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Abstract. Due to the complex clinical picture of Parkinson’s disease
(PD), the reliable diagnosis of patients is still challenging. A promising
approach is the structural characterization of brain areas affected in PD
by diffusion magnetic resonance imaging (dMRI). Standard classification
methods depend on an accurate non-linear alignment of all images to a
common reference template, and are challenged by the resulting huge
dimensionality of the extracted feature space. Here, we propose a novel
diagnosis pipeline based on the Fisher vector algorithm. This technique
allows for a precise encoding into a high-level descriptor of standard dif-
fusion measures like the fractional anisotropy and the mean diffusivity,
extracted from the regions of interest (ROIs) typically involved in PD.
The obtained low dimensional, fixed-length descriptors are independent
of the image alignment and boost the linear separability of the problem
in the description space, leading to more efficient and accurate diagno-
sis. In a test cohort of 50 PD patients and 50 controls, the implemented
methodology outperforms previous methods when using a logistic linear
regressor for classification of each ROI independently, which are subse-
quently combined into a single classification decision.
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1 Introduction

Magnetic resonance imaging (MRI) has become a well-known useful and estab-
lished technique for the diagnosis and progression monitoring of neurodegener-
ative diseases. Recent developments on MRI allow for capturing different prop-
erties of brain tissues, like the structural integrity by diffusion MRI (dMRI), or
the activation and interaction between different brain regions when performing
a task or in resting-state by functional MRI. To extract diagnostic parame-
ters, traditional approaches for the statistical analysis of these images rely on
a group-level, voxel-wise comparison of the extracted measures by using uni-
variate statistical tools such as the t-test, χ2-test, etc. Common techniques like
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voxel-based morphometry [1] can provide good insights in the pathological in-
volvement of different brain regions, but lack the ability of fully integrate the
extracted features.

Currently, more advanced machine learning methodologies are being used to
fully integrate the data and provide results at the level of the individual [11]. The
typically small sample size and the high-dimensionality of the data pose major
problems when using these methods. Although a step of feature selection may
alleviate the problem, there is still a huge risk of overfitting that may obscure the
results’ validity [11]. Additionally, the considered features are, most presumably,
non-linearly separable, what restrains the ability of linear classifiers, and even
more advanced kernel-based methods, for obtaining optimal decision thresholds.

In this paper we propose a novel pipeline for the diagnosis of Parkinson’s dis-
ease (PD). Our methodology utilizes the advantages of the Fisher vector (FV)
algorithm [14] to regionally encode the data in high-level descriptors. This way,
and in contrast to standard approaches, we get rid of the necessity of a fine
alignment between different subjects’ brains, since a voxel-wise comparison is
not required. Therefore, the step of non-linear registration of all images to a
reference template can be skipped, excluding artefacts or undesired corruption
of the subject data due to under- or over-alignments. Further, thanks to rep-
resenting the distribution of the data captured from all voxels of each region
of interest (ROI) as a fixed-length high-level descriptor, we lead to an immense
reduction of the dimensionality of the problem. Finally, since the FV algorithm
is based on the Fisher Kernel (FK) principle [8], we can understand the pro-
cess of computing the FV descriptor as an embedding of the extracted features
into a higher-dimensional space, more suitable to linear classification. This strat-
egy directly supports the last stage of classification and crucially improves the
diagnosis results.

Although the diagnosis of PD remains as a challenging problem, especially
in the early stages when there is not clear evidence of brain atrophy, there
have been already promising machine learning approaches in the literature [10,
13]. However, these previous studies lack a sufficient number of subjects. In
the current paper, we apply the proposed methodology to the dMRI data of a
test cohort of 50 PD patients and 50 healthy controls, chosen from the PPMI
consortium database [12]. In our test scenario we show that our approach reaches
a global accuracy of 77%, outperforming other machine learning strategies on
the same data set by at least 5%.

