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Abstract. High performance, small code size, and good scalability are
important requirements for software implementations of multi-precision
arithmetic algorithms to fit resource-limited embedded systems. In this
paper, we describe optimization techniques to speed up multi-precision
multiplication and squaring on the AVR ATmega series of 8-bit micro-
controllers. First, we present a new approach to perform multi-precision
multiplication, called Reverse Product Scanning (RPS), that resembles
the hybrid technique of Gura et al., but calculates the byte-products in
the inner loop in reverse order. The RPS method processes four bytes
of the two operands in each iteration of the inner loop and employs two
carry-catcher registers to minimize the number of add instructions. We
also describe an optimized algorithm for multi-precision squaring based
on the RPS technique that is, depending on the operand length, up to
44.3% faster than multiplication. Our AVR Assembly implementations
of RPS multiplication and RPS squaring occupy less than 1 kB of code
space each and are written in a parameterized fashion so that they can
support operands of varying length without recompilation. Despite this
high level of flexibility, our RPS multiplication outperforms the looped
variant of Hutter et al.’s operand-caching technique and saves between
40 and 51% of code size. We also combine our RPS multiplication and
squaring routines with Karatsuba’s method to further reduce execution
time. When executed on an ATmega128 processor, the “karatsubarized
RPS method” needs only 85 k clock cycles for a 1024-bit multiplication
(or 48 k cycles for a squaring). These results show that it is possible to
achieve high performance without sacrificing code size or scalability.

1 Introduction

Multi-precision multiplication and squaring are performance-critical operations
of a variety of public-key cryptographic algorithms, including RSA [18], elliptic
curve schemes [14, 17], and pairing-based cryptosystems [4]. In fact, these two
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operations can easily account for more than 80% of the overall execution time
of a modular exponentiation (such as needed for RSA) or scalar multiplication
(needed in elliptic curve cryptography [10]). Consequently, any effort spent on
optimizing multi-precision multiplication and squaring is well spent. This is in
particular the case for multi-precision arithmetic to be executed on embedded
or mobile devices as they are often severely restricted in processing power and
memory (RAM) capacity. For example, an ordinary smart card or sensor node
features just an 8-bit processor clocked with a frequency of between 5 and 10
MHz. The 8-bit AVR architecture is widely used in these application domains
and has, therefore, been the target platform numerous research projects in the
area of lightweight implementation of cryptographic primitives. A typical 8-bit
AVR processor (e.g. ATmega128 [2]) has 4 kB RAM, 128 kB flash memory to
store program code, and provides 32 registers. Three register pairs can serve as
16-bit pointer registers and hold the address of operands in RAM [1]. The AT-
mega128 also comes with a hardware multiplier that needs two clock cycles to
compute the 16-bit product of two 8-bit operands held in registers.

In the past ten years, a large body of research has been devoted to improve
the performance of multi-precision arithmetic operations on resource-restricted
8-bit platforms such as the ATmega family of processors. At CHES 2004, Gura
et al. presented a landmark paper in which they compared ECC with RSA on
8-bit CPUs and introduced the now-classical hybrid method for multiplication
[9]. The hybrid method exploits the large register file of the AVR platform to
store several bytes of the operands in registers and, in this way, combines the
advantages of the product scanning and operand scanning technique [10]. Since
the publication of Gura et al.’s work, there have been a number of attempts to
further improve hybrid multiplication. An obvious approach for optimization is
to completely unroll the loops since loop unrolling eliminates a lot of overhead
(e.g. update of a loop counter or execution of a branch instruction) and allows
for a specific “tuning” of each iteration (see e.g. [23, 19]), which is not possible
with “rolled” loops. A second line of research focused on speeding up the inner-
loop operation, i.e. Multiply-ACcumulate (MAC) operation, by scheduling the
execution of mul instructions in a special way and other low-level optimization
techniques (see e.g. [16, 24, 15] for representative examples).

A recent milestone in the area of fast multi-precision multiplication on the
8-bit AVR platform is the operand caching method, introduced by Hutter and
Wenger at CHES 2011 [12]. The operand caching method follows a similar idea
as hybrid multiplication, but splits the computation of the product into several
small(er) parts with the goal of reducing the overall number of ld instructions
through a sophisticated caching of operand bytes. Later, fully unrolled versions
of the operand caching approach with slightly better results were presented in
[20, 21] by Seo et al. Very recently, Hutter and Schwabe [11] further improved
the speed record for unrolled multi-precision multiplication on AVR processors
by a carefully-optimized implementation of Karatsuba’s multiplication method
[13]. Their results demonstrate that the operand length at which Karatsuba’s
approach starts to become beneficial is surprisingly low, namely 48 bits.
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In this paper, we describe a new approach for multi-precision multiplication
and squaring on 8-bit AVR processors and other platforms that feature a large
number of general-purpose working registers. Our main contribution is the Re-
verse Product Scanning (RPS) method for multiplication, which resembles the
basic loop structure of Gura et al.’s hybrid technique [9], but computes subsets
of the partial products in the inner loop in reverse order, i.e. from more to less
significant positions. Furthermore, the RPS method uses two so-called “carry-
catcher” registers to minimize the number of adc instructions executed in the
inner loop. The RPS method for AVR processors we present in this paper aims
for a practical trade-off between performance, code size and scalability instead
of “pure speed” as most other implementations. Achieving such a trade-off is a
very challenging task since, for example, high performance and small code size
usually contradict each other. Before presenting our contributions in detail, we
first explain why fast execution time, small code size, and high scalability are
all important requirements for multi-precision arithmetic software.

