
A Scalable and Accurate Hybrid Vulnerability

Analysis Framework

Julian Thomé

SnT Centre for Security, Reliability and Trust

University of Luxembourg, Luxembourg

Email: julian.thome@uni.lu

Abstract—Software security assurance is an important process
in software development that protects the sensitive data and
resources contained in and controlled by the software. Addressing
security vulnerabilities at an early phase could decrease the cost
of addressing them in later stages by two orders of magnitude.
In order to detect vulnerabilities in Web services and Web
applications in a scalable and accurate manner, we aim at devel-
oping a hybrid vulnerability analysis framework which combines
program analysis, symbolic execution and machine learning. We
use program analysis to identify potential vulnerable execution
branches within the source code for the purpose of guiding the
symbolic execution along the potentially vulnerable execution
paths. We also propose scalable constraint solving techniques
for vulnerability analysis. To further enhance scalability and
accuracy, we also apply machine learning by incorporating
predictors for identifying potentially vulnerable paths of the
program based on known vulnerable cases.

Keywords—Software Security Assurance, Vulnerability Analy-
sis, Program Analysis, Symbolic Execution, Constraint Solving,
Machine Learning

I. INTRODUCTION AND RESEARCH HYPOTHESIS

Web security vulnerabilities such as cross-site scripting
(XSS), SQL injection (SQLi), XPath injection (XPathi), XML
injection (XMLi) and LDAP injection (LDAPi) could lead to
serious attacks that are threats to the continuity of business
operations. Addressing them at an early phase could decrease
the cost of addressing them in later stages by two orders of
magnitude [1].

Common Web security vulnerabilities arise from inade-
quate sanitisation of user inputs that flow to security-sensitive
program operations (sensitive sinks). To address these issues,
many approaches such as static and dynamic taint analysis,
model checking, symbolic and concolic testing, and machine
learning-based vulnerability detection approaches have been
proposed.

Static taint analysis approaches [2] track the flow of user
inputs and check whether any input data is used in sinks
without passing through sanity checks. These approaches often
generate too many false alarms because they cannot reason
about the correctness and the adequacy of those sanity checks
[3], or they do not take into consideration control-flow infor-
mation [4]. Thus, these approaches are not accurate in general.

Dynamic taint analysis [5], model checking [6], symbolic
[7] and concolic [3] testing techniques reason about various
paths in the program that lead to sensitive sinks. Although
accurate, these techniques typically involve scalability issues

[8], [9]. Several approaches have been proposed [10], [11],
[12], [13], [8] to address them, but they have yet to be
successfully applied to security analysis.

Machine learning systems are systems that learn from data.
By learning on a set of code attributes that reflect different
program characteristics, they can be used to predict future
vulnerabilities [14], [15]. However, as most of these existing
approaches identify vulnerabilities at coarse-grain levels (soft-
ware components, programs), they are not scalable in terms
of the manual effort required to identify the vulnerable code
locations.

A recent literature study [16] has made two important
observations: (1) none of the above-mentioned security tech-
niques alone is efficient enough to address vulnerabilities in
Web applications/services; (2) some of the more sophisticated
techniques are hard to implement in practice, or they do not
scale to real-world systems. Hence, an approach that is scalable
and accurate is required to adequately address Web security
issues. We propose a hybrid approach that combines and adapts
the best of the above-mentioned approaches making it possible
to overcome their limitation and to capitalise their strengths.

II. CONTRIBUTIONS

The novelty of our research lies in the effective and
seamless combination of program analysis, symbolic execution
together with machine learning in order to achieve scalability
and accuracy in vulnerability analysis. Much of the literature
that exists on symbolic execution focuses on solving its scal-
ability without taking the analysis context into account. Our
contribution is to investigate this and to develop techniques
that allow symbolic execution to scale in the context of Web
security vulnerability analysis.

A prototype tool that implements our proposed approach
is expected at the end of the project. We expect the tool to be
scalable and accurate in analysing common and serious Web
security vulnerabilities such as XSS, SQL, XML, XPath, and
LDAP injection issues.

III. RESEARCH APPROACH AND RESULTS

As the initial steps of the project, we have completed the
literature study on vulnerability analysis approaches. From
the study, we devise that to develop a scalable and accurate
vulnerability analysis approach, the following three work items
have to be completed: (1) program slicing of sensitive sinks,
(2) symbolic execution of the slices, and (3) machine learning-

61978-1-5090-0406-5/15/$31.00 ©2015 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31216596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

based vulnerability prediction. Each work item, its status and
the results (if present) are explained below.

The first work item is the application of static program
analysis to partially address the scalability problem of sym-
bolic execution. Based on program slicing, we develop tech-
niques to extract minimal slices relevant to security. This item
has been completed and the results are published [4]. Our
program-slicing based approach extracts sound and accurate
security slices that are on average 80% smaller than the ones
generated by a state-of-the art slicing tool.

In the second work item, we develop techniques to symbol-
ically execute security slices. Since the effectiveness of sym-
bolic execution strongly depends on the underlying constraint
solver, we have investigated different solving techniques [17],
[3], [18], [19], [20], [21] and concluded that none of them
is suitable in our context due to insufficient support of Java
language features, the high complexity of usage and the lack
of scalability or expandability. We are currently working on an
approach for solving numeric and string constraints that does
not suffer from these limitations, and which we will combine
with our existing work [4] to proof the presence/absence of
vulnerabilities in security slices.

