MULTI-FRAME SUPER-RESOLUTION BY ENHANCED SHIFT & ADD

Kassem Al Ismaeil*

*SnT - Universtity of Luxembourg

{kassem.alismaeil, djamila.aouada, bjorn.ottersten} @uni.lu

ABSTRACT

A critical step in multi-frame super-resolution is the registra-
tion of frames based on their motion. We improve the perfor-
mance of current state-of-the-art super-resolution techniques
by proposing a more robust and accurate registration as early
as in the initialization stage of the high resolution estimate.
Indeed, we solve the limitations on scale and motion inherent
to the classical Shift & Add approach by upsampling the
low resolution frames up to the super-resolution factor
prior to estimating motion or to median filtering. This is
followed by an appropriate selective optimization, leading
to an enhanced Shift & Add. Quantitative and qualitative
evaluations have been conducted at two levels; the initial
estimation and the final optimized super-resolution. Results
show that the proposed algorithm outperforms existing state-
of-art methods.

Index Terms— Super-resolution, pyramidal optical flow,
motion estimation, upsampling.

I. INTRODUCTION

Super-resolution (SR) is a common technique used to
recover a high resolution (HR) reference image from a set of
observed low resolution (LR) images subject to errors due
the optical acquisition system such as noise and blurring,
and to deviations from the reference image due to relative
motion. The past two decades have witnessed a several
contributions on SR for static scenes [1], [2], [3], [4], [5], [6],
[7]. Most of the proposed methods are dedicated to a simple
translational or affine motion. As presented in [8], these
algorithms are numerically limited to small global motions
even for an increased number of LR frames. Most SR tech-
niques start with constructing the initial HR grid with sub-
pixel accuracy by combining the LR frames by interpolation.
These methods work effectively when a sufficient number!
of LR images contain slightly different perspectives of the
scene. It is critical to start with an initial HR image that is as
accurate as possible. The initial image may be obtained by
an operation commonly referred to as Shift & Add (S&A) [7]
which includes a filling operation based on the motion of the
considered LR images. Another method is by using some
interpolation aligning the LR measurements on an HR grid
and interpolating the missing points, the most successful
method is the variational Bayesian SR (VBSR) [11]. Once
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an initial HR image is designed, it is refined with an
optimization process by minimizing a given cost function
to finally reach the desired HR image. The main drawback
of these methods is that the quality of the initial HR image
is restricted to a specific range of motions related to the SR
factor. Indeed, a weak motion diversity among the LR frames
leads to undefined pixels in the initial HR image resulting
in artifacts in the final solution and a strong deterioration of
the SR performance. As a solution to this, example-based SR
algorithms have been proposed [9], and their combinations
with classical multi-frame SR [10]. Such algorithms rely on
a heavy learning phase, and assume that images carry some
redundancies.

In this paper, we propose to release the limitations on scale
and the number of required frames of classical SR algorithms
without prior assumptions on the data and without engaging
in an additional learning stage. Our method is based on an
accurate registration of frames to the reference frame result-
ing in an enhanced S&A algorithm. Our strategy consists in
using the efficient pyramidal optical flow estimation starting
from LR frames upsampled up to the SR factor. This is
followed by a pixel-wise median operation which guarantees
that no undefined pixels appear in the initial HR image and
it is further refined by a selective optimization.

The paper is organized as follows: Section II presents
the SR initialization step as performed by the S&A approach
and explains the source of its limitations that consequently
impact the full SR algorithm. We explain the improvements
due to estimating motion from upsampled images in Sec-
tion III and give our proposed algorithm in Section IV.
Section V presents a thorough evaluation of our method and
its comparison with state-of-the-art approaches. We give our
summary and conclusion in Section VI.

