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Abstract—Modern systems tend to be highly configurable.
Testing such systems requires selecting test cases from a large
input space. Thus, there is a need to systematically sample
program inputs in order to reduce the testing effort. In such
cases, testing the interactions between program parameters has
been identified as an effective way to deal with this problem.
In these lines, Combinatorial Interaction Testing (CIT) models
the program input interactions and uses this model to select test
cases. Going a step further, we apply mutation analysis on the
CIT input model to select program test cases. Mutation operates
by injecting defects to the program input model and measures the
number of defects found by the selected test cases. Experiments
performed on four real programs show that measuring the
number of model-based defects gives a stronger correlation to
code-level faults than measuring the number of the exercised
interactions. Therefore, the proposed mutation analysis approach
forms a valid and more effective alternative to CIT.

Keywords-Mutation Analysis, Combinatorial Interaction Test-
ing, Fault Detection

I. INTRODUCTION

Modern software systems tend to be highly configurable and
thus, they involve a vast number of parameters and configu-
rations. This characteristic of the systems results in forming
enormous input configuration spaces. We call these spaces as
input or test spaces and we use the terms program inputs
and test cases indifferently. Testing these systems requires
exercising the programs behavior with different configurations.
As a consequence, exhaustive testing is practically intractable.
Since testing is a complex and costly process, a systematic and
rigorous approach should be performed. To this end, the test
selection should aim at choosing the tests that are potentially
the best ones, i.e., revealing the highest number of defects. The
question that it is raised is how to perform such a selection?

Testing the interactions between program parameters has
been proposed as a possible method to answer this question
[1], [2]. This proposition is based on the observation that
most of the faults are triggered by the interactions between
a small number of variables [3]. For instance, Kuhn et al. [3]
have shown that interactions between two variables are able
to disclose 80% of the bugs. Thus, program inputs can be
systematically sampled from the test space with the aim of
minimizing the number of the selected tests that exercise a
specific number of interactions. In other words, this method
eliminates the redundancy between the selected tests. The
redundancy is measured in terms of interactions.

Testing the combinations of interactions between the input
parameters has been shown to be a powerful technique [4].
This technique is called Combinatorial Interaction Testing
(CIT) or t-wise testing and aims at selecting those tests that
exercise all the interactions between any t parameters. Dif-
ferent values of t yield different selection criteria. Generally,
a higher t value implies a stronger criterion. Also, selecting
tests according to t-wise interactions subsumes, i.e., satisfies
the requirements of t − 1. Applying CIT requires a model
that represents the test space. This model is composed of the
input parameters associated with the possible values that they
can take and some constraints. The constraints, named here as
input constraints represent requirements on the use of variables
or on the use of variable values. These constraints are very
important in order to effectively perform the testing process
[4], [5]. Thus, they must be fulfilled by the test cases. Test
cases violating these constraints are simple false positives [4].

Generally, t-wise testing serves as a yardstick towards
assessing the ability of the selected test cases to reveal faults.
In other words, t-wise forms a measurement of the test suite
effectiveness. It is calculated by counting the number of valid
combinations that are exercised by the test suite. To this end,
the ratio of the exercised t-wise combinations to the total
number of the existing ones is referred to as the interaction
coverage [4]. Therefore, given the input model and two sets of
test cases, interaction coverage identifies which set is the most
effective one, i.e., the one with the higher coverage. Using this
information, testers can prioritize their test suites by using
first the tests that cover the most interactions [4], [6], they
can reduce the size of a test suite [1], [2] by removing test
cases that do not cover additional interactions, and they can
guide the generation or selection of new test cases based on
the uncovered interactions [6], [7].

In the same lines, the present paper applies mutation anal-
ysis to the CIT input model. Thus, it introduces an alternative
but more representative measure of the effectiveness of a test
suite. Traditionally, mutation analysis is applied at the program
code and aims at evaluating the quality of a test suite [8]. It
operates by introducing artificial defects, called mutants, in
the code of the tested program. Thus, multiple versions of
the program under test are produced. Each version contains
a defect that is introduced by making a slight modification.
The test suites are then evaluated based on their ability
to distinguish the introduced problems [8]. Contrary to the
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traditional approach, we apply mutation on the input model.
Hence, we do not need to execute the system. We only need
to evaluate whether the selected test cases satisfy or violate
the altered input models. The testing process can then be
performed based on the selected test cases.

In this paper, we introduce defects on the model of the
program inputs. Thus, we create various input models, each
one containing one defect. We apply this approach in the
same way as t-wise testing is applied. However, instead of
measuring the number of covered interactions, we measure
the number of mutated input models that are violated by the
selected tests. Therefore, we have test cases that satisfy all the
constraints of the original input model but which violate the
constraints of the mutated ones. The number of the mutated
models having constraints violated by the test cases to the total
number of the mutated models represents the effectiveness
ability of these tests.

