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We investigate the relation between bifix codes and interval exchange transforma-
tions. We prove that the class of natural codings of regular interval exchange trans-
formations is closed under maximal bifix decoding.

© 2014 Elsevier B.V. All rights reserved.

. Introduction

This paper is part of a research initiated in [2] which studies the connections between the three subjects 
ormed by symbolic dynamics, the theory of codes and combinatorial group theory. The initial focus was 
laced on the classical case of Sturmian systems and progressively extended to more general cases.
The starting point of the present research is the observation that the family of Sturmian sets is not 

losed under decoding by a maximal bifix code, even in the more simple case of the code formed of all 
ords of fixed length n. Actually, the decoding of the Fibonacci word (which corresponds to a rotation 
f angle α = (3 −

√
5)/2) by blocks of length n is an interval exchange transformation corresponding to 

 rotation of angle nα coded on n + 1 intervals. This has led us to consider the set of factors of interval 
xchange transformations, called interval exchange sets. Interval exchange transformations were introduced 
y Oseledec [15] following an earlier idea of Arnold [1]. These transformations form a generalization of 
otations of the circle.

The main result in this paper is that the family of regular interval exchange sets is closed under decoding 
y a maximal bifix code (Theorem 3.13). This result invited us to try to extend to regular interval exchange 
ransformations the results relating bifix codes and Sturmian words. This led us to generalize in [5] to a 
arge class of sets the main result of [2], namely the Finite Index Basis Theorem relating maximal bifix 
odes and bases of subgroups of finite index of the free group.

ttp://dx.doi.org/10.1016/j.jpaa.2014.09.028
022-4049/© 2014 Elsevier B.V. All rights reserved.
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Theorem 3.13 reveals a close connection between maximal bifix codes and interval exchange transfor-
mations. Indeed, given an interval exchange transformation T each maximal bifix code X defines a new
interval exchange transformation TX . We show at the end of the paper, using the Finite Index Basis The-
orem, that this transformation is actually an interval exchange transformation on a stack, as defined in [7]
(see also [19]).

The paper is organized as follows.
In Section 2, we recall some notions concerning interval exchange transformations. We state the result of

Keane [12] which proves that regularity is a sufficient condition for the minimality of such a transformation
(Theorem 2.3).

We study in Section 3 the relation between interval exchange transformations and bifix codes. We prove
that the transformation associated with a finite S-maximal bifix code is an interval exchange transformation
(Proposition 3.8). We also prove a result concerning the regularity of this transformation (Theorem 3.12).

We discuss the relation with bifix codes and we show that the class of regular interval exchange sets is
closed under decoding by a maximal bifix code, that is, under inverse images by coding morphisms of finite
maximal bifix codes (Theorem 3.13).

In Section 4 we introduce tree sets and planar tree sets. We show, reformulating a theorem of [9], that
uniformly recurrent planar tree sets are the regular interval exchange sets (Theorem 4.3). We show in
another paper [4] that, in the same way as regular interval exchange sets, the class of uniformly recurrent
tree sets is closed under maximal bifix decoding.

In Section 4.3, we explore a new direction, extending the results of this paper to a more general case.
We introduce exchange of pieces, a notable example being given by the Rauzy fractal. We indicate how the
decoding of the natural codings of exchange of pieces by maximal bifix codes are again natural codings of
exchange of pieces. We finally give in Section 4.4 an alternative proof of Theorem 3.13 using a skew product
of a regular interval exchange transformation with a finite permutation group.

2. Interval exchange transformations

Let us recall the definition of an interval exchange transformation (see [8] or [6]).
A semi-interval is a nonempty subset of the real line of the form [α, β[ = {z ∈ R | α ≤ z < β}. Thus it is

a left-closed and right-open interval. For two semi-intervals Δ, Γ , we denote Δ < Γ if x < y for any x ∈ Δ
and y ∈ Γ .

Let (A, <) be an ordered set. A partition (Ia)a∈A of [0, 1[ in semi-intervals is ordered if a < b implies
Ia < Ib.

Let A be a finite set ordered by two total orders <1 and <2. Let (Ia)a∈A be a partition of [0, 1[ in
semi-intervals ordered for <1. Let λa be the length of Ia. Let μa =

∑
b≤1a

λb and νa =
∑

b≤2a
λb. Set

αa = νa−μa. The interval exchange transformation relative to (Ia)a∈A is the map T : [0, 1[ → [0, 1[ defined
by

T (z) = z + αa if z ∈ Ia.

Observe that the restriction of T to Ia is a translation onto Ja = T (Ia), that μa is the right boundary of
Ia and that νa is the right boundary of Ja. We additionally denote by γa the left boundary of Ia and by δa
the left boundary of Ja. Thus

Ia = [γa, μa[, Ja = [δa, νa[.

Note that a <2 b implies νa < νb and thus Ja < Jb. This shows that the family (Ja)a∈A is a partition of
[0, 1[ ordered for <2. In particular, the transformation T defines a bijection from [0, 1[ onto itself.
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Fig. 2.1. A 3-interval exchange transformation.

An interval exchange transformation relative to (Ia)a∈A is also said to be on the alphabet A. The values 
αa)a∈A are called the translation values of the transformation T .

xample 2.1. Let R be the interval exchange transformation corresponding to A = {a, b}, a <1 b, b <2 a, 
a = [0, 1 − α[, Ib = [1 − α, 1[. The transformation R is the rotation of angle α on the semi-interval [0, 1[
efined by R(z) = z + α mod 1.

Since <1 and <2 are total orders, there exists a unique permutation π of A such that a <1 b if and 
nly if π(a) <2 π(b). Conversely, <2 is determined by <1 and π and <1 is determined by <2 and π. The 
ermutation π is said to be associated with T .
If we set A = {a1, a2, . . . , as} with a1 <1 a2 <1 · · · <1 as, the pair (λ, π) formed by the family λ = (λa)a∈A

nd the permutation π determines the map T . We will also denote T as Tλ,π. The transformation T is also 
aid to be an s-interval exchange transformation.

It is easy to verify that if T is an interval exchange transformation, then Tn is also an interval exchange 
ransformation for any n ∈ Z.

xample 2.2. A 3-interval exchange transformation is represented in Fig. 2.1. One has A = {a, b, c} with 
 <1 b <1 c and b <2 c <2 a. The associated permutation is the cycle π = (abc).

.1. Regular interval exchange transformations

The orbit of a point z ∈ [0, 1[ is the set {Tn(z) | n ∈ Z}. The transformation T is said to be minimal if, 
or any z ∈ [0, 1[, the orbit of z is dense in [0, 1[.

Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 . . . <1 as, μi = μai
and δi = δai

. The points 0, μ1, . . . , μs−1
orm the set of separation points of T , denoted Sep(T ). Note that the singular points of the transformation T

that is the points z ∈ [0, 1[ at which T is not continuous) are among the separation points but that the 
onverse is not true in general (see Example 3.9).

An interval exchange transformation Tλ,π is called regular if the orbits of the nonzero separation points 
1, . . . , μs−1 are infinite and disjoint. Note that the orbit of 0 cannot be disjoint of the others since one has 
(μi) = 0 for some i with 1 ≤ i ≤ s −1. The term regular was introduced by Rauzy in [17]. A regular interval 
xchange transformation is also said to be without connections or to satisfy the idoc condition (where idoc 
tands for infinite disjoint orbit condition).

Note that since δ2 = T (μ1), . . . , δs = T (μs−1), T is regular if and only if the orbits of δ2, . . . , δs are 
nfinite and disjoint.

As an example, the 2-interval exchange transformation of Example 2.1 which is the rotation of angle α
s regular if and only if α is irrational.

Note that if T is a regular s-interval exchange transformation, then for any n ≥ 1, the transformation 
n is an n(s − 1) + 1-interval exchange transformation. Indeed, the points T i(μj) for 0 ≤ i ≤ n − 1 and 
 ≤ j ≤ s − 1 are distinct and define a partition in n(s − 1) + 1 intervals.

The following result is due to Keane [12].

heorem 2.3 (Keane). A regular interval exchange transformation is minimal.
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The converse is not true. Indeed, consider the rotation of angle α with α irrational, as a 3-interval
exchange transformation with λ = (1 − 2α, α, α) and π = (132). The transformation is minimal as any
rotation of irrational angle but it is not regular since μ1 = 1 − 2α, μ2 = 1 − α and thus μ2 = T (μ1).

The following necessary condition for minimality of an interval exchange transformation is useful. A per-
mutation π of an ordered set A is called decomposable if there exists an element b ∈ A such that the set B
of elements strictly less than b is nonempty and such that π(B) = B. Otherwise it is called indecomposable.
If an interval exchange transformation T = Tλ,π is minimal, the permutation π is indecomposable. Indeed,
if B is a set as above, the set S =

⋃
a∈B Ia is closed under T and strictly included in [0, 1[.

The following example shows that the indecomposability of π is not sufficient for T to be minimal.

Example 2.4. Let A = {a, b, c} and λ be such that λa = λc. Let π be the transposition (ac). Then π is
indecomposable but Tλ,π is not minimal since it is the identity on Ib.

2.2. Natural coding

Let A be a finite nonempty alphabet. All words considered below, unless stated explicitly, are supposed
to be on the alphabet A. We denote by A∗ the set of all words on A. We denote by 1 or by ε the empty
word. We refer to [3] for the notions of prefix, suffix, factor of a word.

Let T be an interval exchange transformation relative to (Ia)a∈A. For a given real number z ∈ [0, 1[, the
natural coding of T relative to z is the infinite word ΣT (z) = a0a1 · · · on the alphabet A defined by

an = a if Tn(z) ∈ Ia.

For a word w = b0b1 · · · bm−1, let Iw be the set

Iw = Ib0 ∩ T−1(Ib1) ∩ . . . ∩ T−m+1(Ibm−1). (2.1)

Note that each Iw is a semi-interval. Indeed, this is true if w is a letter. Next, assume that Iw is a semi-
interval. Then for any a ∈ A, T (Iaw) = T (Ia) ∩ Iw is a semi-interval since T (Ia) is a semi-interval by
definition of an interval exchange transformation. Since Iaw ⊂ Ia, T (Iaw) is a translate of Iaw, which is
therefore also a semi-interval. This proves the property by induction on the length.

Set Jw = Tm(Iw). Thus

Jw = Tm(Ib0) ∩ Tm−1(Ib1) ∩ . . . ∩ T (Ibm−1). (2.2)

In particular, we have Ja = T (Ia) for a ∈ A. Note that each Jw is a semi-interval. Indeed, this is true if w is
a letter. Next, for any a ∈ A, we have T−1(Jwa) = Jw ∩ Ia. This implies as above that Jwa is a semi-interval
and proves the property by induction. We set by convention Iε = Jε = [0, 1[. Then one has for any n ≥ 0

anan+1 · · · an+m−1 = w ⇐⇒ Tn(z) ∈ Iw (2.3)

and

an−man−m+1 · · · an−1 = w ⇐⇒ Tn(z) ∈ Jw. (2.4)

Let (αa)a∈A be the translation values of T . Note that for any word w,

Jw = Iw + αw (2.5)
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j=0 αbj as one may verify by induction on |w| = m. Indeed it is true for m = 1. For m ≥ 2, 
et w = ua with a = bm−1. One has Tm(Iw) = Tm−1(Iw) + αa and Tm−1(Iw) = Iw + αu by the induction 
ypothesis and the fact that Iw is included in Iu. Thus Jw = Tm(Iw) = Iw + αu + αa = Iw + αw. Eq. (2.5)
hows in particular that the restriction of T |w| to Iw is a translation.

.3. Uniformly recurrent sets

A set S of words on the alphabet A is said to be factorial if it contains the factors of its elements.
A factorial set is said to be right-extendable if for every w ∈ S there is some a ∈ A such that wa ∈ S. 

t is biextendable if for any w ∈ S, there are a, b ∈ A such that awb ∈ S.
A set of words S �= {ε} is recurrent if it is factorial and if for every u, w ∈ S there is a v ∈ S such that 

vw ∈ S. A recurrent set is biextendable. It is said to be uniformly recurrent if it is right-extendable and if, 
or any word u ∈ S, there exists an integer n ≥ 1 such that u is a factor of every word of S of length n. 

uniformly recurrent set is recurrent.
We denote by AN the set of infinite words on the alphabet A. For a set X ⊂ AN, we denote by F (X) the 

et of factors of the words of X.
Let S be a set of words on the alphabet A. For w ∈ S, set R(w) = {a ∈ A | wa ∈ S} and L(w) =

a ∈ A | aw ∈ S}. A word w is called right-special if Card(R(w)) ≥ 2 and left-special if Card(L(w)) ≥ 2. 
t is bispecial if it is both right and left-special.

An infinite word on a binary alphabet is Sturmian if its set of factors is closed under reversal and if for 
ach n there is exactly one right-special word of length n.

An infinite word is a strict episturmian word if its set of factors is closed under reversal and for each n
here is exactly one right-special word w of length n, which is moreover such that Card(R(w)) = Card(A).

