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Abstract— Communications satellites are designed to provide
services by forwarding signals to customers. Uplink signals are
filtered and amplified to ensure signal output quality. This is
ensured by the payload part of the satellite. Reconfigurable
hardware components like switches are embedded in the payload
to route signals through the satellite. By setting switch positions,
satellite engineers are able to connect, restore or reconfigure
channels. However, to follow the increasing demands, satellite
payloads embed more and more components. As a consequence,
their manual management is becoming time-consuming and
error-prone. Power transmission optimization has then a crucial
role to decrease costs while keeping a maximum quality of
service. In this aim, satellite operators would like to minimize the
power of the signals sent from Earth while keeping a maximum
amplification. In this work, we tackle for the first time this new
bi-objective problem of optimizing input and output power. Exact
methods have been considered to propose efficient alternatives to
the satellite operators.

Keywords: Multi-objective optimization, adaptive ε-constraint,
satellite payload optimization

I. INTRODUCTION

Today, communication satellites have become essential for
our communication systems. Since their birth in the 1960s, the
satellite industry, and more precisely satellite services, have
witnessed an exponential growth. Communication satellites
have an expected lifetime of nearly 15 years and have to be
reliable. Therefore, redundant systems are integrated to prevent
failures and ensure flexibility.

A communication satellite is mainly composed of two dis-
tinct modules. The first module is the payload which receives
uplink signals from Earth stations, filters, amplifies, and finally
forwards the modified signals back to Earth. Components
embedded in the payload are multiplexers, switches and am-
plifiers. The second module, called platform, embeds all sub-
systems required for the functioning of the satellite in space,
regardless of the satellite’s mission. Such sub-systems include
power provisioning and propulsion. This work is focused
on the payload module, which contains some reconfigurable
components, i.e. switches. Indeed, engineers are able to re-
motely modify the position of the switches, which allows to
connect or disconnect channels. Designing such payloads is
an optimization problem for the satellite manufacturer point

of view [1] in which the best network topology must be
found while minimizing the number of components, due to
their high cost. This work is focusing on a later stage, when
the satellite operator faces configuration and reconfiguration
problems during the lifetime of such satellites. The problem
can be divided in three main categories:

• The initialization problem where no channels are pre-
connected. Its goal is to configure the payload for the
first time. This is the hardest and most sensitive task
because the initial configuration determines the future
reconfigurations.

• The reconfiguration problem where a pre-defined set of
channels is already connected and new channels have to
be added without interrupting the pre-connected channels.

• The restoration problem where component failures may
appear and paths need to be reconnected.

For each of these previous problem categories, different ob-
jectives can be defined. For example, Stathakis et al. [2]
minimized the number of switch changes for the reconfig-
uration problem. In this work, the problem of optimizing
input/output power has been tackled to guarantee a maximum
power efficiency. Indeed to reach the satellite, signals need a
specific power to cross the atmosphere. Then to be optimally
amplified, the signal power entering into an amplifier must
reach a certain threshold. Furthermore the attenuations induced
by the different passive components have to be taken into
account. All these characteristics motivate the development
and usage of efficient optimization procedures to ensure the
satellite operator that choices are the closest to the optimal
ones. The corresponding problem aims at optimizing the input
signals power before amplification while keeping a maximal
output power after amplification. The objective is to find
efficient alternatives representing optimal power paths since
these two objectives are conflicting.

This paper is organized as follows. The next section presents
some related works about the payload optimization problem
in general. Then, the input and output power optimization
problem is described in more details. Section 4 introduces
the corresponding bi-objective problem based on an integer
linear program designed by [2]. This model allows us to
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apply the ε-constraint and its adaptive version [3] in order
to produce optimal Pareto fronts. Section 5 and 6 depict
our experimental setup and results. Finally, the last section
presents our conclusions and perspectives.

