
PhD-FSTC-2014-21

The Faculty of Sciences, Technology and Communication

DISSERTATION

Defense held on 11/07/2014 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Frédéric PINEL
Born on 6/11/1968 in Maisons-Laffitte (France)

ENERGY-PERFORMANCE OPTIMIZATION FOR

THE CLOUD

Designing massively parallel applications for Arrays of Wimpy
Nodes inspired by the Savant syndrome

Dissertation defense committee
Dr Pascal Bouvry, dissertation supervisor
Professor, Université du Luxembourg

Dr Steffen Rothkugel, chairman
Associate Professor, Université du Luxembourg

Dr Jens Gustedt, vice chairman
Researcher, INRIA

Dr Laurent Lefèvre
Researcher, INRIA

Dr Bernabé Dorronsoro
Researcher, Université du Luxembourg

Abstract

The persistent trend in hosting Internet services towards the Cloud moti-
vates the need for energy-efficiency. The analysis of the total cost of op-
eration of a Cloud data center points to new directions for reducing the
energy-related costs. The system architecture called Array of Wimpy Nodes
(AWN) is such a direction, and sets the context for this work. The explosion
of mobile computing renews the interest in AWN, by supplying low-power
and low-cost hardware components that deliver not so low-performance.
This thesis explores how to extract performance from the parallel architec-
ture of AWN, by searching for massively parallel application designs. The
exploration of parallel application design is conducted in the context of a
complex combinatorial optimization problem, which does not involve “big
data”. The evaluation of current parallel designs suggests that new algo-
rithms, rather than new algorithms’ implementations, can deliver the neces-
sary performance on AWN. Moreover, we show how statistical methods can
guide the search for the new algorithms. Finally, we combine the previous
findings to propose a method for the automatic generation of Map-Reduce
programs, inspired by the Savant syndrome.

1

Acknowledgments

This thesis is the result of a multidisciplinary approach, which was made
possible thanks to the contribution of many people. Fairly acknowledging
the role of each is almost impossible, it must nevertheless be attempted.

The path followed in the course of this thesis was carefully reviewed, and
required much guidance, from my supervisor Dr. Pascal Bouvry. Several
key decisions were the result of his critical view. Pascal Bouvry also gave
me the opportunity to undertake this work, for which I am very grateful. In
general, the University of Luxembourg proved to be a very open and flexible
organization, which made this work pleasant.

Dr. Dorronsoro was always available to share his expertise in meta-
heuristics and combinatorial optimization, which helped significantly. He
also served as a mentor, in all aspects of the research activity. Critically, he
was always willing to discuss ideas, which certainly took a great deal of his
time, but helped solve difficult points.

Dr. Samee Khan, although remotely located from the University of
Luxembourg, was able to share some of his broad knowledge, on topics such
as distributed computing and statistical analysis. I also hope I was able to
learn from his rigorous scientific approach.

Dr. Pascal Bouvry’s team provided a great working environment. All
team members were always available to share their knowledge and give ad-
vice, in a warm atmosphere. Grégoire Danoy, Johnatan Pecero and Se-
bastien Varrette were particularly helpful. The HPC cluster team was very
helpful for using the University’s clusters [1], but also provided general ad-
vice and support on distributed computing. Several students from the Uni-
versity of Luxembourg’s Master in Computer Science also contributed to
this work, as did V. Delplace during his masters’s thesis.

2

Contents

1 Introduction 9

1.1 Context . 9
1.2 Approach . 10
1.3 Summary of Contributions . 12

2 Green Arrays of Wimpy Nodes 14

2.1 Green Computing . 14
2.1.1 Hardware Efficiency 15
2.1.2 Power-aware resource management 20
2.1.3 Energy-efficient Applications 23

2.2 Arrays of Wimpy Nodes . 25
2.2.1 AWN as a distributed system 25
2.2.2 AWN in a System On Chip 32
2.2.3 Abstract AWN Model 35

2.3 Performance of AWN . 36
2.3.1 Comparison of the Viridis ARM microserver and a GPU 36
2.3.2 Comparison of the Viridis ARM microserver and a

multi-core CPU . 42
2.4 Summary . 46

3 Parallel Programming for Arrays of Wimpy Nodes 48

3.1 Code Parallelism . 48
3.1.1 Task Performance Prediction 49
3.1.2 Task mapping with resource contention 55
3.1.3 Pipeline mapping on AWN with contention 60
3.1.4 Pipeline mapping on AWN with contention and soft

deadlines . 70
3.2 Data Parallelism . 78

3.2.1 Use case: a scheduling optimization problem 80
3.2.2 Data-parallel Min-Min for the GPU 81
3.2.3 Parallel Cellular Genetic Algorithm 85

3.3 Summary . 101

3

4 An Alternative Approach to Parallel Programming for AWN102

4.1 Introduction . 102
4.2 The Parallel Cellular Genetic Algorithm Revisited 103

4.2.1 The PA-CGA Simplification 103
4.2.2 Experimentation . 105
4.2.3 Conclusion . 109

4.3 Parallel Cellular Genetic Algorithm for the GPU 110
4.3.1 Parallel Synchronous CGA 111
4.3.2 Experimentation . 114
4.3.3 Conclusion . 116

4.4 Summary . 118

5 Algorithm Design with Sensitivity Analysis 119

5.1 Introduction . 119
5.2 Tuning Program Parameters with Sensitivity Analysis 120

5.2.1 Sensitivity Analysis of a Program 120
5.2.2 Experimentation . 123
5.2.3 Conclusion . 126

5.3 SA-Guided Modifications to an Algorithm 127
5.3.1 A Modified PA-CGA: the Two-Phase Heuristic 128
5.3.2 Experimentation . 129
5.3.3 Conclusion . 134

