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Abstract

The objective of this paper is twofold. One objective is to present a method of predicting
signaling domain-domain interactions (signaling DDI) using inductive logic programming (ILP),
and the other is to present a method of discovering signal transduction networks (STN) using
signaling DDI.

The research on computational methods for discovering signal transduction networks (STN) has
received much attention because of the importance of STN to transmit inter- and intra-cellular sig-
nals. Unlike previous STN works functioning at the protein/gene levels, our STN method functions
at the protein domain level, on signal domain interactions, which allows discovering more reliable
and stable STN. We can mostly reconstruct the STN of yeast MAPK pathways from the inferred
signaling domain interactions, with coverage of 85%. For the problem of prediction of signaling
DDI, we have successfully constructed a database of more than twenty four thousand ground facts
from �ve popular genomic and proteomic databases. We also showed the advantage of ILP in
signaling DDI prediction from the constructed database, with high sensitivity (88%) and accuracy
(83%). Studying yeast MAPK STN, we found some new signaling domain interactions that do
not exist in the well-known InterDom database. Supplementary materials are now available from
http://www.jaist.ac.jp/s0560205/STP_DDI/.

Keywords: signal transduction network, signaling domain, signaling domain-domain interaction,
protein-protein interaction, inductive logic programming

1 Introduction

Signal Transduction Networks (STN) are the primary means by which eukaryotic cells respond to
external signals from their environment and coordinate complex cellular changes [2]. Because of the
biologically signi�cant roles of STN in the cell, both biologists and bioinformaticians have taken much
interest in �nding out molecular components and/or the relations among these molecular components
in STN. These works were traditionally done by biological experimental methods such as gene knock-
outs and epistasis analysis. On the one hand, in vitro biological experiments usually require much
e�ort and time. One the other hand, although the experimental methods are e�ective in the discovery
of molecular components, the study of the relations among these molecular components is still chal-
lenging. With the accumulation of genome sequence information, large-scale genomic and proteomic
techniques have o�ered insights into the components of signal transduction networks, as well as the
molecular relations in signaling transduction networks [6]. Therefore, there is a great need to develop
computational methods to direct biological discovery, enabling biologists to discover the mechanisms
underlying complex signal transduction networks.

Consequently, discovering the relations among molecular components of signaling networks using
large-scale genomic and proteomic information is an area of much ongoing research. A statistical
model, based on representing proteins as collections of domains or motifs, which predicts unknown
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molecular interactions within these biological networks was proposed by Gomez et al. [5]. Using
Markov chain Monte Carlo method, they then modeled the signal transduction networks in terms of
domains in upstream and downstream protein interactions. Ste�en et al. [14] developed a computa-
tional approach for generating static models of signal transduction networks which utilizes protein-
protein interaction maps generated from large-scale two-hybrid screens and expression pro�les from
DNA microarrays. Liu et al. [6] applied a score function that integrated protein-protein interaction
data and microarray gene expression data to predict the order of signaling pathway components.
Concerning protein modi�cation time-course data, Allen et al. [2] applied a method of computational
algebra to the modeling of signaling networks. These previous works sometimes generate lots of both
false positives and false negatives, and/or are time-consuming. They also have two drawbacks related
to the reliability and stability of STN. First, they consider molecular components of STN at protein
or gene levels only, however there are other smaller basic units which actually transport signals in the
cell. Second, they do not deal with phenomena underlying the interactions/relations among molecular
components of STN.

The reliability and stability of STN depend much on signaling features of molecular components
and the stability of the interactions or relations among these molecular components in the STN [1].
Within a protein, a domain is a fundamental structural unit that is self-stabilizing, and often folds
independently of the rest of the protein chain. Domain-domain interactions are crucial in forming
stable protein-protein interactions (PPI), and take part in many cellular processes and biochemical
events. Signaling domains are often named and singled out because they �gure prominently in the
signaling features of STN. Signaling domains are primary units to transmit cellular signals with cat-
alytic, adaptor, e�ector, and/or stimulator functions [12]. These signaling domains interact physically
with one another to form stable channels in terms of protein-protein interactions or protein-protein
relations, to send and receive intra-, extra-signals in STN. For example, TIR domain interactions
between receptors and adaptors play a key role in activating conserved cellular signal transduction
pathways in response to bacterial LPS, microbial and viral pathogens, cytokines and growth factors.
Our key idea is to discover more reliable and stable STN by using the signaling DDI.