A morphism f : A∗ → A∗ is called primitive if there is an integer k such that for all a, b ∈ A, the letter b
ppears in fk(a). If f is a primitive morphism, the set of factors of any fixpoint of f is uniformly recurrent 
see [10, Proposition 1.2.3], for example).

xample 2.5. Let A = {a, b}. The Fibonacci word is the fixpoint x = fω(a) = abaababa . . . of the morphism 
: A∗ → A∗ defined by f(a) = ab and f(b) = a. It is a Sturmian word (see [13]). The set F (x) of factors of 
is the Fibonacci set.

xample 2.6. Let A = {a, b, c}. The Tribonacci word is the fixpoint x = fω(a) = abacaba · · · of the morphism 
: A∗ → A∗ defined by f(a) = ab, f(b) = ac, f(c) = a. It is a strict episturmian word (see [11]). The set 
(x) of factors of x is the Tribonacci set.

.4. Interval exchange sets

Let T be an interval exchange set. The set F (ΣT (z)) is called an interval exchange set. It is biextendable.
If T is a minimal interval exchange transformation, one has w ∈ F (ΣT (z)) if and only if Iw �= ∅. Thus the 

et F (ΣT (z)) does not depend on z. Since it depends only on T , we denote it by F (T ). When T is regular 
resp. minimal), such a set is called a regular interval exchange set (resp. a minimal interval exchange set).

Let T be an interval exchange transformation. Let M be the closure in AN of the set of all ΣT (z) for 
∈ [0, 1[ and let σ be the shift on M . The pair (M, σ) is a symbolic dynamical system, formed of a topological 

pace M and a continuous transformation σ. Such a system is said to be minimal if the only closed subsets 
nvariant by σ are ∅ or M (that is, every orbit is dense). It is well-known that (M, σ) is minimal if and only 
f F (T ) is uniformly recurrent (see for example [13, Theorem 1.5.9]).

We have the following commutative diagram (Fig. 2.2).
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Fig. 2.2. The transformations T and σ.

The map ΣT is neither continuous nor surjective. This can be corrected by embedding the interval [0, 1[
into a larger space on which T is a homeomorphism (see [12] or [6, p. 349]). However, if the transformation T

is minimal, the symbolic dynamical system (M, S) is minimal (see [6, p. 392]). Thus, we obtain the following
statement.

Proposition 2.7. For any minimal interval exchange transformation T , the set F (T ) is uniformly recurrent.

Note that for a minimal interval exchange transformation T , the map ΣT is injective (see [12] p. 30).
The following is an elementary property of the intervals Iu which will be used below. We denote by <1

the lexicographic order on A∗ induced by the order <1 on A.

Proposition 2.8. One has Iu < Iv if and only if u <1 v and u is not a prefix of v.

Proof. For a word u and a letter a, it results from (2.1) that Iua = Iu∩T−|u|(Ia). Since (Ia)a∈A is an ordered
partition, this implies that (T |u|(Iu) ∩Ia)a∈A is an ordered partition of T |u|(Iu). Since the restriction of T |u|

to Iu is a translation, this implies that (Iua)a∈A is an ordered partition of Iu. Moreover, for two words u, v,
it results also from (2.1) that Iuv = Iu ∩ T−|u|(Iv). Thus Iuv ⊂ Iu.

Assume that u <1 v and that u is not a prefix of v. Then u = 
as and v = 
bt with a, b two letters such
that a <1 b. Then we have I�a < I�b, with Iu ⊂ I�a and Iv ⊂ I�b whence Iu < Iv.

Conversely, assume that Iu < Iv. Since Iu ∩ Iv = ∅, the words u, v cannot be comparable for the prefix
order. Set u = 
as and v = 
bt with a, b two distinct letters. If b <1 a, then Iv < Iu as we have shown
above. Thus a <1 b which implies u <1 v. �

We denote by <2 the order on A∗ defined by u <2 v if u is a proper suffix of v or if u = waz and v = tbz

with a <2 b. Thus <2 is the lexicographic order on the reversal of the words induced by the order <2 on
the alphabet.

We denote by π the morphism from A∗ onto itself which extends to A∗ the permutation π on A. Then
u <2 v if and only if π−1(ũ) <1 π−1(ṽ), where ũ denotes the reversal of the word u.

The following statement is the analogue of Proposition 2.8.

Proposition 2.9. Let Tλ,π be an interval exchange transformation. One has Ju < Jv if and only if u <2 v

and u is not a suffix of v.

Proof. Let (I ′a)a∈A be the family of semi-intervals defined by I ′a = Jπ(a). Then the interval exchange
transformation T ′ relative to (I ′a) with translation values −αa is the inverse of the transformation T . The
semi-intervals I ′w defined by Eq. (2.1) with respect to T ′ satisfy I ′w = Jπ(w̃) or equivalently Jw = I ′π−1(w̃).
Thus, Ju < Jv if and only if I ′π−1(ũ) < I ′π−1(ṽ) if and only if (by Proposition 2.8) π−1(ũ) <1 π−1(ṽ) or
equivalently u <2 v. �
3. Bifix codes and interval exchange

In this section, we first introduce prefix codes and bifix codes. For a more detailed exposition, see [3].
We describe the link between maximal bifix codes and interval exchange transformations and we prove our
main result (Theorem 3.13).
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Fig. 3.1. The invariant probability distribution on the Fibonacci set.

.1. Prefix codes and bifix codes

A prefix code is a set of nonempty words which does not contain any proper prefix of its elements. A suffix 
ode is defined symmetrically. A bifix code is a set which is both a prefix code and a suffix code.

A coding morphism for a prefix code X ⊂ A+ is a morphism f : B∗ → A∗ which maps bijectively B
nto X.

Let S be a set of words. A prefix code X ⊂ S is S-maximal if it is not properly contained in any prefix 
ode Y ⊂ S. Note that if X ⊂ S is an S-maximal prefix code, any word of S is comparable for the prefix 
rder with a word of X.

A map λ : A∗ → [0, 1] such that λ(ε) = 1 and, for any word w

∑
a∈A

λ(aw) =
∑
a∈A

λ(wa) = λ(w), (3.1)

s called an invariant probability distribution on A∗.
Let Tλ,π be an interval exchange transformation. For any word w ∈ A∗, denote by |Iw| the length of the 

emi-interval Iw defined by Eq. (2.1). Set λ(w) = |Iw|. Then λ(ε) = 1 and for any word w, Eq. (3.1) holds 
nd thus λ is an invariant probability distribution.

