
New Algorithms for Secure Outsourcing
of Modular Exponentiations

Xiaofeng Chen, Jin Li, Jianfeng Ma, Qiang Tang, and Wenjing Lou, Senior Member, IEEE

Abstract—With the rapid development of cloud services, the techniques for securely outsourcing the prohibitively expensive
computations to untrusted servers are getting more and more attention in the scientific community. Exponentiations modulo a large
prime have been considered the most expensive operations in discrete-logarithm-based cryptographic protocols, and they may
be burdensome for the resource-limited devices such as RFID tags or smartcards. Therefore, it is important to present an efficient
method to securely outsource such operations to (untrusted) cloud servers. In this paper, we propose a new secure outsourcing
algorithm for (variable-exponent, variable-base) exponentiation modulo a prime in the two untrusted program model. Compared
with the state-of-the-art algorithm, the proposed algorithm is superior in both efficiency and checkability. Based on this algorithm, we
show how to achieve outsource-secure Cramer-Shoup encryptions and Schnorr signatures. We then propose the first efficient
outsource-secure algorithm for simultaneous modular exponentiations. Finally, we provide the experimental evaluation
that demonstrates the efficiency and effectiveness of the proposed outsourcing algorithms and schemes.

Index Terms—Cloud computing, outsource-secure algorithms, modular exponentiation

Ç

1 INTRODUCTION

CLOUD computing, the long-standing vision of computing
as a utility, enables convenient and on-demand network

access to a centralized pool of configurable computing
resources. One of the most attractive benefits of this new
computing environment is the so-called outsourcing
paradigm, where the resource-constrained devices can
outsource their computation workloads to cloud servers and
enjoy the unlimited computation resources in a pay-per-use
manner. As a result, the enterprises can avoid large capital
outlays in hardware/software deployment and maintenance.

Despite the tremendous benefits, the outsourcing para-
digm inevitably introduces some new security concerns
and challenges [45], [50]. First, the cloud servers can only
be assumed to be semi-trusted, while the computation
tasks often contain some sensitive information that should
not be exposed to the cloud servers. As such, the first
security challenge is the secrecy of the outsourcing compu-
tation: the cloud servers should not learn anything about
what it is actually computing (including the secret inputs
and the outputs). We argue that the encryption can only
provide a partial solution to this problem since it is very
difficult to perform meaningful computations over the

encrypted data. Note that fully homomorphic encryption
could be a potential solution, but the existing schemes are
not practical yet. Second, the semi-trusted cloud servers
may return invalid results. For example, the servers might
contain a software bug that will fail on a constant number
of invocations. Moreover, the servers might decrease the
amount of the computations due to financial incentives
and then return computationally indistinguishable
(invalid) results. Therefore, the second security challenge
is the checkability of the outsourcing computation: the
client should have the ability to detect any failures if the
cloud servers misbehave. Obviously, the test procedure
should never require some other complicated computations,
otherwise the outourcing will become meaningless. It must
be far more efficient than accomplishing the computation
task itself.

The problem of secure outsourcing expensive computa-
tions has been well studied in the cryptography community.
Chaum and Pedersen [18] first introduced the idea of ‘‘wallets
with observers’’ that allows a piece of hardware installed on
the client’s device to carry out some computations for
each transaction. Golle and Mironov [33] first introduced
the concept of ringers to elegantly solve the problem of
verifying computation completion for the ‘‘inversion of
one-way function’’ class of outsourcing computations.
Hohenberger and Lysyanskaya [35] presented the first
security model for outsourcing cryptographic computations,
and proposed the first outsource-secure algorithm for
modular exponentiations.

Our Contribution. In this paper, we propose a new secure
outsourcing algorithm for modular exponentiations in the
one-malicious version of two untrusted program model.
Compared with the state-of-the-art algorithm [35], the
proposed algorithm is superior in both efficiency and
checkability. Similar to [35], we also utilize this algorithm as

. X. Chen is with the State Key Laboratory of Integrated Service Networks
(ISN), Xidian University, China. E-mail: xfchen@xidian.edu.cn.

. J. Li is with the School of Computer Science and Educational Software,
Guangzhou University, China. E-mail: jinli71@gmail.com.

. J. Ma is with the School of Computer Science and Technology, Xidian
University, China. E-mail: jfma@mail.xidian.edu.cn.

. Q. Tang is with SnT, University of Luxembourg. E-mail: qiang.tang@uni.lu.

. W. Lou is with the Department of Computer Science, Virginia Polytechnic
Institute and State University, USA. E-mail: wjlou@vt.edu.

Manuscript received 12 Mar. 2013; revised 4 July 2013; accepted 6 July 2013.
Date of publication 23 July 2013; date of current version 13 Aug. 2014.
Recommended for acceptance by X. Liu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.180

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 20142386

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31212758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a subroutine to achieve outsource-secure Cramer-Shoup
encryptions and Schnorr signatures. Another contribution
of this paper is that we propose the first outsource-secure
and efficient algorithm for simultaneous modular exponen-
tiations, whose efficiency is (surprisingly) comparable to
that of outsourcing only one modular exponentiation in [35].
As an application, we present a secure outsourcing
algorithm for chameleon signatures. To demonstrate the
practical performances, we provide the experimental
results for the proposed outsourcing algorithms and
schemes.

The main differences between this paper and and the
conference version in ESORICS [25] are as follows: Firstly,
we present a more clearer explanation for one-malicious
version of two untrusted program model in Section 3.1.
Secondly, we describe how to extend the proposed
algorithm Exp to outsource-secure scalar multiplications
SM on elliptic curves in the Section 3.2, Also, we presented
a concrete application of the algorithm SExp, e.g., secure
outsourcing algorithm for chameleon signatures in
Section 5.3. Finally, we provide a thorough experimental
evaluation of the proposed outsourcing algorithms and
cryptographic schemes in Section 6.

1.1 Related Work
Abadi et al. [2] proved the impossibility of secure out-
sourcing an exponential computation while locally doing
only polynomial time work. Therefore, it is meaningful only to
consider outsourcing expensive polynomial time
computations. The theoretical computer science community
has devoted considerable attention to the problem of how to
securely outsource different kinds of expensive computations.
Atallah et al. [3] presented a framework for secure outsourcing
of scientific computations such as matrix multiplications
and quadrature. However, the solution used the disguise
technique and thus allowed leakage of private information.
Atallah and Li [4] investigated the problem of computing the
edit distance between two sequences and presented an
efficient protocol to securely outsource sequence comparisons
to two servers. Recently, Blanton et al. proposed a more
efficient scheme for secure outsourcing sequence comparisons
[13]. Benjamin and Atallah [8] addressed the problem of
secure outsourcing for widely applicable linear algebra
computations. However, the proposed protocols required
the expensive operations of homomorphic encryptions.
Atallah and Frikken [1] further studied this problem and
gave improved protocols based on the so-called weak secret
hiding assumption. Recently, Wang et al. [49] presented
efficient mechanisms for secure outsourcing of linear
programming computations.

In the cryptographic community, there are also plenty of
research work on the securely outsourcing computations.
In 1992, Chaum and Pedersen [18] firstly introduced the
notion of wallets with observers, a piece of secure hard-
ware installed on the client’s computer to perform some
expensive computations. Hohenberger and Lysyanskaya
[35] proposed the first outsource-secure algorithm
for modular exponentiations based on the two previous
approaches of precomputation [16], [27], [42], [46] and
server-aided computation [10], [31], [41], [51]. Chevallier-
Mames et al. [26] presented the first algorithm for secure

delegation of elliptic-curve pairings based on an untrusted
server model. Besides, the outsourcer could detect any failures
with probability 1 if the server misbehaves. However, an
obvious disadvantage of the algorithm is that the outsourcer
should carry out some other expensive operations such as
scalar multiplications and exponentiations.