II. MOTIVATION AND BACKGROUND

The aim of SR algorithms is to estimate an HR image
X of size (m x n) from N observed LR images Yy, k =
0, ..., (IN—1), where each LR image is of size (1 x71) pixels,
with n = r - 7 and m = r - 71, such that r is the SR factor.
Every image Y may be viewed as a LR noisy and deformed
realization of X caused by the imaging system at the k"
acquisition. Considering their respective lexicographic vector
forms yj and x, the data model is defined as follows:

yr = DHWx + ng, kZO,...,(N—l), 1



where Wy, is an (mn x mn) matrix corresponding to the
geometric motion between x and yy. In this framework, this
motion is assumed to be global translational; hence, Wy
represents a global shifting operator by uy in z direction,
and by vy in y direction. The point spread function of the
camera (PSF) is modeled by the (mn x mn) blurring matrix
H. The matrix D of dimension (1272 X mn) represents the
downsampling operator, and the vector nj is the additive
noise at k.

In most methods, the estimation of x follows a maximum
likelihood approach that, by considering n; as a Laplacian
white noise, leads to the following minimization:

X = argmin(”Hx —Xol[1 + AT(X)), 2

where xq is an initial blurred guess for the original HR
image x. I'(x) is a regularization term added to compensate
undetermined cases by enforcing prior information about x
and )\ is the regularization parameter.
The classical S&A approach [7] defines xo by first setting
its corresponding full HR image grid Xy to zeros as denoted
below:

Xo = Omxn- 3)

Then, all LR images Y}, are used to update the pixel values
in Xj. To that end, given a reference LR image Y chosen
as the closest one to the target HR image X, the global
translational motions wj = (ug,vi) between each image
Y and Y, are computed for £k = 1,--- (N — 1). These
motions are used to register all LR images Y with respect
to the reference image Y. The resulting registered images
Y are simply defined at each pixel position p = (z,y) as
follows: -

Yi(p) =Yi(p+ wg). “

These images are then grouped into M sets based on their
relative motions wy. Note that to avoid aliasing problems,
the range of this motion is forced to be within the SR factor
r by a simple modulo function, i.e., uy = ugmod(r) and
v = vpmod(r). The frames in one set are fused by median
filtering resulting in one LR image Y; per motion w;, with
1 <1 < M < N. Each frame is then used to update the
pixels of X as follows:

Xo (r-p+w;) = Yi(p). )

This operation is known as zero filling in the S&A approach.
We note that for a successful filling, there should be enough
motion diversity in the considered LR frames. Indeed, in
order to further update the zero pixels in Xy, an additional
(r x ) median filtering is applied. Given that the median
filter’s breakdown point is %, a meaningful filling that
does not leave pixels undefined should be achieved if the
following condition is satisfied:

r2
round <2> < M. (6)

We show the effect of undefined pixels in classical S&A
in Fig. 1(b). A similar phenomenon is observed using
interpolation-based initialization such as VBSR as seen in

(a) original

(b) S&A

Fig. 1. Undefined pixels using state-of-the-art SR methods.

Fig. 1(c), suggesting that interpolation is not a sufficient
solution to remove undefined pixels. Therefore, starting with
an accurate initial guess xo has a strong impact on the final
solution of (2). It is common to face this serious problem
of undefined pixels in practice. It is dealt with by restricting
the SR factor to low values, e.g., 7 = 2, and by taking
a relatively large number of frames, e.g., N > 30, thus
indirectly attempting to satisfy the inequality (6), which,
in turn, limits the practical usage of SR algorithms. In
what follows, our aim is to increase motion diversity M
to give more freedom in the choice of r without having
to increase N. We propose to tackle the aforementioned
problem by a new non-zero initialization of X along with a
robust and accurate sub-pixel motion estimation as detailed
in Section III.

III. PYRAMIDAL MOTION ESTIMATION FOR SR

Estimating the motions wj, with high sub-pixel accuracy
is crucial in capturing the full diversity in motion as
contained in the observed frames; hence, important in
increasing M. Indeed, for two frames Y; and Y,
with respective relative motions w; and w;, such that
|w; — wj|l2 = e if the motion estimation approach has
an accuracy that is smaller than e, the two frames will be
wrongly fused and labeled under the same motion.
Classical S&A uses pyramidal motion estimation
(PyrME) ([17], [18]). This method represents state-of-art in
motion estimation increasing both accuracy and robustness.
In the SR context, we propose an enhancement of PyrME
in order to serve our objective of increasing M.

