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Abstract. Software translation is a challenging task. Several require-
ments are important — including automation of the execution, main-
tainability of the translation patterns, and, most importantly, reliability
concerning the correctness of the translation.

Triple graph grammars (TGGs) have shown to be an intuitive, well-
defined technique for model translation. In this paper, we leverage TGGs
for industry scale software translations. The approach is implemented us-
ing the Eclipse-based graph transformation tool Henshin and has been
successfully applied in a large industrial project with the satellite oper-
ator SES on the translation of satellite control procedures. We evaluate
the approach regarding requirements from the project and performance
on a complete set of procedures of one satellite.

Keywords: model transformation, software translation, refactoring,
triple graph grammars, Eclipse Modeling Framework (EMF)

1 Introduction

Migration of software systems is an important but complex task, especially for
enterprises that are highly dependent on the reliability of their running systems.
The general problem is to translate the source code of a software that is cur-
rently in use into corresponding source code that shall run on the new system.
Up to now, this problem was addressed based on manually written converters,
parser generators, compiler-compilers or meta-programming environments using
term rewriting or similar techniques. Model transformation based on triple graph
grammars (TGGs) is a general, intuitive and formally well-defined technique for
the translation of models [25126]13]. While previous concepts and case studies
were focused mainly on visual models of software and systems, this paper shows
that model transformation based on TGGs provides a powerful technique for
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software translation as well. Since software systems are on average much larger
than visual models, we provide a general technique for efficiency improvement
and show its applicability within a large scale industrial project.

The general idea of TGGs is to specify a language of integrated models. Such
an integrated model consists of a model of the source domain, a model of the
target domain, and explicit correspondence structures in the middle component.
The source and target models in the present scenario are abstract syntax trees
of source code. The operational rules for executing the translation are gener-
ated from the specified TGG and executed via the graph transformation tool
Henshin [7]. TGGs are equivalent to a restricted class of plain graph transfor-
mation systems [8I3]. This restriction ensures the existence of the explicit cor-
respondence structures and formal properties concerning correctness and com-
pleteness [I4]. In this paper, we use rather simple and intuitive but non-trivial
translation patterns. The full translation contains several more complex ones,
e.g., for the reordering and regrouping of blocks. Translation strategies that are
solely based on finding and replacing words (like e.g. AWkED will fail due to the
highly context-sensitive structural dependencies in the source code.

Within the research project PIL2SPELL with the industrial partner SES
(Société Européenne des Satellites), we developed the general approach for soft-
ware translation in this paper. SES is operating a fleet of 56 satellites manu-
factured by different vendors that often use their own proprietary programming
language for automated operational satellite procedures. In order to reduce the
high complexity and efforts during operation caused by this heterogeneity, SES
developed the open source satellite language SPELL [27] (Satellite Procedure
Execution Language & Library), which is nowadays used by more and more op-
erators and may become a standard in this domain. The main aim of the project
was to provide a fully automated translation of existing satellite control proce-
dures written in PIL (Procedure Intermediate Language) of the satellite manu-
facturer ASTRIUM into satellite control procedures in SPELLE Since the PIL
procedures are already validated, the translation has to ensure a very high level
of reliability in terms of fidelity, precision and correctness in order to minimise
the efforts for revalidation. In our first contribution of this paper we propose and
validate the use of TGGs for software translation in the PIL2SPELL project.
Since the PIL2SPELL project is an industrial application of rather large size
(more than 200 translation rules were specified), a technique was needed to im-
prove the efficiency of the TGG rewriting method and tool. Hence, the second
contribution of this paper is a general approach for improving efficiency of graph
transformation systems applied to leverage TGGs for software translations in in-
dustry and we evaluate the implementation in Henshin [7]. The corresponding
technical report [16] for this paper provides full technical details on the formal
constructions and full proofs.

introduces our running example, presents the general concept
and describes the applied TGG techniques. Thereafter, presents