5.4 Summary . 134

6 Savant: Automatic Generation of Parallel Solvers 135

6.1 Introduction . 135
6.1.1 Use Case for the Savant Approach 136
6.1.2 Automatic Parallel Program Generation 136

6.2 The Savant Approach . 139
6.2.1 A Parallel Algorithm Template 139
6.2.2 Analogy with the Savant Syndrome 140
6.2.3 Application to the Automatic Solver Generation . . . 140

6.3 Experimentation . 145
6.3.1 Configuration . 145
6.3.2 Results . 152

6.4 Summary . 161

7 Conclusion and Perspectives 163

Appendices 165

A Acronyms 166

B Thesis Output 168

4

List of Figures

2.1 Microserver (source: Intel) . 32
2.2 Epiphany SoC Cluster (source: Adapteva) 34
2.3 AES Node Placement on the GA144 [2] 35
2.4 A Boston Viridis enclosure: general overview and Calxeda Energy-

Card modules. 37
2.5 Results for the Word Count application 40
2.6 Results for the String Match application 41
2.7 Performance per Application for the Largest Input. Mars/GPU:

left, Disco/ARM microserver: right 42

3.1 Performance for pipeline simulation on dual-core bi-processor 69
3.2 Performance comparison for pipeline simulation 70
3.3 Energy comparison for pipeline simulation 70
3.4 Fast99 of Performance . 75
3.5 Fast99 of Energy . 76
3.6 Morris of Performance . 77
3.7 Morris of Energy . 77
3.8 Comparison of 3 heuristics on performance 79
3.9 Comparison of 3 heuristics on energy 79
3.10 Speedup results of the GPU versus the equivalent sequential

and parallel CPU Min-Min (logarithmic scale) 84
3.11 In cellular GAs, individuals are only allowed to interact with

their neighbors. 86
3.12 CAGE (left) and the combined parallel model of CGA (right) 87
3.13 Partition of an 8× 8 population over 4 threads. 89
3.14 Representation of solutions. In addition to the task-machine

assignments (left-hand side), we store the completion time for
every machine too (right-hand side). Variation operators are
only applied on the task-machine assignments. 91

3.15 Speedup of the algorithm on Xeon E5440. 95
3.16 Speedup of the algorithm on Xeon L5640. 95
3.17 Speedup of the algorithm on ARM A9 ECX-1000. 96
3.18 Comparison of recombination operators and local search iter-

ations, consistant instances. 97

5

3.19 Comparison of recombination operators and local search iter-
ations, semi-consistant instances. 98

3.20 Comparison of recombination operators and local search iter-
ations, inconsistant instances. 99

3.21 Evolution of the algorithm. 100

4.1 Runtime . 108
4.2 Evaluations to optimum (when found) 109
4.3 Time to optimum (when found) 110
4.4 Common design of the two parallel recombination operators. 111
4.5 Improvement of best solution, compared to Min-Min solution 115
4.6 Improvement of fitness average across population, compared

to fitness average across initial population 117

5.1 Parameter setting in EA’s taxonomy [3]. 121
5.2 SA, hihi instance . 125
5.3 SA, hihi instance with fixed local search parameters 126
5.4 SA, lolo instance . 127
5.5 SA, lolo instance with fixed local search parameters 128
5.6 Makespan for the consistent instances. 131
5.7 Makespan for the semi-consistent instances. 132
5.8 Makespan for the inconsistent instances. 133

6.1 Overview of the Savant parallel algorithm 141
6.2 Feature selection rule . 143
6.3 Impact of training size on 12×4 hihi ETC with Savant/optimal.147
6.4 Impact of training size on 128×4 hihi ETC with Savant/Min-

Min. 148
6.5 Training size impact on 128× 4 hihi ETC instances with Sa-

vant/CGA. 149
6.6 Impact of training size on 512×16 hilo ETC with Savant/Min-

Min. 150
6.7 Impact of training size on 512×16 hihi ETC with Savant/CGA.151
6.8 Savant mapper solution similarity for 128× 4 problems. . . . 153
6.9 Savant mapper solution similarity for 512× 16 problems. . . . 153
6.10 Savant mapper probability to solution for 128× 4 problems. . 154
6.11 Savant mapper probability to solution for 512× 16 problems. 154
6.12 Savant median solutions for 12× 4 ETC. 156
6.13 Savant best solutions for 12× 4 ETC. 157
6.14 Savant median solutions for 128× 4 ETC. 158
6.15 Savant best solutions for 128× 4 ETC. 159
6.16 Savant median solutions for 512× 16 ETC. 160
6.17 Savant best solutions for 512× 16 ETC. 161

6

List of Tables

2.1 Subsystem Average Power (Watts) [4] 15
2.2 CPU Static & Dynamic Power 16
2.3 Dynamic & Static Ranges of Data Center Components 18
2.4 TCO Decomposition . 19
2.5 Total Power Breakdown . 20
2.6 Static Power of a Rack of Blades 21
2.7 Simulated AWN Performance on Web Applications [5] 26
2.8 GPU and ARM Microserver Overview 37
2.9 CPU and ARM Microserver Overview 43
2.10 Selected Workloads . 43
2.11 HPCG v1.1, MrBayes v3.2.2 44
2.12 Structured grid (cellular automata) 45
2.13 Map-Reduce (Hadoop/HiBench) 45
2.14 Map-Reduce (Pig/Starfish) 45
2.15 Bioinformatics . 46