The fact that λ is an invariant probability measure is equivalent to the fact that the Lebesgue measure 
n [0, 1[ is invariant by T . It is known that almost all regular interval exchange transformations have no 
ther invariant probability measure (and thus are uniquely ergodic, see [6] for references).

xample 3.1. Let S be the set of factors of the Fibonacci word (see Example 2.5). It is the natural coding 
f the rotation of angle α = (3 −

√
5)/2 with respect to α (see [13, Chapter 2]). The values of the map λ on 

he words of length at most 4 in S are indicated in Fig. 3.1.

The following result is a particular case of a result from [2] (Proposition 3.3.4).

roposition 3.2. Let T be a minimal interval exchange transformation, let S = F (T ) and let λ be an invariant 
robability distribution on S. For any finite S-maximal prefix code X, one has 

∑
x∈X λ(x) = 1.

The following statement is connected with Proposition 3.2.

roposition 3.3. Let T be a minimal interval exchange transformation relative to (Ia)a∈A, let S = F (T )
nd let X be a finite S-maximal prefix code ordered by <1. The family (Iw)w∈X is an ordered partition of 
0, 1[.
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Proof. By Proposition 2.8, the sets (Iw) for w ∈ X are pairwise disjoint. Let π be the invariant probability
distribution on S defined by π(w) = |Iw|. By Proposition 3.2, we have 

∑
w∈X π(w) = 1. Thus the family

(Iw)w∈X is a partition of [0, 1[. By Proposition 2.8 it is an ordered partition. �
Example 3.4. Let T be the rotation of angle α = (3 −

√
5)/2. The set S = F (T ) is the Fibonacci set. The

set X = {aa, ab, b} is an S-maximal prefix code (see the grey nodes in Fig. 3.1). The partition of [0, 1[
corresponding to X is

Iaa = [0, 1 − 2α[, Iab = [1 − 2α, 1 − α[, Ib = [1 − α, 1[.

The values of the lengths of the semi-intervals (the invariant probability distribution) can also be read on
Fig. 3.1.

A symmetric statement holds for an S-maximal suffix code, namely that the family (Jw)w∈X is an ordered
partition of [0, 1[ for the order <2 on X.

3.2. Maximal bifix codes

Let S be a set of words. A bifix code X ⊂ S is S-maximal if it is not properly contained in a bifix code
Y ⊂ S. For a recurrent set S, a finite bifix code is S-maximal as a bifix code if and only if it is an S-maximal
prefix code (see [2, Theorem 4.2.2]).

A parse of a word w with respect to a bifix code X is a triple (v, x, u) such that w = vxu where v has no
suffix in X, u has no prefix in X and x ∈ X∗. We denote by δX(w) the number of parses of w with respect
to X.

The number of parses of a word w is also equal to the number of suffixes of w which have no prefix in X
and the number of prefixes of w which have no suffix in X (see Proposition 6.1.6 in [3]).

By definition, the S-degree of a bifix code X, denoted dX(S), is the maximal number of parses of a word
in S. It can be finite or infinite.

The set of internal factors of a set of words X, denoted I(X), is the set of words w such that there exist
nonempty words u, v with uwv ∈ X.

Let S be a recurrent set and let X be a finite S-maximal bifix code of S-degree d. A word w ∈ S is such
that δX(w) < d if and only if it is an internal factor of X, that is,

I(X) =
{
w ∈ S

∣∣ δX(w) < d
}

(Theorem 4.2.8 in [2]). Thus any word of S which is not a factor of X has d parses. This implies that the
S-degree d is finite.

Example 3.5. Let S be a recurrent set. For any integer n ≥ 1, the set S ∩An is an S-maximal bifix code of
S-degree n.

The kernel of a bifix code X is the set K(X) = I(X) ∩X. Thus it is the set of words of X which are also
internal factors of X. By Theorem 4.3.11 of [2], a finite S-maximal bifix code is determined by its S-degree
and its kernel.

Example 3.6. Let S be the Fibonacci set. The set X = {a, baab, bab} is the unique S-maximal bifix code
of S-degree 2 with kernel {a}. Indeed, the word bab is not an internal factor and has two parses, namely
(1, bab, 1) and (b, a, b).
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The following result shows that bifix codes have a natural connection with interval exchange transforma-
ions.

roposition 3.7. If X is a finite S-maximal bifix code, with S as in Proposition 3.3, the families (Iw)w∈X

nd (Jw)w∈X are ordered partitions of [0, 1[, relatively to the orders <1 and <2 respectively.

roof. This results from Proposition 3.3 and its symmetric and from the fact that, since S is recurrent, 
finite S-maximal bifix code is both an S-maximal prefix code and an S-maximal suffix code. �
Let T be a regular interval exchange transformation relative to (Ia)a∈A. Let (αa)a∈A be the translation 

alues of T . Set S = F (T ). Let X be a finite S-maximal bifix code on the alphabet A.
Let TX be the transformation on [0, 1[ defined by

TX(z) = T |u|(z) if z ∈ Iu

ith u ∈ X. The transformation is well-defined since, by Proposition 3.7, the family (Iu)u∈X is a partition 
f [0, 1[.

Let f : B∗ → A∗ be a coding morphism for X. Let (Kb)b∈B be the family of semi-intervals indexed by 
he alphabet B with Kb = If(b). We consider B as ordered by the orders <1 and <2 induced by f . Let Tf

e the interval exchange transformation relative to (Kb)b∈B . Its translation values are βb =
∑m−1

j=0 αaj
for 

(b) = a0a1 · · · am−1. The transformation Tf is called the transformation associated with f .

roposition 3.8. Let T be a regular interval exchange transformation relative to (Ia)a∈A and let S = F (T ). 
f f : B∗ → A∗ is a coding morphism for a finite S-maximal bifix code X, one has Tf = TX .

roof. By Proposition 3.7, the family (Kb)b∈B is a partition of [0, 1[ ordered by <1. For any w ∈ X, we have 
y Eq. (2.5) Jw = Iw + αw and thus TX is the interval exchange transformation relative to (Kb)b∈B with 
ranslation values βb. �

In the sequel, under the hypotheses of Proposition 3.8, we consider Tf as an interval exchange transfor-
ation. In particular, the natural coding of Tf relative to z ∈ [0, 1[ is well-defined.

xample 3.9. Let S be the Fibonacci set. It is the set of factors of the Fibonacci word, which is a natural 
oding of the rotation of angle α = (3 −

√
5)/2 relative to α (see Example 3.1). Let X = {aa, ab, ba} and 

et f be the coding morphism defined by f(u) = aa, f(v) = ab, f(w) = ba. The two partitions of [0, 1[
orresponding to Tf are

Iu = [0, 1 − 2α[, Iv = [1 − 2α, 1 − α[, Iw = [1 − α, 1[

nd

Jv = [0, α[, Jw = [α, 2α[, Ju = [2α, 1[.

he transformation Tf is represented in Fig. 3.2. It is actually a representation on 3 intervals of the rotation 
f angle 2α. Note that the point z = 1 − α is a separation point which is not a singularity of Tf . The first 
ow of Table 3.1 gives the two orders on X. The next two rows give the two orders for each of the two other 
-maximal bifix codes of S-degree 2 (there are actually exactly three S-maximal bifix codes of S-degree 2

n the Fibonacci set, see [2]).
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Fig. 3.2. The transformation Tf .