Since the servers (or workers) are not trusted by the
outsourcers, Golle and Mironov [33] first introduced the
concept of ringers to solve the trust problem of verifying
computation completion. The following researchers
focused on the other trust problem of retrieving payments
[7], [21], [22], [47]. Besides, Gennaro et al. [29] first
formalized the notion of verifiable computation to solve
the problem of verifiably outsourcing the computation of an
arbitrary functions, which has attracted the attention of
plenty of researchers [11], [14], [15], [30], [32], [36], [37], [40].
Gennaro et al. [29] also proposed a protocol that allowed the
outsourcer to efficiently verify the outputs of the computa-
tions with a computationally sound, non-interactive proof
(instead of interactive ones). Benabbas et al. [12] presented
the first practical verifiable computation scheme for
high degree polynomial functions based on the approach
of [29]. In 2011, Green et al. [28] proposed new methods for
efficiently and securely outsourcing decryption of attribute-
based encryption (ABE) ciphertexts. Based on this work,
Parno et al. [43] showed a construction of a multi-function
verifiable computation scheme.

1.2 Organization
The rest of the paper is organized as follows: Some security
definitions for outsourcing computation are given in
Section 2. The proposed new outsource-secure modular
exponentiations algorithm and its security analysis are
given in Section 3. The proposed outsource-secure Cramer-
Shoup encryptions and Schnorr signatures are given in
Section 4. The secure and efficient outsourcing algorithm
for simultaneous modular exponentiations is given in
Section 5. The experimental evaluation of the proposed
algorithms is given in Section 6. Finally, conclusions will be
made in Section 7.

2 SECURITY DEFINITION AND MODEL

2.1 Definition of Outsource-Security
Informally, we say that T securely outsources some work to
U , and ðT; UÞ is an outsource-secure implementation of a
cryptographic algorithm Alg if 1) T and U implement Alg,
i.e., Alg ¼ TU and 2) suppose that T is given oracle access to
an adversary U 0 (instead of U) that records all of its
computation over time and tries to act maliciously, U 0

cannot learn anything interesting about the input and
output of TU

0
. In the following, we introduce the formal

definitions for secure outsourcing of a cryptographic
algorithm [35].

Definition 1 (Algorithm with Outsource-I/O). An algo-
rithm Alg obeys the outsource input/output specification if it
takes five inputs, and produces three outputs. The first three
inputs are generated by an honest party, and are classified by
how much the adversary A ¼ ðE; U 0Þ knows about them,

CHEN ET AL.: SECURE OUTSOURCING OF MODULAR EXPONENTIATIONS 2387

where E is the adversarial environment that submits adver-
sarially chosen inputs to Alg, and U 0 is the adversarial software
operating in place of oracle U . The first input is called the
honest, secret input, which is unknown to both E and U 0; the
second is called the honest, protected input, which may be
known byE, but is protected from U 0; and the third is called the
honest, unprotected input, which may be known by both E and
U . In addition, there are two adversarially-chosen inputs
generated by the environment E: the adversarial, protected
input, which is known to E, but protected from U 0; and the
adversarial, unprotected input, which may be known by E and
U . Similarly, the first output called secret is unknown to bothE
and U 0; the second is protected, which may be known to E, but
not U 0; and the third is unprotected, which may be known by
both parties of A.

The following definition of outsource-security ensures
that the malicious environmentE cannot gain any knowledge
of the secret inputs and outputs of TU , even if T uses the
malicious software U 0 written by E.

Definition 2 (Outsource-Security). Let Alg be an algorithm
with outsource I/O. A pair of algorithms ðT; UÞ is said to be
an outsource-secure implementation of Alg if:

1. Correctness: TU is a correct implementation of Alg.
2. Security: For all probabilistic polynomial-time

adversaries A ¼ ðE;U 0Þ, there exist probabilistic ex-
pected polynomial-time simulators ðS1; S2Þ such that the
following pairs of random variables are computationally
indistinguishable.

. Pair One. EVIEWreal � EVIEWideal:

/ The view that the adversarial environment E
obtains by participating in the following real
process:

EVIEWi
real ¼ istatei; xihs; x

i
hp; x

i
hu

� �n

 Ið1k; istatei�1Þ;

estatei; ji; xiap; x
i
au; stop

i
� �

 E 1k; EVIEWi�1
real; x

i
hp; x

i
hu

� �
;

tstatei; ustatei; yis; y
i
p; y

i
u

� �

 TU
0ðustatei�1Þ

� tstatei�1; xj
i

hs; x
ji

hp; x
ji

hu; x
i
ap; x

i
au

� �
:

estatei; yip; y
i
u

� �o

EVIEWreal ¼EVIEWi
real if stopi ¼ TRUE:

The real process proceeds in rounds. In round i, the
honest (secret, protected, and unprotected) inputs
ðxihs; xihp; xihuÞ are picked using an honest, stateful
process I to which the environment E does not have
access. Then E, based on its view from the last round,
chooses

1. the value of its estatei variable as a way of
remembering what it did next time it is invoked;

2. which previously generated honest inputs
ðxihs; xihp; xihuÞ to give to TU

0
(note that E can

specify the index ji of these inputs, but not their
values);

3. the adversarial, protected input xiap;
4. the adversarial, unprotected input xiau;
5. the Boolean variable stopi that determines whether

round i is the last round in this process.

Next, the algorithm TU
0

is run on the inputs ðtstatei�1;
xj

i

hs; x
ji

hp; x
ji

hu; x
i
ap; x

i
auÞ, where tstatei�1 is T ’s previously

saved state, and produces a new state tstatei for T , as well
as the secret yis, protected yip and unprotected yiu outputs.
The oracle U 0 is given its previously saved state, ustatei�1,
as input, and the current state of U 0 is saved in the
variable ustatei. The view of the real process in round i
consists of estatei, and the values yip and yiu. The overall
view of E in the real process is just its view in the last
round (i.e., i for which stopi ¼ TRUE.).

/ The ideal process:

EVIEWi
ideal¼ istatei; xihs; x

i
hp; x

i
hu

� �n

 Ið1k; istatei�1Þ;

estatei; ji; xiap; x
i
au; stop

i
� �

 E 1k; EVIEWi�1
ideal; x

i
hp; x

i
hu

� �
;

astatei; yis; y
i
p; y

i
u

� �

 Alg astatei�1; xj
i

hs; x
ji

hp;x
ji

hu;x
i
ap; x

i
au

� �
;

sstatei; ustatei; Y i
p ; Y

i
u ; rep

i
� �

 S
U 0ðustatei�1Þ
1

� sstatei�1;. . . ; xj
i

hp;x
ji

hu;x
i
ap;x

i
au;y

i
p;y

i
u

� �
;

zip; z
i
u

� �
¼repi Y i

p ; Y
i
u

� �

þ ð1�repiÞ yip; yiu
� �

:

estatei; zip; z
i
u

� �o

EVIEWideal ¼EVIEWi
ideal if stopi ¼ TRUE:

The ideal process also proceeds in rounds. In the
ideal process, we have a stateful simulator S1 who,
shielded from the secret input xihs, but given the
non-secret outputs that Alg produces when run all
the inputs for round i, decides to either output the
values ðyip; yiuÞ generated by Alg, or replace them
with some other values ðY i

p ; Y
i
uÞ. Note that this is

captured by having the indicator variable repi be a
bit that determines whether yip will be replaced with
Y i
p . In doing so, it is allowed to query oracle U 0;

moreover, U 0 saves its state as in the real
experiment.