The question that it is investigated here is whether mutation
analysis can provide a good indication about the quality of the
test suites. A positive answer to this question will indicate that
the proposed approach is valid and will motivate practitioners
to use it. However, as already mentioned, CIT forms the
mainstream approach to select and evaluate such test cases.
Thus, another question that need to be answered is whether
mutation analysis provides better estimations than the CIT
about the fault detection ability of the test suites. Therefore,
the main contribution of the present paper is the comparison of
the proposed mutation approach with the CIT one according
to their ability to expose faults. Currently, only a few works
investigate the fault detection ability of the interaction testing
in the presence of input constraints and none focusing on
mutating the input models.

We present results of a controlled experiment that involves
four real world programs with input constraints. The utilized
programs are widely used in experimental studies and are
accompanied by a set of faulty versions. Therefore, we can
evaluate the ability of the examined approaches to predict
the actual fault detection of the selected test suites. This is
performed based on a rank correlation analysis. The findings
of the study reveal that both the mutation and CIT approaches
are good predictors of actual fault detection. This is in line
with the previous research on CIT. However, it turns out the the
mutation-based approach generally provides better estimations
than CIT. This difference is significant in most of the cases,
thus indicating a strong correlation between code-level faults
and the proposed model-level defects.

In brief, the contributions of this paper are the following:

• We propose a mutation analysis approach applied at the
program input level to assess the quality of test suites,

• We evaluate the correlation between a) the number of
interactions covered and b) the number of the introduced
mutants distinguished by a test suite with its actual fault
detection. We find out that the model-based defects have
a stronger correlation with code-level faults than the input
parameter interactions.

II. EXAMPLE

This section introduces an illustrative example to explain
how mutation analysis can be applied. The approach is based
on a model of the program inputs, as those typically used
by CIT approaches, e.g., [4]. Such a model encompasses
the different parameters and the constraints between these
parameters.

A. An Input Model

Consider the following model M involving three parameters
p1, p2 and p3. Each parameter is a variable of the model. The
parameter p1 can take the two values a and b, p2 can take the
three values c, d and e and the last parameter p3 can only take
the f value. Thus, the model M is defined as follows:

M := p1 ∈ {a, b}, p2 ∈ {c, d, e} and p3 ∈ {f}.

Typically, input models involve input constraints between
the parameters. For sake of simplicity, we will first present
the approach in the case where there are no input constraints,
case 1). Then, the general case that involves input constraints,
case 2), will be demonstrated.

B. Case 1: Absence of Input Constraints

1) Flattening the Model: In order to apply mutation analy-
sis, we flatten this model to a boolean one denoted as Mb. The
flattened model involves 6 variables instead of three, which
corresponds to the values of the parameters: ap1 , bp1 , cp2 ,
dp2

, ep2
and fp3

. Each of this variable is boolean, i.e., it can
take only two values, true or false. We then need the to add
to Mb constraints which specify that only one value can be
selected at a time for a given parameter. For instance, ap1

and
bp1 cannot be both true because it would mean that p1 = a
and p1 = b at the same time. Following our example, we need
to add to Mb 8 following constraints:

(ap1 ⇒ ¬bp1), (bp1 ⇒ ¬ap1), (cp2 ⇒ ¬dp2), (cp2 ⇒ ¬ep2),
(dp2 ⇒ ¬cp2), (dp2 ⇒ ¬ep2), (ep2 ⇒ ¬cp2), (ep2 ⇒ ¬dp2).

Thus, the boolean model Mb equivalent to M is defined as:
Mb := ap1 ∈ {true, false}, bp1 ∈ {true, false}, cp2 ∈

{true, false}, dp2 ∈ {true, false}, ep2 ∈ {true, false}, fp3 ∈
{true, false}, (ap1 ⇒ ¬bp1), (bp1 ⇒ ¬ap1), (cp2 ⇒ ¬dp2),
(cp2 ⇒ ¬ep2), (dp2 ⇒ ¬cp2), (dp2 ⇒ ¬ep2), (ep2 ⇒ ¬cp2),
(ep2 ⇒ ¬dp2).

2) Creating Mutants of the Flattened Model: The next step
consist in creating defective (i.e., mutated) versions of the Mb

model. To produce such a mutated model, we alter one of the
constraint of Mb. It creates a different version of this model
where the defect is the change operated on the constraint. This
process is repeated several times to create various mutated
versions of Mb. For instance, the constraint C = (ap1

⇒ cp2
)

of Mb can be altered to C ′ = (ap1
⇒ ¬cp2

) while producing
a new mutated model from Mb.

In the following, we consider the two following mutants, in
which the altered constraint of Mb is underlined:
• M ′

b := ap1 ∈ {true, false}, bp1 ∈ {true, false}, cp2 ∈
{true, false}, dp2 ∈ {true, false}, ep2 ∈ {true, false},
fp3 ∈ {true, false}, (ap1 ⇒ ¬bp1), (bp1 ⇒ ¬ap1),



(cp2 ⇒ ¬dp2), (cp2 ⇒ ¬ep2), (dp2 ⇒ ¬cp2), (dp2 ⇒ ¬ep2),
(ep2 ⇒ cp2), (ep2 ⇒ ¬dp2).