Table 3.1
The two orders on the three S-maximal bifix codes 
of S-degree 2.

(X,<1) (X,<2)
aa, ab, ba ab, ba, aa
a, baab, bab bab, baab, a
aa, aba, b b, aba, aa

Let T be a minimal interval exchange transformation on the alphabet A. Let x be the natural coding of
T relative to some z ∈ [0, 1[. Set S = F (x). Let X be a finite S-maximal bifix code. Let f : B∗ → A∗ be a
morphism which maps bijectively B onto X. Since S is recurrent, the set X is an S-maximal prefix code.
Thus x has a prefix x0 ∈ X. Set x = x0x

′. In the same way x′ has a prefix x1 in X. Iterating this argument,
we see that x = x0x1 · · · with xi ∈ X. Consequently, there exists an infinite word y on the alphabet B such
that x = f(y). The word y is the decoding of the infinite word x with respect to f .

Proposition 3.10. The decoding of x with respect to f is the natural coding of the transformation associated
with f relative to z: ΣT (z) = f(ΣTf

(z)).

Proof. Let y = b0b1 · · · be the decoding of x with respect to f . Set xi = f(bi) for i ≥ 0. Then, for any n ≥ 0,
we have

Tn
f (z) = T |un|(z) (3.2)

with un = x0 · · ·xn−1 (note that |un| denotes the length of un with respect to the alphabet A). Indeed,
this is true for n = 0. Next Tn+1

f (z) = Tf (t) with t = Tn
f (z). Arguing by induction, we have t = T |un|(z).

Since x = unxnxn+1 · · · , t is in Ixn
by (2.3). Thus by Proposition 3.8, Tf (t) = T |xn|(t) and we obtain

Tn+1
f (z) = T |xn|(T |un|(z)) = T |un+1|(z) proving (3.2). Finally, for u = f(b) with b ∈ B,

bn = b ⇐⇒ xn = u ⇐⇒ T |un|(z) ∈ Iu ⇐⇒ Tn
f (z) ∈ Iu = Kb

showing that y is the natural coding of Tf relative to z. �
Example 3.11. Let T , α, X and f be as in Example 3.9. Let x = abaababa · · · be the Fibonacci word.
We have x = ΣT (α). The decoding of x with respect to f is y = vuwwv · · · .

3.3. Bifix codes and regular transformations

The following result shows that, for the coding morphism f of a finite S-maximal bifix code, the map
T 
→ Tf preserves the regularity of the transformation.

Theorem 3.12. Let T be a regular interval exchange transformation and let S = F (T ). For any finite
S-maximal bifix code X with coding morphism f , the transformation Tf is regular.
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roof. Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 · · · <1 as. We denote δi = δai
. By hypothesis, the orbits 

f δ2, . . . , δs are infinite and disjoint. Set X = {x1, x2, . . . , xt} with x1 <1 x2 <1 · · · <1 xt. Let d be the 
-degree of X.
For x ∈ X, denote by δx the left boundary of the semi-interval Jx. For each x ∈ X, it follows from 

q. (2.2) that there is an i ∈ {1, . . . , s} such that δx = T k(δi) with 0 ≤ k < |x|. Moreover, we have i = 1 if 
nd only if x = x1. Since T is regular, the index i �= 1 and the integer k are unique for each x �= x1. And 
or such x and i, by (2.4), we have ΣT (δi) = uΣT (δx) with u a proper suffix of x.

We now show that the orbits of δx2 , . . . , δxt
for the transformation Tf are infinite and disjoint. Assume 

hat δxp
= Tn

f (δxq
) for some p, q ∈ {2, . . . , t} and n ∈ Z. Interchanging p, q if necessary, we may assume that 

 ≥ 0. Let i, j ∈ {2, . . . , s} be such that δxp
= T k(δi) with 0 ≤ k < |xp| and δxq

= T �(δj) with 0 ≤ 
 < |xq|. 
ince T k(δi) = Tn

f (T �(δj)) = Tm+�(δj) for some m ≥ 0, we cannot have i �= j since otherwise the orbits of 
i, δj for the transformation T intersect. Thus i = j. Since δxp

= T k(δi), we have ΣT (δi) = uΣT (δxp
) with 

u| = k, and u a proper suffix of xp. And since δxp
= Tn

f (δxq
), we have ΣT (δxq

) = xΣT (δxp
) with x ∈ X∗. 

ince on the other hand δxq
= T �(δi), we have ΣT (δi) = vΣT (δxq

) with |v| = 
 and v a proper suffix of xq. 
e obtain

ΣT (δi) = uΣT (δxp
)

= vΣT (δxq
) = vxΣT (δxp

).

ince |u| = |vx|, this implies u = vx. But since u cannot have a suffix in X, u = vx implies x = 1 and thus 
 = 0 and p = q. This concludes the proof. �
Let f be a coding morphism for a finite S-maximal bifix code X ⊂ S. The set f−1(S) is called a maximal 

ifix decoding of S.

heorem 3.13. The family of regular interval exchange sets is closed under maximal bifix decoding.

roof. Let T be a regular interval exchange transformation such that S = F (T ). By Theorem 3.12, Tf is a 
egular interval exchange transformation. We show that f−1(S) = F (Tf ), which implies the conclusion.

Let x = ΣT (z) for some z ∈ [0, 1[ and let y = f−1(x). Then S = F (x) and F (Tf ) = F (y). For any 
∈ F (y), we have f(w) ∈ F (x) and thus w ∈ f−1(S). This shows that F (Tf ) ⊂ f−1(S). Conversely, 

et w ∈ f−1(S) and let v = f(w). Since S = F (x), there is a word u such that uv is a prefix of x. Set 
′ = T |u|(z) and x′ = ΣT (z′). Then v is a prefix of x′ and w is a prefix of y′ = f−1(x′). Since Tf is regular, 
t is minimal and thus F (y′) = F (Tf ). This implies that w ∈ F (Tf ). �

Since a regular interval exchange set is uniformly recurrent, Theorem 3.13 implies in particular that if S
s a regular interval exchange set and f a coding morphism of a finite S-maximal bifix code, then f−1(S) is 
niformly recurrent. This is not true for an arbitrary uniformly recurrent set S, as shown by the following 
xample.

xample 3.14. Set A = {a, b} and B = {u, v}. Let S be the set of factors of (ab)∗ and let f : B∗ → A∗ be 
efined by f(u) = ab and f(v) = ba. Then f−1(S) = u∗ ∪ v∗ which is not recurrent.

