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Abstract. Regulations, through the use of obligations and permissions,
are widely used in modern society to define acceptable behaviours. Thus
it is indeed important that these regulations do not conflict with each
other and contain contradicting obligations. In the present paper we focus
on identifying conflicts between obligations in dynamic settings. We first
show the need of an alternative semantics rather than the more classic
modelled by standard deontic logic. Second we introduce a new semantics
for the obligations capable of representing and reasoning about them in
these dynamic settings, and lastly we use it to identify the necessary and
sufficient conditions to identify conflicting obligations.
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1 Introduction

Nowadays, wherever we may go, there are always regulations influencing what
we can and cannot do. The modern society makes a heavy use of regulations to
define which are the desirable behaviours in almost any foreseeable scenario.

We argue that a clear understanding about how obligations interact is im-
perative to avoid situations where the obligations contradict each other, turning
into dilemmas [16], where desirable behaviours are not discernible anymore.

Example 1. The “working week” defines that workers have to work from monday
to friday. Islam defines that friday is an holy day and it is forbidden to work.

The example describes a conflicting situation resulting from merging differ-
ent regulations, religious and business. The issue of conflicting regulations has
been already studied in normative reasoning, like by Elhag et al. [6], Beirlaen
and Straßer [2], and Sartor [21]. In particular, since regulations define what is
obligatory, prohibited and permitted, deontic logic [14] and its variants have
been extensively used to reason about them. For instance Hansen [12] studies
the conflicts between obligations using dyadic deontic logic.

The deficiency of standard deontic logic to deal with conflicts has been already
studied by Beirlaen et al. [3]. Whereas Beirlaen et al. focus on identifying conflicts
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between both permissions and obligations in single time instants, in this paper we
study conflicts in a dynamic setting, consisting of scenarios evolving through time
and we refer to them as traces. We show that standard deontic logic appears to
be too restrictive while reasoning about normative conflicts in dynamic settings.
Therefore we propose an alternative formalisation capable of reasoning about the
obligations and detecting conflicts in these settings.

The paper is structured as follows: Section 2 introduces standard deontic logic.
Section 3 introduces the traces. Section 4 introduces an alternative semantics to
reason about obligations using the traces. Section 5 redefines the concept of deontic
conflicts according to the alternative semantics. Section 6 describes how conflicts
can be detected between the obligations using the alternative semantics. Sections
7 and 8 extend the alternative semantics introducing respectively preemptive
and compensable obligations, and study how conflicts are detected given these
additional semantics. Section 9 concludes the paper.

2 Standard Deontic Logic

Firstly introduced in 1951 by von Wright [26] as a system for reasoning about
what is necessary or allowed, Standard Deontic Logic is one of the successors of
this system.

The syntax of this logic is composed of an infinite set of propositional variables,
the classical logical operators (¬,∧,∨,→) and two modal operators O and P
used respectively to identify what is obligatory and what is permitted.

2.1 Consistency

Standard deontic logic is a normal KD logic where the axioms: P> and Oα→
¬O¬α, and the equivalence Oα ≡ ¬P¬α hold. The equivalence expresses a
relation between obligations and permissions, in other words it states that if
something is obligatory, then the opposite is not permitted. The first axiom: P>,
states that tautologies are always permitted and the second axiom: Oα→ ¬O¬α,
states that if something is obligatory then its complement must not be obligatory.

We define internal consistency and external consistency using the two axioms
and the equivalence. Internal consistency expresses the fact that something
contradictory, like a proposition and its negation, cannot be obligatory.

Definition 1 (Internal Consistency). A set of norms is internally consistent
iff there is no formula α such that O(α ∧ ¬α) is entailed by the set of norms.

Accordingly internal consistency corresponds to axiom P>:

¬O(α ∧ ¬α) ≡ ¬O⊥ ≡ P>

External consistency expresses that two contradictory obligations cannot
coexist, like for instance the obligation of performing an action along with the
prohibition of performing it.