. Pair Two. UVIEWreal � UVIEWideal:

/ The view that the untrusted software U 0 obtains
by participating in the real process described in
P a i r O n e . UVIEWreal ¼ ustatei i f
stopi ¼ TRUE.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 20142388

/ The ideal process:

UVIEWi
ideal¼ istatei; xihs; x

i
hp; x

i
hu

� �n

 Ið1k; istatei�1Þ;

estatei; ji; xiap; x
i
au; stop

i
� �

 E 1k; estatei�1; xihp; x
i
hu; y

i�1
p ; yi�1

u

� �
;

astatei; yis; y
i
p; y

i
u

� �

 Alg astatei�1; xj
i

hs; x
ji

hp;x
ji

hu;x
i
ap;x

i
au

� �
;

ðsstatei; ustateiÞ S
U 0ðustatei�1Þ
2

� sstatei�1; xj
i

hu; x
i
au

� �
: ðustateiÞ

�

UVIEWideal ¼UVIEWi
ideal if stopi ¼ TRUE:

In the ideal process, we have a stateful simulator
S2 who, equipped with only the unprotected
inputs ðxihu; xiauÞ, queries U 0. As before, U 0 may
maintain state.

Definition 3 (�-Efficient, Secure Outsourcing). A pair of
algorithms ðT;UÞ is said to be an �-efficient implementation of
Alg if 1) TU is a correct implementation of Alg and 2) 8 inputs
x, the running time of T is no more than an �-multiplicative
factor of the running time of Alg.

Definition 4 (�-Checkable, Secure Outsourcing). A pair
of algorithms ðT; UÞ is said to be a �-checkable implementa-
tion of Alg if 1) TU is a correct implementation of Alg and 2) 8
inputs x, if U 0 deviates from its advertised functionality
during the execution of TU

0 ðxÞ, T will detect the error with
probability no less than �.

Definition 5 (ð�; �Þ-Outsource-Security). A pair of algo-
rithms ðT; UÞ is said to be an ð�; �Þ-outsource-secure im-
plementation of Alg if it is both �-efficient and �-checkable.

Remark 1. It is worth noting that, depending on the �
parameter, a secure outourcing algorithm may not

provide 100 percent checkability (e.g., [35] and our
algorithms). In practice, it is very likely that a client will
run the outsourcing algorithm many times with the same
servers. If a server cheats frequently, there is a high
chance that it will be caught in some instances of the
algorithm. Then, the client may seriously punish the
servers when a cheating is detected. As a result, the server
will not find the incentive to cheat in practice. Neverthe-
less, it is clear that a larger � is always better. However,
there is a tradeoff between the efficiency ð�Þ and
chackability ð�Þ. For instance, a trivial way to improve
the � value is to add a lot of dummy computations to
check whether the servers have cheated. This will
significantly reduce the efficiency because the servers
need to perform a lot of additional computations.

2.2 Security Model
Hohenberger and Lysyanskaya [35] first presented the so-
called two untrusted program model for outsourcing exponen-
tiations modulo a prime. In this model, the adversarial
environment E writes the code for two (potentially differ-
ent) programs U 0 ¼ ðU 01; U 02Þ. E then gives this software to T ,
advertising a functionality that U 01 and U 02 may or may not
accurately compute, and T installs this software in a manner
such that all subsequent communication between any two of
E, U 01 and U 02 must pass through T . The new adversary
attacking T is A ¼ ðE;U 01; U 02Þ. Moreover, we assume that at
most one of the programs U 01 and U 02 deviates from its
advertised functionality on a non-negligible fraction of the
inputs, while we cannot know which one and security means
that there is a simulator S for both. This is named as the one-
malicious version of two untrusted program model (i.e.,
‘‘one-malicious model’’ for the simplicity), as shown in Fig. 1.

In the real-world applications, it is equivalent to buy
the two copies of the advertised software from two
different vendors and achieve the security as long as one
of them is honest. Recently, Canetti, Riva, and Rothblum
[19] introduced the so-called refereed delegation of
computation model, where the outsourcer delegates the
computation to n � 2 servers. In case the servers make

Fig. 1. One-malicious version of two untrusted program model.

CHEN ET AL.: SECURE OUTSOURCING OF MODULAR EXPONENTIATIONS 2389

contradictory claims about the computation results, the
outsourcer can engage in a protocol with each of the
servers, at the end of which the outsourcer can efficiently
determine the true claim under the assumption that at least
one of the servers is honest (while the outsourcer does not
know which is honest). Obviously, one-malicious model
can be viewed as a special case of refereed delegation of
computation model when the number of servers n ¼ 2.

3 NEW AND SECURE OUTSOURCING ALGORITHM
OF MODULAR EXPONENTIATIONS

In the construction from [35], a subroutine named Rand is
used in order to speed up the computations. The inputs for
Rand are a prime p, a base g 2 Z�p, and possibly some other
values, and the outputs for each invocation are a random,
independent pair of the form ðb; gb mod pÞ, where b 2 Zq.
There are two approaches to implement this functionality.
One is for a trusted server to compute a table of random,
independent pairs in advance and then load it into the
memory of T . For each invocation of Rand, T just retrieves a
new pair in the table (the table-lookup method).1 The other is
to apply the well-known preprocessing techniques. By far,
the most promising preprocessing algorithm is the EBPV
generator [42], which is secure against adaptive adversaries
and runs in time Oðlog2 nÞ for an n-bit exponent. On input a
sufficiently large subset of truly random ðk; gkÞ pairs, EBPV
generator outputs a pair ðl; glÞ that is statistically close to the
uniform distribution. Therefore, we argue that T can never
control the output of the subroutine Rand, especially the
value of l for both of the approaches.

3.1 Outsourcing Algorithm
We propose a new secure outsourcing algorithm Exp for
exponentiation modulo a prime in the one-malicious
model. In Exp, T outsources its modular exponentiation
computations to U1 and U2 by invoking the subroutine
Rand. A requirement for Exp is that the adversaryA cannot
know any useful information about the inputs and outputs
of Exp. Similar to [35], Uiðx; yÞ ! yx also denotes that Ui
takes as inputs ðx; yÞ and outputs yx mod p, where i ¼ 1, 2.

Let p; q be two large primes and qjp� 1. The input of Exp
is a 2 Z�q , and u 2 Z�p such that uq ¼ 1 mod p (for an arbitrary
base u and an arbitrary power a). The output of Exp is
ua mod p. Note that a may be secret or (honest/adversarial)
protected and u may be (honest/adversarial) protected.
Both of a and u are computationally blinded to U1 and U2.
The proposed algorithm Exp is given as follows:

1. To implement this functionality using U1 and U2, T
firstly runs Rand twice to create two blinding pairs
ð�; g�Þ and ð�; g�Þ. We denote v ¼ g� mod p and
� ¼ g� mod p.

2. The main trick is a more efficient solution to
logically split u and a into random looking pieces
that can be computed by U1 and U2. The first logical
divisions are

ua ¼ ðvwÞa ¼ ga�wa ¼ g�g�wa mod p;

where w ¼ u=vmod p and � ¼ a�� � mod q.
The second logical divisions are

ua ¼ g�g�wa ¼ g�g�wkþl ¼ g�g�wkwl mod p;

where l ¼ a� kmod q.
3. Next, T runs Rand to obtain three pairs ðt1; gt1Þ,
ðt2; gt2Þ, and ðt3; gt3Þ.