Understanding signaling domain-domain interactions (signaling DDI), we could grasp STN in depth
in terms of both basic signaling units and the mechanism of signal transduction among proteins in STN.
Recently, there are several works that have attempted to discover domain-domain interactions (DDI).
An integrative approach is proposed by Ng et al. [10] to infer putative domain-domain interactions
from three data sources, including experimentally-derived protein interactions, protein complexes and
Rosetta stone sequences. The maximum likelihood estimation (MLE) is applied to infer the likelihood
of domain-domain interactions by analyzing the observed protein interaction data [4]. Chen et al. [3]
used domain-based random forest framework to predict DDI. Riley et al. [11] proposed a domain pair
exclusion analysis (DPEA) for inferring DDI from databases of protein interactions. These works
mostly exploited only one protein database but none of the individual protein databases can provide
all information needed to perform better DDI prediction. Besides, domain-domain interactions depend
on features of domains { not only features of proteins [1, 7]. Using only protein data (protein-protein
interaction data in particular) is also one limitation of the previous works. These works predicted DDI
in general, and did not consider properties of interacting partners, like signaling features of interacting
domains.

In this paper, we propose a computational approach to discover more reliable and stable STN
using signaling domain interactions. Our work solves two problems: (1) predicting authentic signaling
DDI from diverse genomic and proteomic databases, (2) discovering STN using signaling DDI. For
signaling DDI prediction, we �rst examine �ve most informative genome databases, and extract more
than twenty four thousand possible and necessary ground facts on signaling protein domains. We then
employ inductive logic programming (ILP) to infer e�ciently signaling DDI. Sensitivity (88%) and
accuracy (83%) obtained from 10-fold cross validation show that our method is useful for predicting
signaling domain interactions. Studying yeast MAPK pathways, we predicted some new signaling DDI
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that do not exist in the well-known InterDom database. Assuming all proteins in STN are known, we
preliminarily build up signal transduction networks between these proteins based on their signaling
domain interaction networks. We can mostly reconstruct the STN of yeast MAPK pathways from the
inferred signaling domain interactions with coverage of 85%. Our approach could easily and exibly
be applied with other organisms, and various genomic and proteomic databases as well.

2 Method

In this section, we describe our proposed method to discover STN using signaling DDI. Two main
tasks of the method are: (i) Applying ILP to predict signaling domain interactions from multiple
genomic and proteomic databases, and (ii) Discovering STN using signaling DDI.

2.1 Predicting Signaling Domain Interactions Using ILP

Inductive Logic Programming (ILP) is an area of AI built on a foundation laid by research in machine
learning and computational logic. ILP deals with the induction of hypothesized predicate de�nitions
from examples and background knowledge. ILP is di�erentiated from most other forms of Machine
Learning both by its use of an expressive representation language, and by its ability to make use of
logically-encoded background knowledge. This has allowed successful applications of ILP in areas such
as molecular biology and natural language, which both have rich sources of background knowledge,
and both bene�t from the use of expressive concept representation languages [8]. ILP is particularly
suitable for bioinformatics tasks because of its ability to take into account background knowledge and
work directly with structured data. ILP has been applied to many tasks in bioinformatics, such as
protein secondary structure prediction [9] protein fold recognition [16], and protein-protein interaction
prediction [15].

Algorithm 1 Predicting signaling domain-domain interactions from multiple genomic and proteomic
databases.
Input:

The set D of domain-domain interactions extracted from InterDom database.
Signaling domains set S extracted from [19] and [20] .
Number of negative examples :dij N .
Multiple genomic and proteomic databases Interpro, PRINTS, Uniprot, MIPS, GO database denoted by
(SInterPro; SPRINTSSUniprot; SMIPS ; SGO).

Output: Set of rules R for signaling domain-domain interaction prediction.

1: R := ;.
2: I := ;. fI is the set of positive examples dijsg
3: for each di 2 S
4: for each dj 2 S
5: if (di; dj) 2 D then

