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Abstract This paper studies a self-organized criticality model called sandpile
for dynamically load-balancing tasks arriving in the form of Bag-of-Tasks in
large-scale decentralized system. The sandpile is designed as a decentralized
agent system characterizing a cellular automaton, which works in a critical
state at the edge of chaos. Depending on the state of the cellular automaton,
different responses may occur when a new task is assigned to a resource: it
may change nothing or generate avalanches that reconfigure the state of the
system. The abundance of such avalanches is in power-law relation with their
sizes, a scale-invariant behavior that emerges without requiring tuning or con-
trol parameters. That means that large – catastrophic – avalanches are very
rare but small ones occur very often. Such emergent pattern can be efficiently
adapted for non-clairvoyant scheduling, where tasks are load balanced in com-
puting resources trying to maximize the performance but without assuming
any knowledge on the tasks features. The algorithm design is experimentally
validated showing that the sandpile is able to find near-optimal schedules by
reacting differently to different conditions of workloads and architectures.
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1 Introduction

Complexity sciences have not yet devised a mathematical language that de-
scribes the origins and dynamics of self-organization, which we may define here
as global patterns emerging from local rules. Nevertheless, some researchers
have embarked in this task. Self-Organized Criticality (SOC), proposed by
Bak, Tang and Wiesenfeld (BTW) [3] is one of those attempts to present
a general theory of self-organization. SOC describes a property of complex
systems that consists of a critical state formed by self-organization at the
border of order and chaos. One of the characteristics of SOC is that small
disturbances can lead to the so-called avalanches, i.e., events that are spread
spatially or temporally through the system. Such events occur independently
of the initial state; moreover, the same perturbation may lead to small or large
avalanches, which show a power-law proportion between their size and quan-
tity. This means that large (catastrophic) events may hit and reconfigure the
system from time to time.

With these issues in mind, we presented in [17] a non-clairvoyant scheduler
based on a SOC model called sandpile [2]. The sandpile is a cellular automaton
which models the process of dropping grains of sand on a surface and the
sliding of grains due to the increasing gradient of the slope. Therefore, the
system has a global state that can be altered when new grains of sand are
dropped in. The number of grains in a given cell or ”site” are represented
by a height function. That way, sand accumulates in a lattice of cells until
the height difference of adjacent neighbors exceeds a given threshold. Such an
event starts an avalanche leading to a new state of equilibrium in which the
sand is balanced throughout the system.

Our hypothesis is that such a smart and emergent behavior fits well with
the idea of dynamic load-balance in large-scale infrastructures, where tasks are
assumed to be ”grains” and the load-balance process results in a new alloca-
tion of tasks in computing resources. We hypothesize that a distributed agent
system behaving as a sandpile automaton will display organic properties such
as self-organization of tasks in resources. Given that the SOC phenomenon
is invariant to the scale and robust to varying dropping rates, our approach
was shown in [17] to behave consistently in architectures of different sizes and
speeds. This paper extends from previous work and presents a detailed de-
scription of the algorithm. Furthermore, it explores different design settings
for optimal operation, such as the influence of the topology on the perfor-
mance or how a gossiping mechanism can minimize the overheads caused by
the migration of tasks.

Given the novelty of our proposal, we will constrain our initial objective to
demonstrate the viability of the approach in terms of reducing the makespan
for workloads arriving in the form of Bags-of-Tasks (BoTs) [4] where groups of
sequential jobs are submitted in single batches. Iosup et al. [14] have identified
this type of workloads to involve a large proportion of the tasks submitted to
large-scale computing environments. Therefore, BoTs represent an adequate



The Sandpile Scheduler 3

framework for assessing the performance of the sandpile scheduler in these
preliminary steps of design.

The rest of the paper is organized as follows. Section 2 provides a summary
on some of the most relevant works in self-organized dynamic load-balancing.
Section 3 characterizes the BoTs problem that will be used to generate work-
loads for benchmarking our proposal. Section 4 describes our extended version
of the BTW sandpile model, which consists in a decentralized agent system.
For the sake of an efficient design, section 5 explores different topologies for
interconnecting the agent system in addition to a gossip-based version of the
cellular automaton. Section 6 analyzes the main properties of the sandpile
scheduler such as performance independence, scale-invariance or flexibility to
heterogeneous conditions. Finally, some conclusions and future lines of work
are presented in section 7.

2 Related Work

In scheduling, dynamic load-balancing tackles the problem of assigning tasks
to resources when workloads are unpredictable and change at runtime [7].
Classic methods, such as gradient or diffusion based models [21], are being
extended and reinforced in order to tackle the particularities of new large-scale
computing systems, such as the loosely-coupled heterogeneous architectures in
Grid systems or the scale-on-demand requirements of Cloud computing. This
section summarizes some of the current approaches in dynamic load-balancing
research.

Jelasity et al. [16] propose a skeleton for dynamic load-balancing through
gossiping; rather than a fully-operative scheduling system, the authors aim
at illustrating the application potentials of gossiping protocols. They describe
the problem as an equivalent to the problem of averaging a set of distributed
numbers using decentralized aggregation. Despite simple, this work constitutes
one of the basis for many of the approaches in current research.

Franceschelli, Giua and Seatzu [9] describe a distributed load-balancing
algorithm based on the consensus between nodes. To reach the consensus –
which is described as a heuristic assuming knowledge on the weights of tasks–,
nodes communicate within a homogeneous architecture via gossiping. This
work was lately extended to heterogeneous architectures in [10], where the
authors analyze the convergence time. The study assumes that all tasks are
initially in the system. Therefore, the problem of the convergence is simplified
into a static optimization problem instead of a dynamic (a.k.a. non-stationary)
problem.