Below, we start by describing PyrME as it is currently used
in SR, specifically in S&A. We then present how we further
improve its performance for SR.

Typically, motion between a frame Y} and the reference
frame Y at a given target point p is estimated by minimiz-
ing the following error:

Pt+Hp
ewi)= > [Yol@) = Yela+we)3. (D

a=p—u
This dissimilarity function is computed on the neighborhood
of radius || p|| around the target pixel p. The vector p defines
the integration disc which corresponds to the maximum
motion that can be detected within this framework. As
a result, the estimation of wy is characterized by two
conflicting properties: accuracy and robustness. The first
property is related to sub-pixel motion accuracy which is
achieved by taking a small ||u||. The second property is
related to robustness to large motions, for which a large || u|



is preferable. PyrME was proposed as a trade-off solution for
these conflicting characteristics. The principle is to follow a
coarse to fine strategy that progressively downsamples the
images Y, and Y, by a factor 2! where [ indicates the
pyramidal level, [ = 0,---, L. This dyadic downsampling
between consecutive levels may be defined as follows:

Yip) =Y l(2p) st. YO=Yy Vk (8

Practically, the size of the image at the highest level of the
pyramid should not be less than (4 x 4) pixels. For the sake of
simplicity, let us consider that the LR frames Y are square
matrices (m = 7). We may then set the maximal number of
pyramidal levels as follows:

n

2—L=4 = L =log, (n) —2. )
The motion estimation starts between the highest levels, i.e.,
the lowest resolutions, before progressively going back down
to the initial level [ = (0. At a given level [, the motion vector
w! is decomposed into an initial guess w! and a residual
motion vector ¢%. The initial guess w! is obtained from the
preceding level (I+1) such that w!, = 2'W](€l+1), and initially
set to 0142 at [ = L. This vector is used to pre-register
the two images Y} and Y. Therefore, finding the optimal
vector wfc is reduced to finding the optimal residual motion
vector. The estimation of this smaller vector is, similarly to
(7), defined by the following minimization:

ptu
¢i = argmin Y [|Y§(q) - Yi(a +wi + )3 (10)
Y a=p-u
The optimal motion vector at level [ is then found by:
W = Wi + ). (1)

The result above is obtained with sub-pixel accuracy thanks
to the residual refinement operation defined in (10) which
is ensured by imposing a relatively small neighborhood disc
radius ||pe]|. This operation is repeated until the finest motion
vector is obtained at [ = 0 defining wy, as wy, = wg + ¢2.
It may also be expressed using the residuals at all levels as
follows:

L
we =Y 2'¢j. (12)
=0

The refinement in (10) implies that the maximal pixel motion
that can be estimated at each level of the pyramid is within
a disc of amplitude ||p||. Given (12), the maximal overall
pixel motion that can be estimated by PyrME is:

Hmax =G (L) p with G (L) =240 —1. (13)

The gain G (L) is a function of the height of the pyramid L.
It follows that for more levels, PyrME may estimate large
motions up to g, and hence verifies the robustness and
accuracy properties simultaneously.

In the case of SR, we note that the target resolution at which
we want to land is the HR, (n X n) in the square case. This
gives us a natural way to further improve the performance

of PyrME. We thus propose to start by upsampling the LR
frames up to the SR factor r prior to any motion estimation.
By doing so, we increase the size of the basis of the pyramid
by a factor 7. Changing the starting point in PyrME leads to
an increased pyramid height L 1" by log, () which results
in a new gain G (L 1"):

GL)=r-G(L)+ (r—-1). (14)

This result is important as we have shown that, in the SR
context, the performance of PyrME, in terms of accuracy
and robustness, may further be enhanced with a new gain

G(L1).