3.1 Parameters . 59
3.2 Voltage-frequency operating points. 60
3.3 Effect on contention and DVFS on task mapping 60
3.4 Summary of parameters of the model 67
3.5 Processor specifications for platform comparison 68
3.6 Model parameter variation . 75
3.7 Model parameters for heuristic comparison 78
3.8 Parameterization of PA-CGA. 93
3.9 Comparison versus other algorithms in the literature. Mean

makespan values. 98

4.1 Benchmark of combinatorial optimization problems 106
4.2 PA-CGA parameters . 107
4.3 Configuration for GraphCell 114

5.1 Uncertainty in the model parameters 124
5.2 Settings for the comparison with other algorithms in the lit-

erature. 130

7

5.3 Rank of the algorithms (higher rank is better). 134

6.1 Parameters for the CGA . 146
6.2 ETC instances for the SVM training and testing 146
6.3 Reference solutions for training size comparisons 149
6.4 Selected training set sizes . 152

8

Chapter 1

Introduction

1.1 Context

Green computing has become a broad term, that is employed in many dif-
ferent contexts, from electrical consumption costs to greenhouse gas emis-
sion. It was even considered an ethical issue [6]. In this work, we approach
energy-efficiency from a cost perspective. The cost perspective is presented
in Chapter 2. However, the cost benefits should not come with a reduced
performance. The title of this thesis reflects this context.

Reducing costs of operation of Cloud data centers will become increas-
ingly important. Energy-efficiency in the data center is a growing con-
cern due to the increased capacity of data centers, a consequence of the
widespread use of web applications, and the adoption of Cloud computing.
The world wide web is still a defining factor in the IT industry, and more
and more businesses adopt an on-line strategy. Cloud computing is largely
targeted at web applications. Many successful web businesses are relying
on Cloud computing, despite their capability, both financial and technical,
to operate their own infrastructure, which indicates the business value of
Cloud computing. Mobile computing is another trend that increases the
reliance on web and Cloud computing. While increasingly powerful, the
mobile devices play the role of internet client devices.

There are many past efforts to reduce the energy costs in the data centers,
Chapter 2 reviews these efforts along three directions: hardware, power-
aware resource management and energy-efficient applications. One frequent
approach is server load consolidation, where careful resource management
aims to power off unnecessary machines. An alternative proposal is the use
of lower power components (CPU, memory, storage) to deliver an equivalent
service, in terms of feature and performance, at a reduced energy cost [7].
Our work is set in the low-power alternative, it explores it’s implications for
application providers.

9

1.2 Approach

We have stated that our green objective for the data centers of Cloud
providers is cost, and by cost we mean Total Cost of Operation (TCO).
Chapter 2 will show that power consumption for the operation of a data
center is not a major part of the TCO. Hardware purchase costs and critical
power (the maximum power to provision to IT equipment [8]) are, combined
they are estimated to represent 85% of the TCO. Many past efforts to reduce
electrical costs do not address these cost components. However, low-power
hardware can reduce the maximum power to be provisioned, and the recent
explosion in mobile computing market is contributing increasingly powerful,
but lower power hardware, at a low cost.

The question is therefore, can such evolutions in hardware play a role
in the Cloud data centers, and can Cloud applications take advantage of
this low-power hardware, which we will refer to as Array of Wimpy Nodes
(AWN)? The question is analogous to the second choice in the following
quote: “The microprocessor industry offers a choice of two strategies for
efficiency: (1) start with a big, high-performance core and improve efficiency
or (2) start with a small, low-power core and improve performance. We
compare these two strategies and the data favors the latter for Microsoft
Bing” [9].

The hypothesis followed in this thesis is that to successfully exploit the
low-power hardware made affordable via the mobile evolution, new algo-
rithms are necessary. New implementations of existing algorithms cannot
deliver the required performance, as discussed in Chapter 3. The new algo-
rithms are parallel algorithms, because of the intrinsic nature of the AWN.

Suggesting entirely new applications may seem unpractical. However,
the changes that mobile, web, and Cloud computing are bringing in funda-
mental aspects of computer operation, set a precedent. We list a few signs of
the current and expected changes. One example is the emergence of the dis-
tributed key/value “databases”. In the traditional IT landscape, databases
are monolithic applications running on large servers in privately owned data
centers. Relational databases were seen as an unquestionable component in
any distributed application. Many web applications use a seemingly weaker
model, that exploits the largely distributed architecture of Clouds, in order
to service multiple concurrent requests across large datasets [8]. A con-
sequence is that traditional approaches to energy-efficiency, such as server
consolidation, do not apply, because the load is distributed deliberately.
Cloud providers offer distributed key/value stores as a service. Other ex-
amples can be seen in the operating system (OS) field. The OS field was
also considered mature and stable until the emergence of “boot-to-browser”,
lightweight Gnu/Linux based OS, such as Firefox OS and Chrome OS. A
similar change is predicted on the server-side. We have already witnessed
the emergence of virtualization, an enabler of the initial Cloud offering. Re-

10

cent implications of virtualization point to lightweight, and application spe-
cific, VMs built on top of existing hypervisors (Xen), without a traditional
OS. Within the OS, traditional features such as multi-user support, and
file systems are considered immutable. However, web applications weaken
the need for multi-user support, as all user interactions occur via a web
server, running as a single user. Application security can be handled by
other application-level services. Web applications expose storage services
that are not tied to the file concept. The hypermedia, including hypertext,
are not file based [10, 11]. Storage can now be implemented via Cloud based
object storage services, which challenge the need for files. Questioning files
for data storage has consequences, for example: Unix-flavored OS often use
the file as the key abstraction for the services it provides. Beyond files and
multi-user support, features considered to belong to the OS could migrate
to the application layer, available as a Cloud software service.