Definition 2 (External Consistency). A set of norms is externally consistent
iff there are no formulae α such that Oα ∧ O¬α is entailed by the set of norms.

Accordingly internal consistency corresponds to axiom Oα→ ¬O¬α:

¬(Oα ∧ O¬α) ≡ Oα→ ¬O¬α ≡ Oα→ Pα

In standard deontic logic the two axioms P> and Oα→ ¬O¬α are equivalent.
The two consistency measures defined in the present section are used in stan-
dard deontic logic to identify inconsistencies. Although inconsistencies involving
permissions are also possible, in this paper we focus on inconsistencies between
obligations.

3 Traces: a Dynamic Setting

The information contained in single time instants is often not sufficient to decide
whether a real obligation has been fulfilled or violated. This problem has been
previously approached by Segerberg [22] using dynamic deontic logic.

Example 2. The authors of this paper must submit it to ∆eon before the deadline,
which is set on Sunday. This also means that the paper has to be finished before
the submission deadline.

The scenario contained in Example 2 illustrates a situation comprising an
obligation for which considering unique time instants to decide whether it is
violated or not is often not sufficient. Because even when considering a time
instant where the submission is executed, in order to evaluate the obligation we
also need the information regarding whether the submission has been executed
before or after the deadline.

To evaluate the obligation in Example 2 we need to consider a time interval.
More precisely, we consider the time instants occurring between the event trigger-
ing the obligation (being an author of this paper) and the deadline terminating it
(Sunday). Considering these time instants between the trigger and the deadline
allows to evaluate the obligation by verifying if the paper is submitted in one of
them.

3.1 Traces

Each time instant is associated to a state describing the world at that precise
point in time. We use finite sets of literals to describe the situation holding in a
point in time.

Definition 3 (Universe L). Given a finite set of atomic elements E, the
universe L is E ∪ {¬e | e ∈ E}. For e ∈ E, let a = ¬e iff a = e and a = e iff
a = ¬e.

Definition 4 (Consistent Set). A set of literals L is consistent if and only if
∀l ∈ L,¬∃¬l : ¬l ∈ L.



Definition 5 (State). Let I = (t1, t2, . . . ) be a discrete linear order of instants
of time and L a consistent finite set of literals. A state is a tuple σ = (ti, L).

The sequence of states contained in a trace describes the evolution of the
world during that time interval.

Definition 6 (Trace). Given a potentially infinite discrete linear order I =
(t1, t2, . . . ), a trace θ is a sequence of states: (σ1, . . . , σn, . . .), such that for each
σi = (ti, Li) and σj = (tj , Lj), σi ≺ σj if and only if ti ≺ tj in I.

Example 3 (Trace). Considering again Example 2, a hypothetical trace on which
is enforced the obligation of submitting the paper can be the following:

θ = ((t1, {a}), . . . , (ti, {s}), . . . , (tk, {d}), . . . )

The state (t1, {a}) represents the trigger of the obligation, where the authors
are acknowledged, The state (ti, {s}) represents where submission of the paper is
executed and finally (tk, {d})) when the deadline is reached.

The trace illustrated in Example 3 does not violate the obligation of submitting
the paper before the deadline. A violating trace can be constructed from it by
exchanging the state at time tk with the one at time ti.

4 Obligations’ Semantics

In this paper we adopt a simpler semantics than Segerberg’s [22] to describe
and reason about the obligations. We use linear time models, avoiding branching
time, and our semantics focuses on obligations leaving permissions out of the
picture.

From Example 2 and as previously pointed out by Governatori et al. [7], an
obligation requires a lifeline (a trigger), a deadline (determining the obligation
termination) and a condition determining what is required from the obligation.
In this paper we disregard the first two elements and adopt a more abstract
approach by using a function that given a state of a trace, returns the set of
obligations holding in that state.

Definition 7 (Obligation in force). Given a state σ, we define a function

Force : 2I × 2L 7→ 2}

where } is a set of obligations.