4. T queries U1 in random order as

U1ðt2=t1; gt1Þ ! gt2 ;
U1ð�=t3; gt3Þ ! g� ;
U1ðl; wÞ ! wl. Similarly, T queries U2 in random

order as

U2ðt2=t1; gt1Þ ! gt2 ;
U2ð�=t3; gt3Þ ! g� ;
U2ðk; wÞ ! wk.

5. Finally,T checks that bothU1 andU2 produce the correct
outputs, i.e., gt2 ¼ U1ðt2=t1; gt1Þ ¼ U2ðt2=t1; gt1Þ and
U1ð�=t3; gt3Þ ¼ U2ð�=t3; gt3Þ. If not, T outputs ‘‘error’’;
otherwise, T can compute ua ¼ �g�wkwl.

Remark 2. In the one-malicious model, the equation
U1ð�=t3; gt3Þ ¼ U2ð�=t3; gt3Þ implies both U1 and U2

produce the correct g� . Therefore, the partial computa-
tion result g� also plays the role of a test query. This is
slightly different from the technique in [35] while it
indeed improves the efficiency and checkability of the
computations.

Remark 3. The proposed algorithm Exp can also be extend
to outsource-secure scalar multiplications SM on
elliptic curves, i.e., aU for any a 2 Z�q and any U 2 G,
where G is a cyclic additive point group of an elliptic
curve E defined over a finite field GFðqÞ.
Trivially, the subroutine Rand is defined as RandðGÞ !

ðb; bGÞ, where b 2 Zq. T firstly runs Rand twice to create
two blinding pairs ð�; �GÞ and ð�; �GÞ. The logical divisions
are aU ¼ �Gþ �Gþ kW þ lW , where W ¼ U � V , V ¼ �G,
� ¼ a�� �, and l ¼ a� k.

Next, T runsRand to obtain three pairs ðt1; t1GÞ, ðt2; t2GÞ,
and ðt3; t3GÞ.
T queries U1 in random order as

U1ðt2=t1; t1GÞ ! t2G;
U1ð�=t3; t3GÞ ! �G;
U1ðl;WÞ ! lW .

Similarly, T queries U2 in random order as

U2ðt2=t1; t1GÞ ! t2G;
U2ð�=t3; t3GÞ ! �G;
U2ðk;W Þ ! kW .

Finally, T checks that both U1 and U2 produce the correct
outputs, i.e., t2G ¼ U1ðt2=t1; t1GÞ ¼ U2ðt2=t1; t1GÞ and U1ð�=
t3; t3GÞ ¼ U2ð�=t3; t3GÞ. If not, T outputs ‘‘error’’; other-
wise, T can compute aU ¼ �Gþ �Gþ kW þ lW .

3.2 Security Analysis

Theorem 3.1. In the one-malicious model, the algorithms ðT;
ðU1; U2ÞÞ are an outsource-secure implementation of Exp,

1. In most applications, the pair cannot be reused. For example,
reusing such a pair in Schnorr signature will result in the secret key
exposure of the signer.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 20142390

where the input ða; uÞ may be honest, secret; or honest,
protected; or adversarial, protected.

Proof. The proof is similar to [35]. The correctness is trivial
and we only focus on security. Let A ¼ ðE; U 01; U 02Þ be a
PPT adversary that interacts with a PPT algorithm T in
the one-malicious model. g

Firstly, we prove Pair One EVIEWreal � EVIEWideal:
If the input ða; uÞ is anything other than honest, secret,

then the simulator S1 behaves the same way as in the real
execution. If ða; uÞ is an honest, secret input, then the
simulator S1 behaves as follows: On receiving the input on
round i, S1 ignores it and instead makes three random
queries of the form ð�j; �jÞ to both U 01 and U 02. S1 randomly
tests two outputs (i.e., �

�j
j) from each program. If an error is

detected, S1 saves all states and outputs Y i
p ¼ ‘‘error},

Y i
u ¼ ˘, repi ¼ 1 (i.e., the output for ideal process is
ðestatei; ‘‘error};˘ÞÞ. If no error is detected, S1 checks the
remaining two outputs. If all checks pass, S1 outputs Y i

p ¼ ˘,
Y i
u ¼ ˘, repi ¼ 0 (i.e., the output for ideal process is
ðestatei; yip; yiuÞ); otherwise, S1 selects a random element r
and outputs Y i

p ¼ r, Y i
u ¼, repi ¼ 1 (i.e., the output for ideal

process is ðestatei; r;˘Þ). In either case, S1 saves the
appropriate states. The input distributions to ðU 01; U 02Þ in the
real and ideal experiments are computationally indistin-
guishable. In the ideal experiment, the inputs are chosen
uniformly at random. In the real experiment, each part of all
three queries that T makes to any one program is indepen-
dently re-randomized and thus computationally indistin-
guishable from random. If ðU 01; U 02Þ behave honest in the
round i, thenEVIEWi

real �EVIEWi
ideal (this is because T ðU

0
1;U

0
2Þ

perfectly executes Exp in the real experiment and S1

simulates with the same outputs in the ideal experiment, i.
e., repi ¼ 0). If one of ðU 01; U 02Þ is dishonest in the round i, then
it will be detected by both T and S1 with probability 2

3,
resulting in an output of ‘‘error’’; otherwise, the output of
Exp is corrupted (with probability 1

3). In the real experiment,
the three outputs generated by ðU 01; U 02Þ are multiplied together
along with a random value. In the ideal experiment, S1 also
simulates with a random value r. Thus, EVIEWi

real �
EVIEWi

ideal even when one of ðU 01;U 02Þ is dishonest. By the
hybrid argument, we conclude that EVIEWreal � EVIEWideal.

Secondly, we prove Pair Two UVIEWreal � UVIEWideal:
The simulator S2 always behaves as follows: On receiving

the input on round i, S2 ignores it and instead makes three
random queries of the form ð�j; �jÞ to both U 01 and U 02. Then
S2 saves its states and the states of ðU 01; U 02Þ. E can easily
distinguish between these real and ideal experiments (note
that the output in the ideal experiment is never corrupted).
However, E cannot communicate this information to
ðU 01; U 02Þ. This is because in the round i of the real experiment,

T always re-randomizes its inputs to ðU 01; U 02Þ. In the ideal
experiment, S2 always generates random, independent
queries for ðU 01; U 02Þ. Thus, for each round i we have
UVIEWi

real � UVIEWi
ideal. By the hybrid argument, we con-

clude that UVIEWreal � UVIEWideal.

Theorem 3.2. In the one-malicious model, the algorithms
ðT; ðU1; U2ÞÞ are an ðOðlog2 n

n Þ; 2
3Þ-outsource-secure implemen-

tation of Exp.

Proof. The proposed algorithm Exp makes 5 calls to Rand
plus 7 modular multiplication (MM) and 3 modular
inverse (MInv) in order to compute ua mod p (we omit
other operations such as modular additions). Also, Exp
takes Oðlog2 nÞ or Oð1Þ MM using the EBPV generator or
table-lookup method, respectively, where n is the bit of the
a. On the other hand, it takes roughly 1:5nMM to compute
ua mod p by the square-and-multiply method. Thus, the
algorithms ðT; ðU1; U2ÞÞ are anOðlog2 n

n Þ-efficient implemen-
tation of Exp. g

On the other hand, U1 (resp. U2) cannot distinguish the
two test queries from all of the three queries that T makes.
If U1 (resp. U2) fails during any execution of Exp, it will be
detected with probability 2

3.