4 Awk Community: http://awk.info/
5 In [15], we present a short overview of the PIL2SPELL project.
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SELECT
CASE (SBATT = "HIGH")

CHECKTM (TEMP_C1) if (BATT == ’HIGH’):

CHECKTM (VOLT_D2 = 4) GetTM(’T TEMP_C1’)
ENDCASE Verify ([[/T VOLT _D2’, eq, 4]11)
CASE (S$BATT = "LOow") elif (BATT == ’LOW’):

SEND SWITCH_B1_B2
CHECKTM (VOLT3 = 5)
ENDSEND
ENDCASE
ENDSELECT

Send (command = ’C SWITCH Bl_BZ2’,
verify = [[’T VOLT3’, eq, 511)
#ENDIF
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=

Fig. 1. Procedure written in PIL (left) and translated procedure in SPELL (right)

results for improving the efficiency and scalability, and evaluates the

approach. discusses related work and provides a conclusion and
discusses aspects of future work.

2 Case Study PIL2SPELL

We illustrate the methodology for software translation on some details of the
project PIL2SPELL. presents a simplified PIL procedure for battery
maintenance and its translation in SPELL. Structures of the form SELECT-CASE-
ENDSELECT are translated into structures of the form if-elif-#ENDIF. SEND
instructions (lines 7-9) for sending telecommands to the satellite are mapped to
corresponding Send statements with the same command-id as argument prefixed
with a C (lines 5-6). Instructions for checking telemetry values (PIL instruction
CHECKTM) are handled in three ways:

1. CHECKTM(X) (line 3): parameter checks without condition are used to retrieve
and display a telemetry value from the satellite. They are translated into
GetTM statements, where prefix T is added to the parameter (line 2).

2. CHECKTM(X =Y) (line 4): parameter checks with additional condition are used
to verify telemetry values and are mapped to Verify statements with a
corresponding condition (line 3).

3. CHECKTM(X =Y) (line 8): parameter checks within a SEND instruction are
translated into a verify argument of the corresponding Send statement
(line 6). A

Note that the translation is context-sensitive as it treats e.g. a CHECKTM in-
struction inside a SEND instruction differently from a not nested CHECKTM in-
struction. Moreover, PIL and SPELL use different concepts for calling subrou-
tines. In order to respect the execution semantics, block structures of the form
STAGE..ENDSTAGE in PIL have to be translated into two SPELL structures. The
first one is a function call that remains in the main part and the second one is
a function definition containing the translated body of the block structure and
it is placed at the beginning of the SPELL procedure. This restructuring and
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Fig. 2. Concept for software translation

reordering of information motivates to perform a separation of concerns by split-
ting the translation into parsing, translation and serialisation instead of using
an integrated approach, where some of the phases are merged.

3 Concept for Software Translation

The general concept for software translation in consists of the phases
parsing, AST conversion (main phase), and serialisation. It is executed using
the Eclipse Modeling Framework (EMF) tools Xtext [6] and Henshin [7]. Xtext
supports the syntax specification of textual domain specific languages (DSLs),
in particular of programming languages. Based on the EBNF (Extended Backus-
Naur Form) grammar specification of a DSL and an additional formatting config-
uration, the Xtext framework generates the corresponding parser and serialiser.
The parser checks that the input source code is well-formed and the serialiser en-
sures that the generated output source code is well-defined. The Xtext serialiser
enables us to check and ensure that the output conforms to the given EBNF for
the target language and that additional AST-specific formatting guidelines are
respected. SES explicitly required the conformance to the SPELL EBNF and to
SES formatting guidelines (e.g. alignment of list entries and semantic indenta-
tion), which goes beyond the power of generic template specification. Henshin
is an Eclipse plugin supporting the visual specification and execution of EMF
transformation systems, which is used for the main phase (AST conversion).