• M ′′
b := ap1 ∈ {true, false}, bp1 ∈ {true, false}, cp2 ∈

{true, false}, dp2 ∈ {true, false}, ep2 ∈ {true, false},
fp3 ∈ {true, false}, (ap1 ⇒ ¬bp1), (bp1 ⇒ ¬ap1), (cp2 ⇒
¬dp2), (cp2 ⇒ ¬ep2), (dp2 ⇒ ¬cp2), (dp2 ⇒ ¬ep2), (ep2 ⇒
¬cp2), (ep2 ⇒ fp3).

3) Evaluating Program Inputs: The proposed approach
selects program inputs which satisfy the constraints of Mb and
at the same time do not satisfy the constraints of the mutated
models. For instance, consider the two following program
inputs:
• I1 = {ap1 = true, bp1 = false, cp2 = true, dp2 =

false, ep2 = false, fp3 = true},
• I2 = {ap1 = true, bp1 = false, cp2 = false, dp2 =

false, ep2 = true, fp3 = true}.
We simplify the representation of these inputs to consider

only the values selected, i.e., equals to true:
• I1 = {ap1 , cp2 , fp3},
• I2 = {ap1 , ep2 , fp3}.
Both I1 and I2 satisfy Mb. We evaluate each input towards

each mutant. I1 satisfies the two mutants, I2 satisfies the
second mutant M ′′b but violates M ′b. Indeed, the underlined
constraint of M ′b is violated: selecting ep2

= true implies
selecting cp2 = true, but I2 has ep2 = true and cp2 = false.
We thus identify that the I2 test case is effective in finding
the introduced defect. Measuring the number of such defects
found by a test suite serves as an effectiveness measure to our
approach. We can say that I1 did not violated any of the two
mutants and that I2 violated half of the mutants. Thus, with
respect to our approach, I2 is more effective.

With respect to CIT, for instance 2-wise interactions, I1
covers 15 interactions. An example of such an interaction
is (ap1

= true, bp1
= false). The total number of 2-wise

interactions of the model Mb is 66. Thus, the CIT measure
for I1 is 15

66 . Consider now the two following test suites:
• T1 = {I2},
• T2 = {I1, I2}.
With respect to our approach, both the test suites are

similarly effective since they both violates one of the two
mutants. Thus, we measure 1

2 for both T1 and T2, which is
the number of violated mutants to the total ones.

With respect to CIT, T1 covers 15
66 2-wise interactions while

T2 covers 24
66 . As a result, for CIT, the second test suite is more

effective as it covers more interactions than the first one.

C. Case 2: Presence of Input Constraints

When there are input constraints in the model M , we simply
transform them to boolean ones and we add them to the
constraints of Mb. For instance, suppose M contains the input
constraint ((p1 = a) ⇒ (p2 = c)). It is transformed into
(ap1

⇒ cp2
). Thus, in this case, the boolean model of M is:

Mb := ap1 ∈ {true, false}, bp1 ∈ {true, false}, cp2 ∈
{true, false}, dp2 ∈ {true, false}, ep2 ∈ {true, false}, fp3 ∈
{true, false}, (ap1 ⇒ ¬bp1), (bp1 ⇒ ¬ap1), (cp2 ⇒ ¬dp2),
(cp2 ⇒ ¬ep2), (dp2 ⇒ ¬cp2), (dp2 ⇒ ¬ep2), (ep2 ⇒ ¬cp2),
(ep2 ⇒ ¬dp2), (ap1 ⇒ cp2).
The added input constraint is underlined. The process then
continues similarly as the case 1), by mutating Mb (see Section
II-B2).

III. TEST SUITE EVALUATION

The global process of the proposed mutation approach is
depicted by Figure 1. The technique operates on a model of
the program inputs, presented in Section III-A, by creating
defective (i.e., mutated) model versions. The application of the
approach, detailed in Section III-C,is equivalent to CIT since
it uses the same input models. However, instead of measuring
the interactions covered by the test cases, as done by CIT
(presented in Section III-B), it measures the ability of the test
cases to distinguish the defective versions.

A. The Program Input Model

Applying CIT or the proposed approach requires building
a model of the program inputs. This model represents the
different test cases that can be derived by combining the
program inputs. Thus, the model encompasses the different
parameters of the program, their values, and the constraints
that link them. It can be seen as a set of constraint, where each
constraints involves variables (the parameters), their possible
values and how they can be combined.

A constraint regulates the use of the input parameters.
For instance, a constraint may denote that setting a specific
parameter pi with a specific value v prevents another parameter
pj from taking the value w. We can formalize this constraint
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Fig. 1. The mutation analysis approach. The technique operates on a model of the program inputs by creating defective (i.e., mutated) model versions. The
application of the approach is equivalent to CIT since it uses the same input model. However, instead of measuring the interactions covered by the test cases,
as done by CIT, it measures the ability of the test cases to distinguish the defective versions.



TABLE I
THE TWO MUTATION OPERATORS USED TO ALTER THE CONSTRAINTS OF THE MODEL OF THE PROGRAM INPUTS. THE FIRST OPERATOR NEGATES ONE OF

THE VARIABLE OF THE CONSTRAINT. THE SECOND OPERATOR SPLITS THE CONSTRAINTS INTO TWO BY REMOVING ONE OF THE DISJUNCTION
OPERATORS.