Requirements

Achieving fast execution time has been a major goal of virtually all implemen-
tations of multi-precision arithmetic described in the recent literature, and the
present work is no exception. As stated before, the efficiency of multi-precision
multiplication and squaring has a clear and direct impact on the performance
of higher-level operations like exponentiation or scalar multiplication, which, in
turn, determines the overall processing time of key establishment mechanisms
and signature schemes. Besides reducing the delay of public-key primitives and
protocols, fast multi-precision arithmetic is crucial for another reason, namely
energy efficiency. In general, the energy consumption of cryptographic software
executed on a microprocessor increases proportionally with the execution time
[7]. This, together with the fact that a large portion of embedded systems are
battery powered, makes a good case for minimizing execution time, even if the
target application does not impose stringent delay constraints on cryptographic
primitives. While the importance of high performance is unanimously accepted
in the cryptographic community, the situation is not so clear when it comes to
code size and scalability since both were often ignored in previous work.

Paying attention to code size is important since the binary executable im-
age of an application (which includes the object file containing the arithmetic
functions) needs to fit into the available program ROM or flash memory. Many
embedded microcontrollers are quite restricted in code space; for example, the
Atmel ATmega128 [2] provides only 128 kB of programmable flash memory to
store program code. In light of such constraints, it is often unattractive (and in
some cases even impossible) to apply certain code-size-increasing optimization
techniques like (full) loop unrolling. The operand-caching method for AVR, as
described in [12], serves as a good example to make this more clear. A fully un-
rolled implementation of operand-caching multiplication for 1024-bit operands
has a binary code size of about 150 kB, which exceeds the flash capacity of the
ATmega128 by more than 20 kB. But even for smaller operands typically used
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in ECC (e.g. 256 bits), full loop unrolling can be infeasible since, depending on
the code size of the operating system, networking stack, security protocol, and
the actual application, only a tiny fraction of the 128 kB flash memory may be
available for multiple-precision arithmetic. And, of course, the smaller the code
size of the cryptographic primitives and underlying arithmetic operations, the
more code space remains for the actual application.

In the context of cryptographic software, the term scalability relates to the
ability to process operands of arbitrary size without the need to re-write or re-
compile the software. A scalable implementation of multi-precision arithmetic
is parameterized, which means that the operands (or, more precisely, pointers
to the operands in RAM) are passed as parameters to the arithmetic function
along with an additional parameter specifying the length of the operands. The
function body executes the arithmetic operation in a “looped” fashion, where-
by the operand length determines the number of loop iterations. Virtually all
cryptographic libraries of practical relevance contain a scalable implementation
of multi-precision arithmetic, and also the multiplication/squaring routines we
describe in the following sections are scalable. The importance of scalability is
best explained by taking RSA [18] as example. Private-key operations, such as
decryption and signature generation, can exploit the Chinese Remainder Theo-
rem to perform an n-bit exponentiation through two (n/2)-bit exponentiations
using the prime decomposition P , Q of the modulus N . On the other hand, all
operations involving a public key (e.g. encryption, signature verification) have
to be performed on full-length (i.e. n-bit) operands. A scalable implementation
of multiple-precision modular arithmetic is able to accommodate both operand
lengths, which simplifies the software development process as only one function
for multiplication and modular reduction has to be written. Scalability makes
it also very easy to adapt an RSA implementation to larger key sizes, e.g. from
1024 to 1536 or 2048 bits.

Contributions

We present the RPS method for multi-precision multiplication and squaring on
processors featuring a large number of general-purpose registers. As mentioned
before, our RPS approach has the same loop structure as the hybrid technique
and, consequently, employs the column-wise strategy (i.e. product scanning) as
“outer algorithm.” However, the byte-level multiplications in the inner loop are
(partly) executed in reverse order, i.e. some more-significant byte-products are
calculated before less-significant ones. Furthermore, the RPS method uses two
so-called carry-catcher registers to reduce the propagation of carries (which, in
turn, reduces the number of adc instructions), similar to the optimized hybrid
method of Scott and Szczechowiak [19]. We also describe how to apply the RPS
approach for multi-precision squaring and introduce an optimized technique to
calculate the byte-level squares in the “main diagonal” that appear only once
in the final result. Last but not least, we combine our RPS multiplication and
squaring with Karatsuba’s algorithm [13] to further reduce the execution time
for large operands (i.e. ≥ 512 bits) such as used in RSA.
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Table 1. Comparison of AVR implementations of multi-precision multiplication and
squaring with respect to code size, scalability, and whether the implementation was
evaluated in the original paper for operand lengths used in ECC or RSA (the letters
U, L, P indicate whether an implementation is unrolled, looped, or parameterized)

Implementation Code size Scalable RSA ECC Speed record

Multi-precision multiplication on 8-bit AVR processors:

Gura et al. [9] n/a X X
Hutter et al. [11] 3.1–7.6 kB X X (U)

Hutter et al. (L) [12] 1.5–1.9 kB X X
Hutter et al. (U) [12] 3.7–151 kB X

Liu et al. [16] n/a X
Scott et al. [19] n/a X
Seo et al. [21] 3.6–10 kB X

Uhsadel et al. [23] n/a X
Zhang et al. [24] n/a X X

This work (RPS mul) 918 B X X X X (L,P)

Multi-precision squaring on 8-bit AVR processors:

Liu et al. [16] 1.5 kB X
Seo et al. [22] 3.2–9.1 kB X X (U)

This work (RPS sqr) 844 B X X X X (L,P)

We implemented the proposed RPS multiplication and RPS squaring in As-
sembly language, and “karatsubarized” versions thereof in portable C using the
Assembly functions as sub-routines. Our prototype implementations satisfy the
requirements mentioned before; in particular, they are scalable and, thus, able
to support operands of (essentially) arbitrary length. Both RPS multiplication
and RPS squaring have a code size of less than 1 kB, which is small compared
to other implementations described in the literature (see Table 1). Despite its
scalability and compact size, our RPS multiplication for AVR is faster than the
bulk of previous work, beaten only by the three fully unrolled implementations
[11, 12] and [21]. Most notably, the RPS technique we propose outperforms the
looped variant3 of the operand caching approach (see Sect. 4 for details).