For those cases where symbolic execution does not arrive at
a conclusion, we shall investigate the application of machine
learning. A recent approach [22] addressed this problem by
combining program analysis with machine learning. However,
being a probabilistic approach, its accuracy will not match
that of symbolic execution-based approaches. To address this,
we shall adapt this approach to utilise the program behavioural
and structural information produced by our symbolic execution
step.

IV. EVALUATION AND DISSEMINATION PLAN

To evaluate the practical utility of our proposed approach,
case studies and experiments on both open source and in-
dustrial software systems shall be conducted. We aim to
achieve scalability and accuracy in vulnerability analysis. As
a quantitative objective, we aim to detect at least 75% of the
vulnerabilities with a false alarm rate ≤ 20%. We consider this
to be useful in practice, as the approach would then detect most
of the vulnerabilities at a reasonably low cost [14], [23].

We plan to collaborate with an industrial partner. Given that
security is important for any software company, it would be
useful to disseminate our research technology to our partners.
Research results will be presented at reputable international
software engineering and security conferences (e.g. ICSE, FSE,
ISSTA, CCS, S&P, USENIX). We also plan to publish in
journals such as ACM and IEEE Transaction on Software
Engineering.

ACKNOWLEDGMENT

This work is supported by the National Research
Fund, Luxembourg (FNR/P10/03 and FNR9132112). I
gratefully acknowledge my supervisor Lionel C. Briand
(lionel.briand@uni.lu) and my cosupervisor Lwin Khin Shar
(lwinkhin.shar@uni.lu).

REFERENCES

[1] A. Arora and C. Mellon, “Estimating Benefits from Investing in Secure
Software Development,” vol. 265, pp. 1–12, 2005.

[2] P. M. Pérez, J. Filipiak, and J. M. Sierra, “LAPSE+ static analysis
security software: Vulnerabilities detection in Java EE Applications,”
Communications in Computer and Information Science, vol. 184 CCIS,
no. PART 1, pp. 148–156, 2011.

[3] A. Kieżun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst,
“HAMPI: A solver for string constraints,” in ISSTA 2009, Proceedings

of the 2009 International Symposium on Software Testing and Analysis,
Chicago, IL, USA, July 21–23, 2009, pp. 105–116.

[4] J. Thomé, L. K. Shar, and L. C. Briand, “Security Slicing for Auditing
XML, XPath, and SQL Injection Vulnerabilities,” ISSRE, 2015.

[5] “Saner: Composing static and dynamic analysis to validate sanitization
in web applications,” Proceedings - IEEE Symposium on Security and

Privacy, pp. 387–401, 2008.

[6] “Automatic Generation of XSS and SQL Injection Attacks with Goal-
Directed Model Checking,” Symposium A Quarterly Journal In Modern

Foreign Literatures, pp. 31–43, 2008.

[7] X. Fu and C.-c. Li, “A String Constraint Solver for Detecting Web Ap-
plication Vulnerability,” Proceedings of the 22nd International Confer-

ence on Software Engineering & Knowledge Engineering - SEKE’2010,
pp. 535–542, 2010.

[8] “Directed symbolic execution,” Lecture Notes in Computer Science, vol.
6887 LNCS, pp. 95–111, 2011.

[9] M. Borges, M. D’Amorim, S. Anand, D. Bushnell, and C. S. Pasareanu,
“Symbolic execution with interval solving and meta-heuristic search,”
Proceedings - IEEE 5th International Conference on Software Testing,

Verification and Validation, ICST 2012, no. 1, pp. 111–120, 2012.

[10] C. S. Pasareanu and W. Visser, “Verification of Java Programs using
Symbolic Execution and Invariant Generation.”

[11] S. Anand, C. S. Psreanu, and W. Visser, “Symbolic execution with
abstract subsumption checking,” Lecture Notes in Computer Science,
vol. 3925 LNCS, pp. 163–181, 2006.

[12] P. Godefroid, “Compositional dynamic test generation,” ACM SIGPLAN

Notices, vol. 42, no. 1, p. 47, 2007.

[13] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven composi-
tional symbolic execution,” Lecture Notes in Computer Science, vol.
4963 LNCS, pp. 367–381, 2008.

[14] Y. Shin, A. Meneely, L. Williams, and J. a. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,
vol. 37, no. 6, pp. 772–787, 2011.

[15] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vul-
nerable software components,” Proceedings of the 14th ACM conference

on Computer and communications security CCS 07, p. 529, 2007.

[16] L. K. Shar and H. B. K. Tan, “Defeating SQL injection,” Computer,
vol. 46, no. 3, pp. 69–77, 2013.

[17] X. Fu, M. C. Powell, M. Bantegui, and C. C. Li, Simple linear string

constraints, 2013, vol. 25, no. 6.

[18] Y. Zheng, “Z3-str : A Z3-Based String Solver for Web Application
Analysis,” Fse 2013, 29.

[19] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters, “A
DPLL(T) theory solver for a theory of strings and regular expressions,”
Lecture Notes in Computer Science, vol. 8559 LNCS, pp. 646–662,
2014.

[20] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for javascript.”

[21] G. Redelinghuys, W. Visser, and J. Geldenhuys, “Symbolic execution
of programs with strings,” in Proceedings of the South African Institute

for Computer Scientists and Information Technologists Conference, ser.
SAICSIT ’12. New York, NY, USA: ACM, 2012, pp. 139–148.

[22] L. K. Shar, H. Beng Kuan Tan, and L. C. Briand, “Mining SQL injection
and cross site scripting vulnerabilities using hybrid program analysis,”
Proceedings - International Conference on Software Engineering, pp.
642–651, 2013.

[23] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” vol. 33, no. 1, pp. 2–14, 2007.

62