2 Methods

In this section we provide a brief overview of the Fisher vector algorithm, and
how the high-level descriptor is obtained from the raw neuroimaging data. We
also describe in detail the developed pipeline, from the preprocessing of the data
to the last step of classification.
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2.1 Fisher vector algorithm

Given the measures extracted from all the subjects for a specific brain ROI,
we define the sample X = {xn : n = 1, . . . , N} of D-dimensional observations
xn ∈ X , with N the total number of voxels and D the number of extracted
features. Let’s consider a generative process defined by the probability density
function (p.d.f.) uθ, which models the generation of the elements in X . The p.d.f.
uθ is defined by the set of parameters θ = {θm : m = 1, . . . ,M}, where θ ∈ RM .
To measure the similarity between two samples X and Y, the authors in [8] use
the Fisher Kernel, which is defined as follows:

KFK(X,Y) = GX
θ

′
F−1θ GY

θ = GX
θ

′
L′θLθG

Y
θ = GXθ

′GYθ , (1)

where Fθ is the Fisher information matrix (FIM), factorized into terms Lθ
through Cholesky decomposition, and GX

θ is the score function. This function,
defined as GX

θ = ∇θ log uθ(X), measures how the parameters θ of the generative
model uθ should be modified to better fit X. The Cholesky decomposition of the
FIM allows to re-write the FK as the dot-product of the gradient statistics Gθ,
as we observe in Eq. (1).

In [14], the authors choose a Gaussian mixture model (GMM) as the genera-
tive model uθ, due to it can accurately capture any continuous distribution [15].
Thus, the p.d.f. uθ is defined by K Gaussian components as follows:

uθ(x) =

K∑
k=1

wkuk(x) with uk ∼ N (µk, σkI), (2)

where µk ∈ RD is the mean and σk ∈ RD is the diagonal of the covari-
ance matrix for the k-th Gaussian component. The restrictions wk ≥ 0 ∀ k and∑K
k=1 wk = 1 over the mixture weights wk can be implicitly included in the

auxiliary parameter αk ∈ R [14]. Therefore, the set of parameters results in
θ = {αk, µk, σk : k = 1, . . . ,K}. Given X, they can be computed by using the
expectation-maximization (EM) algorithm [5].

Now, let us define X` = {xn`
: n` = 1, . . . , N`} as the subset of observations

X` ⊂ X for subject `. Given the set of parameters θ computed using the whole
sample X, and assuming independence between observations in X`, the gradient
statistics in Eq. (1) can be obtained as [14]:

GX`

θ =

N∑̀
n`=1

Lθ∇θ log uθ(xn`
) (3)

Thanks to considering a GMM as the generative model, and by assuming the
FIM to be diagonal, analytic expressions can be derived for each parameters θm,
as detailed in [14]. Through these expressions, we readily calculate the gradients
GX`
µk

, GX`
σk

and GX`
αk

for each Gaussian component k, which are stacked together
to form the Fisher vector (FV) for each subject `, hereafter denoted as F`. The
gradient statistics GX`

θm
measure the deviation of the subject data X` from the
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distribution of the generative model, fitted for all data X. This way, the FV
descriptor captures the slight variations in each subject’s data distribution with
respect to the distribution for all samples. Now, since GX`

αk
is scalar, and GX`

µk

and GX`
σk

are D-dimensional vectors, the dimension of F` is (2D+ 1)K, therefore
depending only on the parameters of the generative model, and not on the size
of the ROI described. Finally, given that the Fisher kernel is equivalent to the
dot product of the gradient statistics, Eq. (1), using the FV descriptor as input
to a linear classifier is equivalent to directly feeding the original features to a
non-linear classifier using the Fisher kernel. Therefore, the description space of
the Fisher vector is a more amenable representation of the extracted measures.

2.2 Pipeline for dMRI analysis

To conveniently illustrate the proposed methodology, we depict in Fig. 1 the flow
diagram of the pipeline. The input data required is:

• The diffusion weighted image (DWI) of each subject. Through eddy, included
in the FMRIB Software Library (FSL) [9], we first correct the eddy current
and head motion. Then, the brain is extracted from the T2-weighted b0
volume, contained in the DWI tensor, using bet, also included in FSL.
• A reference template to align the subjects to.
• Masks for the ROIs considered, in the same space as the reference template.

Given this data, we first use FLIRT (FMRIB’s Linear Image Registration
Tool) to linearly align the DWI volume to the reference template, by using an
affine transformation with 12 degrees of freedom and the T2-weighted b0 volume
as the moving image. Then, the reference template is non-linearly aligned to
each subject’s space, using the symmetric image normalisation method (SyN)
contained in the ANTS package [2], considering cross-correlation as the image
metric. The transformations obtained are used to warp the masks of all the
selected ROIs to each subject space. Thanks to this strategy of registration,
already used before in the literature, the patient images are not deformed, and
therefore the risk of corrupting the data is minimised, in contrast to approaches
where patient images are non-linearly aligned to the reference template.