IV. PROPOSED ALGORITHM

With the result of Section III at hand, we go back to
define an enhanced S&A (eS&A) by taking the following
steps:

Step 1: Non-zero Initialization

In order to estimate wj more accurately, we now work with
Y, 1", k=0,---,(N —1), the N LR frames upsampled
by the factor r. Performing the registration process as in (4)
on the upsampled images Y, 17 gives:

Yi 1" (p) =Y 1 (p+ W) (15)

Registering upsampled frames as in (15) guarantees a better
result with a higher accuracy than registering the LR images
followed by upsampling them. This is due to the fact that
registration parameters are approximated by rounding the
motion vectors wj with an expected error of :l:% pixel. The
effect of this error is related to the size of the registered
images. By prior upsampling, this rounding error is reduced
by a factor r; from :I:% in the LR case to :I:% in (15).
The effect of this improvement is illustrated in Fig. 2. The
registered frames are then fused by median filtering in order
to initialize the HR grid X such that:

(N-1)

Xo = medy, {?k TT}]@:O

(16)

The proposed non-zero initialization in (16) releases the
condition in (6), thus solving the problem of undefined

Fig. 2. Registration error. (a) Registered LR frames followed
by upsampling process. (b) Registered upsampled frames
using up-scaled LR motion vectors.



pixels. In order not to fall under the same artifacts as those
present with interpolation-based SR approaches, e.g., VBSR
(Fig. 1(c)), it is necessary to perform the filling operation
from registered and clustered LR images as in (5). Indeed,
the values from LR frames remain more reliable sources of
information than the ones due to upsampling. We further
point out that the higher accuracy in the estimation of wy
leads to a higher discrimination between motions, resulting
in a higher diversity M and a better update of the pixel
values in X as compared to the case of classical S&A. We
note, that in our algorithm, it is more accurate to refer to
this operation as initialization update rather than filling.

Step 2: Selective Optimization

We have now obtained a more accurate initial guess X
that may be refined by optimizing its lexicographic form xg
using (2). In our work, we adopt the robust bilateral total
variation I'ppry as a regularization term as defined in [7],
and solve the following optimization:

X = argmin(HAfoXoHl +)\FBTV(X)). (17)

The matrix A is a diagonal matrix whose diagonal corre-
sponds to the elements of a weighting matrix A of the same
size as the HR image X. The matrix A assigns a weight to
each pixel in X such that its contribution in the optimization
(17) is proportional to the number of measurements used in
initializing its value in X during Step 1.

For an efficient optimization, we propose to further use A
as a mask that, similarly to [16], only selects a subset of
pixels to contribute in the optimization. In our framework,
this selection actually improves the estimation by only
accounting for reliable pixels, those that were updated, and
setting to zero the effect of the pixels that were not updated
during the initialization of X,. We illustrate the effect of
this new selective optimization in Section V.

V. EXPERIMENTAL RESULTS

We compare the performance of the proposed enhanced
S&A with the two state-of-the-art methods, that are currently,
to the best of our knowledge, the best performing SR
algorithms, namely, S&A [7], and VBSR [11]. We tested these
methods using the softwares provided in [14] and [15].

Starting with the HR image EIA [12], we generated LR im-
ages by downsampling with a factor » = 4, and simulating a
(3 x 3) Gaussian PSF with a standard deviation ¢ = 0.4, and
further degrading by additive white Gaussian noise (AWGN).
We evaluate the robustness of the proposed algorithm against
two parameters: number of considered LR images N, and
image contamination with noise using the signal to noise
ratio (SNR). We measure the quality of the estimated HR
image using peak signal to noise ratio (PSNR) defined as:
PSNR = 10log;, ﬁ

Fig. 3(a) shows the average PSNR for 100 different noise
realizations, and N progressively increasing from 4 to 20.
In order to evaluate for relatively large motions, translation
parameters are generated randomly between 0 and 9. Note
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Fig. 3. PSNR for different SR methods applied on (75 x 75)
LR frames with r = 4 (a) for increasing IV, (b) for increasing
SNR levels.

that in [7], smaller motions have been used which explains
the difference with the result obtained in this paper using
the same S&A algorithm. In the overdetermined case where
M > r2, and for small motions, both methods eS&A and
S&A give comparable results.