Definition 8 (Obligation). An obligation is a structure 〈t, c〉, where t ∈ {s, a,m}
represents the type of the obligation. The element c is a propositional formula
composed by elements in L and represents the content of the obligation.

We use Ot〈c〉 to represent an obligation.



The content c of an obligation Ot〈c〉 is obligatory in the deontic sense. The
formal semantics of how the content is obligatory depends on the type of the
obligation t considered. We distinguish three types of obligations: standard
(Os) which replicates the semantics of the obligations of standard deontic logic;
achievement (Oa), which captures the semantics of the obligations like the one in
Example 2; and maintenance (Om), which captures the semantics of obligations
similar to the one in the following example.

Example 4. To access secure data, the proper credentials must be retained for
the whole access period.

Considering the trace illustrated in Example 3 and the obligation in Example
2, we can use s to represent the condition. The obligation, according to Definition
8, is represented as follows: Oa〈s〉.

4.1 Evaluating the Formulae

The states are not necessarily complete, meaning that given a proposition α, a
state can either contain such proposition, its negation (¬α) or neither of them.

Definition 9 (Formula Entailment). Let |= be the standard propositional
entailment. Given a state σ = (t, L) and a formula α, σ |= α if and only if∧
x |= α, where each x ∈ L.

4.2 Standard Obligations

Obligations in standard deontic logic are evaluated in a single state. We can
mirror these obligations by forcing the instances of these obligations to be in
force for exactly one state. We refer to the mirrored obligations as standard
obligations. A standard obligation is represented as follows: Os〈c〉.

Definition 10 (Comply with Standard). Given a standard obligation Os〈c〉
and a trace θ, θ is compliant with Os if and only if: ∀σi ∈ θ such that Os〈c〉 ∈
Force(σi), σi |= c

Consistency of Standard Obligations We expect that both internal and
external consistency measures (Definitions 1 and 2) still apply to standard
obligations.

Proposition 1. ¬∃θ|θ complies with Os〈α ∧ ¬α〉.

Proof (Sketch). If we assume an obligation O(α ∧ ¬α) to be possible, then the
translated standard obligation would be the following: Os〈α ∧ ¬α〉.

From Definition 10 it follows that a trace must contain a state σi such that
σi |= α ∧ ¬α in order to comply with the standard obligation unless Force of
each state of θ is empty (eg. ∀σ ∈ θ,Force(σ) = ∅). However such state could
not exist according to Definition 5 since each state must be consistent. Thus a



standard obligation whose condition is a contradiction would never be complied
by any trace.

Therefore internal consistency applies to standard obligations. �

Proposition 2. ¬∃θ|θ complies with Os〈α〉 and θ complies with Os〈¬α〉.

Proof (Sketch). Assume a trace containing the state σi, where {Os〈α〉,Os〈¬α〉} ∈
Force(σi).

From Definition 2, Oα ∧O¬α is translated in standard obligations as follows:
Os〈α〉 and Os〈¬α〉 both belonging to the same set returned by applying Force
the a given state σi of a given trace. According to Definition 10, since both
standard obligations are in force in σi, then both conditions have to be verified
in the same state.

A state σi, in order to fulfil both obligations, needs to contain in its state
both α and ¬α, however this is in contradiction with Definition 5, stating that a
state has to be consistent. Thus it follows that a state σi satisfying both α and
¬α cannot exist.

Therefore a trace compliant with both standard obligationsOs〈α〉 andOs〈¬α〉
cannot exist. Thus no solution can exist when such pair of obligations is considered.

�

4.3 Non-Standard Obligations

We define the semantics of the additional types of obligations in a similar way as
already defined by Governatori et al. [7].

Achievement obligations require that at least a state included in their in force
interval satisfies the condition.

Definition 11 (Comply with Achievement). Given an achievement obliga-
tion Oa〈c〉 and a trace θ, θ is compliant with Oa〈c〉 if and only if:

∀ maximal subsequences θs ∈ θ such that ∀σi ∈ θs,Oa〈c〉 ∈ Force(σi),∃σh ∈
θs such that σh |= c.