Using the warped masks of the ROIs for all the subjects, we subdivide each
ROI in different subROIs in the x, y and z directions according to some given
minimum and maximum voxel sizes for the resulting subdivisions. It is important
to note that, although for every ROI all the subjects will have the same number
of subROIs and the same scheme of division in every direction, each subROI
will have a particular voxel size because the subjects’ brains are not non-linearly
aligned to a common template. Then, by using the DTIfit tool included in FSL,
we apply diffusion tensor imaging (DTI) method on the DWI data to extract
the diffusion tensor and related diffusion measures. With the subROIs indices
obtained from the masks, we extract a matrix Xr

` of diffusion features for every
subject ` and subROI r.

Finally, for each r, we fit the GMM to the data Xr = [Xr
1; . . . ; Xr

L] using the
EM algorithm [5]. The parameters obtained, together with each subROI data
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Xr
` , allow to finally compute the fixed-length Fisher vector descriptor Fr` for

every subROI and subject, as described in Section 2.1.
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Fig. 1. Flow diagram for the proposed pipeline.

2.3 Classification

To show the enhanced separability of the problem in the description space, we
consider a logistic linear regressor as classifier, with an L2 regularizer. Since this
classifier can easily handle thousands of features, we first perform the training
and classification for all the ROIs. Additionally, we also provide the performance
for each ROI separately. These individual predictions are combined to provide a
single diagnosis for each subject, by using a polling procedure, i.e. the decision
chosen is the one taken by the majority of the ROIs. Additionally, and for the
sake of comparison, we also consider a support vector machine (SVM) classifier,
with a radial-basis function (RBF) kernel. This will allow to compare the per-
formance of using the FV descriptors as input to a linear classifier, against the
performance of more powerful kernel methods using directly the diffusion mea-
sures. But the FV descriptors are not fed to the SVM because we just want to
show their potential when using linear classifiers. The software packages liblinear
and libSVM are used to run the experiments [3, 6].

3 Experiments

The data used in the preparation of this article was obtained from the Parkin-
son’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data).
For up-to-date information on the study, visit www.ppmi-info.org. From the
whole database, we initially chose only the baseline data of those subjects with
DTI-gated images, resulting a total of 185 subjects, 131 PD patients and 54
controls. We visually inspected all the images, and excluded 10 of them due to
noticeable imaging artefacts. Then, we select 50 PD patients and 50 controls by



6

using the following criteria: we first select the 50 PD cases that minimize the
deviation from the mean disease duration, from the date of diagnosis. Then, the
control group is chosen such that we match the mean age of the PD group. The
ages (mean ± standard deviation) of the PD and controls groups are 60.21±10.23
and 61.00± 10.74, respectively, and the disease duration 4.56± 1.73 months.

The DWI images from the PPMI database have a resolution of 1.98× 1.98×
2mm. Thus, from the MNI-ICBM152 symmetric template [7], we obtain a T2
reference image with resolution 2 × 2 × 2mm. For the analyses we initially se-
lected 14 ROIs usually related with the disease pathology: superior and middle
cerebellar penduncle, internal and external capsule, gyrus rectus, caudate body,
dentate nucleus, pons, sub-thalamic nucleus, red nucleus, globus pallidus externa
and interna, putamen and substantia nigra. From them, only the most discrim-
inative ones were selected, as we observe in Table 1. The atlases considered to
extract these ROIs are the MNI, JHU and Talairach, all included in FSL. From
the set of orthogonal diffusion measures obtained through DTI, we just consider
the FA and MD, as they are the most extended ones in the neuroimaging litera-
ture [4]. Any linear correlation of these measures with the age and/or gender is
regressed out before computing the FV descriptors.

The algorithm implemented for dividing the ROIs tries to bound the size of
each subROI between some minimum and maximum number of voxels, when-
ever possible. After testing different configurations, a size from 48 to 64 voxels
has been chosen. This range results in a good trade-off between having enough
samples to conveniently approximate the data distribution of each subROI, and
enough subROIs for encoding in detail the regional information of each ROI.
Then, once obtained Xr

` for all subjects and subROIs, instead of jointly con-
sidering the FA and MD, we fit a GMM for each measure in order to provide
independent scores, showing the different sensibility of each ROI to the brain
alterations caused by the disease. The number of components K for the GMM
is set to 6, which allows to precisely fit the data distribution without excessively
increasing the model complexity.