6: I = I [ fdijg
7: Generate negative examples :dijs by selecting randomly N domain pairs (di; dj) 2 S

where (di; dj) =2 I.
8: for each domain di 2 I
9: Extract data from genomic/proteomic databases M (8M 2 (SInterPro; SPRINTS ; SUniprot; SMIPS ; SGO)).
10: Integrate and formalise all extracted data in Aleph background knowledge language.
11: Select a positive example dij at random.
12: Saturate it to �nd the most speci�c clause that entails this example.
13: Do top-down search for selecting the best clause c.
14: R := R [ fcg.
15: Remove covered positive examples.
16: if there remain positive examples then goto Step 11.
17: return R.
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Algorithm 1 describes the proposed ILP framework for predicting signaling DDI from multiple
genomic and proteomic databases. In this paper, we applied Aleph system (A Learning Engine for
Proposing Hypotheses) [22] to learn background knowledge and induce rules. Among many ILP
systems, Aleph is advanced and exible in that it allows customisation of search, cost functions, output-
display, etc. Aleph uses a top-down ILP covering algorithm as default, taking as input background
information in the form of predicates, a list of modes declaring how these predicates can be chained
together, and a designation of one predicate as the head predicate to be learned. Aleph is able to
use a variety of search methods to �nd good clauses, such as the standard methods of breadth-�rst
search, depth-�rst search, iterative beam search, as well as heuristic methods requiring an evaluation
function.

In Algorithm 1, Steps 2 to 6 are used to generate positive examples, and Step 7 randomises negative
examples (see more in Section 3.1). In Steps 8 to 10, there are two tasks: (1) extracting data from
multiple genomic and proteomic databases, and (2) integrating extracted data, then formalising data
in ground fact terms1, as restricted in Aleph system. The procedure from Step 11 to Step 16 is
the Aleph procedure to learn three input �les (background �le, positive examples �le, and negative
examples �le). In this phase, we use the default evaluation function coverage (the number of positive
and negative examples covered by the clause). The output is the set of predictive rules R. The
discussion of some output rules appears in Section 4.2.

2.2 Discovering Signal Transduction Networks Using Signaling DDI

STN are usually represented by sets of molecular components like gene products, mostly proteins in-
cluding RNAs. Between these proteins, there are protein interactions/relations/bindings/associations
to transduce cellular signals.

Algorithm 2 Discovering signal transduction networks using signaling domain-domain interactions.
Input: Set of all proteins pks P in a signal transduction network 
.
Output: A signal transduction network 
 in terms of a set of signaling domain interactions Sinteract.

1: K := ;. fSet K is the set of domains dis belonging to proteins pksg
2: T := ;. fSet T is the set of domain pairs (di; dj)s where di; dj belong to proteins pksg
3: for all proteins pks 2 P
4: Extract all domains dis belonging to the proteins pks.
5: if dki =2 K then K = K [ fdki g.
6: for all domains dki s of proteins pks and domains dljs of proteins pls
7: Couple the domains dki s with domains dljs 8pk; pl 2 P and pk 6= pl.
8: T = T [ f(dki ; d

l
j)g.

9: call Algorithm 1 with testing set T to predict signaling domain interactions dklij s; S
interact = Sinteract [ fdklijg.

10: for all protein pairs (pk,pl)
11: if (pk,pl) having at least one signaling domain interaction dklij 2 Sinteract then
12: Connect protein pk with protein pl to form an edge in the STN 
.
13: Estimate WSTN


 for the STN 
.
14: return STN 
 and WSTN


 .

We considered an STN as a network of proteins. In the network, each protein is a node, and
interactions, and relations (or bindings/associations) are the edges. Underlying these edges, there are
(signaling) domain-domain interactions which are key channels to send and/or receive cellular signals
among proteins. We simply assume that if one protein tends to \contact" another to transduce signals,
at least one (signaling) domain interaction is required. Algorithm 2 demonstrates our proposed method
to discover STN from (signaling) DDI, given that all proteins in STN are known.

Based on protein-protein interaction information, the reliability score of STN is proposed as follows:

1The term `ground fact' is used here as in inductive logic programming.
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where
wij : the weight of DDI dij in terms of the frequency in a STN 
.
L
: the ratio of the number of predicted DDI over the number n DDI expected in the signal

transduction network 
.
S
: the ratio of the number of predicted signaling DDI over the number n DDI expected in signal

transduction network 
.
�ij : number of protein-protein interactions containing the DDI dij .
Equation (1) evaluates the reliability of inferring the STN from the predicted signaling DDI. The

evaluation is presented in Section 4.

3 Materials

3.1 Training Datasets

This paper concentrates on predicting DDI for Saccharomyces cerevisiae { a budding yeast, as the
Saccharomyces cerevisiae data is available. The set of signaling domains is extracted from SMART

database [20], and from the scienti�c literature collected by Pawson and his colleagues [19], denoted
by S. For example, domain sh2, and domain sh3 are key elements for transmitting signals in cells.
After excluding the overlapping signaling domains, set S consists of 100 signaling domains.