Ezample 1 (Parsing € Serialisation,). (left) shows a fragment of the
AST obtained by parsing the PIL source code example in (left, lines
7-9). Root node : Send PIL represents the SEND — ENDSEND structure (lines 7-
9) with telecommand-id (SWITCH_B1 B2, left branch) and telemetry parameter
check (CHECKTM, right branch). (right) shows the obtained SPELL AST
fragment after translation. The serialisation of the SPELL AST yields the corre-
sponding source code in (right, lines 5-6). Root node : Send represents the
Send statement with telecommand-id (C SWITCH.B1.B2) in the left branch and
telemetry parameter verification argument (verify) in the right branch. A

The AST-conversion consists of three phases (see [Fig. 2)). The first and third
phases (initialisation and refactoring) are general in-place transformations and
are performed via plain graph transformation (GT) systems. The second phase
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Fig. 3. Fragment of source AST (left) and target AST (right)

(translation) is performed using a triple graph grammar (TGG), which is pre-
sented in detail in [Sec. 4 Note that TGGs can be fully encoded as plain graph
transformations [I3]. The initialisation phase is used to extend the given AST of
the source language with additional structures that simplify the specification of
the translation rules in Phase 2. The refactoring phase refines the resulting AST
in order to satisfy certain coding guidelines required in the target domain. These
refactorings are specified by compact GT rules that also delete substructures.
Employing a TGG for the refactoring phase instead would drastically increase
the amount of rules.

To reduce the complexity of the translation rules, the initialisation phase is
used to pre-process information and to create additional helper structures that
store this information locally in the source AST. In our case study, the initialisa-
tion rules are used, e.g., to compute a global numbering for the subcomponents
of a satellite procedure that are needed in SPELL. Moreover, we create explicit
pointers from complex instructions to their subcomponents (see, e.g. [Ex. 2)).

As TGGs are non-deleting, the source model is preserved completely during
the translation. The translation markers ensure that each element is translated
exactly once. At each translation step, a substructure of the given AST is trans-
lated and trace links are created. The resulting fragments in the target domain
are connected according to the tree structure of the input AST. These properties
help to ensure that the resulting output graph has a tree structure and is in fact
an AST.

4 Triple Graph Grammars with Henshin

In the following, we briefly review main concepts for model transformation based
on TGGs [10]. A triple graph is an integrated model consisting of a source
model, a target model and explicit correspondences between them. More pre-
cisely, it consists of three graphs G°, G¢, and GT, called source, correspondence,
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Fig. 4. Triple graph morphism and transformation step

and target graphs, respectively, together with two mappings (graph morphisms)
sq:GY - G% and tg: GY - GT. The two mappings in G specify a correspondence
relation between elements of G° and elements of GT.

Triple graphs are related by triple graph morphisms m : G — H [25/10]
consisting of three graph morphisms that preserve the associated correspon-
dences (i.e., left diagrams in commute). Triple graphs are typed over a
triple type graph TG and attributed according to [I0]. For a triple type graph
TG = (TG « TG - TGT), we use L(TG), L(TG®), and L(TGT) to denote
the classes of all graphs typed over TG, TG, and TGT, respectively.

A triple graph grammar TGG = (TG, S, TR) consists of a triple type graph
T@, a triple start graph S and a set TR of triple rules, and generates the triple
graph language of consistently integrated models L(TGG) ¢ L(TG) with con-
sistent source and target languages L(TGG)® = {G° | (G® « G¢ - GT) ¢
L(TGG)} and L(TGG)T = {GT | (G® « G° - GT) ¢ L(TGG)}. TG differ-
entiates the possible types of correspondences.

A triple rule specifies how a given consistently integrated model can be ex-
tended simultaneously on all three components yielding again a consistently inte-
grated model. It is non-deleting and therefore, can be formalised as an inclusion
from triple graph L (left hand side) to triple graph R (right hand side), repre-
sented by tr: L < R with tr = (tr°, tr®, trT). Applying a triple rule ¢r means to
find a match morphism m : L — GG and to perform a triple graph transformation
step G I H yielding triple graph H defined by the gluing constructiorﬁ in
where the occurrence of L in G is replaced by the occurrence of R in H
and glued to the remaining graph elements) [26]. Moreover, triple rules can be
extended by application conditions for restricting their application to specific
matches [13].