Hu and Klefstad [13] propose a dynamic load-balancing approach which
is inspired by the dynamics of liquids. The approach has a strong connection
with the one presented here. Both are based on self-organization and both
try to mimic the way gravity has to flatten different elements. However, there
is a key difference concerning the critical state (i.e. the ”C” in SOC). While
our approach behaves at the border of chaos, the liquid-based approach only



4 J.L.J Laredo et al.

recognizes two states: either the system is in equilibrium, which means that
the workload is perfectly-balanced, or the system is in a non-equilibrium state.
No matter how small a perturbation is, it will always lead to a non-equilibrium
state and the consequent reallocation of tasks.

Fouad Semaan [18] proposes to study the behavior of parallel applications
to the light of SOC. In his work, processors are organized as a torus which
are assigned with a limited number of processes. Once the limit is exceeded,
the processor becomes overloaded and this triggers a load-balancing mecha-
nism that consists in transferring tasks to other processors, which behave in the
same way, leading to the well-known phenomenon of avalanches. He shows that
there exist three different kinds of behavior for the whole system: underloaded,
overloaded and critical, and these behaviors are policy-independent. The best
efficiency being reached for critical values. Some real experiments reported in
the thesis confirm the power law distribution of avalanches. The study of this
critical point has been more deeply investigated in a recent research [12]. In this
work, from an energy-saving perspective, the authors propose to dynamically
adjust the number of computing devices of a HPC environment thanks to a
mechanism able to predict the coming of an overload. The considered environ-
ment is a 2-dimensional grid, and the mechanism for predicting the overload
relies on the frequency and the size of avalanches during a load-balancing
phase.

Our current proposal is inspired by the emergent SOC behavior displayed
by the BTW sandpile model [3,2], that we have extended for a best fit with
the specific features of the dynamic load-balancing problem. We have firstly
modified the so-called transition rule, which is the policy in the sandpile for
triggering avalanches any time the height difference between two piles sur-
passes a given threshold. Instead, the transition rule in our proposal is only
triggered if the height of a given pile is larger than the accumulated heights
of two neighbor resources. We find that this modification provides two main
advantages: on the one hand, there is no parameter to tune since there is no
threshold. On the other hand, the transition rule automatically adjusts to dif-
ferent levels of the workload. For instance, being all resources overloaded, it
is not so likely that a pile surpasses the addition of two neighbor piles. A sec-
ond extension to the canonical model is to consider a small-world connection
topology instead of the commonly employed regular lattices. We show that
the algorithm can yield near-optimal performances using this type of topol-
ogy. Finally, the third main extension is inherited from peer-to-peer gossiping
protocols [15]. Instead of real avalanches where tasks suffer multiple hops, the
gossip-based version implements avalanches virtually, i.e., nodes negotiate the
state of equilibrium before the real transfer of tasks takes place.

3 Bag-of-tasks Scheduling Problem

In Computer Architecture, scheduling is the problem of assigning tasks to re-
sources as to minimize the overall execution time. Despite simple in its formu-
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lation, scheduling has been proven a high-dimensional NP-hard problem with
time constraints [11], which may involve few hundreds of tasks and resources
even for medium size instances. Since the process of optimization itself sums
up to the final schedule, an efficient scheduler must minimize its own computa-
tional efforts while searching for best solutions. The scheduler that we propose
in this paper is a reactive scheduling system, meaning that it does not interfere
with the actual assignation of tasks unless the workload is detected to be in
a non-equilibrium state. Such a strong dependence scheduler/workload makes
of a good characterization of the workload a key to underpin the analysis and
design of an efficient scheduling strategy. In order to conduct our in silico
experimentation, we have selected a workload arriving in the form of BoTs.

BoTs are a particularly challenging type of workload and have a great
impact on modern large-scale distributed systems: Iosup et al. [14] present
some evidences on the predominance of this form of workload in grid and cloud
computing systems. Additionally, Casanova et al. [4] warn on the difficulties
for doing estimates on the execution times of such workloads and encourage
the use of non-clairvoyant scheduling, i.e., not assuming any precondition on
tasks duration or arrival patterns, which may lead to scheduling errors in real
systems.

In BoTs, tasks arrive in bursts called bags, which are tipically a set of mul-
tiple instances of the same sequential program. A bag is, therefore, composed
by a group of independent tasks that can be executed in parallel. This section
aims at providing a general definition of the BoTs scheduling problem, taking
into account all the basic features but allowing an easy parametrization at the
same time. The idea is to be able to create different workloads and architec-
tures in order to explore different aspects of the sandpile scheduler. The main
components for the formulation of the BoTs scheduling problem are:

– A set Q of q heterogeneous processors.
– A set B of b BoTs of size k-tasks.
– W is a v × q computation cost matrix, with v being the total number of

tasks.
– C is a q × q communication cost matrix.

3.1 Computing Architecture

A computing architecture is a set of interconnected processors able to process
and transfer tasks with a given speed. A computing architecture can be divided
into the computation and communication subsystems:

– Computation subsystem: Let’s denote pi as the speed of the i-th proces-
sor in an architecture of q processors (i ∈ [1 . . . q]). Given a processor of
reference pref = 1 instruction

cycle , the speed of pi can be calculated by:

pi = pref × ρi (1)

where ρi ∈ N is a speeding factor.
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– Communication subsystem: We denote C as a transfer rate matrix of
size q × q, where Ci,j is defined with respect to a reference network-link

Cref = 1
datatransfer

cycle as:

Ci,j = Cref × τi,j (2)

where τi,j ∈ N is the network-link speeding factor.