An operator with a similar semantics to the one just presented has been
defined and analysed by Broersen et al. [5], the operator designed combines the
semantics of computation tree logic and standard deontic logic.

Similarly, a maintenance obligation also requires to verify the condition when
they are in force. However as we can see from Example 4, for each state where
a maintenance obligation is in force, the state needs to satisfy the obligation’s
condition.

Definition 12 (Comply with Maintenance). Given a maintenance obliga-
tion Om〈c〉 and a trace θ, θ is compliant with Om〈c〉 if and only if:

∀σi ∈ θ such that Om〈c〉 ∈ Force(σi), σi |= c.



Relations with Standard Obligations Standard obligations are a particular
case of both achievement and maintenance obligations. If we constrain the
activation period of an achievement obligation to a single state, then such state
must satisfy the condition. The same applies to maintenance obligations, if the
activation period is limited to only one state, then such state has to fulfil the
condition. Therefore if the activation is limited to a single state, then the semantics
of both achievement and maintenance obligations collapse in the semantics of
standard obligations.

5 Deontic Conflicts

We show here that the external consistency measure of standard deontic logic is
too restrictive when used in a dynamic setting. The following example extends
Example 2.

Example 5. The authors of this paper must submit it to ∆eon before the deadline,
which is set on Sunday. This also means that the paper has to be finished before
the submission deadline. However, as usual on the weekends, the authors must
go to the pub to meet their friends on Saturday or Sunday.

Example 5 contains two obligations: submitting the paper and going to the
pub. We assume that the authors cannot finish and submit the paper while at
the pub, hence we consider these obligations to be complementary. Thus if the
proposition α represents “finishing and submitting the paper”, then we can use
¬α to represent “going to the pub”.

To formalise the example we discretise time in days. We use the propositions
sat and sun to represent Saturday and Sunday respectively. Lastly we use the
proposition aut to represent being an author of the present paper. We formalise
the obligation of going to the pub: Oa〈¬α〉 and the obligation of submitting the
paper as: Oa〈α〉.

Both obligations are of type achievement. Despite the conditions of the
obligations being complementary, it is still possible to provide a trace complying
with both obligations.

θ = (. . . , (ti, {aut}), . . . , (tj , {sat,¬α}), (tk, {sun, α}))

Assuming that Oa〈¬α〉 is in force in both (tj , {sat,¬α}) and (tk, {sun, α}) and
Oa〈α〉 is in force from (ti, {aut}) till the end of θ.

Example 5 describes a situation where two complementary obligations coexist
during the weekend, but can be both fulfilled. According to the consistency
measures provided by standard deontic logic, this situation would result in
a conflict since it violates the external consistency measure. From the present
analysis it follows that standard deontic logic is ill suited to reason about dynamic
settings, more precisely the external consistency measure is too restrictive.



5.1 Redefining Conflicts

We now propose a new definition of inconsistent obligations, suited to be used in
dynamic settings.

Definition 13 (Dynamic Conflict). A set of obligations, written }, is conflict-
ing if and only if it is not possible to construct a trace in such a way that it is com-
pliant with each obligation belonging to the set, ¬∃θ|θ compliant with O,∀O ∈ }

The necessary conditions for two obligations to be conflicting is that their
fulfilment conditions are complementary and their activation periods need to
overlap. Depending on the type of obligations considered, the necessary condition
may not be sufficient to determine whether they are conflicting. To focus on
this aspect of the problem we introduce a function Interval, which when applied
to an obligation and a trace returns the sub-intervals of the trace in which the
obligation is activated.

Definition 14 (Interval). Given a trace θ, let θp be the complete set of the
sub-intervals of θ. Given an obligation O, the partial function Interval is defined
as follows:

Interval : 2O × 2θ 7→ 2θp such that ∀ϕ ∈ Interval(O, θ),∀σ ∈ ϕ,O ∈ Force(σ)

The function Interval returns all the intervals of a trace in which an obligation
is active. Interval is defined as a partial function since it can be the case that
an obligation is never activated in a trace, hence the set of intervals determining
the activation period would be represented by the empty set.