Input Applies on Result

A constraint C = v1 ∨ ... ∨ vi ∨ ... ∨ vk A variable vi of the constraint One constraint C′ = v1 ∨ ... ∨¬vi ∨ ... ∨ vk

A constraint C = v1 ∨ ...∨ vi ∨ ... ∨ vk A disjunction operator of the constraint Two constraints: C′ = v1 ∨ ... ∨ vi and C′′ = vi+1 ∨ ... ∨ vk

as (pi = v)⇒ (pj 6= w). Thus, a program input composed of
both pi = v and pj = w does not satisfy the constraint since
pj should not be set to w when pi is set to vi. We say that
a test case satisfies the model of the program inputs if all the
constraints of this model are satisfied at the same time.

Each constraint involves several variables that correspond
to the parameters of the program. A variable has a domain
which corresponds to the values that the parameter can take.
For instance, the variable pi may take two values v and w. In
that case, pi has a domain involving two values, v and w.

In practice, our approach requires a flattening of the model
to make it boolean. This is a typical process undertaken by
most of the CIT tools, e.g., [7]. It also gives the opportunity
to the mutation approach to produce mutants in the case that
no input constraints exists. Instead of having a model with
variables corresponding to parameters, the flattened model
contain variables that represent all the possible values for all
the parameters. Each one of these variables can be true or
false, depending on whether this variable is assigned an input
value. For instance, if a parameter can take three different
values, the flattening transforms the parameter variable, which
has a domain of three values into three different variables.
Doing so transforms the model to a boolean one as required
by the proposed approach.

B. The CIT Approach

The CIT approach works by counting the unique number
of interactions (or combinations) between any t parameters’
values exercised by the test suite. Such interactions are called
t-wise interactions, as they involve combinations between the
t parameters. Thus, given the input model, we evaluate all the
possible t combinations of the input parameters. Then, based
on the input constraints, we eliminate the invalid ones, i.e., the
combinations that are prohibited by the constraints. Finally, the
effectiveness measure of the test suite is calculated based on
the t-wise coverage which is the number of t combinations
that are covered by the test cases.

C. The Mutation Approach

The mutation approach operates by altering the boolean
model of the program inputs. It actually produces defective
models by altering the model constraints. Thus, it creates
several versions of the model, called mutants. Each mutant
contains only one altered constraint. The constraints are altered
based on a set of syntactic rules called mutation operators.
Thus, by applying the mutation operators on all the model
constraints, we end up with the sought set of mutants.

The constraints of the flattened model are boolean and
they are represented as a disjunction between variables. Thus,
each constraint C between k variables has the general form
C =

∨k
i=1 vk, where vk is a variable (corresponding to one

parameter’s value) either set to true or false.
In this work, we employ two mutation operators adapted

from [9]. These operators are presented in Table I. The first
operator alters a constraint by taking one of its variables and
negating it. In other words, if the selected variables is true,
it becomes false, and conversely. The second operator aims
at creating two constraints from the original one. To this end,
one of the disjunction operator in the constraint is replaced
by a conjunction operator. Thus, this second operator splits
a constraint into two, increasing by one the total number of
constraints of the model.

A test suite is evaluated based on its ability to distinguish
the defective models from the original one. We refer to the
mutants that are distinguished by the test cases as killed
and to those that can not be distinguished as live. However,
how can we check whether a mutant is killed or not? To
answer this question, we need to consider that our models are
composed of boolean constraints. Therefore, the evaluation is
straightforward. It is examined whether a test case satisfies
the constraints of the mutant model with a satisfiability (SAT)
solver. The mutant is killed when its constraints are violated
by the test case. In the opposite case it is live. It is noted that
only the constraints of the mutant models can be violated.
The constraints of the original model must always be satisfied
in order to have valid program inputs. By determining the
number of mutants that are killed by all the test cases, the
overall effectiveness measure of the test suite is calculated.

IV. EXPERIMENTAL METHODOLOGY

The aims of the conducted experiment are summarized in
the following research questions:
• RQ1: How well does the mutation-based approach eval-

uate the quality of the selected test suite?
• RQ2: How well does the CIT approach evaluate the

quality of the selected test suite?
• RQ3: How does the mutation approach compares with

CIT?
Answering the first question is important in order to sub-

stantiate the practical use of mutation. Answering the second
question is important in reinforcing the empirical evidence in
favor of CIT.

Now, suppose that mutation and CIT are capable of pre-
dicting accurately the fault detection ability of test suites. In



this case, practitioners will be able to evaluate the quality of
their test suites. Going a step further, they will be able to
prioritize their tests (by pointing first the test cases that cover
the majority of the interactions or kill most of the mutants),
reduce the suites’ size (by removing redundant tests) and guide
the test generation process (by generating test cases that cover
new interactions or kill additional mutants). However, in this
case, which one should be used? This is our third research
question which aims at identifying which of the two examined
approaches should be used in practice.

