
Proof-of-Work as Anonymous Micropayment:
Rewarding a Tor Relay

Alex Biryukov and Ivan Pustogarov

University of Luxembourg,
{alex.biryukov,ivan.pustogarov}@uni.lu

Abstract. In this paper we propose a new micropayments scheme which
can be used to reward Tor relay operators. Tor clients do not pay Tor
relays with electronic cash directly but submit proof of work shares which
the relays can resubmit to a crypto-currency mining pool. Relays credit
users who submit shares with tickets that can later be used to purchase
improved service. Both shares and tickets when sent over Tor circuits are
anonymous. The analysis of the crypto-currencies market prices shows
that the proposed scheme can compensate significant part of Tor relay
operator’s expenses.

Keywords: Tor; Proof of Work; Crypto-currency; Micropayment; Min-
ing pools

1 Introduction

Many open peer-to-peer systems rely on volunteers donating their resources in
order to achieve acceptable level of Quality of Service. E.g. in file-sharing appli-
cations, latency and failure rate depends on the number of users sharing their
resources. In overlay routing systems packet latency depends on relays donating
their bandwidth. Many of these systems suffer from free-riding: users consume
resources without donating anything back. Obviously, this rational behavior is
motivated by that users don’t want to degrade their own performance. While
not a P2P network in the traditional sense as there is a clear separation between
clients and relays, Tor network suffers from the same free-riding problems: only
limited number of relays provide decent bandwidth while the client base is rather
large.

A number of incentive techniques were proposed to mitigate selfish behaviour
of clients for traditional P2P systems. The bottom line of many of them is that
a client is incentivized to donate the same type of resources to the network as
he consumes. Unfortunately for Tor such incentives are hardly applicable: the
majority of Tor users reside behind ISP NAT’s and firewalls and thus cannot be
checked by Tor authorities for reachability which prevents them from appearing
in the Tor Consensus. In fact, for Tor it might be even undesirable to allow very
low bandwidth nodes to become a part of the network [2] (and many clients can
provide only limited bandwidth).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31217012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Another alternative would be to use a cryptocurrency and make direct pay-
ments to Tor relay operators. Many cryptocurrencies are not anonymous however
which is in conflict with Tor goals. In this paper we propose a method to re-
ward Tor relays. This method is based on crypto-currencies but does not have
to involve direct payments; it rather adopts a mining-pool approach: a Tor re-
lay implements mining pool functionality and provides Tor clients with mining
jobs. When a client finds the job which meets requested difficulty, he submits
the share to the Tor relay and gets priority tickets in exchange. Tor relays can
either join a mining pool and delegate jobs to Tor clients or can do solo-mining
and try to solve a block. The proposed approach does not require a central bank
or a secure bandwidth measurement mechanism. The proposed approach may
also help to solve scalability problem. The more users join the Tor network and
use “paid” services, the more profitable it becomes to run a relay, and the more
relays are expected to join the network.

The rest of the paper is organized as follows. In section 2 we give an overview
of previous proposals to incentivize contributing to Tor. In section 3 we provide
the necessary background on Tor, Bitcoin, Altcoins, and mining pools. In sec-
tion 4 we describe the details of our approach. Analysis of the method is given
is section 5. Discussion in Section 6 concludes the paper.

2 Related Work

The necessity of developing robust and secure incentives to participate in Tor
was first mentioned in the Tor design paper [9]. Since then a lot of research
has been done in the area. In this section we provide a short survey of previous
approaches. A good summary can also be found in [27].

Androualki et al. [3] propose that Tor clients use e-cash in order to pay relays
for high-priority circuits. In their scheme coins are issued by a central bank.
In the proposed approach, in order to prevent double spending a relay should
deposit coins shortly after a user withdraws them. This creates potential timing
linkability attacks. The scheme assumes that clients purchase digital coins from
the bank using real money. This might create legal issues for Tor relay operators.
Finally, introducing a bank makes another step towards Tor centralisation.

Ngan, Dingledine, and Wallach [22] propose that relays which provide good
service to others are assigned a “Gold Star” flag by Tor authorities. A Gold
Star relay’s traffic is then given higher priority. As was mentioned in [22], the
original anonymity set is divided into two: one for gold star users and one for
the rest. This has a negative impact on anonymity. In addition, only people who
run relays can get improved service.

Jansen, Hopper, and Kim [16] developed BRAIDS, a scheme in which users
“pay” relays with tickets. Double spending is prevented by that tickets are “relay-
specific”. Tickets are produced by central bank using blind signatures and a
limited amount of tickets is distributed to clients through Guard nodes. Relays
can accumulate clients’ tickets and thus receive better performance by having
more tickets. The proposed method achieves desirable anonymity properties,

however it still uses a central bank for generating coins. Second, in order to
prevent clients from unfairly increasing free ticket income by joining multiple
nodes into the system, the ticket distribution is limited per IP address. This
creates problems for users behind NAT which share the same IP address. Third,
the problem of collusion between clients and tickets distributors is not mitigated
completely.

In [17], Jansen, Johnson, and Syverson propose LIRA, an incentive scheme
similar to BRAIDS where the problem of double spending is solved by using
“relay-specific” tickets. In LIRA, tickets can be obtained either by buying them
from a central bank or by simply guessing (the probability to guess a “correct”
ticket is a tunable parameter). By providing bandwidth relays receive coins from
the bank which they can exchange later for tickets. LIRA has two undesirable
properties: (1) it relies on an external secure bandwidth measurement scheme;
(2) a central bank is still used.