3.2 BoTs Workload

A BoTs-based workload is composed of a set of b BoTs. Every BoTs, bj ∈ B,
is a set of tasks such that |bj | = k. The total number of tasks in the workload
is therefore v =

∑
bj∈B |bj |, where ∀bj ∈ B:

– nj,h is the length in terms of computing instructions of the hth task in bj .
– dj,h is the code size of the program representing this task.
– aj,h is the arrival time; we assume that all tasks within the same BoTs

arrive in a single batch: ∀aj,h, aj,r ∈ bj : aj,h ≡ aj,r.

Alternatively, every value in n, d or a can be accessed by the absolute index
i ∈ [1 . . . v] where e.g. ni is equivalent to nj,h by substituting i = j × k + h.

3.3 General problem definition

Being W a v × q computation time matrix where wi,j = ni

pj
is the time it

takes to the ni task to be evaluated in processor pj and, ci,h,k = di

Ch,k
the

communication time for transferring a task source-code di from processor ph
to processor pk. The objective function is to find the schedule that minimizes
the processing time of the tasks in a given architecture, i.e. minimize the
makespan which is given by:

makespan = max
∀pj∈Q

Tt (3)

where Tt is the time that processor pj takes to process all its assigned t tasks:

Tt =
∑

∀wi,j∈FIFO(pj)

max(Tt−1 + wi,j , TR(ni, pj) + wi,j) (4)

FIFO(pj) is a First-in First-out function which provides a list with all tasks
assigned to processor pj in order of arrival and TR(ni, pj) stands for the Tasks
Ready function which takes into account the migrations that a given task has
suffered in the system. Therefore, if a task ni remains in the initially assigned
processor pj , the task ready time is the arrival time ai:

TR(ni, pj) = ai (5)
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otherwise TR can be defined recursively as:

TR(ni, pj) = ci,prev(j),j + TR(ni, pprev(j)) (6)

where prev(j) refers to the previous processor where the task ni was scheduled,
and ci,prev(j),j to the cost of transferring the source-code di of the task from
processor pprev(j) to pj .

3.4 Additional metrics

In addition to minimize the makespan, we also consider the throughput and
flowtime metrics. The throughput is related with the utilization of computing
resources and its average can be expresed by:

throughput =
v

makespan
(7)

On the other hand, the flowtime provides the time a task remains queued
in the system and, therefore, is related to users satisfaction.

flowtime =

∑
∀wi,j∈FIFO(pj)

Tt

v
(8)

4 Model description

The SOC phenomenon was firstly identified by Bak et al. [3] in a model called
sandpile, a cellular automaton in which grains of ”sand” are dropped randomly
on a lattice and accumulate with a height function. In its original form, when
the height difference between two adjacent sites exceeds a threshold value, the
grains in the site with higher height topple to adjacent sites. Avalanches of
all sizes may occur, from a single tumble to events that reconfigure the entire
pile. Without any fine-tuning of parameters, the system evolves to a non-
equilibrium critical state in which the frequency of an avalanche is in power-
law proportion to its size. This paper adapts such a behavior to the problem
of dynamically load-balancing workloads in parallel computing systems.

To define a scheduler based on the sandpile model, we build an agent
system in which the agents render the cells of a cellular automaton. The main
components of the architecture are, therefore, the agents and the topology
for interconnecting them as depicted in figure 1. Every agent denotes itself
as α and handles the workloads of a computing resource, deciding whether to
migrate tasks to adjacent/neighboring β resources. Either α or β sites represent
the same class of an agent and the difference only relies on the nomenclature:
α when referring to a particular resource and β to refer to the neighbors of
such a resource. Therefore, the agent system is symmetric and decentralized.
For the system to acquire the sandpile dynamics, we assume that ”grains”
and ”tasks” are interchangeable terms. The tasks accumulate in the different
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Fig. 1 Sketch of the agent system in the sandpile scheduler.

computing resources with a height function h(α), which represents the number
of tasks queued in the processor. The system is in equilibrium as long as
the aggregated workloads of two adjacent sites1 to α do not exceed its own
workload, i.e., h(α) ≤ h(β1)+h(β2). If it happens that h(α) > h(β1)+h(β2),
grains topple from the highest pile h(α) to the lower ones, h(β1) and h(β2),
updating the sandpile and reaching a new state. When the process involves
more resources, avalanches propagate until all resources meet the condition:
∀α : h(α) ≤ h(β1) + h(β2), i.e. the sandpile has converged to a new state of
equilibrium. Figure 2 depicts the process involving three resources α, β1 and
β2.

Fig. 2 Example of the sandpile running in resources α, β1 and β2. The update policy
acts as follows: at t0 the sandpile is in a state of equilibrium since h(β1) + h(β2) ≥ h(α).
At t1 a new grain/task arrives in α breaking the inequality and leading to an avalanche.
Resource α computes the overall number of tasks in the neighborhood, calculates the average
h(α)+h(β1)+h(β2)

3
and balance the workload among the neighbors.

1 These two sites, β1 and β2, should be selected according to some criterion out of all
neighbors of α. For the sake of simplicity, this study assumes that the neighbors are selected
uniformly at random.
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4.1 Set of functions

In order to construct the cellular automaton2, every computing node must
implement a double-ended queue with the functions in table 1.