A. Definition of the Experiment

To answer the stated research questions, we analyze the
ability of test cases to cover t-wise interactions, to kill our
mutants, and to expose code-based faults. We employ four
subjects that are accompanied with test cases and faulty
versions (Section IV-B). We then sample at random 30 test
suites from the initial test suite of each program. Thus, we
sample suites of random size from 4 ≤ n ≤ N , where N is
the size of the initial test suite. The minimum size of 4 test
cases per suite has been chosen in order to have a sufficient
sample for the correlation analysis. Then, we measure three
metrics. a) the number of interactions covered, b) the number
of mutants killed and c) the number of faults found (Section
IV-C). These measures are recorded for every test case of the
selected suites.

Then, these metrics are examined in order to identify
possible correlations between them and to answer to RQs 1
and 2, Section IV-D. To this end, we perform a statistical
analysis to quantify these correlations. In other words, we try
to measure the extent to which the relationship of covering
interactions and killing mutants relates with fault detection.
Thus, for each subject program, 30 Kendall rank coefficients
are obtained by evaluating the correlation between the killed
mutants and the faults found by the test cases, case denoted
as MF, and 30 coefficients are obtained from the correlation
between the t-wise coverage and the faults found. This latter
comparison is denoted as tWF. In this work, we consider t-
wise coverage for t = 2, ..., 4.

Finally, we compare the two methods based on the level
of correlations, thus, answering to RQ3. An overview of the
followed process is depicted by Figure 2.

B. Subjects

We use the four following programs: flex, gzip, make
and sed. These subjects are taken from the Software-artefact
Infrastructure Repository (SIR) [10] and their details are
presented in Table II. The examined versions of these program
were randomly selected. Hence, for each subject, Table II
records its size in uncommented lines of code 1, the number
of faults per version taken from the faults matrix provided
by the SIR, the number of variables and constraints of its
respective model, the number of mutants and killable (i.e.,
there is at least one test configuration that cannot satisfy
the faulty model) mutants obtained by applying the mutation
operators, the number of the test cases contained in the initial
test suite and the number of t-wise interactions for t = 1, ..., 4.

The input models are taken from the study of Petke et al. [4].
This study concerns the test case prioritization according to
CIT and thus, their models are well suited for the present study.
These models were built based on the descriptions of the Test
Suite Specification Language (TSL) that are proposed with
the utilized programs [4]. Thus, the parameters and values of
these models represent the program input space. As described
in Section III, we transform these models to boolean ones in
order to evaluate the various test cases.

C. Evaluating Test Suites

1) T-wise: Given a test suite, we evaluate its t-wise cover-
age based on the following process. All the t-wise interactions
between the parameters’ values covered by the first test case
of the suite are recorded. Then, we consider the second test
case and we add all the interactions that are not exercised by
the first one. This process is repeated for all the test cases of
the suite and it gives the cumulative number of unique t-wise
interactions covered by each one of suite’ test cases. Thus,
given a test suite of n test cases tc1, ..., tcn, we obtain the
t-wise coverage represented by the tuples (tci, ci).

2) Fault Detection: Given a test suite, we evaluate its fault
detection ability based on the following process. We first take
the faults found by the first test case of the suite by using
the fault matrix provided by the SIR. This matrix contains the
faults found by each test case. These faults are not considered
while evaluating the next test cases. Then, the number of faults
found by the second test case is recorded. This process is

1Measured with cloc: http://cloc.sourceforge.net/.
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TABLE II
THE FOUR SUBJECTS PROGRAMS USED IN THE EXPERIMENTS.

Subject flex gzip make sed

v1 9,581 4,604 14,459 -

v2 - 5,092 - -

Uncommented lines of code v3 - - - 7,161

v4 11,470 - - -

v7 - - - 14,177

v1 19 16 19 -

v2 - 7 - -

Faults v3 - - - 6

v4 16 - - -

v7 - - - 4

Model variables 23 29 20 34

Model constraints 43 91 21 143

Model mutants 139 295 63 527

Killable model mutants 139 292 63 373

Test cases 500 159 768 144

All 2-wise interactions 1,035 1,653 780 2,278

All 3-wise interactions 15,180 30,856 9,880 50,116

All 4-wise interactions 163,185 424,270 91,390 814,385

Valid 2-wise interactions 939 1,388 736 1,421

Valid 3-wise interactions 11,478 19,980 8,268 23,075

Valid 4-wise interactions 95,176 194,974 63,475 265,698

repeated for all the test cases of the test suite and provides the
cumulative number of unique faults found by each test case.
Thus, given a test suite of n test cases tc1, ..., tcn, we obtain
the number of faults found after executing each test case. It is
represented by the tuples (tci, fi).

3) Mutation: We evaluate a test suite according to mutation
based on the following process. Initially, the number of mu-
tants killed by the first test case is determined. These mutants
are removed and the second test case is evaluated according
to all the remaining mutants. This process is repeated for the
whole suite. Thus, the process gives the cumulative number
of the unique killed mutants after executing each test case.
Hence, given a test suite of n test cases tc1, ..., tcn, we obtain
the number of mutants killed after executing each test case. It
is represented by the tuples (tci,mi).