In [12], Jansen, Miller, Syverson, and Ford discuss an approach which bor-
rows some ideas from BRAIDS and LIRA however they try to avoid reliance
on a central bank. This is achieved by distributing bank functionality among
several semi-trusted servers. Public accountability is achieved by using protocols
from distributed digital crypto-currencies. While a step towards better decen-
tralisation a new bank entity is still added to the system. In addition similar to
LIRA, the proposed system relies on a external secure bandwidth measurement
scheme.

Ghosh, Richardson, Ford, and Jansen [19] propose the concepts of TorCoin
and TorPath. TorCoin is a crypto-currency which uses proof-of-bandwidth in-
stead of proof-of-work in order to mint new coins. TorPath is a bandwidth mea-
surement mechanism which tries to prevent colluding parties from minting coins
without providing bandwidth to the network. Despite TorPath mechanism, the
proposed scheme is still vulnerable to Sybil attacks which allow a colluding set of
malicious servers and clients to generate coins without providing real bandwidth
to the network. In addition TorPath requires that clients do not choose circuits
by themselves but rather circuits are assigned by “assignment servers”. It is a
huge step towards network centralisation. Finally during circuit assignment, re-
lay’s bandwidth is not taken into account, thus making it easier for an attacker’s
relays to be chosen at both ends of a circuit (which has a negative impact on
the anonymity).

The idea described in [23] is close in spirit to our scheme (though not directly
related) and suggests that a client offers a portion of his computation power in
exchange for a service.

3 Background

3.1 Tor Anonymity Network

Tor is a volunteer-based low-latency anonymity network built on ideas of onion
routing. It allows users to browse Internet anonymously by forwarding their

traffic through a circuit of Tor Relays in such a way that each relay in the circuit
knows only the immediate transmitter of the message and the immediate receiver
of the message. Using Tor makes it more difficult for non-global adversaries1 to
trace Internet activity for TCP applications. At the time of writing Tor comprises
of more than 6,000 relays while the number of clients is estimated to be more
than 500,000 daily [28] (not counting the bots).
Anonymous circuits. In order to make a connection to a server through the
Tor network, a client first downloads Consensus (the list of running Tor relays)
from a small set of Tor Authorities. The client then chooses a path consisting of
three relays and agrees on a Diffie-Hellman key with the first (Entry) node in
the path. Then he completes a Diffie-Hellman key exchange handshake with the
second Middle node by using the first node as a proxy. In this way the Middle
node does not know the real initiator of the handshake. The user repeats the
same procedure with the third (Exit) node but uses the chain of Entry and
Middle nodes as proxies. When the client wants to connect to a server on the
Internet, he packs his messages in fixed 512-bytes sized cells and encrypts each
cells with the three keys. When the message travels along the circuit, each relay
strips off one layer of encryption. This scheme allows to break linkability between
the sender of the message and its destination.
Load balancing. In order to achieve better performance Tor implements a
load balancing mechanism. Each relay in the Consensus is assigned a bandwidth
weight and the probability for a relay to be chosen by a client is roughly pro-
portional to that weight. In order to assign weights to relays, Tor authorities
conduct active measurements by building two-hop circuits to specific URL’s and
measure download times. This way relays get clients depending on their current
load.
Bandwidth management. In order to limit bandwidth usage, a Tor relay
implements token bucket algorithm [26]. The relay’s operator can specify the
token rate (which specifies the average incoming/outgoing bandwidth usage)
and the bucket size (which specifies the burst).

3.2 Bitcoin and Other Crypto-Currencies

Bitcoin is a decentralized digital currency and payment system which does not
rely on a trusted issuing entity but rather on a peer-to-peer network with peers
minting Bitcoins by brute-forcing double SHA-256 hash function. Two main
components in Bitcoin are: (1) coins generation, and (2) double-spending pre-
vention. Coins ownership and money transfers are implemented through elliptic
curve public key cryptography: a party proves the ownership when he transfers
a coin by signing it with his private key.
Money generation. Money generation in Bitcoin is solved by maintaining a
public list of blocks, the block chain, which starts from the genesis block. Bitcoin
participants constantly search for new valid blocks, once a new valid block is

1 A global passive adversary is a type of adversary who can observe all the traffic in
the network.

discovered the corresponding peer announces it and generates (and earns) new
coins. Valid blocks are created by Bitcoin miners by providing proofs of work
(PoW). The proof of work consists of finding a cryptographic hash value for a
block of transactions which starts with a certain number of leading zero bits.
Hash of the previous block is included into the new block, which results in chain
of blocks. The Proof-of-Work difficulty (i.e. the required number of zero bits) is
adjusted automatically by the network so that the network generates one block
every 10 minutes on the average. In case of two forks of the blockchain, the
longest2 fork is adopted by the network.

Double spending. Double spending is prevented by that transactions are in-
cluded into blocks and each peer in the network keeps its local copy of the
blockchain. When a payee receives a transaction it checks the blockchain if the
same coins were already spent previously. Once a transaction is buried under
sufficient number of blocks it becomes computationally impractical to revert it.
The very first transaction in each block is called coinbase transaction and is used
for coins generation. A miner which generated a block puts the hash of his public
key into this transaction.