2 Multiplication Techniques

In this section, we give a brief overview of standard algorithms and techniques
for fast execution of multi-precision multiplication on a w-bit general-purpose
processor. We assume that A and B are n-bit operands represented by arrays
of s = dn/we single-precision (i.e. w-bit) words ai and bi, which means we have
A = (as−1, . . . , a0) and B = (bs−1, . . . , b0) with 0 ≤ ai, bi < 2w for 0 ≤ i < s.

3 A looped implementation has “rolled” loops [12], but in contrast to a parameterized
implementation, the number of iterations is “hard-coded” and, hence, fixed. Looped
implementations are smaller, but also slower, than their unrolled counterparts.
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2.1 Operand Scanning Method

A simple and easy-to-implement technique for multi-precision multiplication is
the operand scanning method [10], also known as schoolbook method [7]. The
operand scanning method, as specified in [7, Algorithm 1], has a characteristic
nested-loop structure with an outer loop iterates through the s words bi of the
operand B, starting with the least-significant word b0. In the inner loop, bi is
multiplied with a word aj of operand A and the 2w-bit product is added to the
intermediate result obtained so far. More precisely, the operation performed in
the inner loop is a special Multiply-Accumulate (MAC) operation of the form
(u, v)← a · b+ c+ d, whereby (u, v) represents a double-precision (i.e. 2w-bit)
quantity and a, b, c, and d are all single-precision words.

When implemented for an 8-bit ATmega128 processor, the MAC operation
consists of a mul, two add, and two adc (i.e. add-with-carry) instructions. The
operand scanning method is fairly easy to program in a high-level language like
C or Java [7], but is generally less efficient than the product scanning method
(described below) if both are written in Assembly language. In summary, when
multiplying two s-word operands, the operand scanning method has to execute
s2 mul, 4s2 add (resp. adc), 2s2 + s ld (i.e. load), as well as s2 + s st (store)
instructions [7].

2.2 Product Scanning Method

An alternative way of performing multi-precision multiplication is the product
scanning method, sometimes credited to Paul Comba [6], who was the first to
describe an efficient implementation of this method on an Intel processor. The
product scanning method (specified in [7, Algorithm 2]) comprises two nested
loops; one computes the lower half of the result and the second contributes the
upper half. As the name suggests, the two outer loops of the product scanning
method move through the product itself, starting at the least significant word
[6, 7]. More precisely, the product is obtained one word at a time, whereby the
i-th word contains all partial products aj · bk with j + k = i. A graphical rep-
resentation of the product scanning method (see e.g. [8, Fig. 1]) shows that the
partial products are processed in a column-wise fashion, whereas the operand
scanning technique outlined above follows a row-wise schedule. The inner loop
of the product scanning method executes a simple MAC operation of the form
(t, u, v)← (t, u, v) + a · b, which means two w-bit words are multiplied and the
2w-bit product is added to a cumulative sum held in three w-bit registers.

An AVR Assembly implementation of the inner-loop operation consists of a
mul, an add, and two adc instructions. Hence, the product scanning technique
executes one add instruction less in the inner loop than the operand scanning
method. Furthermore, the product scanning technique performs memory-write
(i.e. store) operations exclusively in the outer loop(s), which means the overall
number of st instructions grows linearly with s instead of quadratically. When
multiplying two s-word operands, the product scanning method has to execute
s2 mul, 3s2 add (resp. adc), 2s2 ld, and 2s st instructions [7].
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2.3 Hybrid Method

Both the operand scanning and the product scanning method require (at least)
2s2 ld instructions if the two operands consist of s words. The hybrid method
aims at reducing the number of ld instructions on processors with a large reg-
ister file by processing d ≥ 2 words of A and B at once in each iteration of the
inner loop. From an algorithmic point of view, the hybrid method combines the
two techniques described in the previous subsections, which means it employs
the product scanning approach as “outer algorithm” and the operand scanning
approach as “inner algorithm” [9]. In each iteration of the inner loops, d words
of A and d words of B are loaded from memory, multiplied together and added
to a cumulative sum held in 2d+ 1 general-purpose registers. By doing so, the
number of loop iterations and, hence, the number of ld instructions is reduced
by a factor of d. The speed-up achievable through the hybrid method depends
on d, which, in turn, is determined by the number of available registers.

Most hybrid implementations for AVR processors with 32 working registers
use d = 4, which means the hybrid method has to execute just a quarter of the
ld instructions of the straightforward product scanning method. However, this
saving usually comes at the expense of an increased number of add (resp. adc)
or mov (resp. movw) instructions.

2.4 Operand Caching Method

The operand caching technique, introduced in [12], is currently the fastest qua-
dratic-complexity multiplication method for 8-bit ATmega processors. Thanks
to a sophisticated caching of operand bytes, it held the speed record for looped
multi-precision multiplication until now. The operand caching method follows
the basic approach of product scanning, but divides the calculation into several
row sections. By reordering the execution of inner and outer row sections, the
operand caching method can reuse the operands that have already been loaded
into working registers to generate the next partial product(s). In this way, the
overall number of memory access operations, in particular ld instructions, can
be massively reduced. The actual performance of the operand-caching method
depends on the size of a row, i.e. the number of words of one operand that can be
kept (i.e. “cached”) in working registers. In total, the operand caching method
performs 3s2/e + s memory access operations, whereby e denotes the row size
[12]. Among these memory accesses are 2s2/e loads and s2/e+ s stores.