We first provide the results of the non-zero initialization step
using the proposed eS&A (solid lines). Then we give the final
results obtained after applying the selective optimization
(dashed lines) whose starting point is the output of the
previous step. To avoid any increase in computational cost,
upsampled frames can be registered using an approximation
by upscaling corresponding LR motion vectors. Please note
that for a fair comparison, we use the same set of parameters
in the optimization step for both the proposed method and the
method in [7]. From Fig. 3(a), it is clear that the proposed
method provides significant improvements as compared to
existing methods for any choice of N, even as small as 4
images. This observation holds for both the initial estimation
and for the iteratively optimized solution. Note that the initial
estimate considerably outperforms VBSR and S&A, initial
and optimized solutions.



Fig. 4 illustrates an example of a HR estimated image using
8, 12, and 20 LR images. Due to the condition (6), it is not
surprising to see the artifacts caused by the undefined pixels,
where the number of images is not sufficient to cover the
motion range. Moreover, it is clear that the proposed method
provides the best visually enhanced HR images as seen in
Fig. 4 (c), (f), and (i) with sharper edges compared to other
methods.

Next, we conducted a second round of experiments to evalu-
ate the performance of the proposed eS&A at different noise
levels. We used the same 12 frames generated previously
and further degraded them by AWGN with SNR of 5, 15,
25, 35, and 45 dB.

One may note that for a fair comparison we use this number
of frames as it guarantees an initial HR image without
undefined pixels for all methods (see Fig. 4(d), (e), and
(f)). Mean PSNR values of 100 different noise realizations
are plotted in Fig. 3(b) showing that the proposed method
provides the best results among discussed SR methods across
all noise levels. It is important to note that the optimization
of initial estimates ensures a final result that is consistently
more robust to noise.

Similar results and conclusions were obtained using real
data as we used 20 (57 x 49) LR images of the disk
dataset [12]. Fig. 5 presents the SR results of disk images
with SR factor » = 6. It is visually clear that the proposed
method provides better results with sharper edges and less
ringing artifacts than other methods in addition to solving
the undefined pixels problem.

Finally, in order to illustrate the effect of the proposed selec-
tive optimization as compared to the optimization proposed
in [7], we ran an experiment on three initial HR images
by performing 50 iterations. Initial images are obtained by
applying eS&A with » = 5 on three different sequences.
Each sequence consists of 11 (96 x 96) LR frames further
degraded by AWGN with SNR = 25dB. As shown in Fig. 6,
we may see that the proposed optimization method results in
an increase in PSN R gain as compared with [7]. Moreover,
the number of processed pixels decreases and varies from
an image to another depending on the number of selected
pixels (e.g., 82944 pixels (36 %) and 73728 pixels (32%)
processed pixels per iteration for the cameraman and Lena
images, respectively). In contrast, the objective function
in [7] processes all pixels with a minimum weight of value
1 for unreliable pixels (e.g., for a (480x480) image, the
number of processed pixels are 230400 pixels per iteration).

VI. CONCLUSION

We presented a new enhanced S&A algorithm which
improves the quality of the initialization of the HR image in
the context of the SR problem. The proposed algorithm is
based on upsampling LR images before registering them. We
demonstrated that this new approach for SR provides a more
accurate motion estimation and registration. Experimental
results with both synthetic and real images demonstrate that
the proposed algorithm gives results superior to existing
state-of-the-art methods such as classical S&A and VBSR

@

Fig. 4. Results of different SR methods applied to a (75x 75)
LR sequence of a static scene with r = 4 and different frame
numbers. VBSR for (a) N =8, (d) N = 12, (g) N = 20,
and by S&A for (b) N =8, (e) N =12, (h) N = 20 and
by proposed eS&A for (c) N =8, (f) N =12, i) N = 20.

under various conditions; low number of input LR images,
and different noise levels. In addition to being robust, the
proposed approach showed that it can be reliably used as
an initial guess for SR algorithms. Further optimizing this
initialization ensures a strong resilience to noise without
additional computational cost.
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