InterDom database is the well-known DDI database consisting of more than 37,000 domain-domain
interactions of multiple organisms. However, for signaling domain interactions, there is not any avail-
able database yet. Then, the set of positive examples I is obtained as the set of signaling domain
pairs (di; dj) in [19, 20] having an interaction in InterDom database. Each domain di is coupled with
another dj , and a signaling domain pair (di; dj) is called a positive example if this pair is found in the
InterDom database (see Steps 2 to 4 in Algorithm 1). Through this procedure, the �nal positive set I
consists of 472 signal domain interactions. Also, the database of non domain-domain interaction does
not yet exist, so the negative examples :dijs are generated at random (see Step 6 in Algorithm 1). In
the experiment in this paper, we chose randomly 100 negatives :dij .

3.2 Genomic and Proteomic Datasets for Generating ILP Ground Facts

Unlike previous work mentioned in Section 1, we chose and extracted data from �ve genomic and pro-
teomic databases to generate background knowledge2 with an abundant number of ground facts, and
used this data to predict signaling DDI. The �ve genomic and proteomic databases used are (i) Protein
�ngerprints database (PRINTS) [21], (ii) Protein families and domains database (InterPro) [23], (iii)
Universal Protein Resource (Uniprot) [25], (iv) The Mammalian Protein-Protein Interaction Database

(MIPS) [18], and (v) Gene Ontology (GO) [24].
Aleph uses mode declarations to build the bottom clauses, and there are three types of vari-

ables: (1) the input variable (+), (2) the output variable (�), and (3) the constant term (#). In
this paper, target predicate is domain interaction(domain, domain). The instances of this rela-
tion represent the interaction between two signaling domains. For background knowledge, all do-
main/protein data are shortly denoted in form of di�erent predicates. Table 1 shows the list of
predicates used as background knowledge for each data source. From each data source, the predi-
cates present some features thought to be useful for signaling DDI prediction. For example, pred-

2The term `background knowledge' is used here as in inductive logic programming.
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Table 1: Predicates used as background knowledge generated from genomic and proteomic data
sources.
Data source Background knowledge predicates

InterPro interpro2go(+InterPro Domain,-GO Term) interpro(+Domain,-InterPro Domain)

Mapping of InterPro entries to GO A domain has a InterPro annotation number

PRINTS motif compound(+Domain,#motif compound) prints(+Domain,-PRINTS Domain)

A domain belongs to proteins having a number of motifs A domain has a PRINTS annotation number

Uniprot haskw(+Domain,#Keyword) hasft(+Domain,#Feature)

A domain has keywords of its proteins A domain has features of its proteins

ec(+Domain,#EC) pir(+Domain,-PIR Domain)

A domain has coded enzymes of its proteins A domain has a PIR annotation number

biocyc(+Domain,#BioCycle)

A domain has Biocycle annotations of its proteins.

GO is a(+GO Term,-GO Term) part of(+GO Term,-GO Term)

is a relation between two GO terms part of relation between two GO terms

go(+Domain,-GO Term)

A domain has GO terms of its proteins

MIPS subcellular location(+Domain,#Subcellular Structure)

A domain has subcellular structures in which its proteins are found.

function category(+Domain,#Function Category)

A domain has the proteins categorized to certain function categories

domain category(+Domain,#Protein Category)

A domain has proteins categorized to certain protein categories

phenotype category(+Domain,#Phenotype Category)

A domain has proteins categorized to certain phenotype categories

complex category(+Domain,#Complex Category)

A domain has proteins categorized to certain complex categories

Others num int(+Domain,#num int) ig(+Domain,+ Domain, #ig)

A domain has a number of interactions A domain has interaction generality

icate motif compound(+Domain,#motif compound) is predictive for signaling DDI prediction and
gives the information about the stability of signaling DDI. Concerning on functions of host pro-
teins of domains, predicate function category(+Domain,#Function Category) is generated. Pro-
teins in a signaling transduction network should join together in a protein complex, so predicate
complex category(+Domain,#Complex Category) presents the relation between one domain and some
complex categories of its proteins. (For example, complex category(pf00400, transcription complexes)

where pf00400 is Pfam accession number and transcription complexes is complex category name.)
Other predicates are also generated from MIPS database, Uniprot database, GO database, and Inter-
Pro database.