Altcoins. Since Bitcoin’s inception in 2009, a number of alternative currencies
has appeared (called Altcoins). They all share the same basic principles of Bit-
coin, but differ in PoW algorithms, difficulty adjustment rules, and amount of
coins generated per block. Bitcoin along with Altcoins form the crypto currency
market where they can be exchanged into the usual fiat currencies. In addition
it is possible to pay directly with Bitcoin for a number of services. Currencies
based on ASIC-resistant PoW functions from Password Hashing Competition
(PHC) [24] have been recently proposed.

3.3 Mining-pools

Bitcoin mining is an arms race. Initially it was carried out by CPU. As Bitcoin
was becoming more popular and new miners were entering the game, mining has
moved to GPU. Then with the rise of the Bitcoin price, dedicated ASICs which
provided orders of magnitude higher hash rates were developed. The probabil-
ity to mine a block with a consumer-level GPU became very low at this stage.
For miners without powerful dedicated hardware it takes prohibitively long time
(years) before they can make a return. Such miners solve this problem by joining
their resources in a mining pool. Participants of a mining pool all together gener-
ate blocks much faster and receive a portion of the block reward on a consistent
basis.

Each miner in a mining pool tries to solve a block with a much lower than the
original difficulty. Such simpler block is called a share. With some probability the
share will also have a solution with the original difficulty in which case the pool
mines a block. The block reward is then divided among the participants based
on the work they contributed. There exist pools which track crypto-currencies

2 In terms of difficulty.

market prices and automatically switch to mining the most profitable crypto-
currency.

3.4 Partially blind signatures

Blind signature is a from of digital signature scheme that allows a user to get
a signature on a message from a party without revealing the content of the
message. The common usages include digital cash schemes and voting protocols.
Blind signature schemes however do not allow the signer to include necessary
information (e.g. expiration date of a digital coin) in the resulting signature.
This limitation can be removed by using a partially blind signature scheme [1] in
which a signer can explicitly include additional attributes (such as timestamps).
A concrete scheme from [1] is described in Appendix B.

4 Proof-of-Work as payment for service

4.1 Design goals

The main objective of the proposed scheme is to compensate Tor relays for
providing improved service and to encourage server operator’s participation in
the Tor network. In addition, we require the following properties. First, the
scheme should not degrade the anonymity provided by Tor, i.e. it should not
introduce new attack vectors. Second, it should not involve direct payments
neither with fiat nor with crypto-currencies. The reason for this is that direct
payment even with a digital currency like Bitcoin will reduce user privacy3 and
may become a strong psychological obstacle for adopting a scheme for ordinary
users. Third, it should not rely on secure bandwidth measurement mechanisms.
Fourth, it should not involve a central bank as in [16]. Sixth, the scheme should
not require from users to run a Tor relay in order to get improved service. We
analyse these properties in more detail in section 5.

4.2 System design

Tor users can get improved service from a Tor relay by producing proof-of-
work and sending it to the relay over an anonymous Tor circuit. The relay
can then forward this proof-of-work to a crypto-currency mining pool and earn
coins. Users are rewarded by relay-specific priority tickets which can later be
exchanged at the same relay for improved service (higher bandwidth or lower
latencies). Tickets are issued by relays using blind signatures [5] and exchanged
between users and relays over anonymous Tor circuits. Unlike [16] we do not
use any bank entity and tickets are blind-signed by relays themselves.
Setup. In the setup phase a Tor relay first chooses a mining pool, the corre-
sponding crypto-currencies and PoW algorithms (note that the relay can choose

3 An option of payment via anonymous crypto-currency like ZeroCoin [21] will be
discussed in Section 6.

a pool which automatically switches to the most profitable currencies). Second,
the relay generates a public/private key pair which will be used in generation
of priority tickets (this key pair should be different from the relay’s onion and
identity keys). The relay then includes this information into its descriptor. A
client which plans to obtain improved service chooses relays which announce
compatible PoW algorithms.

Protocol 1. Ticket Purchase: Client C obtains a priority ticket from relay R
1: C → R : SUBSCRIBE message.
2: R→ C : JOB message.
3: C : start mining a share.
4: C : If share w is found, generate random number x and its hash H(x).
5: C → R : w, H(x).
6: R : check w, if correct pass it to the mining pool.
7: R↔ C : Generate partially blind signature S over {H(x), d}, where d is an assigned

by the relay timestamp, which specifies the current day.
8: C: Keeps the ticket TR = {S, d, x,H(x)}.

Purchasing priority tickets. A relay will provide improved service for clients
in exchange for priority tickets. Priority tickets are relay-specific which means
that by default they can only be used to purchase service from the relay which
issued them (see Protocol 2 if ticket exchange is required). The protocol for
client C to obtain a ticket from relay R is described in Protocol 1. Prior to
execution of the protocol, the client establishes an anonymous Tor circuit to the
relay. All communications are carried over this circuit, including (optionally)
the future client traffic. Client C registers for a new mining job with relay R
and the relay sends a reply in which it specifies the PoW algorithm, difficulty
per share, and data sufficient to construct a share (steps 1–2). At step 3, the
client starts solving a new share. At steps 4–5 (given that the client solved the
share), the client generates a random value x and its hash H(x) and sends the
share to R. The relay verifies the share and produces a partially blind signature
S over H(x) with timestamp d as an added factor according to [1]. The tuple
T = {S, d, x,H(x)} is a priority ticket which the client can later exchange for
the improved service. By reducing the granularity of the timestamp to just the
current date makes all clients that got tickets on the same day undistinguishable.

Buying improved service. Every ticket that a client gets can be used to
transmit cells with priority access during ∆t seconds through the Tor relay
which issued the ticket. In order to prevent double-spending, the relay should
keep history of spent tickets. To limit the size of this database tickets should
expire after e.g. 48 hours.