The operational forward translation rules for executing forward model trans-
formations are derived automatically [I3| from the TGG. A forward translation
rule ¢rpp and its original triple rule ¢r differ only on the source component:
elements (nodes, edges or attributes) created by t¢r become elements that are
preserved and marked as “translated” by the forward translation rule.

Ezample 2 (Operational Triple Rules). shows screenshots (tool Hen-
shin [7]) of some generated forward translation rules of the TGG for PIL2SPELL

5 Formally, this is a pushout diagram (PO) in the category of triple graphs.
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Fig. 5. Forward translation rules (generated by Henshin)

in short notation. Left- and right-hand side of a rule are depicted in one triple
graph and the elements to be created have the label (++). Translation attributes
are indicated by label (tr). The depicted rules are typical operational rules of
average rule size. Rule (1) translates an existing Instruction LST_Elem node
into its corresponding stmt_LST_Elem node. Both node types are containers for
specific instructions and statements. Rules (2) and (3) depend on rule (1) as
they use the stmt_LST_Elem nodes as context.

Rules (2)-(4) are some of the rules that translate CHECKTM instructions.
They depend on further rules for the translation of their parameters (TMCond
or TMReport). Depending on the parameter type, the respective SPELL state-
ment is created, i.e., telemetry conditions (TMCond) yield a Verify statement,
telemetry reports (TMReport - label without condition) yield a GetTM statement
and telemetry conditions within a SEND instruction become an argument in a
verify list of the corresponding Send statement. This corresponds to items 1-3
in[Sec. 2| Rules (2) and (3) translate CHECKTM instructions that are not embedded
within a specific context while rule (4) translates CHECKTM instructions within a
SEND instruction.



Note that the node type SEND_verify LST Elem is created in the initialisation
phase as helper structure and used to mark exactly those CheckTM elements that
handle a telemetry condition (TMCond). The remaining CheckTM elements of a
SEND instruction are translated to GetTM statements outside the scope of the
SPELL Send statement. A

A forward translation sequence (G°,Gy -t;% G,,GT) is given by an input
source model G°, a transformation sequence G g G, obtained by executing
the forward translation rules TRpr on Go = (G <« @ - @), and the resulting
target model GT obtained as restriction to the target component of triple graph
G, = (GS « G¢ > GT). A model transformation based on forward translation
rules MT:L(TG®) = L(TG") consists of all forward translation sequences.
Note that a given source model G° may correspond to different target models
GT. In order to ensure unique results, we presented in [I3] how to use the
automated conflict analysis engine of AGG for checking functional behaviour
of model transformations.

5 Leveraging TGGs for Software Translations in Industry

As described in the previous section, the basic execution algorithm for forward
translations based on TGGs does not use any kind of pre-defined order on
rules. For medium and large scale projects, the application of rules in a non-
deterministic way would result in poor efficiency. In this section, we present
a general approach for graph transformation systems, with which we leverage
TGGs for larger software translations. This concerns grammars containing more
than 200 rules, like the manually specified rules for the PIL2SPELL project that
were derived from a document of correspondence patterns (small corresponding
source code fragments). The approach is orthogonal to the analysis and reduc-
tion of conflicts via filter NACs for TGGs [13]. Both approaches can be combined
- the second one improves the rules directly while the first provides a structuring
technique on them.