On an ATmega processor, e can be as high as 10 when the operand caching
method is implemented in a completely unrolled fashion, or 9 in the case of a
looped implementation. Since e � d, the operand caching method outperforms
the hybrid method by approximately 15% on average [12].

2.5 Karatsuba Multiplication

The most important multiplication method with sub-quadratic complexity was
introduced by Karatsuba in the early 1960s [13]. Karatsuba’s approach reduces
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a multiplication of two operands consisting of s words to three multiplications
of (s/2)-word operands and a couple of additions. The half-size multiplications
can be performed with any multiplication technique, including the conventional
operand-scanning and product-scanning method. Alternatively, it is possible to
apply Karatsuba’s idea recursively until the operands consist of just one single
word, in which case the asymptotic complexity becomes θ(slog2(3)).

There exist two variants of Karatsuba’s multiplication technique, namely an
additive form and a subtractive form [11]. Both require the s-word operands to
be split up into a lower half consisting of the k = ds/2e least significant words
and an upper half comprising the bs/2c = s − k most significant words, i.e. we
have A = AH · 2kw + AL whereby AL = A mod 2kw and AH = A div 2kw. The
additive variant of Karatsuba’s method obtains the product A · B through the
following equation.

AHBH · 22kw + [(AH +AL)(BH +BL)−AHBH −ALBL] · 2kw +ALBL (1)

On the other hand, the subtractive variant computes A ·B as follows.

AHBH · 22kw + [AHBH +ALBL − (AH −AL)(BH −BL)] · 2kw +ALBL (2)

Consequently, Karatsuba’s method performs a multiplication of size s via three
multiplications and eight additions of size s/2 (plus a potential carry propaga-
tion). In 2009, Bernstein [3] refined Karatsuba’s technique to save an addition
of size s/2, which slightly improves performance. Hutter and Schwabe describe
in [11] a carefully optimized AVR implementation of the subtractive Karatsuba
technique for operands of up to 256 bits that currently holds the speed record
for multi-precision multiplication on an 8-bit processor.

3 Our Implementation

In the next two subsections, we describe the RPS technique for multi-precision
multiplication and squaring on 8-bit AVR processors in full detail, whereby we
first present the “big picture” (i.e. the algorithm itself) and then concentrate on
the inner-loop operation.

3.1 Loop Structure

From an algorithmic point of view, our RPS multiplication method is similar to
Gura et al.’s hybrid technique [9] since both resemble the basic loop structure
of the classical product-scanning approach [10]. Consequently, the RPS method
computes the product A · B through two nested loops one word at a time. The
first nested loop produces the s least significant words, while the second nested
loop yields the upper half of the 2s-word product. When following the original
product-scanning approach (as described in e.g. [7]), the bitlength w of a word
is normally chosen to match the native word-size of the processor, which means
w = 8 in the case of AVR, i.e. each word consists of a byte. However, since we
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Algorithm 1. Multiple-precision multiplication

Input: Two s-word operands A = (As−1, . . . , A1, A0) and B = (Bs−1, . . . , B1, B0)
Output: 2s-word product R = A×B = (R2s−1, . . . , R1, R0)
1: Z ← A0 ×B0

2: R0 ← Z mod 2w ; Z ← Z/2w

3: for i from 1 by 1 to s− 1 do
4: k ← i + 1
5: for j from 0 by 1 to i do
6: k ← k − 1
7: Z ← Z + Aj ×Bk

8: end for
9: Ri ← Z mod 2w ; Z ← Z/2w

10: end for
11: for i from s by 1 to 2s− 3 do
12: k ← s
13: for j from i− (s− 1) by 1 to s− 1 do
14: k ← k − 1
15: Z ← Z + Aj ×Bk

16: end for
17: Ri ← Z mod 2w ; Z ← Z/2w

18: end for
19: Z ← Z + As−1 ×Bs−1

20: R2s−2 ← Z mod 2w ; Z ← Z/2w

21: R2s−1 ← Z mod 2w

22: return (R2s−1, . . . , R1, R0)

process d = 4 bytes at a time, similar to the hybrid technique described in the
previous section, our word-size is w = 32 (i.e. four bytes) despite the fact that
we work on an 8-bit processor. To distinguish between words and bytes, we use
from now on indexed capital letters to represent words, and indexed lowercase
letters to denote the individual bytes a word is composed of. Consequently, an
n-bit integer A consists of s = dn/32e words Ai ∈ [0, 232 − 1], each of which, in
turn, contains four bytes, i.e. Ai = (a4i+3, a4i+2, a4i+1, a4i) for 0 ≤ i < s.