Priority access. We suggest using Hierarchical Token Bucket Algorithm [18] to
provide improved quality of service for users with priority tickets, however other
options exist [11]. HTB is a simple algorithm and it is a logical step from the
currently employed by Tor Token Bucket algorithm. The priority access scheme

should allocate enough resources for “free” users so that people without funds
to buy high-speed computers can still have reasonable QoS with Tor.

In Hierarchical Token Bucket the bandwidth is allocated to one or more
classes, and when a class-allocated bandwidth is exceeded, it can temporarily
“borrow” unused bandwidth from another class. Classes form a tree structure in
which only leaves have corresponding packet queues. Each class C has associated
guaranteed rate RC , ceil rate CeilC , and priority pC . Class C is guaranteed to
have at least rate RC . The rate of a parent class should not exceed the sum of
the rates of its children classes. CeilC specifies the maximum speed that class
C can have by borrowing from its parent class. Classes with higher priorities
borrow unused bandwidth first.

...

Link

Free

Paid

Group1 Group4

rate: 10 Mbps

rate: 2 Mbps
ceil: 4 Mbps
prio: 5

rate: 8 Mbps
ceil: 10 Mbps

rate: 4 Mbps
ceil: 10 Mbps
prio: 1

rate: 1 Mbps
ceil: 10 Mbps
prio: 4

Fig. 1. Hierarchical Token Bucket example: the link of 10 Mbps is divided between
paid and free services. Free circuits will share 2 Mpbs or 4 Mbps if there are no paid
clients. Paid clients can get the whole capacity of 10 Mbps if there are no free users.

Consider an example in Figure 1 in which a relay is willing to provide up to
10 Mpbs for Paid and Free services in total. The guaranteed rate for Free service
is 2 Mpbs; the total rate for Paid service is 8 Mbps which is later divided between
different classes of users based on the number of tickets they pay. Consider two
examples. In the first example a relay does not have any paid clients in which
case the relay increases the bandwidth for Free service to 4 Mbps by borrowing
from the Paid class. In the second example the relay has very few free clients
which consume only 1 Mbps while classes Group1 and Group4 require 4.8 Mbps
and 1.5 Mpbs respectively. In this case the higher-priority class Group1 which
normally pays for the rate of 4Mbps will be the first to take the needed 0.8 Mpbs
after which the lower priority class Group4 will take the remaining 0.2 Mbps.
Ticket exchange. So far in the proposed scheme a client gets tickets from the
same relay R1 for which he is working, and the tickets are valid at this relay
only. Such scheme works best if the client provides proof-of-work simultaneously
with sending his data over Tor. Assume now that a client pre-mined priority
tickets with an intention to spend them later. He might become frustrated if at

the time when he decides to spend them relay R1 is off-line. In such a case relay
R1 may team with a backup relay R2 and ask it to accept its priority tickets. R2

can later request payment from R1 in crypto-coins or by redirecting his clients
to mine for R2. Protocol 2 describes how priority tickets issued to client C by
relay R1 can be spent at relay R2. When relays R1 and R2 are both online they
synchronise their databases of spent tickets.

Protocol 2. Ticket Exchange: C gets improved service at R2 by providing
a ticket issued by R1

Client C obtained ticket TR1 = {S1, d, x,H(x)} from relay R1. R2 is a backup relay
for R1

1: C → R2 : TR1

2: R2 : verify signature S1 and timestamp d.
3: R2: If correct, register TR1 as spent (sync this with R1).
4: R2 : If TR1 is correct, provide priority access.
5: R2 → R1 : PAYMENT REQUEST (Once every N served tickets).

Assume that client C has ticket TR1
= {S1, d, x,H(x)} issued by relay R1.

The objective of the Protocol 2 is for the client to be able to get improved service
from relay R2 while preserving the following properties: (1) A colluding client
and relay should not produce “free” tickets which can later be used at other
relays; (2) Double spending of the same ticket at two different relays should be
prevented.

“Free” tickets created by colluding client C and relay R1 are avoided by that
R2 requests payment for each batch of N served tickets (either in crypto-coins or
by delegating new mining work). We can envision that in practice relays R1, R2

might be run by the same operator or by two operators, who trust each other.
In the second case the amount of trust can be regulated by the size of N . In
case R1 stops paying, relay R2 will stop accepting its tickets. In order to prevent
double-spending of the same ticket at relays R1 and R2 they should regularly
synchronise their databases of spent tickets.

Mining strategies. The operator of a Tor relay which accepts PoW shares has
two possibilities. First, he can decide to do solo-mining, by making his crypto-
currency address a part of JOB messages sent to clients in the hope that one of
the submitted shares will also solve a block. This strategy requires significant
computational power at a large number of Tor clients. Second, the Tor relay
operator may decide to ask for work from a large mining pool and then delegate
this work to clients. The operator then resubmits the shares found by the clients
to the mining pool. Note that the mining pool requests the relay to generate
a share of difficulty lower than the current block’s difficulty in the hope that
one share will also solve the block. The Tor relay may use the same strategy
towards Tor clients: it may request to generate PoW with difficulty lower than
that indicated by the mining pool in the hope that a client’s PoW will also solve

the mining pool’s share. With this approach the Tor relay may regulate how
many tickets are issued to different clients, proportional to their mining power.
Donations. Clients that just want to support Tor relays without requesting any
bandwidth can submit shares without requesting anything back.
Implementation considerations. The scheme proposed in this paper requires
several modifications to the Tor protocol and bundling Tor with crypto-currencies
mining software. It introduces the following new Tor cells:

– RELAY MINING REGISTER4– by sending this message a user asks a Tor relay to
send him mining jobs.