The design of new algorithms suitable to the AWN is explored in the
Chapters 4 to 6. The presented parallel designs are successive points on
a specific scale. The scale indicates the reliance on human intervention.
Chapter 4 presents manually designed parallel algorithms. Chapter 5 intro-
duces the use of statistical tools to assist in the algorithm’s design. Finally,
Chapter 6 is a proposal for the automatic generation of a parallel program.
The approach is applied to a use case, a specific application that we wish
to parallelize, for execution on an AWN. The use case is an combinatorial
optimization problem from the scheduling domain, it is described in Chap-
ter 3. The application chosen fits our approach well, this may not be the
case for other applications.

The problem of energy-efficiency in Cloud data centers is addressed
through parallel program design, via the introduction of the AWN. Specifi-
cally, it is the process of parallel algorithm design that is addressed in this
thesis. The design of parallel algorithm is not motivated by big data, or
intensive computation, but should be applicable for smaller problems too,
if the underlying computing platform evolves to the AWN. The paralleliza-
tion of small problems was mentioned by D. Hillis, when discussing the
Connection Machine [12]: “Now that doesn’t mean that you couldn’t invent
a problem that can’t be done by a lot of slow processors working together.
It turns out that that such problems are surprisingly hard to invent. [...]
The only problems that don’t run well on a parallel machine are problems
that just have a small fixed amount of data. For example, if you simulate
the motion of nine planets of the solar system, you can represent that with
18 numbers. It’s hard to see how you would use a whole lot of parallelism
with only nine or even 100 planets. I’m not saying it’s impossible. I’m
just saying it’s hard to see (which means it is a good problem for someone
to work on).” The parallelization of small problems on slow processors is
addressed in Chapter 6.

11

1.3 Summary of Contributions

The contributions proposed in this thesis are summarized below:

• I selected the AWN concept as a promising approach to energy-efficient
Cloud computing, based on the analysis of the TCO of a Cloud data
center, the design trends in web and Cloud applications, and the emer-
gence of mobile computing.

• AWN was evaluated through the experimentation and simulation of
multiple applications, on several AWN platforms. The applications
experimented belong to different categories [13]: dense and sparse
computations, structured grids, Map-Reduce, and bioinformatics. In
addition to the evaluation of existing applications, I proposed and eval-
uated two new data-parallel designs of known algorithms, that solve
a combinatorial optimization problem from the scheduling domain.
Moreover, code-parallelism was simulated to study the effects of soft-
ware pipelining, and contention to shared resource, in the context of
AWN. The compared platforms were an ARM microserver, the GPU,
and multicore CPUs.

• From the results of the previous evaluation, I inferred that changing
the implementation of an algorithm could not deliver the necessary
performance on an AWN: new parallel algorithms are necessary. In
the context of combinatorial optimization, I modified two known algo-
rithms (and not only their implementation) to improve the scalability,
and yet provide the same capability. The proposed algorithms were
validated on a GPU and a 40-core NUMA machine, and showed this
approach to be promising.

• Achieving parallelism by modifying the algorithm makes the common
trial-and-error approach to design unpractical, due to the large num-
ber of possible choices. I applied a technique from statistical model
analysis, Sensitivity Analysis (SA), to guide the modification to an
algorithm. The approach was experimented on the above mentioned
combinatorial optimization problem from the scheduling domain. The
results derived from the statistical analysis show that this approach
can offer valuable insight for modifying an algorithm, without relying
on human intuition.

• The insight provided by a statistical analysis can enable automatic
program modification. I proposed and evaluated a method to auto-
matically generate a Map-Reduce version of a given algorithm. The
method is inspired by the Savant Syndrome, a medical condition that
is found in people suffering from autistic spectrum disorder (but not
only). Savants can perform seemingly sequential tasks very quickly in

12

an AWN-like environment: their mind. The method uses statistical
analysis to implement the Savants’ trait of pattern recognition, with
statistical machine learning. The approach was experimentally vali-
dated on the same optimization problem from the scheduling domain.
The parallel algorithms generated are well suited to the massively par-
allel AWN, even for small problems.

13

Chapter 2

Green Arrays of Wimpy

Nodes

We open this chapter with a review on how power and energy impact
the TCO of a cloud data center, and what are the current means to im-
prove its energy-efficiency (Section 2.1). The findings from this review, and
recent events in computing coincide to make the AWN concept a worth-
while approach to green computing. These events are the success of cloud
computing to drive Internet business, and the explosion of mobile comput-
ing, commoditizing low-power components such as the ARM processors. We
therefore present AWN next, in Section 2.2. Finally, we report our exper-
imental results on the performance of a recent AWN implementation, in
Section 2.3.

2.1 Green Computing

According to [14], energy-efficiency in a distributed system can be enhanced
at three different levels: (a) energy-efficient applications, (b) power-aware
resource management, and (c) efficiency of hardware. In this section, we ar-
gue that level (c), and indirectly (a), offer the best opportunities for energy-
efficiency in cloud data centers. Energy-efficient applications are not nor-
mally perceived as a practical leverage for cloud providers, because they
cannot usually control the applications submitted to their service. However,
the shift in cloud offering (towards platform or software as-a-service) makes
this possible: the application runtime is becoming under the cloud provider’s
control. Also, the cloud application designer has an indirect incentive to
provide energy-efficient applications, through the price of the cloud service,
which reflects the costs to the provider and is influenced by energy costs.
Energy-efficient applications coupled with the emergence of energy-efficient
hardware provide an incentive for cloud providers to offer services from an
energy-efficient infrastructure.