Algorithm 1 specifies the RPS multiplication technique using said notation
for the w-bit words. The algorithm has the characteristic nested-loop structure
of the classical product-scanning method and computes the product A×B in a
column-wise fashion, one word at a time [7]. In each iteration of one of the two
inner loops, a conventional Multiply-ACcumulate (MAC) operation of the form
Z ← Z +Aj ×Bk is executed, i.e. a w-bit word Aj of operand A is multiplied
by a w-bit word Bk of operand B and the 2w-bit product Aj ×Bk is added to
a cumulative sum Z. In our case, both Aj and Bk contain four bytes, while the
sum Z is nine bytes long. Operations of the form Ri ← Z mod 2w simply write
the w least significant bits (i.e. the four least significant bytes if d = 4) of Z to
the destination Ri. The divisions of Z by 2w (e.g. in line 2, 9, 17, and 20) are
nothing else than simple w-bit (i.e. 4-byte) right shifts of Z. A further common
characteristic between our RPS technique and the product-scanning method is
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Algorithm 2. Multiple-precision squaring

Input: An s-word operand A = (As−1, . . . , A1, A0)
Output: 2s-word square R = A2 = (R2s−1, . . . , R1, R0)
1: Z ← 0 ; R0 ← 0
2: for i from 0 by 1 to s− 1 do
3: k ← i + 1
4: for j from 0 by 1 to k − 2 do
5: k ← k − 1
6: Z ← Z + Aj ×Ak

7: end for
8: Ri ← Z mod 2w ; Z ← Z/2w

9: end for
10: for i from s by 1 to 2s− 3 do
11: k ← s
12: for j from i− (s− 1) by 1 to k − 2 do
13: k ← k − 1
14: Z ← Z + Aj ×Ak

15: end for
16: Ri ← Z mod 2w ; Z ← Z/2w

17: end for
18: R2s−2 ← Z mod 2w ; R2s−1 ← 0
19: Z ← 0
20: for i from 0 by 1 to s− 1 do
21: Z ← Z + Ai ×Ai + 2(R2i+1 · 2w + R2i)
22: R2i ← Z mod 2w ; Z ← Z/2w

23: R2i+1 ← Z mod 2w ; Z ← Z/2w

24: end for
25: return (R2s−1, . . . , R1, R0)

that the words Aj of A are loaded in ascending order, starting with the least-
significant word A0, whereas the words Bk of operand B are loaded in opposite
order, i.e. from more to less significant words.

Algorithm 1 differs from the straightforward product-scanning approach as
described in e.g. [7, 10] in a few details. First, we “peeled off” the very first and
the very last MAC operation (in which A0 ×B0 and As−1 ×Bs−1 are formed)
from the nested loops and execute them outside the loop body. In this way, we
do not need to initialize the sum Z with 0 and can replace the very first MAC
operation by a simple multiplication. Also the last MAC operation allows for a
special optimization to reduce execution time. Namely, after the very last MAC
operation, we can directly write the eight least significant bytes of S to the two
result words R2s−2 and R2s−1 in one pass without shifting S. Finally, the two
loop counters j and k are updated such that one can take full advantage of the
automatic pre-decrement and post-increment addressing modes of AVR.

Algorithm 2 shows our implementation of multiple-precision squaring based
on the product-scanning method. It is well known that the square R = A2 of a
long integer A can be computed much more efficiently than the product of two
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distinct integers due to the “symmetry” of partial products [10]. Namely, when
a normal multiplication algorithm is used for squaring (e.g. Algorithm 1 if we
set B = A), then all partial products of the form Aj ×Ak with j 6= k are com-
puted twice because Aj ×Ak = Ak ×Aj . Dedicated squaring algorithms avoid
such unnecessary overheads by calculating these partial products only once and
then doubling them through a left-shift. Also the partial products in the “main
diagonal” (i.e. the partial products of the form Ai ×Ai) appear exactly once in
the final result and have to be treated separately. Algorithm 2 is based on this
approach; it first computes the partial products Aj ×Ak with j 6= k and sums
them up in a similar way as in product-scanning multiplication. Thereafter, the
result obtained so far is doubled and the main diagonal containing the partial
products of the form Ai ×Ai is added.

The two nested loops of Algorithm 2 (i.e. line 2 to 17) compute the partial
products Aj ×Ak to be doubled and have a very similar structure as the loops
of Algorithm 1. In fact, there are only two minor differences, namely that the
very first and the last partial product are not peeled off from the nested loops
anymore (since they form now part of the third loop) and that the inner loops
are iterated fewer times. For example, the first inner loop (starting at line 4) is
iterated while the condition j ≤ k − 2 is true; in C-like programming languages
this for-loop would be written as follows.

for (j = 0; j <= k-2; j ++)

As j is incremented and k decremented in each iteration of the inner loop, the
overall number of loop iterations in roughly halved compared to the inner loop
of the RPS multiplication in Algorithm 1. This is also the case with the second
inner loop starting at line 12. Because of these modifications of the loop-termi-
nation conditions, the total number of (w × w)-bit multiplications (resp. MAC
operations) performed by the two loops is reduced from s2 − 2 (Algorithm 1) to
(s2 − s)/2. In the third loop (line 20), the intermediate result produced by the
two nested loops is doubled and the s partial products of the form Ai ×Ai are
added. Putting all three loops together, Algorithm 2 executes (s2 + s)/2 MAC
operations to obtain the square of an s-word integer, which is almost 50% less
compared to the s2 MAC operations (or multiplications) of Algorithm 1.

3.2 Inner-Loop Operation

The two nested loops of both Algorithm 1 and Algorithm 2 execute basic MAC
operations of the form Z ← Z +Aj ×Bk in their inner loops. As mentioned in
the previous subsection, the two w-bit words Aj and Bk consist of d = 4 bytes
each. Consequently, in each iteration of the inner loop(s), four bytes of operand
A are multiplied by four bytes of operand B and the 8-byte product is added
to a cumulative sum Z consisting of nine bytes. The (4× 4)-byte multiplication
can be carried out in various different ways; for example, Gura et al. used the
operand-scanning technique in their seminal paper [9]. Alternatively, it is also
possible to apply the product-scanning method; Scott et al.’s implementation