5.2 Pair-wise Conflicts

In Definition 13, conflicts are defined for sets of obligations. The following example
illustrates a case where a conflict arises from a set of obligations and, when any
proper subset of the obligations is considered a conflict does not arise.

Example 6 (Conflicting Set). Assume a trace θ and a set of obligations com-
posed of a single achievement obligation Oa〈α〉 and k standard obligations
Os〈¬α〉 such that Interval(Oa〈α〉, θ) ≡

⋃
I ∈ Interval(Os〈¬α〉, θ) and

⋂
I ∈

Interval(Os〈¬α〉, θ) = ∅. In other words the activation periods of the standard
obligations are all distinct and entirely cover the activation period of the achieve-
ment obligation.

From Example 6, we can see that a trace compliant with all the obligations
belonging to the set proposed cannot exist because it would require a state
containing both α and ¬α.

The behaviour of the standard obligations in Example 6 can be simulated
using a single maintenance obligation. The behaviour required from a trace to
be compliant with the set of standard obligations (Os〈¬α〉) is that in such trace
¬α holds for the interval determined by the obligations. The same result can be



obtained by using a single maintenance obligation requiring ¬α to hold for the
same interval. Thus the set of standard obligations can be substituted with a
single maintenance obligation satisfying the following condition on the activation
period: ⋃

ϕ ∈ Interval(Os〈¬α〉, θ) ≡ Interval(Om〈¬α〉, θ)

Therefore we focus on analysing pair-wise conflicts between obligations.

6 Conflict Detection

The two necessary conditions to detect whether two obligations conflict are the
following:

1. Their fulfilment conditions have to be complementary: O1〈α〉 and O2〈β〉,
such that α ∧ β → ⊥.

2. The intersection of their activation periods must be not empty: ∃x, y|x ∈
Interval(O1〈α〉, θ), y ∈ Interval(O2〈β〈, θ) and x ∩ y 6= ∅.

We identify here the sufficient conditions to decide whether two obligations
are conflicting. Being standard obligations a special case of both achievement and
maintenance, it is sufficient to analyse the three combinations involving these
types (Om −Om, Om −Oa and Oa −Oa). To do so we introduce two auxiliary
functions, which applied to an interval or a trace, returns the first state belonging
to them: min, or the last state: max.

6.1 Maintenance - Maintenance

We consider here two maintenance obligations.

Definition 15 (Om − Om Conflict). Let Om〈α〉 and Om〈β〉 be two comple-
mentary maintenance obligations. Om〈α〉 and Om〈β〉 are conflicting if and only
if:

∃I ∈ Interval(Om〈α〉, θ) and ∃I ′ ∈ Interval(Om〈β〉, θ) : I ∩ I ′ 6= ∅

Proposition 3 (Om − Om Conflict). Let Om = 〈α〉 and O′m = 〈β〉 be con-
flicting maintenance obligations, then there does not exist a trace complying with
both obligations.

Proof (Om −Om Conflict). We prove that the condition provided in Definition
15 is sufficient to identify whether two maintenance obligations are conflicting.

1. Let Om = 〈α〉 and O′m = 〈β〉 be two complementary maintenance obligations,
meaning that α ∧ β → ⊥.

2. From the hypothesis we know that ∃I, I ′ such that I ∈ Interval(Om, θ), I ′ ∈
Interval(O′m, θ) and ∃σ such that σ ∈ I and σ ∈ I ′.

3. From Definition 12 and 2. it follows that ∀σ ∈ I, σ |= α and ∀σ′ ∈ I ′σ′ |= β.
4. Assume that there exists a trace θ such that θ is compliant with Om and
O′m.



5. From 4. it follows that ∀I, I ′ such that I ∈ Interval(Om, θ) and I ′ ∈
Interval(O′m, θ), I ⊆ θ and I ′ ⊆ θ and ∀σ ∈ I, σ |= α and ∀σ′ ∈ I ′, σ′ |= β.