3.3 Comparison
We compare the proposed algorithm with Hohenberger-
Lysyanskaya’s algorithm in [35]. We denote by MM a
modular multiplication, by MInv a modular inverse, and by
RandInvoke an invocation of the subroutine Rand. We omit
other operations such as modular additions in both
algorithms. Table 1 presents the comparison of the efficiency
and the checkability between Hohenberger-Lysyanskaya’s
algorithm and our proposed algorithm Exp.

Compared with Hohenberger-Lysyanskaya’s algorithm,
the proposed algorithm Exp is superior in both efficiency
and checkability. More precisely, Exp requires only 7 MM,
3 MInv, 5 invocation ofRand, and 3 invocation ofU1 andU2 for
each modular exponentiation. Note that the modular expo-
nentiation is the most basic operation in discrete-logarithm
based cryptographic protocols, and millions of such computa-
tions may be outsourced to the server every day. Thus, our
proposed algorithm can save huge of computational resources
for both the outsourcer T and the servers U1 and U2.

4 SECURE OUTSOURCING ALGORITHMS FOR
ENCRYPTION AND SIGNATURES

In this section, we propose two secure outsourcing
algorithms for Cramer-Shoup encryption scheme [20] and
Schnorr signature scheme [46].

4.1 Outsource-Secure Cramer-Shoup Encryptions
The proposed outsource-secure Cramer-Shoup encryption
scheme consists of the following efficient algorithms:

. System Parameters Generation: Let G be an abelian
group of a large prime order q. Let g be a generator
of G. Define a cryptographic secure hash function
H : G3 ! Zq. The system parameters are SP ¼
fG; q; g; Hg.

. Key Generation: On input 1l, run the key generation
algorithm to obtain the secret/public key pair ðSK;PKÞ,

TABLE 1
Comparison of the Two Algorithms

CHEN ET AL.: SECURE OUTSOURCING OF MODULAR EXPONENTIATIONS 2391

here SK ¼ ðw;x; y; zÞ 2R Z�q �Z3
q , PK¼ðW;X;Y;ZÞ ¼

ðgw; gx; gy; gzÞ.
. Encryption: On input the public key PK and a

messagem 2 G, the outsourcer T runs the subroutine
Rand and generates the ciphertext C as follows:

1. T runs Rand to obtain a pair ðk; r ¼ gk mod pÞ.
2. T firstly runs Exp to obtain Expðk;W Þ ! s,

Expðk; ZÞ ! t and then computes e ¼ mt, and
h ¼ Hðr; s; eÞ.

3. T runs Exp to obtain Expðk;XÞ ! �, Expðkh;
Y Þ ! � and then computes � ¼ ��.

4. T outputs the ciphertext C ¼ ðr; s; e; �Þ.

. Decryption: On input the secret key SK, and the
ciphertext C¼ðr;s; e;�Þ, the outsourcer T 0 runs the sub-
routine Exp and computes the message m as follows:

1. T 0 computes h ¼ Hðr; s; eÞ.
2. T 0 runs Exp to obtain Expðw; rÞ ! 1 and

Expðxþ yh; rÞ ! 2.
3. If and only if s ¼ 1 and � ¼ 2, T 0 runs Exp to

obtain Expðz; rÞ ! t and then computesm ¼ et�1.
4. T 0 outputs m.

Remark 4. We present a secure outsourcing algorithm for
Cramer-Shoup encryption scheme CS1b. Compared
with [35], we do not use a new subroutine Rand0 that
produces a triple ðb; gb mod p; g0b mod pÞ, while our
algorithm requires one more invocation of Exp (only)
for encryption. Trivially, we could present outsouce-
secure Cramer-Shoup encryption scheme CS1a (running
either Rand or Rand0).

4.2 Outsource-Secure Schnorr Signatures
The proposed outsource-secure Schnorr signature scheme
consists of the following efficient algorithms:

. System Parameters Generation: Let p and q be two
large primes that satisfy qjp� 1. Let g be an element
in Z�p such that gq ¼ 1 mod p. Define a cryptographic
secure hash function H : f0; 1g� ! Zp. The system
parameters are SP ¼ fp; q; g; Hg.

. Key Generation: On input 1l, run the key generation
algorithm to obtain the signing/verification key pair
ðx; yÞ, here y ¼ g�x mod p.

. Signature Generation: On input the singing key x
and a message m, the outsourcer T runs the subrou-
tine Rand and generates the signature � as follows:

1. T runs Rand to obtain a pair ðk; r ¼ gk mod pÞ.
2. T computes e ¼ HðmjjrÞ and s ¼ kþ xemod q.
3. T outputs the signature � ¼ ðe; sÞ.

. Signature Verification: On input the verification
key y, the message m, and the signature � ¼ ðe; sÞ,
the outsourcer T 0 runs the subroutine Exp and
verifies the signature � as follows:

1. T 0 runs Exp to obtain Expðs; gÞ ! 1 and Expðe;
yÞ ! 2.

2. T 0 computes r0 ¼ 1 2 mod p and e0 ¼ Hðmjjr0Þ.
3. T 0 outputs 1 if and only if e0 ¼ e.

Remark 5. The proposed outsource-secure Schnorr signa<
ture scheme is basically same as that in [35]. Note that
the subroutine Exp is only used for the signature
verification.

5 OUTSOURCE-SECURE ALGORITHM OF
SIMULTANEOUS MODULAR EXPONENTIATIONS

In this section, we focus on simultaneous modular
exponentiations ua1u

b
2 mod p, which play an important role

in many cryptographic primitives such as chameleon
hashing [5], [6], [23], [24], [38], [48] and trapdoor commit-
ment [9], [44], [34]. Trivially, a simultaneous modular
exponentiation can be carried out by invoking 2 modular
exponentiations. This requires roughly 3n MM, where n is
the bit of a and b. However, the computation cost is only
1:75n MM (i.e., roughly 1.17 modular exponentiation) if we
use the simultaneous multiple exponentiation algorithm
from Chapter 14 of [39].

5.1 Outsourcing Algorithm
In the following, we propose an efficient outsource-secure
algorithm of simultaneous modular exponentiations SExp
in the one-malicious model.

Let p; q be two large primes and qjp� 1. Given two
arbitrary bases u1; u2 2 Z�p and two arbitrary powers
a; b 2 Z�q such that the order of u1 and u2 is q. The output
of SExp is ua1u

b
2 mod p.

1. T firstly runsRand twice to create two blinding pairs
ð�; g�Þ and ð�; g�Þ. We denote v ¼ g� mod p and � ¼
g� mod p.

2. The first logical divisions are

ua1u
b
2 ¼ ðvw1Þaðvw2Þb ¼ g�g�wa1wb2;

where w1 ¼ u1=v, w2 ¼ u2=v, and � ¼ ðaþ bÞ�� �.
The second logical divisions are

ua1u
b
2 ¼ g�g�wa1wb2 ¼ g�g�wk1wl1wt2ws2;

where l ¼ a� k and s ¼ b� t.
3. Next, T runs Rand to obtain three pairs ðt1; gt1Þ,
ðt2; gt2Þ, and ðt3; gt3Þ.

4. T queries U1 in random order as

U1ðt2=t1; gt1Þ ! gt2 ;
U1ð�=t3; gt3Þ ! g� ;
U1ðk; w1Þ ! wk1;
U1ðt; w2Þ ! wt2.