II. RELATED WORK

Communication satellites are essential to communicate
through long distances. For nearly 50 years, they have become
more complex and keep embedding more components. Indeed,
the increasing demands of the market request more flexibility
and redundancy to ensure that signals are reliably forwarded
to customers [4]. The market competition motivates satellite
operators to request more power, longer lifetime and reliability.
This is crucial to ensure quality of service (QoS). Until
recent years, engineers were using their own experience and
computerized schematics to configure satellites. Configuring a
satellite implies modifying large switch matrices located in the
payload in order to route channels. With the increasing size
of payloads, this task has become time-consuming. Moreover,
quality of services requirements are always more restrictive
making fast (re-)configuration error-prone. That is the reason
why satellite operators require efficient methods to solve (re)-
configuration problems in a more efficient and optimal way.
Some commercial softwares like [5], [6] explicitly explore the
decision space. However, they act like black-box and their
lack of flexibility does not allow satellite operators to take
new objectives into account. On the academic side, a bread-
first-search was proposed to optimally connect channels but
this approach is unsuitable for large payloads [5], [6].
Implicit exploration was proposed by Stathakis et al. [2] with
an integer linear program (ILP) based on flows problems.
This model allows to solve various objectives. Those include
the minimization of the longest length path, the number of
switches changes and the number of channels interruptions. It
can also be easily updated to add new ones. Stathakis et al. [7]
also applied genetic algorithms to minimize the longest path
length. Cellular genetic algorithms (cGA) [8] have shown that
they are more efficient than the standard ones. Different exact-
approximate hybridization schemes were also designed using
the ILP and cGAs [9]. The first hybridization uses the best
solution obtained by the cGA to speed up the branch and cut
method. The second one consists in fixing some variables to
reduce the ILP size. This reduction was performed according
to the connected channels obtained in a first step by the cGA.
Finally, they applied bi-objective exact methods to solve the
problem of minimizing the longest path length while keeping
a minimum number of switch changes [10].
In this work, a novel variant of the satellite payload problem is
proposed where the input/output power are to be minimized.
Indeed, it is a crucial one which could help satellite operator
to reach a maximum power efficiency.

III. PROBLEM DESCRIPTION

The main task of a communication satellite payload is
to filter and amplify signals coming from the Earth in
order to be forwarded to customers. Before reaching the
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Fig. 1. Simplified payload

satellite, signals have to cross the atmosphere which induces
power attenuation. Since signals are composed of different
frequencies (channels) and amplifiers are dedicated to a
single frequency, signals have to be routed in the payload to
the adequate amplifier. This is done by configuring switches
which are the only dynamic components of a payload.
Figure 1 represents a simplified payload with 24 switches, 4
amplifiers and 8 channels. Switch positions can be modified
in order to route channels. The number of positions a switch
may have depends on its type. In figure 2, switch positions
are described for each switch type. Switches and connectors
are passive components and each of them induces some
specific power attenuation. Therefore, satellite engineers
must take these power losses into account before affecting
channels to amplifiers. This is due to the saturation point
of each amplifier. Indeed an optimal amplification can only
be performed if channels have a required input power. The
relation between the power entering into and going out the
amplifier is a non linear function where the peek is located
at saturation. Satellite operators therefore want to minimize
the required power sent to the satellite by finding minimum
attenuation paths with amplifiers having a low saturation
point. This objective only concerns the input part of the
payload which is located before amplifiers. On the contrary,
in the output part of the payload, satellite operators require a
maximum power after amplification. This means that channels
have to use high gain amplifiers and paths to antenna having
a minimum power attenuation. Both objectives are negatively
correlated which means that an improvement of one of them
implies a degradation for the other.

The corresponding bi-objective optimization problem for the
satellite payload power problem is the following. The payload
can be represented as an undirected graph G = (V, E) where
V is the set of vertices representing all components and E is
the set of edges representing all the existing links between
components. Each switch position defines how incoming and
outgoing links are connected. Thus, each switch s is a function
F : {1, ..., p} −→ Ns where p is the number of positions
a switch can have and Ns represents the set of all pairwise
connections a switch can establish. This definition implies that
vertices representing switches can dynamically change their
neighborhood. The satellite payload optimization problem can
be seen as a special case of the k edge-disjoint shortest paths
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problem [11] which belongs to flows problem. Indeed, chan-
nels can never share the same link. A switch can be crossed
by at most 2 channels depending on its position. Furthermore,
every signal entering into a switch must necessarily leave this
switch such that flow conservation properties can be applied.
Obviously incoming channels (input channels) and outgoing
channels (output channels) can be respectively represented as
sources and sink. The next two formulations describe the input
and the output problem separately.

Input Optimization problem

INSTANCE:
• a graph G = (V, E) and k distinct pairs

(s1, p1), ..., (sk, pk) of vertices where the first element
of each pair is an input channel and the second one the
output channel.

• Each vertex posses a label c(v) : v ∈ V defining either:
– an attenuation value if the component is passive,
– an input power to saturation if the component is an

amplifier.
OBJECTIVE: minimize IPS =

∑
v∈Am

c(v)+
∑

v∈Sin
c(v) where

• the set Am ⊆ V is the set of amplifiers used to amplify
the k signals

• Sin ⊆ V is the set of crossed switches located in the
input part of the payload

QUESTION: Find whether there exists k edge-disjoint paths
between (si, pi) ∀1 ≤ i ≤ k according to the objective.