– RELAY MINING JOB – a Tor relay uses this message to send mining jobs to
clients.

– RELAY TICKET – used by Tor relays to (1) send material (blind signed) to
clients for producing a priority ticket, (2) to notify backup relays about spent
tickets; used by Tor clients to send priority tickets and request improved
service from a relay.

In addition our scheme requires:

– Replacing currently used Token Bucket algorithm with Hierarchical Token
Bucket algorithm.

– Implementing a partially blind signature module.
– Keeping track of spent tickets.
– Synchronizing a relay’s spent tickets database with its backup relay.

At the client side, Tor should be bundled with a crypto-currency miner software
(e.g. [4] or [7]). At the relay side, Tor should be bundled with both miner and
mining pool software (e.g. [10]). Tor control port should also be extended to
enable communication between Tor and mining software. Note that it is not
necessary to develop new mining software, but rather bundle existing projects
with Tor.

5 Analysis

5.1 Profitability

Motivation. According to the performance statistics maintained by the Tor
project5 [29], it takes roughly between 10 and 15 seconds to download a 5MB
file over the Tor network on average (which results in 333 KB/s). While such
speeds are likely to be enough for general Web-surfing they might be frustrating
for bulk file downloads, watching videos, or having a video conference [15]. The
later types of traffic could be the reason why Tor clients may decide to get
improved service from Tor relays. This might be especially true for Bittorrent

4 The described message sequence borrows from Stratum protocol
http://mining.bitcoin.cz/stratum-mining

5 For June – September 2014.

users. Bittorrent over Tor has been problematic for both Bittorrent users and Tor
relay operators: users did not get enough speed, and Tor operators are concerned
that bulk file downloads consume a lot of bandwidth and thus decrease Quality
of Service (QoS) for Web-surfing users.

Another reason why a Tor client would want to have higher capacity/lower
delays is to improve QoS for his hidden services. The current version of Tor
Hidden Services suffers from high delays and low speeds [14] which significantly
reduces the number of users.
Choosing crypto-currencies There are more than 400 different crypto-currencies
nowadays [8] (however only few of them achieved noticeable market capitalisa-
tion and are less susceptible to huge fluctuations in market value towards fiat
currencies). According to [6] and [30] the following PoW algorithms are used
in existing crypto-currencies: Blake-256, Groestl, HEFTY1, JHA, Keccak, Neo-
Scrypt, Quark, Scrypt, Scrypt-Adaptive-Nfactor, Scrypt-Jane, SHA-256, X11,
X13 (see Table 1).

Profitability of mining a digital currency obviously depends on the miner’s
hash-rate, price of electricity, the currency’s difficulty, and its current mar-
ket price. The miner’s hash-rate can vary significantly depending on hardware.
Table 2 shows hash-rates achievable for different algorithms on Intel Core i7-
2760QM (4 cores at 2.40GHz). The table also includes maximum revenue6 for
each algorithm for the 1st of September 2014 according to [6] (averaged over
multiple observations). Electricity costs are estimated to be 11 cents per day
given that max power of the CPU is 45W. During the day we also observed
short periods of time when the revenue jumped to 11 cents per day. Also note
that hash rates achievable on GPU’s can be an order of magnitude higher. We
assume that an average user of our protocol does not use ASICs.
Profit estimation. In order to estimate7 how much a Tor relay can earn using
the proposed scheme we first make the following assumptions:

– Among 2,000,000 daily Tor clients (according to the Tor statistics), only
500,000 are real users and the rest belong to botnets [20]. I.e. only 500,000
users can mine.

– Moreover we assume that each user’s session takes about 1 hour and every
user is willing to mine with a hash-rate similar to that from Table 2. The
later implies that clients will spend 100% of CPU on mining during 1 hour
period. If clients decide to use less fraction of their CPU, the revenue of a
Tor relay will decrease proportionally.

Income of a Tor relay obviously depends on the number of users which establish
their circuits through this relay. This in turn depends on the relay’s consensus
bandwidth. We consider the case in which the scheme motivates running a Tor

6 Revenue can be smaller when trying to exchange due to small market size.
7 These are of course very rough estimates: it’s not possible to learn the current

hardware of Tor users, estimate the fraction of non-botnet Tor users, the number of
Tor users which would be willing to mine, and the number of new (Bittorrent over
Tor) users.

Blake-256 BlakeBitcoin Blakecoin Dirac Electron Photon

Groestl Diamond Groestlcoin

HEFTY1 Heavycoin Mjollnircoin

JHA JackpotCoin

Keccak 365coin Maxcoin Slothcoin Cryptometh

NeoScrypt Phoenixcoin

Quark CNotes Quark Securecoin Animecoin BitQuark Diamondcoin

Scrypt

42 Alphacoin Anoncoin Auroracoin BBQCoin Bitbar Bottlecaps
Casinocoin Catcoin CHNCoin CryptogenicBullion DigiByte

Digitalcoin DNotes Dogecoin Earthcoin Einsteinium Emerald
Fastcoin Feathercoin Franko Globalcoin Goldcoin Grandcoin
HoboNickels Infinitecoin Klondikecoin Krugercoin Litecoin
Luckycoin Lycancoin Megacoin Mincoin Myriadcoin-Scrypt
Nautiluscoin Netcoin Noblecoin Noirbits Novacoin Nyancoin