12 Z. Liu et al

a0 · a0

a1 · a0

a2 · a1

a1 · a1

a3 · a1

a2 · a0

a3 · a0

a2 · a2

a2 · a3

a3 · a3

z0z1z2

Separated block scanning

a0 · b0

a0 · b1

a3 · b0

a1 · b2

a1 · b0

a2 · b0

a0 · b2

a2 · b2

a1 · b1

a3 · b1

a1 · b3

a2 · b3

a2 · b1

a0 · b3

a3 · b2

a3 · b3

z0z1z2z3z4

Scott et al’s hybrid method

z3z4z5z6z7z8z5z6z7 z0z1z2

Reverse product scanning

z3z4z5z6z7z8

a0 · b0

a0 · b1

a3 · b0

a1 · b2

a1 · b0

a2 · b0

a0 · b2

a2 · b2

a1 · b1

a3 · b1

a1 · b3

a2 · b3

a2 · b1

a0 · b3

a3 · b2

a3 · b3

c0c1c0c1c2c3c4c5c6 t0t1t2t3t4t5

 2

2

Fig. 1. Inner-loop operation based on Scott et al.’s carry-catcher method (left, taken
from [19, Fig. 1(ii)]), our RPS method using two carry-catcher registers (middle), and
our SBS technique for computing the square of a 4-byte word (right)

from [19] (depicted on the left side of Fig. 1) serves as a good example for this
approach. If d = 4, a total of 16 byte-products needs to be computed, which is
done from top to bottom, i.e. a0 · b0 is generated first and a3 · b3 is the last one
to be processed. A particular issue when using the product-scanning technique
in the inner loop is the propagation of carries; for example, the addition of the
byte-product a0 · b0 to the two least significant bytes (z1, z0) of the cumulative
sum Z can produce a carry, which, in the worst case, may propagate up to the
most significant byte of Z. To limit such carry propagation, Scott et al. intro-
duced so-called carry-catcher registers, shown in red in Fig. 1. For d = 4, there
are eight registers for the cumulative sum Z (which we denote as accu registers
z0 to z7) and seven carry-catcher registers (c0 to c6). A carry generated by the
addition of e.g. a0 · b0 to (z1, z0) is not propagated along the zi registers (up to
z7 in the worst case), but simply added to c0. In this way, only an add and two
adc instructions need to be performed to accumulate a byte-product. After the
last iteration of the inner loop, the six carry-catcher registers are added to the
accu registers to yield the correct Z, and then they are cleared.

Our approach of implementing the inner-loop operation is also based on the
product-scanning technique and depicted in the middle of Fig. 1. In contrast to
Scott et al., we have nine accu registers (z0 to z8), but only two carry catchers
(c0 and c1). To aid the explanation of our approach, we split the computation
of the 16 byte-products up into four groups, indicated by four dashed boxes in
Fig. 1. For example, the first group consists of a1 · b1, a0 · b1, a1 · b0, as well as
a0 · b0. Compared to Scott et al., we compute the byte-products within a group
in opposite order (see Fig. 1), and also the processing of the second and third
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group is reversed. The reversed-order computation of byte-products inspired us
to call this approach Reverse Product Scanning (RPS). Our main idea is to use
the byte-products themselves to catch carries, which allows us to minimize the
number of carry-catcher registers and speed up the computation.

The RPS method performs an iteration of the inner loop as follows. At the
beginning, the four bytes b3, b2, b1, and b0 of a 32-bit word Bk are loaded from
memory into four registers using the automatic pre-decrement addressing mode
of the AVR architecture. Furthermore, we load the first two bytes of the word
Aj , namely a0 and a1, taking advantage of post-increment addressing. Now, we
multiply a1 by b1 and copy the 16-bit byte-product to two temporary registers
t0 and t1 with help of the movw instruction. Register t0 holds the “lower” byte
of the product and t1 the “upper” byte. Next, we form the product a0 · b1 and
add the product to accu register z1 and the temporary register t0. A potential
carry from this addition can be safely added to the temporary register t1 with-
out overflowing it. Thereafter, we multiply a1 by b0, add the product a1 · b0 to
z1 and t0, and propagate the carry from the last addition to t1. As before, it is
not possible to overflow t1, not even in the most extreme case where the bytes
a0, b0, a1, b1, as well as the involved accu byte z1, have the maximum possible
of 255. After computation of the last byte-product of the first block (which is
a0 · b0), we add it together with the content of the temporary registers t0, t1 to
the four accu registers z0, z1, z2, z3, and, finally, propagate the carry bit from
the last addition to the carry-catcher register c0. Overall, the processing of the
first dashed block in the middle of Fig. 1 takes four mul, one movw, and a total
of 11 add or adc instructions, respectively.

The second and third block are processed in essentially the same way as the
first one; the only difference is the loading of the remaining two operand bytes
of Aj , i.e. a2 and a3. Again, we use a carry-catcher register, namely c1, to deal
with the carry that may be generated when adding the last byte-product along
with the content of the temporary registers t0 and t1 to the four accu registers
z2, z3, z4, and z5. The two operand bytes a2 and a3 are loaded right after the
computation of the second block, since a0 and a1 are not needed anymore. We
load a2 into the register holding a0 and a3 into the register of a1, thereby over-
writing a0 and a1. In summary, the second and third block execute exactly the
same number of instructions as the first block. The fourth block, in which the
final four byte-products are generated and added to the accu registers, differs
slightly from the former three because no carry-catcher register is needed. Once
a2 has been multiplied by b2, we add the concatenation of a2 · b2 with the tem-
porary registers t0, t1 to the four accu registers z4, z5, z6, and z7. However, the
carry from the last addition is directly propagated to the most significant accu
register z8. Consequently, the fourth block of byte-products executes the same
number of add/adc instructions as the first three blocks, namely 11.