Each predicate in Table 1 has many ground facts extracted from �ve genomic and proteomic data
sources. Figure 1 illustrates the number of ground facts obtained from each data source. The data
table in this �gure shows the number of ground facts extracted from databases for individual predicates
demonstrated in Table 1. For example, with predicate

subcellular location(+Domain;#Subcellular Structure)

extracted from MIPS database, there are 3,616 ground facts extracted. With the nineteen background
predicates, we obtained 24,123 ground facts in total associated with signaling DDI prediction.

Among �ve data sources, MIPS database (the latest update version in 2006) is outstanding, with
14,865 ground facts (more than 50%). A total of 6,207 ground facts are extracted from Uniprot
database. The number of ground facts from these two databases is huge, because of the availability
of these databases. Also, the relationships between domains and their proteins are many-many rela-
tionships. One domain can belong to many proteins, for example, domain SH3 is found in 24 proteins
of Saccharomyces cerevisiae, some of which are Nuclear fusion protein FUS1, SSU81 protein (SHO1

osmosensor) or Cytokinesis 2 protein, etc. And one protein can contain many domains, for example,
protein sln1 yeast has three domains HATPase c, HisKA and REC. Then, one domain has lots of
ground facts for one predicate.
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Figure 1: Number of ground facts extracted from each data source.

On the other hand, when extracting ground facts from other databases like PRINTS database,
Interpro database, etc., the relationships between domains and their entries in these databases are
one-one relationships or one-many relationships. Therefore, the number of ground facts extracted
from those databases is less than from MIPS database and Uniprot database. The combination
of all ground facts generated from �ve genomic and proteomic databases constructed considerable
background knowledge associated with signaling DDI.

4 Experimental Results and Discussion

4.1 Prediction of Signaling Domain-Domain Interactions

To validate our proposed method of predicting signaling domain-domain interactions, we conducted
a 10-fold cross-validation test. Our experimental results obtained higher sensitivity, speci�city, accu-
racy and precision compared with AM method [13]. The sensitivity of a test ( TP

TP+FN
) is described

as the proportion of true positives (TP) it detects of all the positives (true positives (TP) + false
negatives(FN)), measuring how accurately it identi�es positives. On the other hand, the speci�city
( TN
TN+FP

) of a test is the proportion of true negatives (TN) it detects of all the negatives (true neg-
atives (TN) + false positives(FP)), and thus is a measure of how accurately it identi�es negatives.
Besides sensitivity and speci�city, accuracy ( TP+NP

TP+FP+TN+FN
) and precision ( TP

TP+FP
) were evaluated.

The results of the 10-fold cross-validation test are shown in Figure 2.

The lower bound on the number of positive examples to be covered by an acceptable clause is 3,
and no negative examples (noises) allowed to be covered by an acceptable clause. We obtained high
sensitivity (88%), accuracy (83%), and precision (90%) compared with AM method (with sensitivity
(50%), accuracy (50%) and precision (83%)). Because of the lack of one standard database of non-
signaling domain interactions, the speci�city of ILP method is not very high at 64% (52% with AM
method).

The experimental results have shown that ILP approach potentially predicts DDI with high sen-
sitivity and accuracy. Actually, we expect that the results will be much better when the datasets are
more complete. Furthermore, the inductive rules of ILP encouraged us to discover lots of compre-
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Figure 2: Performance of ILP method (minpos = 3 and noise = 0) compared with AM methods.

hensive relations between signaling DDI and protein features and, between signaling DDI and domain
features. The following are some induced rules by Aleph.

Rule 1 [Pos cover = 31 Neg cover = 0]
domain interaction(A;B) : � dr go(A;C); ec(B; ec2 3 1);
function category(A; cellular transport facilitation and transport routes):

Rule 2 [Pos cover = 27 Neg cover = 0]
domain interaction(A;B) : � dr prosite(A;C); ec(A; ec3 1 3); function category(B; cellular communication):

Rule 3 [Pos cover = 20 Neg cover = 0]
domain interaction(A;B) : � prints(B;C);motif compound(C; compound(3));
protein category(A; gtp� binding proteins).

Rule 4 [Pos cover = 15 Neg cover = 0]
domain interaction(A;B) : � num int(A;C); C = 9; complex category(B; intracellular transport complexes).