We illustrate the proof of Theorem 3.12 in the following example.

xample 3.15. Let T be the rotation of angle α = (3 −
√

5)/2. The set S = F (T ) is the Fibonacci set. Let 
= {a, baab, babaabaabab, babaabab}. The set X is an S-maximal bifix code of S-degree 3 (see [2]). The 

alues of the μxi
(which are the right boundaries of the intervals Ixi

) and δxi
are represented in Fig. 3.3.
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Fig. 3.3. The transformation associated with a bifix code of S-degree 3.

Fig. 3.4. The infinite word ΣT (0).

The infinite word ΣT (0) is represented in Fig. 3.4. The value indicated on the word ΣT (0) after a prefix u
is T |u|(0). The three values δx4 , δx2 , δx3 correspond to the three prefixes of ΣT (0) which are proper suffixes
of X.

The following example shows that Theorem 3.13 is not true when X is not bifix.

Example 3.16. Let S be the Fibonacci set and let X = {aa, ab, b}. The set X is an S-maximal prefix code.
Let B = {u, v, w} and let f be the coding morphism for X defined by f(u) = aa, f(v) = ab, f(w) = b. The
set W = f−1(S) is not an interval exchange set. Indeed, we have vu, vv, wu, wv ∈ W . This implies that
both Jv and Jw meet Iu and Iv, which is impossible in an interval exchange transformation.

4. Tree sets

We introduce in this section the notions of tree sets and planar tree sets. We first introduce the notion
of extension graph which describes the possible two-sided extensions of a word.

4.1. Extension graphs

Let S be a biextendable set of words. For w ∈ S, we denote

L(w) = {a ∈ A | aw ∈ S}, R(w) = {a ∈ A | wa ∈ S}

and

E(w) =
{
(a, b) ∈ A×A

∣∣ awb ∈ S
}
.

For w ∈ S, the extension graph of w is the undirected bipartite graph G(w) on the set of vertices which is
the disjoint union of two copies of L(w) and R(w) with edges the pairs (a, b) ∈ E(w).

Recall that an undirected graph is a tree if it is connected and acyclic.
Let S be a biextendable set. We say that S is a tree set if the graph G(w) is a tree for all w ∈ S.
Let <1 and <2 be two orders on A. For a set S and a word w ∈ S, we say that the graph G(w) is

compatible with the orders <1 and <2 if for any (a, b), (c, d) ∈ E(w), one has

a <1 c =⇒ b ≤2 d.

Thus, placing the vertices of L(w) ordered by <1 on a line and those of R(w) ordered by <2 on a parallel
line, the edges of the graph may be drawn as straight noncrossing segments, resulting in a planar graph.

We say that a biextendable set S is a planar tree set with respect to two orders <1 and <2 on A if for
any w ∈ S, the graph G(w) is a tree compatible with <1, <2. Obviously, a planar tree set is a tree set.

The following example shows that the Tribonacci set is not a planar tree set.
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Fig. 4.1. The graphs G(ε), G(a) and G(aba) in the Tribonacci set.

Fig. 4.2. A path from a1 to an in G(w).

xample 4.1. Let S be the Tribonacci set (see Example 2.6). The words a, aba and abacaba are bispecial. 
hus the words ba, caba are right-special and the words ab, abac are left-special. The graphs G(ε), G(a)
nd G(aba) are shown in Fig. 4.1. One sees easily that it not possible to find two orders on A making the 
hree graphs planar.

.2. Interval exchange sets and planar tree sets

The following result is proved in [9] with a converse (see below).

roposition 4.2. Let T be an interval exchange transformation on A ordered by <1 and <2. If T is regular, 
he set F (T ) is a planar tree set with respect to <2 and <1.

roof. Assume that T is a regular interval exchange transformation relative to (Ia, αa)a∈A and let S = F (T ).
Since T is minimal, w is in S if and only if Iw �= ∅. Thus, one has

(i) b ∈ R(w) if and only if Iw ∩ T−|w|(Ib) �= ∅ and
ii) a ∈ L(w) if and only if Ja ∩ Iw �= ∅.

ondition (i) holds because Iwb = Iw ∩ T−|w|(Ib) and condition (ii) because Iaw = Ia ∩ T−1(Iw), which 
mplies T (Iaw) = Ja ∩ Iw. In particular, (i) implies that (Iwb)b∈R(w) is an ordered partition of Iw with 
espect to <1.

We say that a path in a graph is reduced if it does not use consecutively the same edge. For a, a′ ∈ L(w)
ith a <2 a′, there is a unique reduced path in G(w) from a to a′ which is the sequence a1, b1, . . . an with 

1 = a and an = a′ with a1 <2 a2 <2 · · · <2 an, b1 <1 b2 <1 · · · <1 bn−1 and Jai
∩ Iwbi �= ∅, Jai+1 ∩ Iwbi �= ∅

or 1 ≤ i ≤ n − 1 (see Fig. 4.2). Note that the hypothesis that T is regular is needed here since otherwise 
he right boundary of Jai

could be the left boundary of Iwbi . Thus G(w) is a tree. It is compatible with <2, 
1 since the above shows that a <2 a′ implies that the letters b1, bn−1 such that (a, b1), (a′, bn−1) ∈ E(w)

atisfy b1 ≤1 bn−1. �
By Proposition 4.2, a regular interval exchange set is a planar tree set, and thus in particular a tree set. 

ote that the analogue of Theorem 3.13 holds for the class of uniformly recurrent tree sets [4].
The main result of [9] states that a uniformly recurrent set S on an alphabet A is a regular interval 

xchange set if and only if A ⊂ S and there exist two orders <1 and <2 on A such that the following 
onditions are satisfied for any word w ∈ S.

(i) The set L(w) (resp. R(w)) is formed of consecutive elements for the order <2 (resp. <1).
(ii) For (a, b), (c, d) ∈ E(w), if a <2 c, then b ≤1 d.
iii) If a, b ∈ L(w) are consecutive for the order <2, then the set R(aw) ∩R(bw) is a singleton.