6. From 2. and 5. it follows that ∃σθ such that σ |= α and σ |= β.
7. From Definition 9 and 6. it follows that ∃σ ∈ θ such that {α, β} ∈ σ.
8. From 1. we know that α ∧ β → ⊥, hence from 7. and Definition 5 it follows

that a state σ is inconsistent and a trace containing such state cannot exists.

Therefore we have proven that the condition provided in Proposition 3 is sufficient
to identify to conflicting complementary maintenance obligations. �

Two maintenance obligations are conflicting as soon as they are complementary
and their activation periods overlap. In this case the sufficient condition is also
the necessary condition previously introduced.

We do not provide propositions and formal proofs for the following definitions
since they are analogous of the one provided for Definition 15.

6.2 Maintenance - Achievement

We consider here a maintenance and an achievement obligation.

Definition 16 (Om −Oa Conflict). Let Om〈α〉 be a maintenance obligation
and Oa〈β〉 be a complementary achievement obligation. Om〈α〉 and Oa〈β〉 are
conflicting if and only if:

∃I ∈ Interval(Oa〈β〉, θ) and ∃I ′ ∈ Interval(Om〈α〉, θ) : I ⊆ I ′

The sufficient condition captures the fact that an achievement obligation requires
be fulfilled in a single state, hence a conflict arise only if the activation period of the
maintenance obligation is a superset of the activation period of the achievement
obligation.

6.3 Achievement - Achievement

We consider here two achievement obligations.

Definition 17 (Oa − Oa Conflict). Let Oa〈α〉 and Oa〈β〉 be two conflicting
achievement obligations. Oa〈α〉 and Oa〈β〉 are conflicting if and only if:

∃I ∈ Interval(Oa〈α〉, θ) : I ∈ Interval(Oa〈β〉, θ) and ||I|| = 1

The sufficient condition requires that there exists an activation period common to
the two complementary achievement obligations and that such activation period
is of length one. These restrictive conditions are necessary due to the flexibility
allowed to comply with achievement obligations. Two achievement obligations
are actually conflicting if and only if both behave as standard obligations in at
least a shared activation period.

The sufficient condition required to identify conflicting standard obligations
(Definition 10) is the following:

∃I ∈ Interval(Os〈α〉, θ) : I ∈ Interval(Os〈β〉, θ)

As it is expected, this sufficient condition is a particular case of all the other
conditions identified in the present section.



7 Preemptive Obligations

Achievement and maintenance are capable of representing a good deal of obliga-
tions used in real world scenarios. However, there are still some which could be
not translated using their semantics.

Example 7. Anti-Money Laundering and Counter-Terrorism Financing Act 2006.
Clause 54 (Timing of reports about physical currency movements).

1. A report under Section 53 must be given:
(a) if the movement of the physical currency is to be effected by a person

bringing the physical currency into Australia with the person-at the time
worked out under subsection (2); or

. . .
(d) in any other case-at any time before the movement of the physical

currency takes place.

Example 7 illustrates an Australian regulation aimed at monitoring physical
currency movements. The obligation states that a report must be provided
when transaction occurs, however clause (d) states that this report can be
provided before the transaction takes place. This obligation is still an achievement
obligation, however due to clause (d), this obligation can be preemptively achieved
as it has been defined by Governatori and Rotolo [9].

We introduce a sub-type of achievement obligations called preemptive achieve-
ment obligation, denoted O−a, which allow to be fulfilled in states preceding their
triggering state.

Definition 18 (Comply with Preemptive Achievement). Given a preemp-
tive achievement obligation O−a〈c〉 and a trace θ, θ is compliant with O−a if and
only if:
∀ maximal subsequences θs ∈ θ such that ∀σi ∈ θs,O−a〈c〉 ∈ Force(σi),∃σh ∈

θs and ∃σj ∈ θ such that σj |= c and σj � σh.