14

CPU Chipset Memory I/O Disk Total
idle 38.4 19.9 28.1 32.9 21.6 141
SPEC CPU 2000 gcc 162 20.0 34.2 32.9 21.8 271
SPEC CPU 2000 mcf 167 20.0 39.6 32.9 21.9 281
SPEC CPU 2000 vortex 175 17.3 35.0 32.9 21.9 282
SPEC CPU 2000 art 159 18.7 35.8 33.5 21.9 269
SPEC CPU 2000 lucas 135 19.5 46.4 33.5 22.1 257
SPEC CPU 2000 mesa 165 16.8 33.9 33.0 21.8 271
SPEC CPU 2000 mgrid 146 19.0 45.1 32.9 22.1 265
SPEC CPU 2000 wupwise 167 18.8 45.2 33.5 22.1 287
TPC-C like dbt-2 48.3 19.8 29.0 33.2 21.6 152
SPECjbb 112 18.7 37.8 32.9 21.9 223
DiskLoad 123 19.9 42.5 35.2 22.2 243

Table 2.1: Subsystem Average Power (Watts) [4]

2.1.1 Hardware Efficiency

This section presents the hardware energy-efficiency issues in cloud data
centers. First, we define the static, dynamic ranges, and the critical power.
The power that a system consumes comprises, in general, two parts [15]:

• A static part that depends on system size and component type (com-
puting, data storage and network elements); this consumption is in-
curred by leakage currents present in any powered system. The static
part is quantified in a range, the static range, in %, which indicates
how much of a component’s power is static.

• A dynamic part that results from the usage of computing, storage,
and network resources; caused by system activity and changes in clock
rates. Similar to the static range, the dynamic range, in %, represents
how much of a component’s power is dynamic.

Critical power is the peak power level that can be provisioned to IT equip-
ment (servers, networking) [8].

Direct server power

Historically, CPU were the most power consuming device in a server. CPU
power is composed of static and dynamic power terms [14]. A modern CPU
may consume up to O(100)W [16]. Table 2.1, reproduced from [4], gives
an example of power breakdown in a server, where the CPU subsystem is
composed of four Pentium IV Xeon processors. The SPEC CPU 2000 are
CPU-intensive, which explains the dominance of the CPU power in the re-
sults, up to 60% of the total power. Recent servers report a 42.3% energy

15

Static Range Dynamic Range Average Load Peak Power
CPU 30% 70% 30% O(100)W

Table 2.2: CPU Static & Dynamic Power

share at 80% utilization [8]. The measurements highlight the influence of
Dynamic Voltage and Frequency Scaling (DVFS), that enables the CPU’s
power to adjust to the workload. Also, current CPU are multi-core, where
each core operates at a lower frequency than previous single core CPU. Fi-
nally, the CPU power consumption is found to correlate with the load, often
linearly, although non-linear correlation was observed in database servers
under slightly different metric [17]. Studies show average loads are low in
current data centers, either 36% [14], between 10 to 50% [18] or slightly
above 30% [19]. The cloud applications are more web oriented and rarely
compute intensive or High Performance Computing (HPC) [20], therefore
these observed loads apply well to the cloud. For example, a Google cluster
of 20,000+ servers running typical data center loads including online services
showed a 10-50% utilization from January until March 2013 [8]. These fac-
tors, DVFS, multi-core and low average loads, combine to reduce the static
range to about 30% of the peak CPU [19, 14]. This means that although
the CPU can consume a large share of the total power, in practice it is not
the highest power consumer anymore [18]. The current average CPU power
profile is summarized in Table 2.2.

The improved power consumption of CPU shift the focus to the power
consumption of other server components, especially at lower utilization rates.
This differs from the breakdown of [8], which show CPU energy share of
42.0% and DRAM of 12% using late 2012 generation servers, because this
breakdown is presented at 80% average utilization.

Memory is now among the highest power consumers in a server [16].
Memory power usage depends on overall load and on the activity of the
memory bank [4, 16]. But, this activity is not necessarily related to the
CPU activity, but also to I/O under Direct Memory Access (DMA). The
introduction of DDR3 with better energy management, the drop of DRAM
from 1.8V to 1.5V has recently reduced the energy of memory [8]. Reducing
the power consumption of memory systems is possible by observing the
mismatch between the current DDR3 DRAM bandwidth and the memory
usage patterns of web applications or distributed in-memory caching [21].
These applications typically do not require the high bandwidth offered by
DDR3 because (a) network bandwidth is a limiting factor, and even then, (b)
their needs are more oriented towards capacity and latency (2–6% bandwidth
utilization reported by Microsoft Bing and Cosmos). Mobile Low Power
DDR (LPDDR)2 memory offers a lower peak bandwidth than DDR3, with

16

the same capacity and similar latency: 4-5× energy reduction in exchange for
2× lower peak bandwidth. LPDDR2 are also more energy-proportional [22].
LPDDR2 achieve this by foregoing some circuits responsible for the static
power of DRAM, but complicate the design for greater capacity memory
systems. A proposed memory system design to meet capacity of servers
provides a ×4–5 power reduction, often less than the DDR3 idle power.
Besides the fact that this design proposal is not available now, reducing the
memory power reveals the high power consumption (and large static range)
of cache memory, and therefore a good cache hit ratio limits the effectiveness
of LPDDR2. Previous work had recognized the high power of cache memory,
about 25% of CPU power [23].

Other components, such PCI slots and disk, can also consume more
power than the CPU [24]. Moreover, the majority of this power is static.
The dynamic range is reported less then 50% for DRAM, 25% for disk drives
(non Solid State Disk (SSD)) and 15% for networking switches [18, 25].
Therefore, overall, for non HPC or processor intensive loads, the server’s
dynamic power range is reported to be as low as 30% of the peak power, so
when idle, a server consumes as much as 70% peak power [14, 18, 8].