To show the performance of the proposed methodology, we compare it against
an approach that directly uses the diffusion measures as inputs to a linear or
an SVM-RBF classifier. For each of these schemes, we adjust separately the
regularization parameter. We perform 100 experiments of 10-fold cross-validation
to obtain an average accuracy score. A mean prediction is also obtained for
each ROI by averaging the results of each experiment, which are then use to
obtain a combined score for each subject. As we can observe in Table 1, when
comparing separately each of the ROIs, the proposed methodology allows to
moderately enhance the accuracy of the classifier, and remarkably in the case of
the putamen, brain region critically involved in the disease. However, sometimes
the methodology is not able to correctly capture the distribution of the data
through the FV descriptor, reducing its informativeness, as with the gyrus rectus,
which performs better in the traditional schemes. But in general, the individual
scores for all the ROIs are better than those provided by the other schemes,
slight improvements that are crucial when computing the combined score. For
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the case of the accuracy score for all the ROIs, the proposed methodology also
outperform standard approaches, but with a decrease on the performance.

Table 1. Rate of correct classification for the different experiments performed.

FA and MD FA MD

Input Data FV Desc. Diff. Feat. Diff. Feat. FV Desc. Diff. Feat. Diff. Feat. FV Desc. Diff. Feat. Diff. Feat.

Classifier Log. Reg. Log. Reg. SVM-RBF Log. Reg. Log. Reg. SVM-RBF Log. Reg. Log. Reg. SVM-RBF

Internal Caps. 63.98% 56.26% 61.08% 64.06% 62.19% 60.98% 61.16% 55.34% 60.72%

External Caps. 63.41% 60.13% 61.15% 67.30% 51.24% 61.18% 63.15% 65.42% 60.78%

Middle Cer. Pend. 57.78% 57.11% 61.20% 52.74% 55.67% 61.50% 54.87% 48.04% 61.13%

Gyrus rectus 50.63% 60.49% 61.62% 52.30% 68.61% 61.51% 50.36% 59.01% 61.52%

Caudate 61.96% 56.66% 61.46% 64.17% 52.61% 60.74% 54.04% 50.13% 61.54%

Dentate 65.36% 56.26% 61.66% 58.65% 58.13% 60.90% 59.02% 50.42% 61.74%

Putamen 77.18% 63.45% 60.76% 74.91% 51.32% 60.40% 60.01% 63.53% 60.95%

Combined score 77% 66% 60% 74% 64% 69% 65% 61% 61%

All ROIs 70.34% 59.58% 60.66% 72.90% 61.58% 61.06% 62.24% 58.00% 59.84%

4 Discussion and future work

In the present paper we have proposed a novel pipeline for the diagnosis of
PD through dMRI data. By using the FV algorithm, we accurately encode
the regional information of the diffusion measures extracted, obtaining a more
amenable descriptor for the classifier, as well as alleviating the problem of di-
mensionality. We have reported an accuracy of 77%, outperforming equivalent
approaches when either considering all the ROIs as inputs to the classifier or
each of them separately. Besides, and in contrast to voxel-based morphometry
approaches, where the accuracy of the non-linear transformation from the sub-
jects’ images to a common template plays a major role, the combination of the
registration strategy from the template image to the patient image and the use
of high-level FV descriptors allows to reduce the influence of the non-linear reg-
istration accuracy on the outcome. Furthermore, despite we have focused on
the problem of PD diagnosis through dMRI, we can equally apply the current
pipeline for the diagnosis of other diseases, as well as make use of other imaging
modalities. In these other cases, due to the general nature of our approach, it
can be expected that the proposed methodology will outperform more naive ap-
proaches, specially considering the higher sensibility other modalities may have
to the alterations caused by the disease.

Whilst there is room for improvements in our methodology, for example in the
way of combining the individual ROI classification results to obtain a single score,
or in tuning parameters, we were able to demonstrate the validity of using high-
level description techniques for the classification of neuroimaging data. Future
work will tackle these potential weaknesses by, for example: considering more
involved approaches for the combination of the class probabilities in order to
provide a better prediction; exploring the advantages of using a single GMM for
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all the extracted features; and defining optimal methods to select the number
of GMM components. Together with all these potential improvements, we will
lead then to a more robust and generalisable diagnostic methodology.
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