Putting all blocks together, the MAC operation for d = 4 comprises a total
of eight ld (i.e. load), four movw, 16 mul, and 44 add or adc instructions. On an
ATmega128 processor, these instruction counts translate to an execution time
of exactly 96 clock cycles [2]. The overall execution time of one iteration of the
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inner loop (including incrementation of a loop counter and branch instruction)
amounts to 99 clock cycles.

The first two nested loops of our RPS squaring technique (Algorithm 2) are
very similar to that of RPS multiplication (Algorithm 1), only the termination
conditions of the inner loops differ. In particular, the MAC operation executed
in the two inner loops is exactly the same and can be implemented in the same
way as discussed before. The third loop (line 20 to 24 in Algorithm 2) is unique
in the sense that it is only needed for squaring. It is a simple (i.e. “un-nested”)
loop and squares a w-bit (i.e. 4-byte) word Ai in each iteration. Furthermore, a
2w-bit quantity of the form R2i+1 · 2w +R2i is doubled and then added to the
2w-bit square Ai ×Ai. The 2w-bit quantity R2i+1 · 2w +R2i is made up of two
w-bit words that form part of the intermediate result of the first two loops; in
our case it is simply a 64-bit word of which R2i+1 is the upper half and R2i the
lower half. Since we have d = 4, any w-bit (i.e. 4-byte) word Ai can be squared
by computing (d2 + d)/2 = 10 byte-products; six of these have to be doubled
and the remaining four not. Therefore, it makes sense to split the computation
of Ai ×Ai up into blocks and separate the computation of the byte-products to
be doubled from the ones that are not doubled. This technique, which we call
Separated Block Scanning (SBS), is illustrated on the right of Fig. 1.

When using the SBS approach for the third loop, the computation of byte-
products for a square Ai ·Ai is organized in three blocks, indicated by dashed
boxes in Fig. 1. At the beginning of an iteration, the four bytes of word Ai and
eight bytes of the intermediate result R are loaded from RAM into 12 registers
labeled with a0 to a3 and z0 to z7, respectively. Next, the register z8 is copied
to carry-catcher register c0 and then cleared. After multiplication of the bytes
a1 and a0, the product a1 · a0 is moved to the temporary registers t0 and t1. In
the next step, the byte-product a3 · a0 is computed and moved to t2, t3. Once
a2 · a3 has been produced, we add all three byte-products to the accu registers
z1 to z6 and propagate the carry generated by the last addition up to z8. The
second block starts with the multiplication of a3 by a0 and a movw instruction
to copy the upper byte of a3 · a0 to t1 and the lower byte to t0. Thereafter, we
multiply a2 by a1, add the byte-product to the accu register pair (z4, z3), and
propagate the carry into t1. Finally, the byte-product a2 · a0 is computed and
added along with the content of (t1, t0) to the four accu registers z2 to z5. The
carry from the last addition is again propagated up to z8, which concludes the
second block. Now, the nine accu registers z0 to z8 are doubled by executing an
add and eight adc instructions. The third block contains all the byte-products
that are not doubled, namely al · al for 0 ≤ l ≤ 3. First, we compute the byte-
product a0 · a0, add the carry-catcher c0 to it, and move the result to the two
temporary registers t0, t1. Thereafter, the byte-products a1 · a1 and a2 · a2 are
moved to t2, t3 and t4, t5, respectively. Finally, we compute a3 · a3 and add all
four byte-products in one pass to the eight accu registers z0 to z7, whereby the
carry from the last addition is propagated into z8.

The operation performed in the body of the third loop has a total execution
time of 116 clock cycles (excluding counter update and branch instruction).
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Table 2. Execution time (in clock cycles) and code size (in bytes) of different multi-
precision multiplication and squaring implementations for operands ranging from 160
to 512 bits on an ATmega128 (the letters U, L, P indicate whether an implementation
is unrolled, looped, or parameterized; results marked with ? are estimated results)

Implementation Metric 160 bit 192 bit 224 bit 256 bit 384 bit 512 bit

AVR implementations of multi-precision multiplication:

Hutter et al. (U) [11]
Time 2030 2987 n/a 4961 n/a n/a

Size 3106 4492 n/a 7616 n/a n/a

Hutter et al. (U) [12]
Time 2396 3470 4694 6124 13702 24318

Size 3778 5436 7340 9558 21350 37884

Seo et al. (U) [21]
Time 2346 3437 n/a 6128∗ n/a 24205∗

Size 3662 n/a n/a n/a n/a n/a

Hutter et al. (L) [12]
Time 2693 3861 5267 6871 15457 27503

Size 1562 1866 1538 1766 1614 1544

Liu et al. (P) [15]
Time 2778 4004 5398 7000 15488 27304

Size 940 940 940 940 940 940

RPS Mul. (P)
Time 2690 3831 5170 6707 14835 26131

Size 918 918 918 918 918 918

AVR implementations of multi-precision squaring:

Seo et al. (U) [22]
Time 1456 2014 n/a n/a n/a n/a

Size 3204 5678 n/a n/a n/a n/a

Liu et al. (L) [16]
Time 2375 3270 4305 5480 11580 19920

Size n/a n/a n/a 1542 n/a n/a

RPS Sqr. (P)
time 1795 2457 3218 4078 8508 14522

size 844 844 844 844 844 844

4 Performance Evaluation and Comparison

In this section, we report implementation results of the proposed RPS method
for multiple-precision multiplication and squaring, including execution time (in
clock cycles) and code size (in bytes). All timings were obtained by simulation
with AVR studio version 4.19 using the ATmega128 [2] as target device.