Function Description Pre-/Postconditions
PUSH(l) Insert l tasks at the back l is a list of tasks
POP(n) Removes n tasks at the back Returns a list with the n removed tasks

H Counts the no. of tasks in the queue Returns the size/height of the queue
SELECT Select two adjacent queues Returns a list with the two queues
SHIFT Removes a task at the front Returns the removed element

Table 1 Main functions of the double-ended sandpile queue

This set is sufficient to implement the basic functionality of the sandpile.
The push and pop functions act at the back of the queue so that tasks migra-
tions can be implemented using both. The h function monitors the state of
the queue and select provides access to adjacent resources. Finally, the shift
function acts at the front of the queue and is the only way for the processor
to retrieve tasks; this condition assumes a non-preemptive operational mode
for the sake of simplicity.

4.2 Algorithmic description of a sandpile agent

Using previous set of functions, a sandpile agent can be easily built up ac-
cording to algorithm 1, that we will refer to from now on as basic case. By
every computing node running an agent, the emergent behavior of the sys-
tem is expected to display SOC properties and act as a decentralized sandpile
scheduler.

Algorithm 1 Pseudo-code of a sandpile agent in resource α
1: loop
2: WAIT
3: [β1, β2] ← α.SELECT

4: x = α.H+β1.H+β2.H
3

5: if α.H > β1.H + β2.H then
6: αβ1 = bxc − β1.H
7: αβ2 = (α.H − dxe)− αβ1

8: β1.PUSH( α.POP (αβ1 ) )

9: β2.PUSH( α.POP (αβ2 ) )
10: end if
11: end loop

2 Source-code with the simulator is available at https://sandpile-scheduler.

googlecode.com, published under GPL v3 public license.
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Every agent runs endlessly and monitors a resource denoted as α, in con-
trast to its adjacent resources β1 and β2. Within the loop, the algorithm
performs the following actions:

– (Line 2): the agent waits for a new event to alter the status of the queue/pile,
which can be either the processor retrieving a task or new tasks being
pushed into the queue.

– (Lines 3-4): as soon as an event changes the status of the queue, the algo-
rithm selects two adjacent resources and computes x, the average workload.

– (Line 5): the following step is the transition rule. If h(α) ≤ h(β1) + h(β2),
the resource is considered to be in an state of equilibrium and the agent
waits back in line 2. Otherwise, the transition rule is triggered and the
resource α initiates an avalanche.

– (Lines 6-7): αβ1 and αβ2 are respectively the number of tasks to be trans-
ferred from α to β1 and β2. In order to estimate both numbers, formulas
apply the ceiling and floor functions to the average workload x ∈ R, as
x is a real number but tasks are indivisible. dxe refers to the number of
grains to remain in α after the avalanche and bxc to the final status in
β1. If the total workload is a multiple of three this would result in an
evenly-distributed scenario in which dxe = bxc, otherwise, dxe − bxc = 1.

– (Lines 8-9): in the last step, αβ1 and αβ2 grains are transferred to β1 and
β2 respectively. As this very process triggers new events in resources β1

and β2, the avalanche will iteratively continue throughout the entire system
until a global state of equilibrium is met.

This algorithm establishes the basic skeleton of the sandpile scheduler.
However, a number of decisions need to be made for the system to behave
efficiently, including the design of the interconnection topology or the mech-
anisms for balancing the workloads throughout the system. The next section
tackles, therefore, the design of the overall system for an optimal operation.

5 Designing an Efficient Scheduler

The sandpile scheduler is expected to dynamically self-organize workloads in
computing resources as to maximize the system performance. However, SOC
dynamics also generate a certain overhead in the system when migrating tasks,
which may undermine the limited capacity of physical resources such as the
bandwidth. This section tries to explore different design strategies in order to
find best trade-offs between the quality of the final schedule and the overhead
due to SOC dynamics; the overhead computed as the number of migrating
tasks. Specifically, we pursue a clear design objective: how to maximize the
performance while minimizing the number of migrations?

First, we explore different virtual topologies for interconnecting the physi-
cal resources with the aim of favoring a more efficient dissemination of tasks.
Besides, we present a gossiping version of the sandpile which minimizes the
number of required migrations to yield states of equilibrium. Finally, the run-
time dynamics of the sandpile scheduler are analyzed.
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5.1 Designing the sandpile topology

In its simplest form, the BTW sandpile [3] can be defined over a linear lat-
tice where grains accumulate at different ”sites” forming piles and toppling
either right or left. The model, however, has been mostly considered in its
2-dimensional version, typically using grid lattices with, e.g., von Neumann or
Moore neighborhoods [2]. More recently, de Arcangelis and Herrmann [1] de-
vised the idea of interconnecting sites using small-world networks. The advan-
tage of using such topologies is that ”the system releases the potential of build-
ing up catastrophic avalanches more easily and produces fewer catastrophic
avalanches” [5].

Given that reducing the size and frequency of large avalanches benefits our
scheduling proposal, we define the default lattice of the sandpile scheduler as
a small-world overlay network (see Figure 3), in which every agent controls
the state of a computing resource. Small-world networks have the advantage
of connecting resources which are physically close but establishing at the same
time few long-distance links. While closer links favor the locality of the load-
balancing process, long-distance links allow an efficient dissemination of the
workload throughout the entire system.