7.1 Conflicts for Preemptive Achievement Obligations

As it has been done previously for the two main types of obligations, we define
the sufficient conditions to identify conflicts involving a preemptive achievement
obligation.

Maintenance - Preemptive Achievement We now consider a maintenance
and a preemptive achievement obligation.

Definition 19 (Om −O−a Conflict). Let Om〈α〉 be a maintenance obligation
and O−a〈β〉 be a complementary preemptive achievement obligation. Om〈α〉 and
O−a〈β〉 are conflicting if and only if:

∃I ∈ Interval(O−a〈β〉, θ),∃I ′ ∈ Interval(Om〈α〉, θ) : I ⊆ I ′ andmin(I ′) = min(θ)



The sufficient condition is an extension of Definition 16, to which has been added
the additional condition, requiring that the activation period of the maintenance
obligation contains the first state of the trace. The stricter sufficient condition
follows from the less strict fulfilment condition for preemptive achievement
obligations (Definition 18) with respect to achievement obligations (Definition 11).

Preemptive Achievement - Achievement We now consider a preemptive
achievement and an achievement obligation.

Definition 20 (Oa −O−a Conflict). Let Oa〈α〉 be an achievement obligation
and O−a〈β〉 be a preemptive achievement obligation. Oa〈α〉 and O−a〈β〉 are
conflicting if and only if:

∃I ∈ Interval(O−a〈β〉, θ) : I ∈ Interval(Oa〈α〉, θ), ||I|| = 1 and min(I) = min(θ)

The sufficient condition is an extension of Definition 17. The additional constraint:
“and min(I) = min(θ)” requires that an activation period for both obligation to
include the first sate of the trace and be of length 1.

Preemptive Achievement - Preemptive Achievement The sufficient con-
dition to identify whether two preemptive achievement obligations are conflicting
is the same as the one identified between an achievement and a preemptive
achievement obligation in Definition 20.

8 Compensable Obligations

In complex systems, the possibility that regulations may not be followed has to be
taken into account. Lomuscio and Sergot [17] studied this in the context of multi-
agent systems. Compensable obligations define in addition to their obligation,
which we call primary from now on, also what needs to be done when they are
violated through secondary obligations as defined by Governatori and Rotolo
[11]. Secondary obligations are a particular type of obligation whose activation
depends on the violations of the primary obligation they try to compensate.

Definition 21 (Activation). An activation of an obligation Ot〈c〉 in a trace θ
consists of a maximal subsequence θs of θ where ∀σi ∈ θs,Ot〈c〉 ∈ Force(σi).

A violation can raise for each activation in which a primary obligation is not
complied with. This means that if there is no state satisfying the condition, then
an achievement obligation (for both types of obligations, Definitions 11 and 18) is
raised in the last state belonging to the activation. For maintenance obligations
(Definition 12), if exists a state in the activation which does not satisfy the
condition, then a violation is raised in the earliest4 state of the activation which
does not satisfy the condition.

4 We consider the earliest to be the one not satisfying the condition and not preceded
by any other which does not satisfy the condition.



Definition 22 (Violations). Given an activation θs of an obligation Ot〈c〉,
a violation v of Ot〈c〉 is identified a function V (θ,Ot〈c〉) which identifies the
earliest state of θs where Ot〈c〉 is not complied with.

Compensable obligations are composed of two separate components: a primary
obligation which describe the obligation which has to be complied with for each
activation of the compensable obligation, and a secondary obligation that needs
to be complied with for each violation of the primary obligation.

Definition 23 (Compensable Obligation). A compensable obligation, writ-
ten À = O ⊗ Oc, is composed of a primary obligation O and a compensation
Oc.

The relations between the activation periods of O and Oc are the following:
∀I ∈ Interval(Oc, θ),∃v ∈ V (O, θ) : min(I) = v. Moreover ∀v ∈ V (O, θ),∃I ∈
Interval(O, θ) : max(I) = v.

The compensation Oc can be as well a compensable obligation.

Compensable obligations can be seen as sequences of obligations connected by
the operator ⊗.