JID:JPAA AID:5127 /FLA [m3L; v 1.137; Prn:26/09/2014; 8:51] P.14 (1-18)
14 V. Berthé et al. / Journal of Pure and Applied Algebra ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

 

 

 
 

 

 
 

 
 

 
 
 

 
 
 

 
 
 
 

 
 
 

 
 
 
 
 

It is easy to see that a biextendable set S containing A satisfies (ii) and (iii) if and only if it is a planar
tree set. Actually, in this case, it automatically satisfies also condition (i). Indeed, let us consider a word w
and a, b, c ∈ A with a <1 b <1 c such that wa, wc ∈ S but wb /∈ S. Since b ∈ S there is a (possibly empty)
suffix v of w such that vb ∈ S. We choose v of maximal length. Since wb /∈ S, we have w = uv with u
nonempty. Let d be the last letter of u. Then we have dva, dvc ∈ S and dvb /∈ S. Since G(v) is a tree and
b ∈ R(v), there is a letter e ∈ L(v) such that evb ∈ S. But e <2 d and d <2 e are both impossible since
G(v) is compatible with <2 and <1. Thus we reach a contradiction.

This shows that the following reformulation of the main result of [9] is equivalent to the original one.

Theorem 4.3 (Ferenczi, Zamboni). A set S is a regular interval exchange set on the alphabet A if and only
if it is a uniformly recurrent planar tree set containing A.

We have already seen that the Tribonacci set is a tree set which is not a planar tree set (Example 4.1).
The next example shows that there are uniformly recurrent tree sets which are neither Sturmian nor regular
interval exchange sets.

Example 4.4. Let S be the Tribonacci set on the alphabet A = {a, b, c} and let f : {x, y, z, t, u}∗ → A∗ be
the coding morphism for X = S ∩ A2 defined by f(x) = aa, f(y) = ab, f(z) = ac, f(t) = ba, f(u) = ca.
By Theorem 7.1 in [4], the set W = f−1(S) is a uniformly recurrent tree set. It is not Sturmian since y and t

are two right-special words. It is not either a regular interval exchange set. Indeed, for any right-special
word w of W , one has Card(R(w)) = 3. This is not possible in a regular interval exchange set T since,
ΣT being injective, the length of the interval Jw tends to 0 as |w| tends to infinity and it cannot contain
several separation points. It can of course also be verified directly that W is not a planar tree set.

4.3. Exchange of pieces

In this section, we show how one can define a generalization of interval exchange transformations called
exchange of pieces. In the same way as interval exchange is a generalization of rotations on the circle,
exchange of pieces is a generalization of rotations of the torus. We begin by studying this direction starting
from the Tribonacci word. For more on the Tribonacci word, see [17] and also [14, Chapter 10].

4.3.1. The Tribonacci shift
The Tribonacci set S is not an interval exchange set but it is however the natural coding of another type

of geometric transformation, namely an exchange of pieces in the plane, which is also a translation acting
on the two-dimensional torus T2. This will allow us to show that the decoding of the Tribonacci word with
respect to a coding morphism for a finite S-maximal bifix code is again a natural coding of an exchange of
pieces.

The Tribonacci shift is the symbolic dynamical system (Mx, σ), where Mx = {σn(x) : n ∈ N} is the
closure of the σ-orbit of x where x is the Tribonacci word. By uniform recurrence of the Tribonacci word,
(Mx, σ) is minimal and Mx = My for each y ∈ Mx ([16, Proposition 4.7]). The Tribonacci set is the set of
factors of the Tribonacci shift (Mx, σ).

4.3.2. Natural coding
Let Λ be a full-rank lattice in Rd. We say that an infinite word x is a natural coding of a toral translation

Tt : Rd/Λ → R
d/Λ, x 
→ x + t if there exists a fundamental domain R for Λ together with a partition

R = R1 ∪ · · · ∪Rk such that on each Ri (1 ≤ i ≤ k), there exists a vector ti such that the map Tt is given
by the translation along ti, and x is the coding of a point x ∈ R with respect to this partition. A symbolic
dynamical system (M, σ) is a natural coding of (Rd/Λ, Tt) if every element of M is a natural coding of the
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Fig. 4.3. The Rauzy fractal.

rbit of some point of the d-dimensional torus Rd/Λ (with respect to the same partition) and if, furthermore, 
M, σ) and (Rd/Λ, Tt) are measurably conjugate.

.3.3. Definition of the Rauzy fractal
Let β stand for the Perron–Frobenius eigenvalue of the Tribonacci substitution. It is the largest root of 

3 − z2 − z − 1. Consider the translation Rβ : T2 → T
2, x 
→ x + (1/β, 1/β2). Rauzy introduces in [18] a 

undamental domain for a two-dimensional lattice, called the Rauzy fractal (it has indeed fractal boundary), 
hich provides a partition for the symbolic dynamical system (Mx, σ) to be a natural coding for Rβ. The 
ribonacci word is a natural coding of the orbit of the point 0 under the action of the toral translation 

n T
2: x 
→ x + ( 1

β , 
1
β2 ). Similarly as in the case of interval exchanges, we have the following commutative 

iagram

The Abelianization map f of the free monoid {1, 2, 3}∗ is defined by f : {1, 2, 3}∗ → Z
3, f(w) = |w|1e1 +

w|2e2 + |w|3e3, where |w|i denotes the number of occurrences of the letter i in the word w, and (e1, e2, e3)
tands for the canonical basis of R3.

Let f be the morphism a 
→ ab, b 
→ ac, c 
→ a such that the Tribonacci word is the fixpoint of f

see Example 2.6). The incidence matrix F of f is defined by F = (|f(j)|i)(i,j)∈A2 , where |f(j)|i counts 

he number of occurrences of the letter i in f(j). One has F =
[

1 1 1
1 0 0
0 1 0

]
. The incidence matrix F ad-

its as eigenspaces in R3 one expanding eigenline (generated by the eigenvector with positive coordinates
β = (1/β, 1/β2, 1/β3) associated with the eigenvalue β). We consider the projection π onto the antidiagonal 
lane x + y + z = 0 along the expanding direction of the matrix F .
One associates with the Tribonacci word x = (xn)n≥0 a broken line starting from 0 in Z3 and approx-

mating the expanding line vβ as follows. The Tribonacci broken line is defined as the broken line which 
oins with segments of length 1 the points f(x0x1 · · ·xn−1), n ∈ N. In other words we describe this broken 
ine by starting from the origin, and then by reading successively the letters of the Tribonacci word x, going 
ne step in direction ei if one reads the letter i. The vectors f(x0x1 · · ·xn), n ∈ N, stay within bounded 
istance of the expanding line (this comes from the fact that β is a Pisot number). The closure of the set 
f projected vertices of the broken line is called the Rauzy fractal and is represented in Fig. 4.3. We thus 
efine the Rauzy fractal R as

R :=
{
π
(
f(x0 · · ·xn−1)

)
; n ∈ N

}
,

here x0 . . . xn−1 stands for the empty word when n = 0.
The Rauzy fractal is divided into three pieces, for i = {1, 2, 3}

R(i) :=
{
π
(
f(x0 · · ·xn−1)

)
; xn = i, n ∈ N

}
,

R′(i) :=
{
π
(
f(x0 · · ·xn)

)
; xn = i, n ∈ N

}
.
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It has been proved in [18] that these pieces have nonempty interior and are disjoint up to a set of zero
measure. The following exchange of pieces E is thus well-defined

E : IntR1 ∪ IntR2 ∪ IntR3 → R, x 
→ x + π(ei), when x ∈ IntRi.