D. Rank Correlation Analysis

Evaluating a test suite according to t-wise, fault detection
and mutation, as described in the previous section gives the
following information after executing k ≤ n tests of the test
suite:

1) The current t-wise coverage achieved after considering
the ith test case of the test suite,

2) The current number of faults found after executing the
ith test case of the test suite,

3) The current number of mutated models that cannot be
satisfied after considering the ith test case of the test
suite.

Given these three measures, we evaluate whether 1) corre-
lates with 2), whether 3) correlates with 2), and which of these
two correlations is better. In order to evaluate these correla-
tions, we compute the Kendall τ rank correlation coefficient.
This coefficient is considered as the most robust and usefully
interpreted statistical measure for this question [11], [12], [13].
Thus, the coefficient is one one hand calculated given the
correlation between the tuples (tci, ci), (tci, fi) and on the
other hand given the tuples (tci,mi) and (tci, fi).

The Kendall τ is in the range −1 ≤ τ ≤ 1. A coefficient
of 1 indicates that the correlation between the two considered
ranking is perfect. A coefficient around 0 denotes that the two
observed sample are independent. Finally, a τ equals to −1
represents the complete absence of correlation between the
two considered rankings.

V. EXPERIMENTAL RESULTS

This section reports results regarding the ability of the CIT
and the mutation approaches to reveal actual faults. Then, it
compares the two approaches.

A. Correlation Analysis (RQ1 and RQ2)

Figure 3 presents the distribution the Kendall coefficients for
all the subject programs. MF denotes the coefficients resulting
from the correlation analysis between the mutants killed and
the faults found by the test cases. The correlation coefficient
between the t-wise coverage of the test cases and the faults
found on the program are denoted as tWF, with t = 2, ..., 4.

From these results we can infer three interesting conclu-
sions. First, we observe that both CIT and mutation strongly
correlate with fault detection for all the employed subjects.
This is due to the fact that most of the coefficients are greater
than 0.5 (median values) and almost all are at least 0.3, thus
indicating very good correlations. Second, we observe big
differences on the correlations between the subject programs
and between the different versions. For example, sed v3
has coefficients close to 0.5 while gzip v2 is close to 0.2.
Similarly, gzip has differences between v1 and v2 where
the coefficients are close to 0.5 and 0.2 respectively. Third,
we observe that higher t-values results in weaker correlations
than lower t values in all the examined cases. The next section
compares t-wise and CIT based on these results.

B. Comparing CIT and Mutation (RQ3)

In order to compare the CIT approach with the mutation
one, consider the MF and the tWF coefficients. From Figure 3,
it is evident that MF coefficients tend to be closer to 1 than the
tWF ones. Even when they are not very good, such as the case
of gzip v2, they are greater than the tWF coefficients. The
difference is big for three out of the 7 cases and always greater
to all the tWF coefficients. This denotes a higher correlation



(a) Results for flex v1 and v4. FX denotes flex vX , MF denotes the correlation mutants killed and faults found, and tWF denotes
the correlation t-wise coverage and faults found.

(b) Results for gzip v1 and v2. GX denotes gzip vX , MF denotes the correlation mutants killed and faults found, and tWF denotes
the correlation t-wise coverage and faults found.

(c) Results for make v1. MX denotes make vX , MF denotes the correlation mutants killed and faults found, and tWF denotes the
correlation t-wise coverage and faults found.

(d) Results for sed v1 and v7. FX denotes sed vX , MF denotes the correlation mutants killed and faults found, and tWF denotes
the correlation t-wise coverage and faults found.

Fig. 3. Distribution of the Kendall τ rank coefficients on different versions of the subject programs. Each boxplot represents the distribution of the 30 τ
coefficients of correlation between either the mutants killed and the faults found or between the t-wise (t = 2, ..., 4) coverage and the faults found.

between the mutants and the faults than between the t-wise
coverage and the faults.

For instance, consider the results for flex v1, depicted
by Figure 3a. The maximum coefficient τ is very close to
1. The median τ among the 30 coefficients is above 0.87. It
Thus denotes a strong correlation for the MF case. Regarding
the t-WF results, median coefficients are below 0.5, which
denote moderate correlations between t-wise and the faults
found by the test cases. Conclusively, it can be argued that the
comparison is in favor of the MF since it gives correlations

greater than the t-WF.
The results presented so far consider the correlation of

CIT and mutation with the code-based faults. However, this
correlation may be missleaded by the difficulty of finding the
faults. In other words, if the faults are very easy to find or very
difficult to find, this will have a direct effect on the measured
correlations. In the same lines, we can compare the CIT and
the mutation approaches.