Definition 24 (Comply with Compensable Obligations). Given a trace θ
and a compensable obligation À = O⊗Oc. θ is compliant with À if and only if θ
is compliant with Oc.

A trace is compliant with a compensable obligation if it is compliant with its
secondary obligation. This follows from Definitions 11, 12 and 18, where a trace
θ is always considered to be compliant with an obligation O if Interval(O, θ) = ∅.
This means in this case that either the primary obligation is not violated or if it
is violated, then each violation has been compensated.

Example 8. An example of compensable obligations is the following: When you
dine at a restaurant you have to pay for your meal. If you don’t, then you have
to wash the dishes.

This compensable obligation can be formalised as follows: Oa〈α〉 ⊗ Oa〈β〉,
where α represents “paying the bill” and β represents “washing the dishes”.

8.1 Conflicts for Compensable Obligations

We define now the sufficient conditions to identify pair-wise conflicts involving
compensable obligations. A compensable obligation is not a new type of obliga-
tion, but rather a way of structuring the existing types of obligations. A non
compensable obligation is a special case of compensable which compensable
obligation cannot be fulfilled if triggered. Therefore we analyse the more general
case of deciding which are the sufficient conditions to determine whether two
compensable obligations are conflicting.



Definition 25 (À - À Conflict). Let À = O ⊗Oc and À′ = O′ ⊗O′c be two
compensable obligations. À and À′ are conflicting if and only if:

Oc is conflicting with O′c
To determine whether two obligation “conflict” we reuse the sufficient condi-

tions from Definitions 15, 16, 17, 19 and 20. The sufficient condition expressed in
Definition 25 requires that the compensations of the two compensable obligations
are conflicting. A compensation Oc is triggered by a violation of the primary
obligation O, hence ||Interval(Oc, θ)|| = ||V (O, θ)||. If the two secondary obliga-
tion are conflicting, it means that both V (O, θ) and V (O′, θ) are not empty due
existing conflicts between O and an obligation in À′ and vice versa.

9 Conclusion

In the present paper we show that standard deontic logic is not well suited to
reason about conflicting obligations in a dynamic setting. Therefore we first
provide an alternative semantics more suited to reason about obligations in such
a setting and second we show how the newly defined semantics can be used
to detect conflicting obligations in this type of dynamic setting. The sufficient
and necessary condition for identifying conflicting obligations can be used as
constraints while designing regulations for normative systems, in order to avoid
systems where any behaviour would violate the regulations proposed.

The conditions identified in the present paper can be also used to detect
conflicts in existing systems. Resolving these conflicts is also an important part
as has been shown by Prakken and Sartor [20]. Another work relative to conflict
detection and resolution by Vasconcelos et al. [25], proposes a similar approach
as the one in this paper by considering overlapping periods of the obligations for
conflict detection. The work of Vasconcelos et al. includes also conflict resolution
techniques to solve the conflicts detected, however in the present paper we focus
on explicitly identifying and highlighting the sufficient and necessary conditions
to detect conflicts between different types of obligations, which we are capable of
achieving using a simpler semantics for the obligations. Additionally we claim
that a further utility of the conditions identified in the present paper is that they
can be used as constraints to design conflict free normative systems.

The most closely related work is [10] presenting a temporal version of deontic
defeasible logic equipped with deontic operators corresponding to all classes
of obligations discussed in the paper (excluding preemptive obligations) and
supplemented with an operator for compensatory obligations [11]. The conflicts
are not explicitly given but are embedded in the various proof conditions.

Another important element in normative reasoning is constituted by permis-
sions, which, as described by Boella and van der Torre [4], and Makinson and
van der Torre [18], can be used as a mean to limit the applicability of obligations
and prohibitions, as already has been studied by Stolpe [23] where the semantics
is defined using AGM belief revision [1], Input/Output logic [19] and Defeasible
Logic [8]. Conflict detection involving permission has already been studied by
Hansen [13], however we plan to study it in a dynamic setting as future work.
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