One has E(Ri) = R′
i, for all i.

We consider the lattice Λ generated by the vectors π(ei) − π(ej), for i �= j. The Rauzy fractal tiles
periodically the plane, that is, 

⋃
γ∈Λ γ+R is equal to the plane x +y+z = 0, and for γ �= γ′ ∈ Λ, γ+R and γ′+

R do not intersect (except on a set of zero measure). This is why the exchange of pieces is in fact measurably
conjugate to the translation Rβ. Indeed the vector of coordinates of π(f(x0x1 · · ·xn−1)) in the basis (π(e3) −
π(e1), π(e3) −π(e2)) of the plane x + y+ z = 0 is n · (1/β, 1/β2) − (|x0x1 · · ·xn−1|1, |x0x1 · · ·xn−1|2). Hence
the coordinates of En(0) in the basis (pi(e3) − π(e1), pi(e3) − pi(e2)) are equal to Rn

β(0) modulo Z2.

4.3.4. Bifix codes and exchange of pieces
Let (Ra)a∈A and (R′

a)a∈A be two families of subsets of a compact set R included in Rd. We assume that
the families (Ra)a∈A and (R′

a)a∈A both form a partition of R up to a set of zero measure. We assume that
there exist vectors ea such that R′

a = Ra + ea for any a ∈ A. The exchange of pieces associated with these
data is the map E defined on R (except a set of measure zero) by E(z) = z + ea if z ∈ Ra. The notion of
natural coding of an exchange of pieces extends here in a natural way.

Assume that E is an exchange of pieces as defined above. Let S be the set of factors of the natural
codings of E. We assume that S is uniformly recurrent.

By analogy with the case of interval exchanges, let Ia = Ra and let Ja = E(Ra). For a word w ∈ A∗,
one defines similarly as for interval exchanges Iw and Jw.

Let X be a finite S-maximal prefix code. The family Iw, w ∈ X, is a partition (up to sets of zero measure)
of R. If X is a finite S-maximal suffix code, then the family Jw is a partition (up to sets of zero measure)
of R. Let f be a coding morphism for X. If X is a finite S-maximal bifix code, then EX is the exchange
of pieces Ef (defined as for interval exchanges), hence the decoding of x with respect to f is the natural
coding of the exchange of pieces associated with f . In particular, S being the Tribonacci set, the decoding
of S by a finite S-maximal bifix code is again the natural coding of an exchange of pieces. If X is the set of
factors of length n of S, then Ef is in fact equal to Rn

β (otherwise, there is no reason for this exchange of
pieces to be a translation). The analogues of Proposition 3.8 and 3.10 thus hold here also.

4.4. Subgroups of finite index

We denote by FA the free group on the set A.
Let S be a recurrent set containing the alphabet A. We say that S has the finite index basis property if

the following holds: a finite bifix code X ⊂ S is an S-maximal bifix code of S-degree d if and only if it is a
basis of a subgroup of index d of FA.

The following is a consequence of the main result of [5].

Theorem 4.5. A regular interval exchange set has the finite index basis property.

Proof. Let T be a regular interval exchange transformation and let S = F (T ). Since T is regular, S is
uniformly recurrent and by Proposition 4.2, it is a tree set. By Theorem 4.4 in [5], a uniformly recurrent
tree set has the finite index basis property, and thus the conclusion follows. �

Note that Theorem 4.5 implies in particular that if T is a regular s-interval exchange set and if X is a
finite S-maximal bifix code of S-degree d, then Card(X) = d(s − 1) + 1. Indeed, by Schreier’s Formula a
basis of a subgroup of index d in a free group of rank s has d(s − 1) + 1 elements.
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Fig. 4.4. The transformation U .

We use Theorem 4.5 to give another proof of Theorem 3.12. For this, we recall the following notion.
Let T be an interval exchange transformation on I = [0, 1[ relative to (Ia)a∈A. Let G be a transitive 

ermutation group on a finite set Q. Let ϕ : A∗ → G be a morphism and let ψ be the map from I into G
efined by ψ(z) = ϕ(a) if z ∈ Ia. The skew product of T and G is the transformation U on I ×Q defined by

U(z, q) =
(
T (z), qψ(z)

)

where qψ(z) is the result of the action of the permutation ψ(z) on q ∈ Q). Such a transformation is 
quivalent to an interval exchange transformation via the identification of I ×Q with an interval obtained 
y placing the d = Card(Q) copies of I in sequence. This is called an interval exchange transformation on 
 stack in [7] (see also [19]). If T is regular, then U is also regular.

Let T be a regular interval exchange transformation and let S = F (T ). Let X be a finite S-maximal 
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ifix code of S-degree d = dX(S). By Theorem 4.5, X is a basis of a subgroup H of index d of FA. Let G
e the representation of FA on the right cosets of H and let ϕ be the natural morphism from FA onto G. 
e identify the right cosets of H with the set Q = {1, 2, . . . , d} with 1 identified to H. Thus G is a transitive 

ermutation group on Q and H is the inverse image by ϕ of the permutations fixing 1.
The transformation induced by the skew product U on I×{1} is clearly equivalent to the transformation 

f = TX where f is a coding morphism for the S-maximal bifix code X. Thus TX is a regular interval 
xchange transformation.

xample 4.6. Let T be the rotation of Example 3.1. Let Q = {1, 2, 3} and let ϕ be the morphism from A∗

nto the symmetric group on Q defined by ϕ(a) = (23) and ϕ(b) = (12). The transformation induced by 
he skew product of T and G on I × {1} corresponds to the bifix code X of Example 3.15. For example, 
e have U : (1 − α, 1) → (0, 2) → (α, 3) → (2α, 2) → (3α− 1, 1) (see Fig. 4.4) and the corresponding word 
f X is baab.
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