Direct network power

The previous discussion on the contrast between dynamic ranges for CPU
compared to that of a complete server also applies to data center network-
ing. The communication infrastructure is reported to use as much as 30%
of the total data center energy [26]. The network’s dynamic range is much
less than the servers (which we saw is much less than the CPU’s). In [27],
the authors notice that at full utilization (servers and network), the network
consumes only 12% of the total power, whereas at 15% overall utilization,
the network consumes 50% of the total power. They also claim that the
network’s dynamic range can be improved because modern plesiochronous
links already increase the dynamic range in their performance and power.
However, this requires reconfiguration of these links to adapt to the traffic
intensity. Similarly, the dynamic range in data center networks is reported as
low as 3 to 15% [26] of the total power. Also, an Ethernet switch’s dynamic
range was reported as low as 2% [25]. Moreover, only a part of the links
are subject to DVS, as only the last hop (directly connected to the servers)
switches are amenable to DVS. Consequently, the network dynamic range is
estimated at 10%. A more ambitious, longer term, approach is to introduce
passive optical network (PON) in the infrastructure [28]. Greentouch [29]
is an on-going initiative by 30+ organizations to reduce the network energy
consumption by 3 orders of magnitude. Their roadmap mentions the design
hybrid low-power electronic/photonic devices, and addresses all network ar-
eas, from homes to data centers [30].

17

Static Range Dynamic Range
Server 70% 30%
Network 90% 10%
Infrastructure 0% 100%
(distribution & cooling)

Table 2.3: Dynamic & Static Ranges of Data Center Components

Indirect power: cooling and power distribution

Extending our view from the servers and the network reveals another as-
pect to data center power: the necessary power distribution and cooling.
Power distribution and cooling are reported to drive the majority of the
costs in a cloud data center, but that includes capital expenses and opera-
tional expenses [8, 31]. Overall, in most data centers, 40-50% of consumed
energy never reaches the computing resources: it is consumed by the cool-
ing facilities or dissipated in conversions within the Uninterruptable Power
Supply (UPS) and Power Distribution Unit (PDU) systems [14, 32, 31, 33].
This proportion matches the average Power Usage Effectiveness (PUE) of
1.7–1.9 found in a 2012 survey of 1,100 data centers [8].

The distribution of power to the computing components involves several
steps, from the main supply to the rack, a process that is considered 90%
efficient [8, 32, 31]. The efficiency depends on the load, typically performing
worse under reduced load. For example, power supply units are 70% ineffi-
cient under 20% loads [19]. Moreover, the majority of the delivered power
is dissipated as heat. The number of transistors integrated into todays Intel
Itanium 2 processor reaches nearly 1 billion. If this rate continues, analysts
predict that the heat (per cm2) produced by future processors would exceed
that of the surface of the Sun, resulting in poor system performance [14].
For each computing watt of power (consumed by servers and networking),
an additional 0.5–1W is required for the cooling system [14, 31]. In gen-
eral, cooling is reported to represent 30-40% of the total data center power
consumption [31, 8, 34].

The dynamic range for power distribution and cooling is assumed to be
100% [25, 8]. This means that when all critical equipment is off, the power
distribution and cooling consume nothing.

The dynamic and static ranges for the different components of a data
center, as presented in Section 2.1.1 to Section 2.1.1, are summarized in
Table 2.3.

18

% of TCO
Computing equipment 45%
Infrastructure 40%
Power consumption 15%

Table 2.4: TCO Decomposition

Indirect power: data center TCO

Extending our view again from the computing equipment, cooling and power
distribution operating costs, reveals the capital expenses necessary to build
the data center. A data center TCO is split between Capex and Opex [8].
Opex are the recurring costs related to operating the data center: power
consumption, maintenance, personnel, etc. The previous sections discussed
power consumption, a part of Opex. Capex are the costs required upfront,
which are depreciated over time. Capex examples are the construction of a
data center, power distribution, cooling equipment, servers and networking
equipment, etc. Depreciation, or amortization, varies from 10 to 15 years
for data center infrastructure (includes power and cooling), to 3 to 4 years
for servers. Amortization is incurred monthly, translating upfront costs into
recurring costs, which are added to the Opex to define the TCO.

The TCO distribution (including the amortized Capex) depends on many
factors, such as computing equipment price, peak power, utilization rate,
electricity prices, interest rates, etc. For a data center of 1.8 PUE, equipped
with high-end rackable servers, 75% utilized on average, the cost of elec-
tricity represents 7% of the TCO. In contrast, for the same data center
equipped with cheaper, more power consuming servers, the cost of electric-
ity represents 26% [8]. However, in real-world data centers several other
factors increase the share of infrastructure costs (Capex without comput-
ing equipment): the average utilization is much less than 75%, capacity is
over-sized to allow the servers to be later upgraded (with additional RAM
or disk) and in general to avoid the dramatic consequences of outages, and
finally the data center is not fully occupied from the first day of operation.
The adjusted TCO breakdown suggests that the cost of electricity represents
about 15% of the TCO [8, 31, 34]. In general, the biggest share of a data
center’s TCO are the computing equipment and the infrastructure amortiza-
tion. Power distribution and cooling is reported to represent about 70-80%
of the construction costs [31, 8]. Infrastructure costs represent 20 to 50%
of the TCO based on the real-world data center problems, approximated
to 40%, while computing equipment represents 35 to 60% of the TCO, ap-
proximated to 45% [8, 34]. The Capex items: power distribution, cooling
and space are considered linearly proportional to the critical power [8]. The
overall TCO decomposition is summarized in Table 2.4.