Fig. 3 The procedure for building a small-world graph can start from a ring lattice with n
vertices and k edges per vertex. With a given probability p, each edge is rewired at random.
Since the procedure does not allow duplicate edges, no edge is generated whenever it matches
an existing one. This way for a rewiring factor of p = 0 the ring lattice is kept while for
p = 1 a random graph is generated. In the figure, example of Watts-Strogatz graphs [20]
with n = 20 and k = 6. From left to right, the original ring lattice for p = 0, a small-world
graph for p = 0.2 and a random graph for p = 1. We will use p = 0.2 and k = 8 in all
experiments.

In order to assess the aforementioned benefits, this section assumes a sce-
nario in which 256 sandpile agents take control over a homogeneous architec-
ture of q = 256 nodes where ∀i, j : pi = 1 and Ci,j = ∞, i.e. every node
computes 1 instruction

cycle and migrations are instantaneous. The workload is com-
posed of 256000 homogeneous tasks with a number of ni = 1 instructions.
That means that a perfect load-balance in 256 nodes would lead to an optimal
makespan of 1000 cycles. The 256000 tasks arrive in a single batch (all tasks
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arrive at t0, or alternatively, ∀i : ai = 0) which is initially allocated in a node
acting as a front-end.

With these experimental settings, two versions of the algorithm have been
considered: one implementing a ring structure and the other a small-world
structure based on the Watts-Strogatz model. Apart of the topology, both
versions of the algorithm are identical.

Figure 4(a) shows how the performance of the sandpile improves when
rewiring a small proportion of the edges, i.e. turning the topology from a ring
to small-world. In fact, near-optimal results –in terms of makespan, flowtime
and throughput– are only reached when combining the sandpile dynamics with
such a topology. Furthermore, figure 4(b) shows that an additional effect of
rewiring is that the overhead caused by migration diminishes. Therefore, it can
be concluded that a small-world topology maximizes the performance while
minimizing communications.

(a) Optimization results (b) No. of migrations (overhead)

Fig. 4 Performances of the sandpile scheduler running on a ring and a Watts-Strogatz
small-world topology.

To gain further insights on the nature of these results, figure 5 depicts
the heat-maps and frequencies of the workloads over a run of 1000 cycles.
The huge impact that the choice of a topology has on the performance can
be better explained in terms of locality: while avalanches in regular lattices
spread locally, avalanches in small-world structures flood throughout the whole
system. That is, a ring neighborhood, in the critical state, promotes a pyramid-
like shape of the workload, while small-world neighborhoods promote fractal-
like structures, where many pyramidal structures repeat at different scales.

5.2 Gossip-based forwarding

Gossiping (or epidemic) protocols have been widely studied as mechanisms for
efficiently disseminating information in large-scale systems [6,8,19], in which
peer-sampling services [15] provide the basic functionality required to interact
with decentralized resources. Our proposal aims to acquire through gossiping
the ability of forwarding virtual avalanches and therefore, to establish a virtual
state of equilibrium before proceeding with the real migration of tasks. As
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Fig. 5 Heat-maps and workloads frequencies of the sandpile scheduler using the ring (top)
and the Watts-Strogatz topology (bottom).

the servents in peer-to-peer systems, the design of a gossip-based forwarding
requires of two components: the client-side, described in algorithm 2, and the
server-side implementing the forwarding procedure in algorithm 3.

The algorithm 2, or α−client, only modifies slightly the basic design of the
sandpile scheduler (algorithm 1): both algorithms are equal except for lines 8
and 9, where the latter uses the PUSH function while the former forwards a
request (see FWD function in Table 2).

Algorithm 2 Altering algorithm 1 to allow gossiping
1: loop
2: WAIT
3: [β1, β2] ← α.SELECT

4: x = α.H+β1.H+β2.H
3

5: if α.H > β1.H + β2.H then
6: αβ1 = bxc − β1.H
7: αβ2 = (α.H − dxe)− αβ1

8: β1.FWD( αβ1 , α )

9: β2.FWD( αβ2 , α )
10: end if
11: end loop

Unlike PUSH(l), the FWD(|l|, source) function does not transfer real
tasks but a request with the cardinality of the tasks to be migrated from the
source resource.
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Function Description Pre-/Postconditions
PUSH(l) Insert l tasks at the back l is a list of tasks

FWD(|l|, source) Request to transfer |l| tasks from source |l| is a natural number
source is a resource

Table 2 Forward function for gossiping

Algorithm 3, or α − server, describes the FWD procedure. The proce-
dure is also analogous to algorithm 1, in which an avalanche may start at a
given node and then flood the system until finding an state of equilibrium by
iteratively migrating tasks from node to node. However, the gossiping-based
forwarding procedure tries to avoid multi-hops of tasks: they are not tasks but
requests that hop in the system. Since such requests carry information about
the number of tasks to transfer, they can be treated as virtual tasks and,
therefore, added to the real tasks in a node to compute its virtual workload.
In other words, the flooding process can be seen as an avalanche where grains
are not physically transferred but virtually. As soon as the virtual workload
is in equilibrium, every node will request to the source of the avalanche to
transfer the tasks in an end-to-end fashion. Therefore, the goal of a gossip-
based forwarding is to skip intermediate tasks migrations and directly jump
from non-equilibrium to equilibrium states, i.e., criticality is virtualized.