The main observation is that the efficiency of the execution can be im-
proved significantly by analysing the potential dependencies. For example,
rules (2) and (3) in can only be applied after rule (1) was applied to
translate the node of type Instruction LST Elem. Our strategy is partly in-
spired by several existing optimisations in TGG implementations [I7] and de-
pendency analysis for graph transformation systems [12]. It generalises the idea
of precedence triple graph grammars [22] from node type dependencies towards
general rule dependencies and works also for TGGs with attributes. It uses the
general formal results on critical pair analysis [921] including the case of trans-
formation rules with application conditions. Practically, we use the critical pair
analysis engine of the tool AGG [2§] for determining the dependencies and con-
flicts between the rules. Based on the results, we group those rules together
that show cyclic dependencies or conflicts. The resulting set of groups of rules



shows a partial order that we linearise to a complete order. Finally, we apply
this grouping and ordering technique to the set of forward translation rules.

In order to group the rules of a given rule set R, their sequential depen-
dencies and conflicts are represented by a dependency-conflict graph DCG(R)
containing the rules as nodes and rule dependencies/conflicts as edges. A pair of
rules (r1,7r2) is in conflict if there exists a critical pair for (r1,72) [0, i.e., there
are two parallel dependent transformation steps t; = Gy — G1, ts = Gp == Gb.
A pair of rules (r1,72) is sequentially dependent if there is a transformation
sequence t = (t1;t2) = Go 2L, G1 =% G4, where ty sequentially depends on t;
(produce-use or forbid-create dependency). Note that the order is relevant for
sequential dependencies. Both concepts can be analysed statically using the tool
AGG [2§]. The graph DCG(R) may contain cycles. These cycles are used to de-
fine non-overlapping clusters of rules leading to the acyclic dependency-conflict
cluster graph CLGpc(R). By N(G) we denote the set of nodes of a graph G.

Definition 1 (Dependency-Conflict Cluster Graph). Let R be a set of
rules, then we define:

— dependency-conflict graph DCG(R) with nodes N(DCG(R)) = R and edges
Epce = {(r = ') | (r,7') is a sequentially dependent pair } u{(r — r'),
(r" = r)| 3 a critical pair for (r,r")},

— for r € R the dependency-conflict cluster [r]pc = {r}u{r’ € R| 3 a path
(r—...r...>r)in DCG(R)},

— dependency-conflict cluster graph CLG pe(R) with
nodes N(CLGpc(R)) ={c|c=[r]lpc rreR} and
edges E={(c—>c)|3rec,r ecd:(r—>r") in DCG(R)}. A

A DC-Layered Transformation System (DC-LTS) linearises the partial order
on clusters of a given CLGpc(R) to a complete order where each cluster be-
comes a layer and the sequential order of the layers respects the dependencies
between the clusters. Formally, a layered transformation system LTS = (R,S)
consists of a set of rules R and a sequence S = (.S;);er of subsets of R as layers.
Given a graph G, then an execution of LTS is performed by applying each layer
consecutively according to the sequence S, where the rules in each layer S; are
applied exhaustively.

Definition 2 (DC-Layered Transformation System). Let CLGpc(R) be
the derived dependency-conflict cluster graph for R, then LTS = (R,S) with
S = (S;)ier is a DC-layered transformation system, if the following conditions
hold

1. S is a permutation of the clusters in N(CLGpc(R)) (cluster compatibility)
2. Y edges (a - b) in CLGpc(R): a= S, Ab=S,= k<l (sequential order) A

The construction of a DC-layered transformation system LTS for a set of
rules R reduces the amount of rules to be checked for applicability at each
step. By definition, the execution of a layer in an LTS concerns only rules in
that layer. below ensures preservation of the input-output behaviour. All



terminated sequences via R (i.e., no more rules are applicable) can be performed
via LTS .Each rule only depends on rules in a preceding layer and rules in the
same layer. The input-output relation IO pg of a transformation system 7S
contains all pairs (Gj,Go) with a terminated transformation sequence Gy =*
Go via TS.