Rule 1 shows that if we have two domains, one of them belonging to proteins having the GO term
and categorized in the cellular transport facilitation and transport routes function category, and
the other one belonging to proteins having coded enzyme ec2 3 1, then the two domains interact.
Related to the motif compound feature, we found there are many induced rules combining the motif
features and other protein features. This means that the inferred interactions of these domains play an
important role in forming stable protein-protein interactions in particular and stable STN in general [7].
Rule 3 is an example of such a rules. In Rule 3, if one domain has an annotation in PRINTS database,
and the PRINTS annotation contains a compound of three motifs, that domain should interact with
the other domain belonging to the proteins categorized in the gtp� binding proteins category.

We found many comprehensive relations between signaling DDI and di�erent domain and protein
features from 74 induced rules. We expect that the combination of these rules will be useful for
understanding signaling DDI in particular and protein-protein interactions, and signal transduction
networks in general.

4.2 Discovering STN Using Signaling DDI

From predicted (signaling) domain interaction networks, we raise the question of how completely they
cover the STN, and how to reconstruct STN using signaling DDI. Our motivation was to propose a
computational approach to discover more reliable and stable STN using signaling DDI. When studying
yeast MAPK pathways, the results of our work are considerable.

All extracted domains of proteins in MAPK pathways are inputs (testing examples) in our proposed
predictor using ILP method (see Sections 2 and 3). With 32 proteins appearing in MAPK pathways,
we extracted 29 di�erent protein domains, and some of them are shared among proteins. Some
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Figure 3: MAPK signal transduction pathways in yeast covered by signaling DDI networks. The
rectangles denote proteins, the ellipses illustrate their domains and the signaling domains are depicted
in dark. The signaling DDI are the lines with arrows, the missing interactions are dashed lines with
arrows.

domains are determined to be signaling domains, such as domain pf00069 belonging to many proteins,
for example, ste11 yeast, fus3 yeast or pbs 2, etc., and some of them are not signaling domains,
such as TEA or MID2. Figure 3 shows yeast MAPK (mitogen-activated protein kinase) covered by
signaling domain interactions. MAPK pathways involve pheromone response, �lamentous growth,
and maintenance of cell wall integrity pathways. Table 2 shows the results of predicted signaling
DDI when reconstructing STN for the yeast MAPK pathways. Moreover, among predicted signaling
DDI for yeast MAPK pathways, there are some DDI which are newly discovered, when compared
with the InterDom database. For example, our predicted DDI (pf00071,pf00768), (pf00768,pf00069),
(pf00433,pf02200) do not exist in the InterDom database.

Evaluating signaling domain interactions predicted from the testing set of MAPK domains, 88%
of protein relations in the Cell Wall Integrity PKC pathway, the Pheromone Response pathway, and
the Filamentous Growth pathway are covered, and the Invasion High Osmolarity HOG pathway has
coverage of 80%. Outstandingly, lots of domain interactions are found in which their corresponding
proteins interacted in DIP (Database of Interacting Proteins) [17] and/or in CYGD (Comprehensive
Yeast Genome Database) [18], for example, seven signaling domain interactions in the Cell Wall
Integrity PKC pathway belong to 39 protein-protein interactions in CYGD database, and also belong
to 47 protein-protein interactions in DIP. For estimating the reliability of STN, the reliability score
WSTN (see Equation 1) was calculated for yeast MAPK pathways. The reliability score of the Cell
Wall Integrity PKC pathway is the highest with WSTN = 7.19.

Table 2: Results of predicted signaling DDI in the yeast MAPK pathways.
The yeast MARK pathways Percentage of signaling DDI predicted #CYGD PPI covered #DIP PPI covered

Cell Wall Integrity PKC pathway 88% 39 47
Pheromone Response 88% 41 42
Filamentous Growth 88% 40 38
Invasion High Osmolarity HOG 80% 40 53
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5 Conclusion and Future Work

We have presented an approach using ILP and multiple genome and proteomic databases to predict
signaling domain-domain interactions. The experimental results demonstrated that our proposed
method could produce comprehensible rules, and at the same time, performed well compared with
AM method on prediction of signaling domain-domain interaction. With a reliable set of predicted
signaling domain interactions, the signal transduction networks were reliably discovered. A reliability
score was proposed to estimate the reliability of STN inferred by signaling domain interaction networks.
In future work, we would like to investigate further the biological signi�cance of novel signaling domain-
domain interactions obtained by our method. Selecting the features which are suitable to signaling
domain interactions requires some further work. Also by applying graph techniques in data mining,
it will be possible to model complete signal transduction pathways from signaling DDI networks.
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