Figure 4 presents the easiness of finding faults, killing
mutants, covering 2-wise and covering 3-wise interactions



Fig. 4. The easiness of finding faults, killing mutants and covering t-wise interactions per subject. The easiness of finding a fault represents the percentage
of test cases that find this fault. Similarly, the easiness of killing a mutant represents the percentage of test cases that kill this mutant, and the easiness of
covering a t-wise interaction is the percentage of test cases that cover this interaction. FX , GX , MX , and SX respectively represents the flex, gzip,
make and sed subjects, with the corresponding X version. For each subject, the fault box represents the easiness of the faults, the mutants box represent
the easiness of the mutants and the t-wise box the easiness of the t-wise interactions.

per subject. The easiness of finding a fault represents the
percentage of test cases that find this fault. Similarly, the
easiness of killing a mutant represents the percentage of test
cases that kill this mutant, and the easiness of covering a t-
wise interaction is the percentage of test cases that cover this
interaction. FX , GX , MX , and SX respectively represents the
flex, gzip, make and sed subjects, with the corresponding
X version. For each subject, the fault box represents the
easiness for faults, the mutants box represent the easiness
of the mutants and the t-wise box the easiness of the t-wise
interactions.

From these results, we can explain why both CIT and
mutation have low correlation values for gzip v2. This is
due to the fact that the faults of this version are very easy to
detect, contrary to mutants and interactions. It is the same for
make. However, in this case, both mutants and interactions
are easy to detect, resulting in satisfactory correlations.

Conclusively, from the presented results, it becomes evident
that killing mutants is more or less as difficult as covering
2-wise and 3-wise interactions. Indeed, the easiness median
values for mutants are comparable with the easiness medians
of 2-wise and 3-wise interactions for sed, greater for gzip
and lower for flex and make. Considering the easiness of
mutants and faults, we observe that mutants tend to behave
similarly as faults.

Finally, covering 3-wise interactions is harder than covering
the 2-wise ones. This is expected since covering all 3-wise
interactions results in covering all the 2-wise ones. As a result,
higher interactions strengths (t ≥ 4) are more difficult to cover.

VI. DISCUSSION

The findings of the conducted experiment suggest that the
mutation approach can form an alternative method to CIT.
Based on the results, we can infer that mutation is probably
more effective in predicting the actual fault detection of a test
suite. In view of this, some additional considerations regarding
the comparison with CIT and the application cost of the ap-
proach are needed. This section discusses these considerations
as long as threats to the validity of the conducted experiment.

A. Additional Consideration about Mutation and CIT
By considering the CIT and the mutation approaches, we

can observe that they more or less both use the same informa-
tion, which is the input model. However, they provide much
different results. Why this difference? In other words, why
mutants can be more powerful than the input combinations?

Generally, it is very hard to fully answer this question.
A full answer requires extensive and independent studies.
However, we believe that the power of mutation lies on the
fact that it considers the input constraints of the tested systems.
Recall that our benchmark programs are real word programs.
Thus, they have input constraints. These constraints play an
important role in the testing process of the system. Not only
they define the valid program inputs but they also reflect a
logic of the underlying system. Therefore, they provide some
useful information to the testers which is actually missed by
CIT. Mutation takes advantage of this information by mutating
these constraints. Mutating the input constraints forces tests
to exercise limit cases that trigger faults. From the testing
perspective, input constraints provide information similar to
the one provided by boundary conditions of a system. They
also have a role which is similar to the role of the preconditions
of a system. Testing preconditions and boundary conditions of
a system has been identified as an important step of the testing
process [14]. Hence, testing them is necessary for establishing
a rigorous testing approach. Here, it should be noted that
CIT uses the input constraints only for computing the valid
combinations of program inputs. Thus, it completely ignores
both their importance and the information they provide.

Generally, mutation analysis relies on the power of the
utilized mutants. The present studies uses two boolean op-
erators mainly chosen based on the authors’ experience from
the feature modeling of software product lines [9], [15], [6].
Feature models are boolean models like the flattened ones used
by the present study and hence, the employed operators form
a good choice. In future, we plan to investigate the use of
other operators, e.g., [16] and higher order ones [17], [16].
Nevertheless, the performed analysis shows that the utilized
mutants simulate very well the behavior of the actual faults.



Here, it should be mentioned that the use of mutant selection
strategies can increase the difficulty of finding them. However,
the main question is whether doing so results in accurate
estimations of the actual fault detection. Particularly, we do
not want to underestimate or overestimate our measures [18].
This matter falls outside the scope of this paper since it is a
general research challenge of the whole mutation testing area.

B. Cost of the Approach

One of the main issues of mutation analysis is its com-
putational cost [19]. This is due to the need to introduce
and execute a vast number of mutants. However, in our
context the computational cost of mutation analysis is not
very important due to the following three reasons. First, we
only check whether a mutant violates the boolean constraints
of the mutated models. This is a simple SAT verification
process which is actually quite fast. Second, the number of
mutants is small. Actually much smaller than the number of
interactions, see Table II. For 2-wise, the number of mutants
is 5 times lower than the number of interactions. As a result,
mutation requires less operations than CIT. Third, we do
not execute the system. Test selection and evaluation based
on the input model is much faster than the actual program
execution. Furthermore, in practice, testers will have to verify
the program behavior, i.e., resolving the oracle problem, which
is a typical manual activity. Hence, human time dominates the
computational expenses of the approach.

Finally, it should be mentioned that equivalent mutants, i.e.,
mutants that can not be killed by any test case do not introduce
a big overhead. Actually, the number of such mutants is much
less than the number of invalid pairs (Table II). Therefore, the
computational cost of mutation is lower than the cost of CIT.