Theorem 1 (Completeness of DC-LTS). Let R be a set of rules and LTS
be a DC-layered transformation system for R, then: IOg = [Oprs, i.e.
(3 terminated (Go=" Gy ) via R) < (3 terminated (Go=" G,) via LTS). A

Proof (Idea). The proof (see [L6]) uses the general results of completeness of
critical pairs and the local Church-Rosser Theorem to stepwise shift the steps in
s for obtaining sequence s’ that respects the order in S. Using the construction of
S, this ensures by induction that there is no rule in a cluster S; which depends on
arule in cluster S; with j > i. We obtain that s’ can be divided into subsequences
s} for each cluster S;. Since for each rule of a cluster, the cluster also contains
all conflicting rules, we can again apply completeness of critical pairs and the
local Church-Rosser Theorem and show by contraposition that an extending step
in any subsequence implies an extended step in the original sequence s, which
contradicts the precondition that s is terminated. m]

A DC-LTS can reduce the effort for backtracking. By below, func-
tional behaviour of the layers eliminates the need for backtracking of transfor-
mation steps that are not in the current layer. A transformation system TS has
functional behaviour, if 10 g is right unique, i.e. for each input graph, there is
at most one output graph up to isomorphism. A layer S; of an LTS = (R,S)
has functional behaviour, if the induced transformation system with rules S; has
functional behaviour, which can be analysed statically with the tool AGG [1312§].

Theorem 2 (Reduction of Backtracking). Let LTS be a DC'-layered trans-
formation system, where each layer has functional behaviour. Then, there is no
need to backtrack already completed layers during the computation of a termi-
nated sequence Go=" G,, via LTS. Moreover, LTS has functional behaviour. A

Proof. Assume we backtrack already completed layers, then we will obtain the
same output graphs for these layers due to functional behaviour and thus, we
derive the same input graph for the current layer. LTS = (R, S) has functional
behaviour, because each layer has functional behaviour and the layers are exe-
cuted via the fixed sequence S. O

The effect of is that the effort for checking functional behaviour of
the whole system is reduced to the analysis of each layer separately. Note that
application conditions for rules are an appropriate method to ensure functional
behaviour [I3]. Our approach can be combined with the generation of filter
NACGs [13], which eliminates some types of rule conflicts, but not all.

We improve the performance of a model transformation MT by applying the
concept of a DC-LTS to the set of operational rules of MT. By TRAFOS(MT)
we denote the set of all model transformation sequences TRAFOS(MT) = {s |



s=(G%,Go="G,p,GT) is a model transformation sequence via MT} for a model
transformation MT.

Definition 3 (DC-optimised Model Transformation). Let LTS =
(TRpr,S) be a DC-layered transformation system for the forward transla-
tion rules TRpr of a TGG with induced model transformation MT. The DC-
optimised model transformation MT pps: L(TG®) = L(TGT) is obtained from
MT by restriction to the LTS -compatible model transformation sequences, i.e.,

TRAFOS(MTprs) = {s € TRAFOS(MT) | s = (G5,Gly =2, &', GT) and
o LN G, is a transformation sequence via LTS}. A
By below, we show that the execution of the DC-LTS does not

affect the existing results for TGGs concerning the notion of correctness and
completeness (see below according to [13]).

Definition 4 (Correctness and Completeness). A model transformation
MT is correct, if for each MT-sequence (GS,GO:*Gn,GT) there is a triple
graph G = (G° <« G¢ - GT) ¢ L(TGQG). It is called complete, if for each
G® e LITGG)?, there is an MT-sequence (G°,Go=*G,,GT). A

Theorem 3 (Correctness and Completeness). Fach DC-optimised model
transformation MT 1g: L(TG®) = L(TGT) is correct and complete. A

Proof. By Thm. 1 in [13], we know that model transformations M T based on for-
ward translation rules are correct and complete. By [Thm. 1} we derive that MT
and MT rs have the same input/output relation and thus, MT jrg is correct
and complete. |