Output Optimization problem

INSTANCE:
• a graph G = (V, E) and k distinct pairs

(s1, p1), ..., (sk, pk) of vertices where the first element

of each pair is an input channel and the second one the
output channel.

• Each vertex posses a label c(v) : v ∈ V defining either:
– an attenuation value if the component is passive,
– an output power to saturation if the component is an

amplifier.
OBJECTIVE: maximize SOP =

∑
v∈Am

c(v) −
∑

v∈Sout

c(v)

where
• the set Am ⊆ V is the set of amplifiers used to amplify

the k signals
• Sout ⊆ V is the set of crossed switches located in the

output part of the payload
QUESTION: Find whether there exists k edge-disjoint paths
between (si, pi) ∀1 ≤ i ≤ k according to the objective.

This bi-objective input/ouput power optimization, tackled for
the first time in this work, aims at finding the best alternatives,
i.e. the set of non-dominated solutions.

IV. BI-OBJECTIVE EXACT OPTIMIZATION

This bi-objective problem is tackled with scalarization tech-
niques, which rely on a new variant of the integer linear
program developed in [2]. This program is based on a multi-
commodities flow model where every integer flow is affected
to a channel to connect. It was originally designed in [2]
to minimize the longest path length, the number of switches
changes and the number of interruptions. This model has been
updated because in the single objective case, only binary vari-
ables, indicating whether or not a flow value uses a connector,
were defined. All coefficients were uniform and set to one.
In the input/output power optimization case, switches and
amplifiers must be in the objective. Power data are measured
in decibel (dB) and are continuous values, which means that
solutions values will be continuous as well. Each connected
channel can be represented as a path with an input and an
output power. A solution is a set of connected paths and the
solution value will be the sum of the input power for the
first objective and the sum of the output power for the second
objective for each path. Due to space restrictions the full model
is not described in this article but the interested reader can refer
to [2].
In order to remain consistent with the original model from [2],
the opposite of the input power has been maximized in order to
keep the same optimization direction for both objectives (see
Table I). This model is an integer flow one where the variable
flowl,c ∈ {0; 1} indicates if the link l is used by the channel
c. The constraint

∑
c∈Conn

flowl,c ≤ 1 ∀l ∈ L ensures that a

link can only be used at most by 1 channel. The flow amount
crossing the link l is thus

∑
ck∈Conn

k ∗ flowl,ck ≤ 1 ∀l ∈ L

where k is the integer flow value affected to the channel ck. To
model switch positions, a binary variable bs,p ∈ {0; 1} ∀s ∈
S,∀p ∈ P takes the value 1 if the switch s is in position p. In
order to link switch position variables and flow variables, flow
conservation constraints are defined as : flowl1+bs,p∗q−q ≤



TABLE I
OBJECTIVES, PARAMETER AND DECISION VARIABLES

ObjectiveFunctions :

Max
∑

c∈Cconn

−ips pathc (input power objective)

Max
∑

c∈Cconn

sop pathc (output power objective)

Parameters :
attl,c ∀l ∈ L, ∀c ∈ C
atts ∀s ∈ S
ipt,c ∀t ∈ T, ∀c ∈ C
opt,c ∀t ∈ T, ∀c ∈ C

V ariables :
z ∈ R
poss ∈ Z ∀s ∈ S
flowl ∈ Z ∀l ∈ L ∪ {lo}
bs,p ∈ {0; 1} ∀s ∈ S,∀p ∈ P
twusedt ∈ {0; 1} ∀t ∈ T
twusedt,c ∈ {0; 1} ∀t ∈ T,∀c ∈ Cconn

flowl,c ∈ {0; 1} ∀l ∈ L, ∀c ∈ Cconn

used sws,c ∈ {0; 1} ∀s ∈ S,∀c ∈ Cconn

pathc ∈ R ∀c ∈ Cconn

TABLE II
CONSTRAINTS

Constraints :
flowli,i = 1 ∀li ∈ CLconn

flowli = 0 ∀li ∈ {{CLin} − {CLconn}}
flowl1+bs,p ∗q−q ≤ flowl2 ≤
flowl1 − bs,p ∗ q + q