19

Static Range Dynamic Range Weight
Server power 70% 30% 70%
Network power 90% 10% 30%

Total computing power 76% 24% 100%

Power share in TCO 11% 4% 15%

Table 2.5: Total Power Breakdown

2.1.2 Power-aware resource management

This section reviews techniques to better manage existing resources in or-
der to improve energy-efficiency. There is a wide body of work on this
topic, however the previous section can help focus on the areas with most
impact. From the previous Section 2.1.1- 2.1.1, we can summarize a data
center’s power consumption breakdown between static and dynamic ranges
in Table 2.5. Infrastructure power (cooling and electrical distribution) ap-
proximately doubles the computing consumption 2.1.1, but by assuming it
is 100% dynamic, and proportional to the computing power, does not affect
the breakdown between static and dynamic power. Section 2.1.1 stated
that electrical costs amount to 15% of the TCO. Therefore, from Table 2.5,
the static computing range amounts to 11% of the TCO, while the dynamic
range amounts to 4% only.

In contrast, infrastructure costs (amortized) which are linearly propor-
tional to the critical power (independent of the actual power consumed)
amount to 40% of the TCO. However, reducing the critical power is not
achievable with power-aware resource management, by definition, because
critical power is the maximum power that may be needed in the opera-
tion of the data center (with over-provisioning). Reducing the static power
range is beneficial, because the average load in cloud data centers is typically
low (30%). If computing power was fully dynamic (dynamic range of 100%),
then at 30% load, the TCO would be reduced by 8%. Cooling represents 30-
40% of the total power consumption, therefore if cooling power consumption
was cut in half, the TCO reduction is 3%. Power-aware optimization of the
dynamic range can reduce the TCO by a maximum of 4%, if all computing
equipment are idle, while a 50% reduction in dynamic power would provide
a 2% TCO reduction. Therefore, the power-aware management techniques
surveyed are those aiming to reduce static power. Reducing static power is
referred to as energy-proportionality [18].

Energy-proportionality

Energy-proportionality is a hardware design problem, as seen with the evolu-
tion of the CPU, which now has a large dynamic range [8, 18]. Until energy-

20

Power-aware technique % of peak power
without DVFS 71%
with DVFS 56%
with DVFS and switching off 15%
under-loaded machines

Table 2.6: Static Power of a Rack of Blades

proportional hardware is widely available, optimized management of existing
hardware resources can in some cases improve energy-proportionality.

One logical proposition is to switch off lightly loaded machines, which
suffer from high static power range. A way to accomplish this is to leverage
Virtual Machine (VM) migration [35] to turn off under-utilized machines,
after migrating their VM to another machine. In [36], the static power of
a rack of server blades including networking switches and storage, is mea-
sured across several power-aware management schemes, and summarized
in Table 2.6. Across an ensemble of machines, such as the rackable blade
servers, energy-proportionality is possible.

Naturally, consolidation must not come at the expense of performance,
or service availability. Unfortunately, the idle periods observed for various
internet applications (web, mail, dns) are in the order of 100 ms, thus prevent
switching off complete machines. In [19], the authors suggest that low-power
sleep states can achieve energy-proportionality, if the transition delay from
sleep state is about 10 ms. System-wide modifications are necessary to reach
such a small transition delay. The authors note that such mechanisms exist
in mobile computers (such as mobile phones, smartphones and tablets),
a parallel that is further addressed in Section 2.2. CPU, DRAM, SSD,
magnetic disk spin-down, provide or define appropriate sleep states. Power
supplies however, do not offer the same efficiency across a wide power range,
and is more efficient at higher loads. Finally, some integrated management
tools are needed to transition the components to sleep state.

For online data-intensive applications, such as web search, switching off
under-utilized machines, or transitioning to a low-power idle state is not ad-
visable because of the latency constraint [37]. In contrast, Map-Reduce [38]
is typically not so sensitive to latency. Low server utilization can be con-
sidered a consequence of the good design practices of high-performance dis-
tributed systems, such as those relying on distributed storage [8]. A dis-
tributed storage cluster size is based on data needs (and not based on load),
and to keep latency low, requests are to be handled in parallel across all
machines (regardless of their load). These under-loaded machines are there-
fore often active, preventing transition to idle state. A possible method to
improve energy-proportionality is to reduce power at the server level (not at

21

the ensemble level) when in low activity, but not idle. The active low-power
state is achievable provided (a) a low-power memory system state with fast
transition delays (sub-µs) and (b) a coordination with the CPU low-power
state transition. Currently, this option is not available.

Such a direction for energy-proportionality should not come as a surprise,
for two reasons. First, the idea of consolidation implicitly assumes that the
low-utilization results from poor planning, which lead to over-capacity in
the data center. While this is probably the case in smaller private data
centers (within companies), this seems unlikely in the case of public cloud
data centers. Indeed, 85% of the TCO of a data center lies with equipment
purchase (servers, network) and infrastructure. An observed utilization of
30% means that the decision to 85% of the TCO was mis-planned by a factor
of 3. In addition, proponents of consolidation expect that management
facing such a situation would seek to correct it by deploying consolidation
that would reduce, at most, their TCO by 10%. The occurrence of such
decisions in the operation of a multi-million USD data center seems unlikely,
and if realized, would handicap the data center in the market. Second, both
switching off servers and low-power idle states can only negatively impact
latency, a critical performance objective. In two examples from [34], Google
reported 20% revenue loss due to an additional delay of 500 ms to display
search results, and Amazon reported a 1% sales decrease for an additional
delay of as little as 100 ms. Generally speaking, the high fixed cost of servers
and their limited lifetime (3 years), suggest it is better to leave servers on,
in order to generate revenue, than to turn them off [34].