Algorithm 3 Procedure for a gossip-based forwarding of the avalanche.
1: procedure FWD(z, source)
2: [β1, β2] ← α.SELECT

3: x = α.H+z+β1.H+β2.H
3

4: if ( (α.H + z > β1.H + β2.H) AND (x > α.H) ) then
5: zα = dxe − α.H
6: zβ1 = min(bxc − β1.H, z − zα)

7: zβ2 = min(bxc − β2.H, z − zα − zβ1 )

8: β1.FWD( zβ1 , source )

9: β2.FWD( zβ2 , source )
10: α.PUSH(source.POP (zα))
11: else
12: α.PUSH(source.POP (z))
13: end if
14: end procedure

A forward request requires of two parameters: the number of tasks to be
transferred z = |l|, and the source of the avalanche from which tasks will be
finally retrieved. Since the process only involves virtual tasks, z represents an
upper bound to forward in iterative calls. Therefore, the z tasks are spread
out in the following way:

– (Lines 2 - 3): as in algorithm 1, every node selects two neighbors. To avoid
cycles, the SELECT function in the FWD procedure marks every node
with an identifier of the avalanche, as to impose the restriction that a
node can only participate in forwarding once per avalanche. The averaging
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process also differs from the basic case and is calculated by adding z tasks
to the dividend.

– (Line 4): the transition rule imposes two new conditions: first, the virtual
workload (h(α) + z) has to be larger than the accumulated workload of
neighbor resources. Second, the averaged workload x should be larger than
the real workload (h(α)). Otherwise, the current resource would end up
forwarding more virtual tasks than those assigned. If the transition rule is
not triggered, all z tasks are transferred from source to the current node
(line 12).

– (Lines 5 - 10): these lines establish the number of virtual tasks to be for-
warded to β1 (zβ1) and to β2 (zβ2) as well as the share that corresponds
to current resource α (zα). Both, zβ1 and zβ2 tasks, are forwarded to re-
spective resources and continue with the virtual avalanche, while zα tasks
are directly pushed into the current resource.

Virtual avalanches are expected to minimize the number of tasks migrations
while preserving the good results in terms of makespan. In order to evaluate
the performance of the gossiping version of the algorithm, we reproduce here
experiments of Section 5, in which 256000 homogeneous tasks arrive at t0 to
a homogeneous architecture of q = 256 nodes. Experiments are conducted for
the two versions of the algorithm, which respectively switch off and on virtual
forwarding. Note here that the optimal schedule can be known because of the
over-simplified assumptions on the workload and architecture, but from the
perspective of the complexity the problem is NP-hard.

(a) Optimization results (b) No. of migrations (overhead)

Fig. 6 Performance of a gossip-based forwarding run (gossip fwd.) vs. the basic case (no
fwd.)

Figure 6 shows the performance of both approaches averaged over 30 in-
dependent runs. In sub-figure 6(a) results are compared against the optimal
values in terms of makespan, throughput and flowtime. It can be seen that
both approaches are able to yield near-optimal results for the three metrics.
Furthermore, the gossip-based approach performs slightly better than its coun-
terpart and minimizes makespan and flowtime while increasing the through-
put. However, the main outcome of the experiment is provided in sub-figure
6(b), which shows the cumulative migrations that lead to the respective perfor-
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mances. The gossip-based approach clearly outperforms the basic case, which
requires to double the number of migrations in order to optimize the workload.

Fig. 7 Cancellation of frequencies between the basic case (No fwd.) and gossiping approach
(Gossip fwd.).

The cancellation of frequencies in figure 7 explains these results. The can-
cellation works by subtracting, for each size of an avalanche, the frequency
of the case without forwarding to the corresponding frequency of the gossip-
based approach. A positive cancellation means that the basic case causes more
avalanches of such size, while a negative cancellation refers to more avalanches
due to the gossip-based approach. Gossiping clearly diminishes the number of
avalanches in almost every frequency and, therefore, requires of less migrations
to reach equivalent performances.

5.3 Sandpile Basic Dynamics

Taking into account the results of previous sections, the sandpile scheduler
yields its optimal operation when combining a small-world topology and a
gossip-based forwarding of the avalanches. This section analyzes the runtime
dynamics of the scheduler for these settings.

(a) Initial State. (b) after 1 cycle. (c) after 5 cycles.

Fig. 8 Status of the workload during the first cycles of evolution.
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Figure 8 shows the on-line balance of the sandpile during the first 5 cycles
of evolution for an architecture of q = 256 homogeneous nodes and a workload
of 256000 homogeneous tasks. It can be seen how the load balancing process
resemblance the natural process of an avalanche with grains/tasks toppling to
lower potential areas in such a way that after 5 cycles every node has some
tasks assigned.

In a second round of experiments, we have modified the arrival pattern of
the previous experiment to create two different types of workloads:

– The first workload is defined by b = 1000, k = 256 and ai = bi/256c,
meaning that the 256000 tasks arrive as 1000 BoTs of size 256, in a rate
of 1 BoTs per cycle.

– The second workload is defined by b = 100, k = 2560 and ai = bi/256c×10,
i.e. every 10 cycles a BoTs of 2560 tasks arrive to the system.

It is straightforward to appreciate that both workloads lead to an optimal
makespan of 1000 cycles in the given architecture. However, the different sizes
and arrival patterns of the BoTs challenge different responses of the sandpile
scheduler. Figure 9 depicts the dynamics of the sandpile under both work-
loads where avalanches of different sizes take place. The resulting makespans
(respectively 1007 and 1009 cycles) show the capacity of the sandpile to re-
act to different workloads and find near-optimal solutions. To that end, the
sandpile lead to an emergent behavior that is related to the arrival patterns.