∀s ∈ S, ∀p ∈ P , ∀(l1, l2) ∈
(L ∪ {l0})2, s.t. ms,p,l1,l2 = 1.∑

p∈P
bs,p = 1 ∀s ∈ S

poss =
∑
p∈P

p ∗ bs,p ∀s ∈ S

twusedt ∗ q ≥ flowtlint
∀t ∈ T∑

t∈T
twusedt = q

4 ∗ used sws,c ≥
∑

l∈Ls

flowl,c ∀s ∈ S,∀c ∈ Cconn

used sws,c ≤
∑

l∈Ls

flowl,c ∀s ∈ S,∀c ∈ Cconn∑
c∈Cconn

flowl,c ≤ 1 ∀l ∈ L

flowl =
∑

ck∈Cconn

k ∗ flowl,ck ∀l ∈ L

twusedt,c ≥ flowtlint,c ∀t ∈ T
flowl0 = 0
twusedt =

∑
c∈Cconn

twusedt,c ∀t ∈ T

ips pathc =
∑

l∈Lin

attl,c ∗

flowl,c

+
∑

s∈Sin

atts ∗ used sws,c

+
∑
t∈T

ipt,c ∗ twusedt,c ∀c ∈ Cconn

sop pathc = −
∑

l∈Lout

attl,c ∗

flowl,c

−
∑

s∈Sout

atts ∗ used sws,c

+
∑
t∈T

opt,c ∗ twusedt,c ∀c ∈ Cconn

flowl2 ≤ flowl1 − bs,p ∗ q + q ∀s ∈ S, ∀p ∈ P , ∀(l1, l2) ∈
(L ∪ {l0})2, subject to ms,p,l1,l2 = 1 (see Table II). ms,p,l1,l2

indicates whether or not links l1 and l2 are connected when
switch s is in position p. The link l0 is a special link for cases
where a signal can not be propagated. twusedt,c ∈ {0; 1} ∀t ∈

Algorithm 1 Bi-objective input/output ε-constraint(δ)
1: Pareto ← ∅
2: P ← opt(maxOP (s) : s ∈ S)
3: ε ← P.input power + δ
4: while P.hasSolution do
5: P ← opt(maxOP (s) : s ∈ S IP (s) ≥ ε)
6: Pareto ∪ {P.objectives}
7: ε ← ε + δ
8: end while
9: return Pareto

T, ∀c ∈ Cconn shows whether or not amplifier t is crossed by
channel c. Besides used sws,c ∈ {0; 1} ∀s ∈ S,∀c ∈ Cconn

is equal to 1 if channel c goes through switch s. Concerning
the coefficients of the two objectives (see Table I):
• attl,c ∀l ∈ L,∀c ∈ C represents the power attenuation

induced by channel c when it crosses link l.
• atts ∀s ∈ S represents the power attenuation induced by

switch s.
• ipt,c ∀t ∈ T, ∀c ∈ C is the required input power to

saturate the amplifier t used by channel c.
• opt,c ∀t ∈ T, ∀c ∈ C is the output power when amplifier
t is saturated by channel c.

As scalarization techniques, the well-know ε-constraint
method [12] and the adaptive version developed by Laumanns
in [3] have been considered.
The ε-constraint method consists in optimizing one objective
while the others are added to the set of constraints. For the
bi-objective case, the input power is used as a constraint and
the output power is optimized. The constraint problem can be
expressed as follows: maxOP (s) : s ∈ S IP (s) ≥ ε with S
the set of all feasible solutions, IP (s) is the input power for
solution s and OP (s) is the output power of solution s. First
of all, one extreme is computed without the added constraint
(algorithm 1 line 2). In our case, the problem is solved to
obtain a maximal power output. Since the opposite of the input
power is considered, the solution provides a minimal value.
Then, ε is set to this minimal value and the corresponding
constraint is added. The model is iteratively solved and ε is
increased with δ (algorithm 1 lines 5-7) until no feasible
solution is found. In this approach, δ must not be chosen too
large in order to discover all Pareto solutions but if δ is chosen
too small, time is wasted by finding duplicated solutions.

The adaptive version dynamically splits the objective space
contrary to the standard version. This eliminates the duplicated
solutions due to a too small splitting and ensures that no Pareto
solutions are missing. For the bi-objective case, the method is
straightforward, i.e. ε is not iteratively increased but is set
with the input power value (see algorithm 2 line 5-7) found
by solving the previous single objective run.

