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Abstract: Lithium titanate (Li4Ti5O12, LTO) is a promising anode material for the next generation of lithium ion batteries. Its physical properties and morphology (which consequently affect its electrochemical 

performance) highly depend on its synthesis method. Flame spray pyrolysis (FSP) is an attractive process for the controlled one-step synthesis of functional multicomponent oxides from low cost precursors. 

The main aim of this study is to control the growth process of LTO by FSP in order to maintain the desired particle properties. LTO nanoparticles of different sizes are synthesized by variation of the FSP 

processing conditions and characterized accordingly. Numerical simulations based on Population Balance Models are also implemented in order to investigate the evolution of primary and agglomerate particle 

growth.  

Nanoparticles’ formation from solution droplets by FSP.  

Conclusions 

• LTO nanoparticles have been synthesized by FSP. By varying the FSP operating conditions 

we can control the process and obtain LTO nanoparticles with optimized properties. 

• Population balance modeling of LTO synthesis is performed by monodisperse model and 

QMOM model taking into consideration polydispersity. Promising results are presented for 

controlling the particle size distribution.  
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General Dynamics Equation 

Population Balance Modeling of flame synthesis of LTO 

Coagulation terms Condensation term Nucleation  term 

LTO nanoparticles’ size decreases from 21 to 

14 nm with the increase of O2 gas dispersion 

flow rate due to decrease of droplet 

concentration in the flame. 

Integrodifferential equation lacking analytical solution 

Assumptions 

 Precursors react quickly to yield high particle concentration. As a result, Brownian 

coagulation is dominant, rather than nucleation and condensation 
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Monodisperse  Model  Model accounting of polydispersity  

Assuming that all particles have 

the same size during coagulation. 
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Quadrature method of  

Moments (QMOM) 

Lithium Titanate (Li4Ti5O12, LTO) 

 Zero strain material. 

 Intercalation of lithium at high potential.  

 Flat voltage during charge/discharge. 

 No reactions with electrolyte. 

 Low conductivity. 
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Physical Interpretation of moments 

m0 Total number concentration 

m1 Related to number average particle diameter 

m2 Proportional to particles’ surface area 

m3 Proportional to total particles’ volume 

m4 Proportional to the total projected area 

m5 Proportional to mass flux of the material 

Advantages of QMOM: QMOM permits calculation of the evolution of moments directly without a priori 

assumptions about the form of the evolving distribution. It is a robust and computational efficient method to 

track the evolution of the first six moments.   

Control of growth process ↔ Characterization ↔ Modeling 

Experimental Results Simulation Results 

An increase in O2 dispersion gas flow rate 

intensifies mixing and accelerates combustion 

and in this way, the height of the flame is reduced.  

Fig. 1. Spray flames for different O2 dispersion gas flow 

rates. 

Fig. 2. BET particle diameter of the powder as a function 

of the O2 dispersion gas flow rate.  

Fig. 3. XRD of LTO for different O2 dispersion gas flow 

rates.  

The stoichiometry of the material corresponds to 

the spinel form Li4Ti5O12. Second phases also 

exist, which may be attributed to kinetics: i.e. 

insufficient time at high temperature, as FSP is a 

very rapid process.  

Monodisperse Model 

Quadrature Method of Moments 

Fig. 4. Evolution of LTO total particle number concentration.  

Decrease of particle number concentration by 

the dominance of coagulation. 

Hard and Soft agglomerates formation. 

Fig. 5. Evolution of length based moments obtained 

by QMOM.  

Fig. 6. d32 (Sauter mean diameter) and d45 calculated by 

the moments obtained by QMOM.  

Fig. 7 Initial and Final PSD using Maximum Entropy  approach. 

Values of weights, wi, calculated by QMOM, are shown.   
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