Similarly, T queries U2 in random order as

U2ðt2=t1; gt1Þ ! gt2 ;
U2ð�=t3; gt3Þ ! g� ;

TABLE 2
Efficiency Comparison for Two Algorithms

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 20142392

U2ðl; w1Þ ! wl1;
U2ðs; w2Þ ! ws2.

5. Finally, T checks that both U1 and U2 produce the
correct outputs, i.e., gt2 ¼ U1ðt2=t1; gt1Þ ¼ U2ðt2=t1; gt1Þ
andU1ð�=t3;gt3Þ¼U2ð�=t3;gt3Þ. If not, T outputs ‘‘error’’;
otherwise, T can compute ua1u

b
2 ¼ �g�wk1wl1wt2ws2.

Similar to Theorem 3.1 and 3.2, we can easily prove the
following theorem:

Theorem 5.1. In the one-malicious model, the algorithms ðT;
ðU1; U2ÞÞ are an ðOðlog2 n

n Þ; 1
2Þ-outsource-secure implementation

of SExp.

5.2 Efficiency
Note that SExp requires only 10 MM, 4 MInv, 5 invocation
of Rand, and 4 invocation of U1 and U2 for each modular
exponentiation. Therefore, the computation cost of SExp is
much less than that of double running Exp. Surprisingly,
it is even comparable to that of outsourcing one modular
exponentiation [35]. Table 2 presents the comparison of
the efficiency and the checkability between Hohenberger-
Lysyanskaya’s Exp algorithm and our proposed algorithm
SExp.

5.3 Applications
In this section, we present a concrete application of the
algorithm SExp, e.g., secure outsourcing algorithm for
chameleon signatures.

Chameleon signatures, introduced by Krawczyk and
Rabin [38], are based on well established hash-and-sign
paradigm, where a chameleon hash function is used to
compute the cryptographic message digest. A chameleon
hash function is a trapdoor one-way hash function,
which prevents everyone except the holder of the trap-
door information from computing the collisions for
a randomly given input. Chameleon signatures simulta-
neously provide the properties of non-repudiation and
non-transferability for the signed message as undeniable
signatures [17] do, but the former allows for simpler

and more efficient realization than the latter. In parti-
cular, chameleon signatures are non-interactive and less
complicated. Besides, since the chameleon signatures are
based on well established hash-and-sign paradigm, it
provides more generic and flexible constructions.

In order to illustrate in details, we take a concrete
chameleon signature scheme as an example, which
employed for the Schnorr signature and the chameleon
hashing based on the Pedersen trapdoor commitment
[9], [44].

. System Parameters Generation: Let p and q be two
large primes that satisfy qjp� 1. Let g be an element
in Z�p such that gq ¼ 1 mod p. Define a cryptographic
secure hash function H : f0; 1g� ! Zp. The system
parameters are SP ¼ fp; q; g; Hg.

. Key Generation: On input 1l, run the key generation
algorithm to obtain the signing/verification key pair
ðxA; yAÞ, here yA ¼ g�xA mod p. Similarly, run the key
generation algorithm to obtain the trapdoor/hash
key pair is ðxB; yBÞ, here yB ¼ gxB mod p.

Fig. 2. Simulation for single modular exponentiations. (a) Single modular exponentiation. (b) Simultaneous modular exponentiations.

Fig. 3. Simulation for simultaneous modular exponentiations.

CHEN ET AL.: SECURE OUTSOURCING OF MODULAR EXPONENTIATIONS 2393

. Signature Generation: On input the singing key xA
and a message m, the outsourcer T generates the
chameleon signature � as follows:

1. T randomly chooses an integer a 2R Z�q , and
runs SExp to obtain SExpða;m; g; yBÞ ! .

2. T runs Rand to obtain a pair ðk; r ¼ gk mod pÞ.
3. T computes e ¼ Hð jjrÞ and s ¼ kþ xAemod q.
4. T outputs the signature � ¼ ða; e; sÞ.

. Signature Verification: On input the verification
key yA and the hash key yB, the message m, and the
signature � ¼ ða; e; sÞ, the outsourcer T 0 can verify
the chameleon signature � as follows:

1. T 0 runs SExp to obtain SExpða;m; g; yBÞ ! 0

and SExpðs; e; g; yAÞ ! r0.
2. T 0 computes e0 ¼ Hð 0jjr0Þ.
3. T 0 outputs 1 if and only if e0 ¼ e.

. Denial Protocol: If and only if T is given a pair
ðm0; a0Þ 6¼ ðm; aÞ, T could compute a new collision
ðm�; a�Þ for any message m�, where a� ¼ aþ
ðm�m�Þða� a0Þðm0 �mÞ�1 mod q.

6 PERFORMANCE EVALUATION

In this section, we provide an experimental evaluation
of the proposed outsourcing algorithms and crypto-
graphic schemes. Our experiment is simulated on two
LINUX machines with Intel Core 4 processors running
at 3.20 GHz and 4G memory (cloud server), and AMD Core 1
processor running at 1.60 GHz and 512 M memory (local
user), respectively. The programming language is Python.

The parameters of p and q are same to Federal
Information Processing Standards for DSA (FIPS-186-2).
That is, p is a 512-bit prime and qjp� 1 is a 160-bit prime

p ¼ 8df2a494 492276aa 3d25759b b06869cb

eac0d83a fb8d0cf7 cbb8324f 0d7882e5

d0762fc5 b7210eaf c2e9adac 32ab7aac

49693dfb f83724c2 ec0736ee 31c80291

q ¼ c773218c 737ec8ee 993b4f2d ed30f48e dace915f:

Firstly, we provide a simulation for both single and sim-
ultaneous modular exponentiations (i.e., Exp and SExp) as

shown in Figs. 2 and 3, respectively. Note that a number of
random pairs with the form of ðb; gb mod pÞ should be
prepared off-line, and we omit this in our simulation. Due
to our outsourcing technique, a number of computations
have been delegated to bothU1 andU2 and thus the time cost
for T is much smaller than that for directly computing
modular exponentiation from scratch.

Next, we provide the evaluation time for the outsourcing
algorithms proposed in [35] and this paper. From the result
shown in Table 3, we can see that the outsource-secure
single exponentiation algorithm Exp proposed in this
paper is superior to Hohenberger and Lysyanskaya’s
algorithm [35] in efficiency. Moreover, the efficiency of
the outsource-secure algorithm for simultaneous exponen-
tiations SExp is comparable to that of outsourcing only
one modular exponentiation in [35].

In addition, we present the evaluation time for out-
sourcing Cramer-Shoup encryptions, Schnorr signatures
and chameleon signatures in Table 4. Obviously, compared
with the original schemes, the time cost for T in outsourcing
schemes is mostly reduced due to the algorithms Exp
and SExp.

Remark 6. For all outsourcing algorithms, there is only
one-round communication between the client and the
servers (i.e. the client gives the server inputs, and the
server returns results). For each instance of an outsourc-
ing algorithm, the communication complexity is only a
few kilobytes so that it will not downgrade the overall
performance. Nevertheless, we leave it as a future work
to have a more detailed study.

7 CONCLUSION

In this paper, we propose two outsource-secure and efficient
algorithms for modular exponentiations and simultaneous
modular exponentiations, which are the most basic and
expensive operations in many discrete-logarithm cryptosys-
tems. Compared with the algorithm [35], the proposed
algorithm is superior in both efficiency and checkability.

The security model of our outsourcing algorithms
requires the outsourcer to interact with two non-colluding
cloud servers (the same as [35]). Therefore, an interesting
open problem is whether there is an efficient algorithm for
secure outsourcing modular exponentiation using only one
untrusted cloud sever.