Potcoin Quatloo Razor Reddcoin RonPaulcoin Rubycoin Sexcoin
Stablecoin Starcoin Tagcoin Teslacoin USDe Viacoin Worldcoin

Scrypt-Adaptive-
Nfactor

Entropycoin Execoin GPUcoin Murraycoin ParallaxCoin
SiliconValleyCoin Spaincoin Spots Vertcoin VirtualMiningCoin

VertCoin

Scrypt-Jane
(Scrypt-Chacha)

YaCoin Ultracoin Velocitycoin

SHA-256

Battlecoin Betacoin BigBullion Bitcoin Bytecoin Curecoin Devcoin
eMark Fireflycoin Freicoin Ixcoin Joulecoin Mazacoin

Myriadcoin-SHA-256 Namecoin OpenSourcecoin Peercoin
SaveCoin Takcoin Teacoin TEKcoin Terracoin Tigercoin

Unobtanium Zetacoin

X11
ConspiracyCoin Cryptcoin Darkcoin Fractalcoin

GlobalDenomination Hirocoin Karma Logicoin Smartcoin
Vootcoin X11coin

X13 MaruCoin BoostCoin X13Coin
Table 1. Proof-of-work algorithms and corresponding crypto-currencies

Exit node (currently there are only about 1,000 Exits out of 6,000 Tor relays).
The case in which Tor clients pay evenly to all 3 relays in the circuit is considered
in Appendix A. The green line in Figure 2 shows the income of an Exit relay
under the assumption that each client can mine an equivalent of 3.8 cents per 24
hours of which a fraction of 1/24 is received by the relay during a 1 hour session.
For such a case top Tor relays (with consensus bandwidth 200,000 KB/s) can
earn about 500 USD per month. A middle-tier relay with consensus bandwidth
10,000 KB/s can earn about 25 USD. The green line in Figure 3 shows monthly
incomes assuming 11 cents per client per day (in which case a top Tor relay can
earn up to 1,600 USD).

Running a high-bandwidth Tor relay obviously means high costs. In order
to estimate the incurred costs we assume that the rental price is: 25 EUR per
month for a relay with consensus weight less than 15,000; 40 EUR for weight
between 15,000 and 50,000; 70 EUR for consensus weight larger than 50,000. In

Hashing algorithm Rate on Intel Core i7-2760QM Currency Revenue per day

Blake-256 9,6 Mh/s Blakecoin n/a

Groestl 1 Mh/s Diamond 2.1

HEFTY1 128 Kh/s Heavycoin n/a

JHA 308 Kh/s Jackpotcoin 2.2 cents

Keccak 5.2 Mh/s Maxcoin 0.7 cents

Quark 300 Kh/s CNotes 3.8 cents

Scrypt 40 Kh/s
42 0.8 cents

Litecoin 0.65 cents

Dogecoin 0.26 cents

Scrypt-N 20 Kh/s Vertcoin 2.3 cents

Scrypt-Jane 360 h/s Yacoin n/a

SHA-256d 9.6 Mh/s
Peercoin 0.01 cents
Bitcoin 0.008 cents

X11 360 Kh/s
Smartcoin 3.8 cents
Darkcoin 2.5 cents

X13 104 Kh/s Marucoin n/a
Table 2. Hash rates of the proof-of-work algorithms on Intel Core i7-2760QM

addition we assume that 10 TB of traffic is included into the server’s price and
one has to pay 2 EUR per additional 1 TB [13]. It is important to note that
we consider costs which Tor relays already have regardless whether they use the
proposed rewarding scheme or not. Note also that in order to compute traffic
costs of a relay we take its consensus bandwidth (which represents the relay’s
speed in KB/s), and assume that the relay constantly transmits with such speed
which results in upper bound of traffic costs.

Costs to run an Exit relay of specific bandwidth and corresponding prof-
itability of running such a relay (given the income produced by mining clients)
are shown in Figures 2 and 3 with blue and red lines. A Tor relay partially
compensates its costs in case of 3.8 cents per day per client; when clients mine
an equivalent of 11 cents per day, the relay’s costs are lower than its income.
Additional income can be used for the server upgrade or to provide better free
services.

5.2 Anonymity

In this section we discuss anonymity of the proposed scheme. In Protocol 1, after
client C mined a share he sends it to the corresponding Tor relay along with the
hash of a random number (to be blindly signed). All communications are done
over anonymous circuits, so that the Tor relay does not learn the originator of the
messages (unless it is a Guard node). In addition blind signatures prevent the Tor
relay from distinguishing client C from other clients. Finally shares generated
by client C contain a Bitcoin address of either the Tor relay or a mining pool
(the client is even not required to have a crypto-currency account), thus they

-60

-40

-20

 0

 20

 40

 60

 80

 0 2000 4000 6000 8000 10000

U
S

D
 p

e
r

m
o
n
th

Consensus bandwidth

Income
Costs
Profit

Fig. 2. Income, costs, and profit of an Exit relay in case of 3.8 cents per day per miner.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

20K 40K 60K 80K 100K 120K 140K 160K 180K 200K 0

U
S

D
 p

e
r

m
o
n
th

Consensus bandwidth

Income
Costs
Profit

Fig. 3. Income, costs, and profit of an Exit relay in case of 11 cents per day per miner.

don’t reveal the identity of the client in spite of known attacks against Bitcoin
(and hence Altcoins) anonymity [25].