Fig. 9 Avalanches (or alternatively number of tasks migrating) in every cycle during the
entire run. Upper graph represents the b = 1000, k = 256 scenario while bottom graph
stands for the b = 100, k = 2560 one. Resulting makespans values are respectively 1007 and
1009 cycles. Note that, in absence of a scheduler, a run would result in 256000 cycles while
an optimal balance, i.e., 1000 tasks per processor, in 1000 cycles.
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Figure 10 describes the phenomenon from the perspective of the size (x
axis) and frequency (y axis) in which avalanches take place. The distribution
depicted in a log-scale shows a typical power-law relation between the quantity
and frequency of grains/tasks toppling: small avalanches/migrations are com-
mon events while big avalanches only happen in rare occasions. The plot also
depicts the different responses of the sandpile to both workloads. The work-
load arriving in BoTs of 256 tasks has some frequency attractors in avalanches
of ∼ 170 and ∼ 56 grains while the one arriving in BoTs of 2560 tasks has at-
tractors located in ∼ 1700,∼ 570,∼ 190 and ∼ 64. Such attractors correspond
to respective responses for balancing the tasks arriving.

Fig. 10 Distribution of avalanches depicting the effects of the workloads in the frequencies.

In order to explain these dynamics, let us assume a perfectly balanced
workload in resources α, β1, β2 at tn. If that is the case, right before the arrival
of a new BoTs the workload of the resources should be:

h(αtn) = h(β1
tn) = h(β2

tn) = 1 (9)

one task per processor, which will be retrieved at tn+1:

h(αtn+1) = h(β1
tn+1

) = h(β2
tn+1

) = 0 (10)

If at tn+1 a new BoTs of, for example, 2560 tasks arrives to α, the load
of the resource increases to h(αtn+1

) = 2560. The response of the sandpile to
that event will be balancing the tasks among the three resources by estimating
the average first:

2560︷ ︸︸ ︷
h(αtn+1)+

0︷ ︸︸ ︷
h(β1

tn+1
)+

0︷ ︸︸ ︷
h(β2

tn+1
)

3
' 853 (11)

and then toppling 853 grains from α to β1 and other 853 from α to β2. This
justifies having an attractor located in avalanches of size 2×853 ' 1700 grains.
The new settings at tn+2 would be:
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h(αtn+2) ' h(β1
tn+2

) ' h(β2
tn+2

) ' 853 (12)

It is likely that any of these resources (e.g. β2) has respective neighbor
resources (e.g. β3, β4) where:

h(β3
tn+2

) = h(β4
tn+2

) = 0 (13)

causing then a second avalanche of size:

853︷ ︸︸ ︷
h(β2

tn+2
)+

0︷ ︸︸ ︷
h(β3

tn+2
)+

0︷ ︸︸ ︷
h(β4

tn+2
)

3
' 284 (14)

where 284 are the grains to be migrated to β3 and β4, which justifies the second
attractor in avalanches of size 2 × 284 ' 570 grains. The process would con-
tinue, always minimizing the respective sizes of the avalanches, until reaching
an state of equilibrium.

6 Properties of the Sandpile Scheduler

In reactive systems such as the sandpile, the main properties are related to
the capacity of performing well in non-clairvoyant conditions, i.e., when no
assumptions are made on the size and initial allocation of the workload or the
speed and size of the architecture. This section aims to assess such properties
using two different test-cases. The first one tries to show the independence
of the sandpile to the initialization criterion. In other words, how the system
is able to react to different initial states of the workload and finally yield
equivalent performances. The purpose of the second test-case is twofold: to
show that the system behaves consistently in architectures of different sizes
(scale-invariance) and in architectures of heterogeneous processors. Unlike in
homogeneous conditions, where many algorithms are able to yield optimal
or near-optimal schedules, heterogeneous conditions challenge the scheduling
strategy.

6.1 Initialization criterion and performance independence

The decentralized nature of the sandpile scheduler allows multiple forms of
static initialization. In previous sections, we have assumed a typical star ar-
chitecture in which tasks are initially assigned to a master node or ”front-end”.
However, many distributed systems implement some basic scheduling heuris-
tics, such as round-robin, to initially allocate arriving tasks. In these cases,
the workload is distributed among the resources and the sandpile acts as a
dynamic mechanism for load-balancing.

Investigating the responses of the sandpile to different initial states of the
workload can provide some insights about the correlation between the initial
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allocation of tasks and the sandpile performance, i.e., whether the sandpile
performance is independent to initial conditions. To that end, this section
analyzes the dynamics of the sandpile for three static mechanisms assigning
tasks to resources:

– SPfront−end : All tasks are initially assigned to a single node acting as
front-end.

– SPrandom : As tasks arrive, they are distributed uniformly at random
among all resources.

– SPround−robin : Tasks are assigned to resources according to the outcome
of a static round-robin scheduler, which assigns tasks to processors in cor-
relative order.

The characteristics of the workload for this study are the following ones:
b = 256, k = 1000 and ∀i, j : ni = 1, ai = 0 and Ci,j = ∞. The architecture of
reference is a q = 256 homogeneous processors with pi = 1. For these settings,
an optimal schedule has a makespan of 1000 cycles.

(a) Avalanches at runtime (b) Optimization results

Fig. 11 Performance of the sandpile for different initialization criteria.