6 Evaluation

shows the evaluation of the efficiency improvement using a standard con-
sumer laptop (CPU: i7-2860QM, RAM: 8GB, Java: 1.7U25, OS: 64-bit version
of Windows 7) for translating all control procedures (202 files, 199,853 lines of
code (LOC)) that were developed by ASTRIUM for the satellite ASTRA 1N.
The construction of the dependency conflict clusters is performed once statically
for the TGG and thus, not contained in the execution times. The left chart shows
the translation via the TGG without efficiency improvement for the smallest 126
ﬁlesﬂ (<50KB) — file no. 127 reached a timeout of 10 hours. The amount of nodes
of an AST graph is on average about 4 times the amount of LOC of the file.
The execution of the DC-layered TGG (right chart) is faster (approximately 100
times as fast for graphs with 4,000 nodes) - mainly due to the massively reduced
amount of rule match computations at each step. |[Fig. 6| shows the execution
times for translating each input file separately. The effective translation of the
full set of files at SES is performed by distributing the files to eight parallel Java

" A file contains the code for one satellite control procedure.
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Fig. 6. Measurements for satellite ASTRA 1N (logarithmic scale) using Henshin

Table 1. Evaluation of requirements

Requirement Evaluation

Syntactical correctness  Ensured for Phase 2 of the AST conversion by [Thm. 3}
and completeness TGGs simplify the guarantee of a resulting tree structure
Precision/fidelity, TGG rules are obtained from DSL mapping document that
minimal efforts was specified by domain experts containing pairs of cor-
for revalidation responding source and target code fragments

Complete automation Yes: no user interaction, no manual editing of output files.

Maintainability - Visual and intuitive GUI for TGG rules
- No complex control structures for execution
- Automated check of rule dependencies with AGG [28]

Readability - The output source code in SPELL is well aligned
- Output is compliant with SPELL coding guidelines
- All header entries and comments are generated adequately

Efficiency, scalability - Metamodels of generated Xtext plugins: >140 types
- Rules: 484 (TGG: 249, initialisation + refactoring: 235),
- Internal XML representation: ~50,000 LOC (lines of code)
- Benchmark: ~5:00 min. for satellite Astra 1N (seem

Direct savings 1-2 man years per satellite (estimated by SES, compared to
manual conversion and validation)

threads (four physical cores). This leads to an additional average speed up factor
of three such that the translation for one satellite takes about five minutes. SES
appreciated the obtained speed as it is largely above what is needed for practical
use.

provides an overview of the evaluation of the translator concerning
the industrial requirements of SES. The implementation has been delivered to



SES and was successfully assessed and validated by SES and the satellite man-
ufacturer ASTRIUM. According to the translation ensures syntactical
correctness and completeness for Phase 2 of the AST conversion via the TGG.
TGGs simplify the challenge to ensure that the resulting graph of the model
transformation forms an AST. The source model is always preserved and the
execution ensures that elements are translated exactly once. This reduces the
challenge of checking that the rules translate each path or subtree of the source
AST into a path or subtree in the target graph attached to the corresponding
parent node. The size of the TGG, the processed input files and the correspond-
ing execution times in show that the presented approach is applicable
for large scale applications. Currently, the following six satellites are running
on the generated control procedures: Astra-1M, Astra-1N, Astra-2E, Astra-2F,
Astra-3B, and SES-6. Moreover, SES is validating two further TGG-translators
for the satellite control languages of the satellite manufacturers THALES and
BOEING.

7 Related Work

Other solutions for software translation include manually writing a converter,
using a compiler-compiler or meta-programming based on term rewriting or sim-
ilar techniques. In fact, a fully manual rewrite in the target language, using the
source language artefact only as a reference, is also feasible in some situations
and even has been the preferred approach for the mission-critical satellite control
procedures at SES, before the approach presented in this paper has been taken
into account.