A curious relay can however learn the hash rate of a client, thus it may
recognize repeated connections from the same client. In order to mitigate such
an attack a client is advised to randomize its hash rate. The same holds if a
client decides to pre-mine bandwidth tickets from a relay.

We also note that a powerful miner can try to DoS the paid traffic of a relay,
by taking all the paid traffic of a relay for itself. However such behavior is not
rational, since it is economically more reasonable for such miner to just earn
shares in the mining pool.

6 Conclusion and discussion

Mining Bitcoins or Altcoins on consumer-grade hardware, GPUs or even first
generation ASICs (for Bitcoin) is not profitable nowadays. This is due to the
fact that the difference between the price of mined coins and the electricity
costs is negative. Delegating mining (and thus electricity costs) to others while

keeping the earned coins obviously makes it positive8. In this paper we propose
a scheme to reward a Tor relay in which it subscribes for mining jobs at a
crypto-currency mining pool and delegates these jobs to Tor clients (thus clients
indirectly pay for electricity). The Tor relay then keeps all earned coins and
in turn issues priority tickets and sends them to the clients. Priority tickets
can be exchanged for the improved service at the same relay. The proposed
scheme has four desirable properties: (1) it does not rely on a central bank;
(2) it preserves user anonymity; (3) it removes a psychological barrier since
clients do not pay directly (and thus the risk of their money being stolen is
removed); (4) Tor relays are rewarded with crypto-currency coins which can
be exchanged for fiat currencies and partially cover their operational expenses.
A relay’s income can vary significantly depending on crypto-currency exchange
fluctuations, number of Tor clients willing to mine, hardware, etc. In a concrete
example, assuming that clients mine for Exit relays only and if each client is able
to mine an equivalent of 11 cents per day and mines 1 hour per day, an Exit
relay with Consensus bandwidth 100,000 KB/s can earn 800 USD per month;
such revenue should completely cover the relay’s traffic costs and may allow the
operator to upgrade to a more powerful server.

The proposed scheme does not decrease anonymity provided by the Tor net-
work. All shares submitted by clients are anonymous and contain a Bitcoin
address of either a Tor relay or a mining pool, thus attacks against Bitcoin
anonymity become inapplicable. A curious relay can however learn a client’s
hash rate. Also in the case of pre-mining for later usage the relay will learn that
the same user tries to go through it later on the same day.

Finally we would like to mention that if altcoins with strong anonymity
(ex. Zerocoin [21]) become widely adopted it would be easy to integrate such
payments into our scheme. A client will need to send together with the payment
the blinded value for signing. The relay will need to broadcast a transaction with
this value signed, from which the client will be able to derive the signature and
thus the priority ticket.

Usages other than Tor The proposed scheme can be used not only to reward
Tor relays. The same approach can be adopted by entities which accept pay-
ments. We note, that for this scheme to be successful it may be useful to go for
memory-hard proofs of work, which would have no advantage in GPU or ASICs.
Scrypt function used in some alt-coins (ex. Litecoin) comes close to be adequate
for this purpose, though more energy-optimal tradeoff-resistant proof-of-work
functions can be designed for this task. For example we refer the interested
reader to the recent PHC competition [24], where several candidates like Argon,
Lyra2, yescrypt provide strong ASIC resistance. We envisage that widespread
use of such CPU mining in exchange for services may become a basis for a widely
used micropayment system, which in turn becomes a strong alt-currency used

8 Our scheme thus also gives an interesting use case for the old mining gear which is
otherwise obsolete. This might be the only way to buy lots of priority traffic on Tor
relays.

by consumers (what is currently lacking in the Bitcoin universe, where the main
activities are mining and hoarding of coins).

References

1. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) Advances in Cryptology CRYPTO 2000, Lecture Notes in Computer Science,
vol. 1880, pp. 271–286. Springer Berlin Heidelberg (2000)

2. Alsabah, M., Bauer, K., Elahi, T., Goldberg, I.: The path less travelled: Over-
coming tor’s bottlenecks with traffic splitting. In: Proceedings of the 13th Privacy
Enhancing Technologies Symposium (PETS 2013) (July 2013)

3. Androulaki, E., Raykova, M., Srivatsan, S., Stavrou, A., Bellovin, S.M.: Par: Pay-
ment for anonymous routing. In: Borisov, N., Goldberg, I. (eds.) Privacy Enhancing
Technologies, Lecture Notes in Computer Science, vol. 5134, pp. 219–236. Springer
Berlin Heidelberg (2008)

4. ASIC and FPGA miner in c for bitcoin: https://github.com/ckolivas/cgminer
(2014)

5. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.,
Sherman, A. (eds.) Advances in Cryptology, pp. 199–203. Springer US (1983)

6. CoinWars: Crypto Currencies: http://www.coinwarz.com (2014)

7. CPU miner for bitcoin: https://github.com/jgarzik/cpuminer (2014)

8. Crypto-Currency Market Capitalizations: http://coinmarketcap.com (2014)

9. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

10. Eloipool - FAST Python3 pool server: https://bitcointalk.org/index.php?topic=61731.0
(2014)

11. Evans, J.W., Filsfils, C.: Deploying IP and MPLS QoS for Multiservice Networks:
Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2007)

12. From Onions to Shallots: Rewarding Tor Relays with TEARS:
http://dedis.cs.yale.edu/dissent/papers/hotpets14-tears.pdf (2014)