Figure 11(a) shows the number of grains toppling during a run for the
three different initialization criteria. Given that round-robin is optimal under
previous homogeneous conditions, SPround−robin reflects the sandpile caus-
ing no interference to the initial schedule, where not a single grain topples
along the run. However, the sandpile causes avalanches in both, SPfront−end

and SPrandom. Despite responses being different, both approaches lead to a
makespan of 1004 cycles, which is a near-optimal value. SPfront−end leads to
larger avalanches at the first stages of the run since the workload is primarily
assigned to a single resource. Meanwhile, avalanches in SPrandom take place in
later stages and they are also smaller in size. These three different responses
show the adaptive capacity of the sandpile. In fact, figure 11(b) shows that,
independently of the initialization criterion, the sandpile tends to track down
near-optimal schedules in all cases.
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6.2 Scale-invariance and heterogeneity

An efficient scheduler has to be scalable and capable of dealing with hetero-
geneity; good performance should not be only restricted to pre-established
architectures but also be invariant to the scale and type of architecture. To
show that the sandpile is both, scalable and flexible, we have considered an
scenario of scaling heterogeneous architectures. The aim is analyzing the be-
havior of the sandpile in scenarios with increasing complexities where static
schedulers such as round-robin are unable to approach optimal solutions. We
try to demonstrate that the sandpile can outperform this static counterpart
as well as finding near-optimal schedules in more realistic scenarios.

For a fair comparison, experiments are conducted for a SPround−robin ver-
sion of the sandpile. The scaling architectures are defined by different sets of
q = {32, 64, 128, 256, 512, 1024, 2048} processors. For each of these architec-
tures, processors speeds scale linearly from p0 = 1 to pq = ρ, where ρ stands
for a pre-set speeding factor of 9. That is, processor q is always 9 times faster
than processor 0. Formally: p0 = 1, pi = p0 + i ∗ (ρ/q), ρ = 9. To perform the
scalability analysis, we impose the stringent condition of the number of BoTs
being equal to the number of processors (b = q). The rest of the settings for
characterizing the workload are defined by k = 1000, ∀i, j : ni = 5, ai = 0 and
Ci,j = ∞, meaning that different workloads represent instances of a single-
scalable problem in which the optimal makespan is always 1000 cycles inde-
pendently of the number of processors.

Fig. 12 Results for the round-robin and sandpile schedulers in scaling scenarios of hetero-
geneous architectures. Optimal values are depicted as a baseline for comparison. From left
to right the throughput, flowtime and makespan of the respective schedules. The makespan
bars for the round-robin approach are cut off as they go up to 5000 cycles.

Figure 12 shows the performance of the round-robin and sandpile ap-
proaches for scaling instances. The round-robin approach, in contrast to the
high-performance in homogeneous architectures, shows to perform poorly un-
der heterogeneous conditions. On the other hand, the sandpile is able to con-
verge to near-optimal schedules with independence of the problem instance
and heterogeneity. Since the sandpile starts on the basis of a round-robin work-
balance, differences between both approaches can only be due to SOC.

To gain further insights in the scalability of the sandpile scheduler and how
it reacts to problems of different sizes, figure 13 compiles the distribution of
probabilities for migrating tasks in previous scaling instances. It can be seen
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Fig. 13 Distribution of probabilities for the 20 more common sizes of avalanche (left) and
the respective cumulative distribution functions (right). Independently of the instance, up
to 80% of all avalanches involve less than 90 tasks while the long tail represents that there
is a not-null probability for larger avalanches to take place.

how the distribution follows a scale-invariant power law distribution: the rate
with which tasks migrate do not depend on the size of the problem but on its
nature. It is important to note that the sandpile is non-clairvoyant and that
such a behavior can be achieved, without any fine-tuning of parameters, as an
emergent property of SOC systems.

7 Conclusions and Future Works

In this paper we have presented an on-line and decentralized scheduler based
on a Self-organized Criticality model called sandpile, a cellular automaton
working in a critical state between order and chaos. In our version of the
sandpile, computing resources are under the control of agents which can inter-
act locally within a pre-established neighborhood. In such system, tasks arrive
to resources and accumulate as grains of sand. When a given agent detects
that a pile exceeds the accumulated workload of two of its neighbors, the pile
topples starting an avalanche, which may be propagated throughout the entire
system until a new state of equilibrium is met.

In order to find an efficient design, we have analyzed two different intercon-
nection topologies, which are respectively based on a ring and a small-world
graph. The latter has been proven more efficient as tasks are easily dissemi-
nated in the system. As a consequence the throughput increases and the system
yields a near-optimal performance. Besides, we have also tried to minimize the
sizes and quantities of the avalanches using a gossiping-based version of the
agent system. Instead of propagating a real avalanche, the gossiping proto-
col forwards the avalanche virtually until a new state of equilibrium is found.
This reduces the overhead of intermediate migrations and tasks can be directly
moved from the source of the avalanche to the final destinies.

All in all, the small-world gossiping-based design constitutes the best trade-
off. For such a version of the algorithm, we have conducted experiments for
analyzing the main properties of the sandpile. These experiments show that the
approach adapts to different characteristics of workloads and architectures in
an unsupervised way. Additionally, the decentralized nature of the approach
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allows multiple ways of initialization, for example, static schedulers can be
used to primarily allocate tasks to resources and use then the sandpile for
dynamic load-balancing. Other important features tested are the invariance
of the model to the scale and the ability to deal with heterogeneity: despite
the model being non-clairvoyant, the different capacity of the resources leads
to avalanches from low speed processors towards high speed ones as piles sink
faster in the latters. That increases the overall throughput of the system and
therefore the performance.

As future lines of work, we plan to extend the sandpile model for tackling
energy efficiency in Cloud Computing systems. On the one hand, energy ef-
ficiency can be achieved in such systems by a smart consolidation of virtual
machines. On the other hand, it is our belief that the sandpile model can be
easily modified not only for spreading but also for consolidating workloads and
therefore, trade-off performance and energy consumption.
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