TABLE 4
Evaluation Time for Outsourcing Cryptographic Schemes

TABLE 3
Evaluation Time for Three Outsourcing Algorithms

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 20142394

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for their
invaluable suggestions. This work is supported by the
National Natural Science Foundation of China (Nos. 61272455
and 61100224), and China 111 Project (No. B08038). Besides,
Lou’s work was supported by US National Science
Foundation under grant CNS-1155988.

REFERENCES

[1] M.J. Atallah and K.B. Frikken, ‘‘Securely Outsourcing Linear
Algebra Computations,’’ in Proc. 5th ACM Symp. Inf., Comput. Commun.
Secur., 2010, pp. 48-59.

[2] M. Abadi, J. Feigenbaum, and J. Kilian, ‘‘On Hiding Information
from an Oracle,’’ in Proc. 19th Annu. ACM Symp. Theory Comput.,
1987, pp. 195-203.

[3] M.J. Atallah, K.N. Pantazopoulos, J.R. Rice, and E.H. Spafford,
‘‘Secure Outsourcing of Scientific Computations,’’ Adv. Comput.,
vol. 54, pp. 215-272, 2002.

[4] M.J. Atallah and J. Li, ‘‘Secure Outsourcing of Sequence
Comparisons,’’ Int’l J. Inf. Secur., vol. 4, no. 4, pp. 277-287, Oct. 2005.

[5] G. Ateniese and B. de Medeiros, ‘‘Identity-Based Chameleon
Hash and Applications,’’ in Proc. FC, 2004, vol. LNCS 3110, pp. 164-180.

[6] G. Ateniese and B. de Medeiros, ‘‘On the Key-Exposure Problem
in Chameleon Hashes,’’ in Proc. SCN, 2005, vol. LNCS 3352,
pp. 165-179, Springer-Verlag: New York, NY, USA.

[7] M. Blanton, ‘‘Improved Conditional E-Payments,’’ in Proc. ACNS,
2008, vol. LNCS 5037, pp. 188-206, Springer-Verlag: New York,
NY, USA.

[8] D. Benjamin and M.J. Atallah, ‘‘Private and Cheating-Free Out-
sourcing of Algebraic Computations,’’ in Proc. 6th Annu. Conf.
Privacy, Secur. Trust, 2008, pp. 240-245.

[9] G. Brassard, D. Chaum, and C. Crepeau, ‘‘Minimum Disclosure
Proofs of Knowledge,’’ J. Comput. Syst. Sci., vol. 37, no. 2, pp. 156-189,
Oct. 1988.

[10] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway, ‘‘Locally
Random Reductions: Improvements and Applications,’’ J. Cryptol.,
vol. 10, no. 1, pp. 17-36, Dec. 1997.

[11] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, ‘‘Multi-
Prover Interactive Proofs: How to Remove Intractability Assumptions,’’
in Proc. ACM Symp. Theory Comput., 1988, pp. 113-131.

[12] S. Benabbas, R. Gennaro, and Y. Vahlis, ‘‘Verifiable Delegation
of Computation Over Large Datasets,’’ in Proc. Crypto, 2011,
vol. LNCS 6841, pp. 111-131, Springer-Verlag: New York, NY,
USA.

[13] M. Blanton, M.J. Atallah, K.B. Frikken, and Q. Malluhi, ‘‘Secure
and Efficient Outsourcing of Sequence Comparisons,’’ in Proc.
ESORICS, 2012, vol. LNCS 7459, pp. 505-522, Springer-Verlag:
New York, NY, USA.

[14] M. Blum, M. Luby, and R. Rubinfeld, ‘‘Program Result Checking
Against Adaptive Programs and in Cryptographic Settings
Proc. DIMACS Series Discrete Math. Theoretical Comput. Sci., 1991,
pp. 107-118.

[15] M. Blum, M. Luby, and R. Rubinfeld, ‘‘Self-Testing/Correcting
with Applications to Numerical Problems,’’ J. Comput. Syst. Sci.,
vol. 47, no. 3, pp. 549-595, Dec. 1993.

[16] V. Boyko, M. Peinado, and R. Venkatesan, ‘‘Speeding Up Discrete
Log and Factoring Based Schemes via Precomputations,’’ in Proc.
Eurocrypt, 1998, vol. LNCS 1403, pp. 221-232, Springer-Verlag:
New York, NY, USA.

[17] D. Chaum and H. van Antwerpen, ‘‘Undeniable Signatures,’’ in
Proc. Crypto, 1989, vol. LNCS 435, pp. 212-216, Springer-Verlag:
New York, NY, USA.

[18] D. Chaum and T. Pedersen, ‘‘Wallet Databases with Observers,’’
in Proc. Crypto 1992, 1993, vol. LNCS 740, pp. 89-105, Springer-
Verlag: New York, NY, USA.

[19] R. Canetti, B. Riva, and G. Rothblum, ‘‘Practical Delegation of
Computation using Multiple Servers,’’ in Proc. 18th ACM Conf.
Comput. Commun. Secur., 2011, pp. 445-454.

[20] R. Cramer and V. Shoup, ‘‘Design and Analysis of Practical
Public-Key Encryption Schemes Secure Against Adaptive Chosen
Ciphertext Attack,’’ SIAM J. Comput., vol. 33, no. 1, pp. 167-226, 2004.

[21] B. Carbunar and M. Tripunitara, ‘‘Conditioal Payments for Com-
puting Markets,’’ in Proc. CANS, 2008, vol. LNCS 5339, pp. 317-331,
Springer-Verlag: New York, NY, USA.

[22] B. Carbunar and M. Tripunitara, ‘‘Fair Payments for Outsourced
Computations,’’ in Proc. SECON, 2010, pp. 529-537.

[23] X. Chen, F. Zhang, and K. Kim, ‘‘Chameleon Hashing without
Key Exposure,’’ in Proc. ISC, 2004, vol. LNCS 3225, pp. 87-98,
Springer-Verlag: New York, NY, USA.

[24] X. Chen, F. Zhang, W. Susilo, and Y. Mu, ‘‘Efficient Generic
On-Line/Off-Line Signatures without Key Exposure,’’ in Proc. ACNS,
2007, vol. LNCS 4521, pp. 18-30, Springer-Verlag: New York,
NY, USA.

[25] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, ‘‘New Algorithms for
Secure Outsourcing of Modular Exponentiations,’’ in Proc. ESORICS,
2012, vol. LNCS 7459, pp. 541-556, Springer-Verlag: New York,
NY, USA.

[26] B. Chevallier-Mames, J. Coron, N. McCullagh, D. Naccache, and
M. Scott, ‘‘Secure Delegation of Elliptic-Curve Pairing,’’ in Proc.
CARDIS, 2010, vol. LNCS 6035, pp. 24-35, Springer-Verlag: New
York, NY, USA.

[27] S. Even, O. Goldreich, and S. Micali, ‘‘On-Line/Off-Line Digital
Signatures,’’ J. Cryptol., vol. 9, no. 1, pp. 35-67, 1996.

[28] M. Green, S. Hohenberger, and B. Waters, ‘‘Outsourcing
the Decryption of ABE Ciphertexts,’’ in Proc. 20th USENIX
Conf. Secur., 2011. [Online]. Available: http://static.usenix.org/
events/sec11 /tech/full_papers/Green.pdf.