Table 2 summarizes our results for different operand lengths (ranging from
160 to 512 bits) and compares them with execution time and code size figures
of related work. The first three rows show the best previous results for unrolled
implementations of multiplication [11, 12, 21], while the fourth and fifth row in
Table 2 contain the fastest looped [12] and parameterized [15] version, respec-
tively. Thereafter, the results of our parameterized RPS method are given. The
main conclusion that can be drawn from these results is that the RPS method
is slightly faster (and much smaller) than the looped variant of Hutter et al.’s
operand caching method [12]. While the difference is merely three clock cycles
for 160-bit operands, it increases to about 5% when the operands are 512 bits
long. Our RPS technique sets new records for “not-fully-unrolled” (i.e. looped
or parameterized) implementations of multiple-precision multiplication, beaten
only by the fully unrolled implementations [11, 12, 21] at the cost of very large
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Fig. 2. Execution time (in clock cycles) of different implementations of multiplication
and squaring for “large” operand sizes ranging from 384 to 1024 bits

code size. For example, the unrolled operand caching technique for 512 bits has
a code size of roughly 37.9 kB, which is almost 30% of the flash memory of the
ATmega128 processor [2]. For comparison, our parameterized implementation
of RPS multiplication and squaring occupies less than 1 kB in flash each. RPS
squaring is between 33.3% (160-bit operands) and 44.3% (512 bits) faster than
RPS multiplication. In accordance with common practice, the timings given in
Table 2 do not include the function-call overhead and the push/pop of “callee-
saved” registers to/from the stack. Both together amounts to 89 clock cycles in
the case of RPS multiplication and 85 cycles for RPS squaring.

We combined our RPS multiplication/squaring with Karatsuba’s algorithm
to further improve performance. More precisely, we implemented a subtractive
Karatsuba variant as described in [11, Sect. 3] to get a regular execution profile
and constant execution time. Part of this effort was to implement a “constant-
time conditional negation,” which we did as proposed in [11]. However, unlike
[11], we decided to not merge all sub-operations of a Karatsuba multiplication
into a single function, but execute them by calling low-level functions (such as
subtraction, RPS multiplication, negation) to minimize code size. A graphical
comparison of the execution times of our “karatsubarized” RPS multiplication
(KRPS multiplication in short) and squaring (i.e. KRPS squaring) is shown in
Fig. 2. Since the KRPS multiplication calls 12 low-level functions (which intro-
duces a total function-call overhead of several 100 cycles), Karatsuba’s method
starts to become beneficial only for relatively large operands, namely 384 bits
for multiplication and 640 bits in the case of squaring. When the operands have
a length of 512 bits or more, our KRPS variant even outperforms the unrolled
operand-caching approach. To give two concrete results, a KRPS multiplication
needs 85 k cycles for 1024-bit operands, while a squaring takes 48 k cycles.
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5 Conclusions

In this paper we advanced the state-of-the-art in multiple-precision multiplica-
tion and squaring on 8-bit AVR processors. We first presented some arguments
in favor of parameterized implementations of multiple-precision arithmetic and
pointed out that, besides execution time, also scalability and code size deserve
consideration. Our main contribution is the RPS technique multiplication and
squaring, which follows the basic approach of Gura et al.’s hybrid method from
CHES 2004, but optimizes the execution of MAC operations in the inner loops
by reversing the order of the byte multiplications. Experimental results show a
clear advantage of our RPS technique over a looped realization of the operand
caching approach; we are not only faster, but also smaller in terms of code size
(e.g. 51% for 192-bit operands). Combining our RPS method with Karatsuba’s
idea allowed us to achieve record-setting execution times for multiplication and
squaring of operands of a length of 512 bits and beyond. In summary, our work
shows that high performance does not necessarily have to come at the expense
of poor scalability and/or large code size.
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16. Liu, Z., Großschädl, J., Kizhvatov, I.: Efficient and side-channel resistant RSA
implementation for 8-bit AVR microcontrollers. In: Proceedings of the 1st Inter-
national Workshop on the Security of the Internet of Things (SECIOT 2010). pp.
??–?? (2010)

17. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Ad-
vances in Cryptology — CRYPTO ’85. Lecture Notes in Computer Science, vol.
218, pp. 417–426. Springer Verlag (1986)

18. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM 21(2), 120–126 (Feb
1978)

19. Scott, M., Szczechowiak, P.: Optimizing multiprecision multiplication for public
key cryptography. Cryptology ePrint Archive, Report 2007/299 (2007), available
for download at http://eprint.iacr.org

20. Seo, H., Kim, H.: Multi-precision multiplication for public-key cryptography on
embedded microprocessors. In: Lee, D.H., Yung, M. (eds.) Information Security
Applications — WISA 2012. Lecture Notes in Computer Science, vol. 7690, pp.
55–67. Springer Verlag (2012)

21. Seo, H., Kim, H.: Optimized multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. International Journal of Computer and
Communication Engineering 2(3), 255–259 (May 2013)

22. Seo, H., Liu, Z., Choi, J., Kim, H.: Multi-precision squaring for public-key cryptog-
raphy on embedded microprocessors. In: Paul, G., Vaudenay, S. (eds.) Progress in
Cryptology — INDOCRYPT 2013. Lecture Notes in Computer Science, vol. 8250,
pp. 227–243. Springer Verlag (2013)

23. Uhsadel, L., Poschmann, A., Paar, C.: Enabling full-size public-key algorithms
on 8-bit sensor nodes. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.)
Security and Privacy in Ad-hoc and Sensor Networks — SASN 2007. Lecture Notes
in Computer Science, vol. 4572, pp. 73–86. Springer Verlag (2007)
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