13. Hetzner Online Server Auction: https://robot.your-server.de/order/market (2014)

14. Hidden Services need some love: https://blog.torproject.org/blog/hidden-services-
need-some-love (2014)

15. How much bandwidth does Skype need?: https://support.skype.com/en/faq/FA1417/how-
much-bandwidth-does-skype-need (2014)

16. Jansen, R., Hopper, N., Kim, Y.: Recruiting new Tor relays with BRAIDS. In:
Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the 2010 ACM Conference
on Computer and Communications Security (CCS 2010). ACM (October 2010)

17. Jansen, R., Johnson, A., Syverson, P.: LIRA: Lightweight Incentivized Routing
for Anonymity. In: Proceedings of the Network and Distributed System Security
Symposium - NDSS’13. Internet Society (February 2013)

18. Linux HTB Home Page.: http://luxik.cdi.cz/ devik/qos/htb/ (2014)

19. M., G., Richardson, M., Ford, B., Jansen, R.: A TorPath to TorCoin: Proof-of-
Bandwidth Altcoins for Compensating Relays. In: 7th Workshop on Hot Topics in
Privacy Enhancing Technologies (HotPETs) (July 2014)

20. Massive spike of Tor users caused by Mevade botnet: http://www.net-
security.org/secworld.php?id=15530 (2014)

21. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: IEEE Symposium on Security and Privacy (2013)

22. Ngan, T.W.J., Dingledine, R., Wallach, D.S.: Building Incentives into Tor. In: Sion,
R. (ed.) Proceedings of Financial Cryptography (FC ’10) (January 2010)

23. Ostrovsky, R.: A proposal for internet computation commerce: How to tap the
power of the web. In: Presentation at CRYPTO ’98 rump session (1998)

24. Password Hashing Competition: https://password-hashing.net (2014)
25. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.

In: Financial Cryptography and Data Security (FC’13). Springer (2013)
26. Specification of Guaranteed Quality of Service: http://www.rfc-

editor.org/rfc/rfc2212.txt (2014)
27. Tor incentives research roundup: GoldStar, PAR, BRAIDS, LIRA, TEARS, and

TorCoin: https://blog.torproject.org/category/tags/incentives (2014)
28. Tor Metrics: https://metrics.torproject.org/ (2014)
29. Tor Metrics: Performance: https://metrics.torproject.org/performance.html (2014)
30. Windows GPU Miners for the More Commonly Used Crypto Algo-

rithms: http://cryptomining-blog.com/2595-windows-gpu-miners-for-the-more-
commonly-used-crypto-algorithms/ (2014)

APPENDIX

A Profit estimation

In this section we consider the case when a Tor client pays evenly to all 3
relays in the circuit. Profit estimations for this case are shown in Figures 4 and
5 (red lines). In case of 3.8 cents per client per day the top Tor relays (with
consensus weight 200,000 KB/s) can earn up to 160 USD. A middle-tier relay
with consensus bandwidth 10,000 KB/s can earn about 8 USD.

For the case when a client mines for all 3 relays in the circuit, a relay starts
to be profitable if each client mines an equivalent of 36 cents per day as shown
in Figure 5. We note that in all cases the proposed scheme covers a part of relay
renting costs.

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0 2000 4000 6000 8000 10000

U
S

D
 p

e
r

m
o
n
th

Consensus bandwidth

Income
Costs
Profit

Fig. 4. Income, costs, and profit of a relay in a 3-hop circuit in case of 3.8 cents per
day per miner.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

20K 40K 60K 80K 100K 120K 140K 160K 180K 200K 0

U
S

D
 p

e
r

m
o
n
th

Consensus bandwidth

Income
Costs
Profit

Fig. 5. Income, costs, and profit of a relay in a 3-hop circuit in case of 36 cents per
day per miner.

Thses estimates assume 1 hour of Tor usage per client per day and assume 100%
CPU mining during this 1 hour. In practice 25% CPU would be more realistic.

B Partially blind WI-Schnorr signature scheme

In this section we describe a partially blind signature scheme from [1]. User U
wants to get a partially blind signature over message msg attributed by common
information info. For the case of the micro-payment protocol described in this
paper, the common information info is a timestamp chosen by signer S. User
U and signer S execute signature issuing protocol described in Protocol B.1.

Protocol B.1. Partially blind WI-Schnorr signature issuing protocol
User U obtains a partially blind signature over msg with added factor info from
signer S

Signer S : (p, q, g, x, info)
User U : (y = gx, info, msg)

1: S : u, s, d ∈R Zq
z = F(info)
a = gu, b = gszd

S → U : a, b
2: U : t1, t2, t3, t4 ∈R Zq

z = F(info)
α = agt1yt2

β = bgt3yt4

ε = H(α‖β‖z‖msg)
e = ε− t2 − t4 mod q

U → S : e
3: S : c = e− dmod q

r = u− cxmod q
S → U : (r, c, s, d)

4: U : ρ = r + t1 mod q
ω = c+ t2 mod q
σ = s+ t3 mod q
δ = d+ t4 mod q

ω + δ
?
= H(gρyω‖gσzδ‖z‖msg)

signature=(ρ, ω, σ, δ)

In Protocol B.1, p and q are large prime numbers such that q|p− 1, and g is
an element in Z∗

p whose order is q. The protocol uses two public hash functions
H : {0, 1}∗ → Zq and F : {0, 1}∗ → 〈g〉 (〈g〉 denotes a subgroup in Z∗

p generated
by g). In addition x ∈ Zq is a secret key and y = gx is the corresponding public
key.

