(1− t)r

r!
1
nt
φr+1(k)wr.
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Let us begin by studying the right hand side. Using the convention φn+1 = 0, we have by (24)

n∑
r=0

(1− t)r

r!
1
nt
φr+1(k)wr =

1
nt(1− t)w

n∑
r=0

(1− t)r+1

(r + 1)!
(r + 1)φr+1(k)wr+1

=
1

nt(1− t)w

n∑
r=0

(1− t)r

r!
rφr(k)wr

=
1

nt(1− t)w
w
∂

∂w
P (k,w)

=
1

nt(1− t)
P (k,w)

(
(1− t)k

1 + (1− t)w
− t(n− k)

1− tw

)
.

The left hand side can be written
n∑
r=0

(1− t)r

r!
∇̃nφr(k)wr = ∇̃nP (k,w),

and we calculate using (22) and (23) that

∇̃nP (k,w) = P (k,w)
(
k

n

1− t
t

P (k − 1, w)
P (k,w)

− n− 2k
n

− n− k
n

t

1− t
P (k + 1, w)
P (k,w)

)
=

P (k,w)
nt(1− t)

(
k(1− t)2 1− tw

1 + (1− t)w
− (n− 2k)t(1− t)− (n− k)t2

1 + (1− t)w
1− tw

)
=

P (k,w)
nt(1− t)

(
(1− t)k

(
(1− t)(1− tw)

1 + (1− t)w
+ t

)
− t(n− k)

(
t(1 + (1− t)w)

1− tw
+ (1− t)

))
=

1
nt(1− t)

P (k,w)
(

(1− t)k
1 + (1− t)w

− t(n− k)
1− tw

)
,

and the proof is complete.
Part 3: follows directly by combining the two previous results.

Similarly, there is another way to prove Part 2 of Proposition 3.2, using the properties of the
exponential of the operator ∇∗n:

Alternative proof of Proposition 3.2, Part 2.

∀t ∈ [0, 1], exp(nt∇∗n)(e0) = (bn,t(0), . . . , bn,t(n))T . (25)

The equation (21) allows us to show that the required result is equivalent to

exp(nt(1− t)w∇̃n)(φ0) = (1 + (1− t)w)k(1− tw)n−k. (26)

As φ0 = (1, . . . , 1)T , the equation (25):

Dφ0 = (bn,t(0), . . . , bn,t(n))T

= exp(nt∇∗n)(e0).

exp(nt(1− t)w∇̃n)(φ0) = D−1 exp(nt(1− t)w∇∗n)Dφ0

= D−1 exp(nt(1− t)w∇∗n) exp(nt∇∗n)(e0)
= D−1 exp(nt(1 + (1− t)w)∇∗n)(e0).
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This means that, for every k ∈ {0, . . . , n}:

exp(nt(1− t)w∇̃n)(φ0)(k) =
1

bn,t(k)
bn,t(1+(1−t)w)(k)

=
(
t(1 + (1− t)w)

t

)k (1− t(1 + (1− t)w)
1− t

)n−k
= (1 + (1− t)w)k(1− tw)n−k.

This proves the formula (26), and thus Part 2 of Proposition 3.2.

We can complete the proof of Theorem 1.3, as follows:

Proof of Theorem 1.3. We can expand function f(k) =
∑n
j=1 ajφj(k), since the assumption

that
∑n
k=0 f(k)bn,t(k) = 0 ensures that a0 = 0. Using the normalization term Cn,r from Equation

(20), and the adjoint ∇̃n of Definition 2.5, we know that(
∇̃n ◦ ∇n

)
f =

n∑
j=1

aj

(
∇̃n ◦ ∇n

)
φj =

n∑
j=1

aj

(
j(n− j + 1)
n2t(1− t)

)
φj , (27)

by Part 3 of Proposition 3.2. This means that can write the RHS of Equation (3) as

nt(1− t)
n∑
k=0

bn,t(k)f(k)
(
∇̃n ◦ ∇n

)
f(k) = nt(1− t)

n∑
j=1

a2
j

j(n− j + 1)
n2t(1− t)

Cn,j

=
n∑
j=1

a2
j

j(n− j + 1)
n

Cn,j

≥
n∑
j=1

a2
jCn,j

which is the LHS of Equation (3). The inequality follows since j(n − j + 1)/n ≥ 1 with equality
if and only if j = 1 or j = n.

Remark 3.3. Theorem 1.3 is a stronger result than Klaassen’s Equation (5). This follows by
noting that for any k, we can express

(∇nf)(k)2

=
n− k
n

(f(k + 1)− f(k))2 +
k

n
(f(k)− f(k − 1))2 − k(n− k)

n2
(f(k + 1)− 2f(k) + f(k − 1))2

≤ n− k
n

(f(k + 1)− f(k))2 +
k

n
(f(k)− f(k − 1))2.

This means that, using the fact that k
nbn,t(k) = n−k+1

n
t

1−tbn,t(k − 1), we can express the RHS of
(3) as

nt(1− t)
n∑
k=0

bn,t(k)(∇nf)(k)2

≤ nt(1− t)
n∑
k=0

bn,t(k)
(
n− k
n

(f(k + 1)− f(k))2 +
k

n
(f(k)− f(k − 1))2

)

= t

n∑
k=0

bn,t(k)(n− k)(f(k + 1)− f(k))2 ((1− t) + t) ,

which is the RHS of (5).
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Remark 3.4. The explicit form taken by the operators ∇n and ∇̃n and their action on the
Krawtchouk polynomials suggest possible links with the Ehrenfest urn model, see for example [8].
It is possible to recover the Poincaré inequality Theorem 1.3 from results about this well-studied
model, as follows. For n ≥ 1 and 0 < t < 1 we consider the Markov chain on {0, . . . n} generated
by the operator L defined by

Lf(k) := k(1− t)[f(k − 1)− f(k)] + (n− k)t[f(k + 1)− f(k)]. (28)

The invariant measure for this reversible Markov chain is the binomial measure bn,t. Moreover,
the spectrum of the operator L has been completely described by Karlin and McGregor in [8] who
show that, for r = 0, . . . n we have Lφr = −rφr. Further, ∇̃n ◦ ∇ is related to L by the simple
formula

t(1− t)∇̃n ◦ ∇n = − 1
n2
L2 − n+ 1

n2
L, (29)

which can be verified directly. Applying equation (29) to each eigenfunction φr gives

(1− t)t∇̃n ◦ ∇nφr =
−r2 + (n+ 1)r

n2
φr =

r(n− r + 1)
n2

φr, (30)

which allows us to recover (27), which implies the Poincaré inequality Theorem 1.3. This proof
seems simpler and more direct; however, it does not give us information about the action of the
operators ∇n and ∇̃n on the family of Krawtchouk polynomials.

We can understand the decomposition discussed in Remark 3.3 in this context, by noting that
(29) means we can write

nt(1− t)
n∑
k=0

bn,t(k) (∇nf) (k)2 = −
n∑
k=0

bn,t(k)Lf(x)f(k)− 1
n

n∑
k=0

bn,t(k) (Lf(k) + f(k))Lf(k),

where further calculations show that the first term is equal to Klaasen’s bound, given as the RHS
of (5).
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