Compiler-compilers or parser generators, such as ANTLR [24], can be used
to generate a parser based on the grammar of a source language. Then, the
generation of the target language has to be programmed either in annotation
to the source grammar or by traversing the generated abstract syntax tree. In
both cases, only the source language can be specified in an adequate way by its
grammar, while the target language is implicit in the manually written code.

Source transformation systems based on term rewriting include the DMS
system [2], TXL [4], the Rascal language [19] and the Spoofax language work-
bench [I8] with the Stratego/XT engine [3]. Using these systems is quite similar
to our approach, which can be seen, e.g., in the Extract-Analyze-Synthesise
(EASY) Paradigm for Rascal [20]. Both, the source and the target language, are
specified in some form of grammar formalism and the transformation between
the languages is given by a set of transformation rules, where all the above-
mentioned systems use some sorts of rewriting rules, which are specified in a
textual syntax.

While these systems aim at providing integrated systems, we are using sepa-
rate building blocks that are already available in the EMF ecosystem — Xtext for
parsing and serialising and Henshin for transformation. Parsers and/or serialis-
ers can also be generated from XML Schema Definition (XSD) files by the core
EMF system if the language is an XML dialect. Source and/or target language



can also be visual languages implemented by EMF-based tools like the Graphical
Modeling Framework (GMF'). This provides for a seamless integration of hetero-
geneous languages. Moreover, the basic language definitions — Xtext grammars,
XSD files, GMF projects — and the resulting plugins are reusable for all transla-
tion, refactoring and model transformation projects involving the same language.

The textual programming of a specific term rewriting language has quite
a steep learning curve [5], while we experienced that the visual specification
of pattern-based graph transformation rules on EMF models provides more in-
tuitive access. Our division of the conversion by graph transformation into the
three phases — initialisation, forward translation based on triple graph grammars,
and refactoring of the result — yields a separation of concerns that additionally
helps in keeping the solution comprehensible. Our example from already
shows non-trivial structural differences between the abstract syntax structures
of source and target language. In our industrial case study, the visual represen-
tation provided a more intuitive access to those structural differences than a
textual, tree-oriented representation.

Several performance improvements for TGGs have been proposed for re-
stricted kinds of TGGs using dependency information on nodes only [22/T1].
The present paper provides a general technique for arbitrary TGGs and yields a
layered transformation system, where functional input/output behaviour avoids
the need for backtracking of already executed layers. We use the general notion
of rule conflicts and dependencies - in particular, we take into account dependen-
cies on edges, attributes and application conditions. We are confident that the
existing approaches can be integrated in the new one by applying them locally
to each layer.

Regarding performance of model transformations in general, Mészaros et
al. [23] have proposed manual and automatic optimizations based on overlap-
ping of matches. Specifically for Henshin, Tichy et al. [29] have identified several
“bad smells”, i.e., features of transformation rules that possibly result in poor
transformation performance and should be avoided if possible. During the de-
velopment of the PIL2SPELL translation, in addition to our dependency-based
strategy, we followed the guidelines from [29].

8 Conclusion

In this article, we presented a formal and fully automated approach to industrial
software source code translation. We provided a general concept for efficiency
improvement of graph transformation systems (Thms. [1| and . In our main
result , we have shown the correctness of the approach. We evaluated
the approach within a safety critical industrial application: the translation of
satellite control procedures. In particular, we evaluated the industrial require-
ments, including reliability, efficiency and code readability. Our approach consid-
erably improves the rewriting efficiency of the used triple graph transformation
approach while guaranteeing the correctness. As an effective result, six commu-
nication satellites are running on the generated procedures.



Regarding the Henshin tool, work is in progress to implement the critical
pair analysis directly instead of using AGG. The performance results achieved
by our proposed approach shall be further evaluated by making use of recently
developed benchmarks [I7/1].

In future work, we will employ the rich formal foundation of TGGs and apply
them for the synchronisation between source code and possible visualisations of
software. We also plan to apply graph transformation techniques for analysing
test coverage and generating valid test cases.
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