V. EXPERIMENTAL SETUP

Experiments have been conducted on the High Performance
Computing (HPC) platform of the University of Luxembourg
[13]. The IBM ILOG CPLEX 12.4 solver has been used on a



Algorithm 2 Bi-objective input/output adpative ε-constraint()
1: Pareto ← ∅
2: P ← opt(maxOP (s) : s ∈ S)
3: ε ← P.input power
4: while P.hasSolution do
5: P ← opt(maxOP (s) : s ∈ S IP (s) > ε)
6: Pareto ∪ {P.objectives}
7: ε ← P.input power
8: end while
9: return Pareto

single Intel Xeon L5640 CPU core at 2.26GHz with 2Gb or
RAM. Due to confidentiality reasons, payload specifications
cannot be provided. Instances composed of 5, 10 and 15
channels to connect were considered. Contrary to [2], all
instances have been solved on a payload embedding 3 different
types of switches:
• T-Switches which possess 3 positions. These switches are

more flexible because two channels can cross them in
each position but they have a high attenuation power.

• C-Switches which only possess 2 positions. Only one
channel can be forwarded by this kind of switch in every
position.

• R-Switches which possess 4 positions. These switches
have the lowest attenuation power. Despite the fact that
they induce a lower attenuation than T-Switches, they are
harder to configure because the number of channels cross-
ing them depends on their position. Only one channel can
cross these switches in position 2 and 4. Positions 1 and
3 allows two channels.

δ has been set to 1 for the standard ε-constraint. For these
experiments, a total of 90 instances have been chosen: 30
instances for 5, 10 and 15 channels to connect. No time limit
was set. Hit rate corresponds to the percentage of instances
solved exactly. Only instances which cause an excess of
memory have not been solved.

VI. EXPERIMENTAL RESULTS

Experimental results for both algorithms on the three prob-
lem sizes are presented in the following three tables. The
best result for each instance is shaded in dark grey. Table
III provides the average number of Pareto solutions as well as
the standard deviation. Table IV shows the average processing
time in seconds and the standard deviation. Finally the hit rate
is considered in Table V.

As can be seen in Table III, the average number of Pareto
solutions obtained by the adaptive ε-constraint is always
greater than the one found by the standard version. Thus, some
efficient solutions are missing and δ = 1 for the standard
algorithm has been defined too large.

The average time processing for both algorithms in Table
IV indicates that the standard algorithm is slower. One could
believe that missing some solutions would speed up the
resolution. Nevertheless, this could be explained because the
standard version wasted time in empty areas showing that

ε-constraint adaptive ε-constraint
5 channels 4.53±2.19 6.91±3.31

10 channels 5.96±2.50 12.90±7.85

15 channels 6±2.23 13.48±7.78

TABLE III
AVERAGE NUMBER OF PARETO SOLUTIONS

ε-constraint adaptive ε-constraint
5 channels 2349.37±1483.89 450.74± 981.61

10 channels 17142.60±13362.72 1509.60±2636.28

15 channels 18135.50±15296.15 4956.33±7980.35

TABLE IV
AVERAGE TIME IN SECONDS

ε-constraint adaptive ε-constraint
5 channels 100 100

10 channels 100 100
15 channels 30 90

TABLE V
HITE RATE IN %

a static δ is not appropriated for such fronts. Furthermore,
the standard deviation proves that the complexity depends not
only on instance size but also on which channels have to be
connected.

Finally the hit rate (in percent) provides us a limit for the
exact methods as presented in Table V. Indeed, every 5 and
10 channel instances have been successfully and optimally
solved. However, the set of 15 channel instances have not been
completely solved due to excess of memory usage for some
instances. Therefore, instances with more than 10 channels
start to be unsuitable for a exact bi-objective methods.

Finally, figure 3 is an example of optimal front obtained with
the adaptive version. It clearly appears that efficient solutions
are not uniformly distributed and the use of a dynamical ε like
the one used in the adaptive version is here justified. Priority
has to be given to algorithms which divide dynamically the
objective space.

VII. CONCLUSION

In this work, a novel satellite payload optimization problem
has been introduced and tackled using exact approaches, i.e.
the bi-objective problem which consists in optimizing input
and output power. For these first experiments on these new
objectives, scalarization methods have been applied to study
the distribution of the efficient solutions. The obtained optimal
Pareto fronts are non uniform and efficient solutions are highly
dispersed, forming some isolated dense areas. Besides the
processing time and thus the complexity depend not only
on the instance size but also on which channels have to
be connected. Empirical demonstration of the unsuitability
of scalarization techniques for very large instances has been
provided. Future works will therefore consider the decompo-
sition of the problem in sub-problems and their resolution
with dedicated methods. The bottleneck problem could be also



Fig. 3. A non uniform Pareto front

considered as a problem involving robustness because focusing
on the worst power channel ensures the satellite operator that
none of the other channels will have a lower power value.
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