C. Threats to Validity

There are several influencing factors that can threaten the
validity of the conducted experiment. Regarding the general-
ization of the findings, i.e., external validity, it is possible that
the selected programs are not representative. This may also
be the case for the utilized test suites and the faulty versions.
Thus, on larger or other types of programs, mutants and
input interactions might not be the most appropriate choice.
Similarly, the examined approaches might not being effective
in revealing other faults. However, the chosen subjects are real
world programs widely used in the literature e.g. [4], [20],
[21]. Additionally, both the test suites and faults were devel-
oped by researchers independently of the present study. The
problem we are facing is the absence of programs with high
quality test cases, well defined input models or specifications,
and faulty versions. Clearly, more studies are in need to answer
this concern with confidence.

With respect to the confidence on the reported results,
i.e., internal validity, issues on the utilized input models, the
employed test sets and the correctness of the used tools can be
identified. It is possible that errors on the input models and the
used tools may have influenced the reported results. To reduce
this threat we performed several manual checks on both the

implementation and the employed input models. Here, it must
be noted that the input models were independently developed
by other researchers [4]. They were also checked by us in
order to give confidence about their correctness. Additionally,
as already mentioned, the employed suites are widely used in
software engineering experiments e.g. [4], [20], [21].

Finally, some threats regarding the evaluation metrics used,
i.e., construct validity, can be identified. It is likely that the
number of faults found by the approaches do not express the
real fault detection ability of the test suites. Additionally, it
is possible that the faults number and difficulty can influence
the significance of the performed statistical analysis. To reduce
this threat, we employed the Kendall τ coefficient which is a
non-parametric hypothesis test, i.e,. it does not require a very
big sample size, and it measures the similarity of the data order
when ranked by the studied effectiveness measures, i.e., the
mutants found or the interactions covered. We also measured
the correlations after executing every test case of various test
suite sizes to eliminate the effects of the test suite size.

VII. RELATED WORK

Mutation analysis is a powerful technique with multiple ap-
plications [8], [19]. Generally, code-based mutants have been
used to guide the the test generation process [22], [23], [24],
to assist the debugging activities [20], [25] and to evaluate the
fault detection ability of a test suite [11], [18]. The technique
has also been applied to test specification models [19] and to
capture semantic errors of the programs [26]. For instance,
Mottu et al. used mutation to test model transformations [27].
Other applications of this technique include Petri nets [28]
and Feature Models [9], [15]. Contrary to these work, the
present paper applies mutation analysis to the model of the
program inputs and measures the correlation between model-
based mutants and code-based faults.

CIT is a well researched technique with multiple criteria and
combination strategies [1]. However, very few work consider
the fault detection ability of CIT e.g. [4], [3], [5], [29], [30],
[31]. In the most recent one, Petke et al. [4] show that higher
t strengths result in finding more faults than lower strengths.
Our work differs from this one in three ways. First, we use
mutation while they only consider t-wise. Second, we consider
the correlation between faults and t-wise interactions. They
only investigate whether covering higher interaction strengths
results in higher fault detection. Third, we use randomly
selected test suites while they use test suites selected with
a covering array tool [7]. Similarly, Arcuri and Briand [2]
showed that random testing can perform similarly to CIT on
large-scale models. However, their results hold only in the case
where there are no input constraints.

Considering boolean specifications, mutation faults have
been used to select minimum test suites [32]. Similarly,
Kaminski et al. [16] use a logic mutation approach to measure
test data quality. Their approach relies on the notion of higher
order mutants [17] and aim at improving logic-based testing. In
another work, Kaminski et al. [33] target at augmenting logic-
based criteria inspired by the mutation approach. Contrary



to these approaches, the present paper applies mutation on
the program input model. Additionally, we measure the fault
detection ability of this approach. Andrews et al. showed
that generated mutants can be used to predict the detection
effectiveness of real faults [18]. They investigate the relative
cost and effectiveness of different testing coverage criteria.
Here, we do not focus on whether or not the generated mutants
of the model are representative of real defects.

Finally, the Kendall coefficient has been used in several
work to measure the the correlation between two measured
quantities. For instance, Gligoric et al. [11] performed a
correlation analysis using this coefficient in order to evaluate
the relationship between coverages and mutation score. In
this work, we perform a correlation analysis by measuring
the Kendall τ between a) the number of input parameter
interactions covered by a given test suite and b) the number
of the introduced mutants distinguished by the test suite with
its actual fault detection.

VIII. CONCLUSION

In this paper, we proposed a mutation analysis approach as
an alternative technique to CIT. We conducted a correlation
analysis between a) the CIT and b) the mutation approach
with their actual fault detection. Our results suggest that our
mutants have a stronger correlation with code-level faults than
the input interactions of the CIT approach. Therefore, mutation
forms a valid measure of the test suites’ quality.

Our future work includes experimentations with additional
mutant operators, like replacing one parameter with another
one. Additionally, possible ways of combining the examined
techniques are also under investigation. Finally, we intend to
broaden our study with additional programs and faults.
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