[29] R. Gennaro, C. Gentry, and B. Parno, ‘‘Non-Interactive Verifiable
Computing: Outsourcing Computation to Untrusted Workers,’’
in Proc. Crypto, 2010, vol. LNCS 6223, pp. 465-482, Springer-Verlag:
New York, NY, USA.

[30] S. Goldwasser, Y.T. Kalai, and G.N. Rothblum, ‘‘Delegating
Computation: Interactive Proofs for Muggles,’’ in Proc. ACM Symp.
Theory Comput., 2008, pp. 113-122.

[31] M. Girault and D. Lefranc, ‘‘Server-Aided Verification: Theory and
Practice,’’ in Proc. ASIACRYPT, 2005, vol. LNCS 3788, pp. 605-623,
Springer-Verlag: New York, NY, USA.

[32] S. Goldwasser, S. Micali, and C. Rackoff, ‘‘The Knowledge
Complexity of Interactive Proof-Systems,’’ SIAM J. Comput.,
vol. 18, no. 1, pp. 186-208, Feb. 1989.

[33] P. Golle and I. Mironov, ‘‘Uncheatable Distributed Computa-
tions,’’ in Proc. CT-RSA, 2001, vol. LNCS 2020, pp. 425-440, Springer-
Verlag: New York, NY, USA.

[34] J. Garay, P. MacKenzie, and K. Yang, ‘‘Strengthening Zero-
Knowledge Protocols using Signatures,’’ in Proc. Eurocrypt,
2003, vol. LNCS 2656, pp. 177-194, Springer-Verlag: New York, NY,
USA.

[35] S. Hohenberger and A. Lysyanskaya, ‘‘How to Securely Out-
source Cryptographic Computations,’’ in Proc. TCC, 2005, vol.
LNCS 3378, pp. 264-282, Springer-Verlag: New York, NY, USA.

[36] J. Kilian, ‘‘A Note on Efficient Zero-Knowledge Proofs and
Arguments,’’ in Proc. ACM Symp. Theory Comput., 1992, pp. 723-732.

[37] J. Kilian, ‘‘Improved Efficient Arguments (Preliminary Ver-
sion),’’ in Proc. Crypto, 1995, pp. 311-324, Springer-Verlag: New
York, NY, USA.

[38] H. Krawczyk and T. Rabin, ‘‘Chameleon Hashing and Signa-
tures,’’ in Proc. NDSS, 2000, pp. 143-154.

[39] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1996.

[40] S. Micali, ‘‘CS Proofs,’’ in Proc. 35th Annu. Symp. Foundations
Comput. Sci., 1994, pp. 436-453.

[41] T. Matsumoto, K. Kato, and H. Imai, ‘‘Speeding up Secret
Computations with Insecure Auxiliary Devices,’’ in Proc. Crypto,
1988, vol. LNCS 403, pp. 497-506, Springer-Verlag: New York,
NY, USA.

[42] P.Q. Nguyen, I.E. Shparlinski, and J. Stern, ‘‘Distribution of
Modular Sums and the Security of Server Aided Exponentiation,’’
in Proc. Workshop Comput. Number Theory Crypt., 1999, pp. 1-16.

[43] B. Parno, M. Raykova, and V. Vaikuntanathan, ‘‘How to Delegate
and Verify in Public: Verifiable Computation from Attribute-Based
Encryption,’’ in Proc. TCC, 2012, vol. LNCS 7194, pp. 422-439,
Springer-Verlag: New York, NY, USA.

[44] T. Pedersen, ‘‘Non-Interactive and Information-Theoretical
Secure Verifiable Secret Sharing,’’ in Proc. Crypto, 1992, vol. LNCS
576, pp. 129-140, Springer-Verlag: New York, NY, USA.

[45] K. Ren, C. Wang, and Q. Wang, ‘‘Security Challenges for the Public
Cloud,’’ IEEE Internet Comput., vol. 16, no. 1, pp. 69-73, Jan./Feb. 2012.

[46] C.P. Schnorr, ‘‘Efficient Signature Generation for Smart Cards,’’
J. Cryptol., vol. 4, no. 3, pp. 161-174, 1991.

[47] L. Shi, B. Carbunar, and R. Sion, ‘‘Conditional E-Cash,’’ in Proc.
FC, 2007, vol. LNCS 4886, pp. 15-28, Springer-Verlag: New York,
NY, USA.

CHEN ET AL.: SECURE OUTSOURCING OF MODULAR EXPONENTIATIONS 2395

[48] A. Shamir and Y. Tauman, ‘‘Improved Online/Offline Signature
Schemes,’’ in Proc. Crypto, 2001, vol. LNCS 2139, pp. 355-367,
Springer-Verlag: New York, NY, USA.

[49] C. Wang, K. Ren, and J. Wang, ‘‘Secure and Practical Outsourcing
of Linear Programming in Cloud Computing,’’ in Proc. 30th IEEE
Int’l Conf. Comput. Commun., 2011, pp. 820-828.

[50] C. Wang, N. Cao, K. Ren, and W. Lou, ‘‘Enabling Secure and
Efficient Ranked Keyword Search Over Outsourced Cloud Data,’’
IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 8, pp. 1467-1479, Aug. 2012.

[51] W. Wu, Y. Mu, W. Susilo, and X. Huang, ‘‘Server-Aided
Verification Signatures: Definitions and New Constructions,’’ in
Proc. ProvSec, 2008, vol. LNCS 5324, pp. 141-155, Springer-Verlag:
New York, NY, USA.

Xiaofeng Chen received the BS and MS
degrees on mathematics from Northwest
University, Xi’an, China, in 1998 and 2000,
respectively, and the PhD degree in cryptogra-
phy in Xidian University, Xi’an, China, in 2003.
Currently, he is a Professor at the School of
Telecommunications Engineering, Xidian Uni-
versity. His research interests include public key
cryptography, financial cryptography, and cloud
computing security.

Jin Li received the BS degree in mathematics
from Southwest University, Chongqing, China, in
2002, the MS degree in mathematics from Sun
Yat-sen University, Guangzhou, China, in 2004,
and the PhD degree in information security from
Sun Yat-sen University in 2007. Currently, he works
at Guangzhou University, Guangzhou, China. His
research interests include applied cryptography
and security in cloud computing (secure outsourc-
ing computation and cloud storage).

Jianfeng Ma received the BS degree in math-
ematics from Shaanxi Normal University, Xi’an,
China, in 1985, and the ME and PhD degrees in
computer software and communications engi-
neering from Xidian University, Xi’an, China, in
1988 and 1995, respectively. From 1999 to 2001,
he was with Nanyang Technological University of
Singapore as a Research Fellow. Now, he is a
Professor in the School of Computer Science at
Xidian University. His current research interests
include distributed systems, computer networks,

and information and network security.

Qiang Tang received the BS degree from Yantai
University, Yantai, China, in 1999, the MS
degree from Peking University, Beijing, China,
in 2002, and thePhD degree in information security
and cryptography from Royal Holloway, University
of London, London, UK, in 2007. Currently, he is
a Research Scientist in the SnT research center
at the University of Luxembourg, Walferdange,
Luxembourg. His research interests include
applied cryptography and privacy-preserving
data engineering.

Wenjing Lou received the BS and MS degrees
in computer science and engineering at Xi’an
Jiaotong University, Xi’an, China, the MASc
degree in computer communications at the
Nanyang Technological University, Singapore,
and the PhD in electrical and computer engi-
neering at the University of Florida, Gainesville,
USA. She is now an Associate Professor in the
Computer Science Department at Virginia Poly-
technic Institute and State University, Blacksburg,
USA. She is a Senior Member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 20142396

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