Memory systems represent a large share of the power consumption in a
server, and is little energy-proportional. Several power management tech-
niques were proposed to reduce the memory power in DRAM, and the static
range [39]. Most techniques aim at transitioning DRAM chips to idle low-
power states, analogous to server consolidation, however, these techniques
are not suited to current cloud application requirements (high capacity but
low bandwidth and latency) [40, 41, 42, 43, 44, 45, 46]. Other techniques
aim at reducing the periodic refreshes of DRAM cells by observing that not
all cells require refreshes [47, 48, 49]. Refreshing DRAM is power consuming
and unconnected to the activity of the machine. Exploiting other internal
mechanisms of DRAM, application specific buffering of memory access can
reduce the DRAM’s power consumption [50]. Such techniques degrade the
latency, while preserving the bandwidth, which is not the requirement in
online cloud applications. An interesting suggestion is to use the last level
cache of an idle processor, interconnected to the others, to hold evicted
data from another busy processor, thus limiting the access to memory [51].
A similar approach is the use of heterogeneous memory modules (heteroge-
neous in latency, bandwidth and power) and based on an application profile,
to optimally allocate memory to a module [52]. These two approaches are
akin to data placement strategies found in coarser grain, distributed storage.

22

Contrary to the consolidation of memory modules, memory pages could be
spread to avoid hotspots, detrimental to static power [53, 54].

Networking is reported to represent a large share of the power consump-
tion (30%), however, it is not currently energy-proportional (90% static
power range): its power consumption is not related to its load, the net-
work traffic. This low energy-proportionality is expected to become a ma-
jor problem as other components of the data center improve in energy-
proportionality, and because the performance improvements of disks (SSD)
and CPU will demand faster networking. A similar discussion to the energy-
proportionality in servers can be found in energy-proportional networking.
Many works study how to consolidate traffic, and then switch off freed net-
work links [55, 56, 57]. Related works better suited to cloud computing focus
instead on enabling low-power active state. In [58], network architectures
are said to be typically tree-like and over-subscribed, where server addresses
are fragmented in VLAN, therefore preventing the dynamic allocation of
services across all servers. This restriction limits power-aware resource man-
agement, such as consolidation, and also causes congestion in parts of the
network and increases the risk of service unavailability. A proposed network
architecture (topology, routing, network software) improves performance,
however the server consolidation objective is not a suitable mechanism for
reducing static power for online cloud applications. In [27], a new topology
(flattened butterfly, which relies on adaptive routing) is proposed to reduce
the total power consumption, and allows to adjust link speeds to the esti-
mated traffic, similar to [59, 60] but with µs delays, and even switching off
links (affecting the topology) in order to reduce the static power range. The
flattened butterfly’s adaptive routing also eases the dynamic adjustment of
link speed.

2.1.3 Energy-efficient Applications

The last leverage to energy-efficient data center is the application. The
software ultimately determines the behavior, hence the energy consumption
of the data center, therefore it seems logical to devote some attention to this
aspect. Applications could be re-designed to minimize power and energy.

One foundation for the design of energy-efficient application is a power
model of a machine’s instruction set [61]. Such modeling enables compiler
optimizations for the reduction of energy in software [62, 63]. Initial find-
ings point to memory operands for energy reduction. These operands trigger
access to cache and main memories. Compiler level optimizations, such as
standard loop optimizations (unrolling, tiling) improves performance, but
can also reduce energy, by as much as 40%. However, the effect of these
transformations is not straightforward to predict. On the other hand, in-
terprocedural optimizations do not reduce energy [62]. The memory usage
patterns are the main reason behind these observations. However, this ap-

23

proach only affects the dynamic power of machines, and even less: the dy-
namic power of the CPU and memory, which are not the biggest impact
areas for energy-efficiency in cloud data centers.

Following the evolution in programming runtime, several works investi-
gated the impact of garbage collection on energy [64, 65, 66, 67]. They are
similar to [68], where the authors observe that the energy consumption in
the memory system is a significant portion of overall energy expended in
execution of a Java application, which is compatible to the power consump-
tion analysis of Section 2.1.1. The authors suggest to control Java’s garbage
collector’s (GC) behavior by accounting for memory banks, and switch off
unused memory banks, from the application. This approach can reduce the
static power in memory, a worthy objective. The actual switching off of
inactive memory banks is performed outside the application, however the
application can indirectly control this transition. This approach breaks the
usual abstraction layers of a modern computing platforms, in a cross-layer
fashion. The Garbage Collector (GC) can be modified to compact the heap,
allocate objects to active banks first, and perform collection more frequently.
The underlying system is modified to include an automated bank switch off
mechanism and cache memories. The experimental results are obtained us-
ing a SPARC instruction set simulator [69], and a model of power estimations
for all instructions obtained from [70]. Overall, the results reveal non-linear
effects from the combination of several changes, which significantly improve
upon the isolated changes (or first order effects). Only the memory bank
switch off reduces static power, as we saw in Section 2.1.2. Although this
lies outside of the GC optimization, its effectiveness is improved with the
GC optimization.

The results from previous investigations can find their way into cloud
data centers in several ways. However, optimizing code for energy in VMs
hosted in the cloud does not guarantee much gain, because the execution
environment of the VM is unknown to the cloud customer, by definition.
Recent evolutions in cloud services provide some opportunity for greener
applications. Indeed, cloud providers now offer abstracted software services,
such as storage, database, messaging. These services are fully controlled by
the cloud provider, unlike the same service packaged in a customer’s VM.
The cloud services could therefore be tuned by the cloud provider, to reduce
energy. Moreover, cloud providers now offer platforms (such as Google’s Ap-
pengine, various Map-Reduce frameworks), which do not execute a full VM,
but operate from blocks of source code. The cloud provider then controls
the compiler, the runtime, the software services, and the underlying in-
frastructure. In this context, the application energy transformations can be
used in conjunction to other energy-efficiency measures, such as power-aware
resource management. For example, energy-efficient Map-Reduce configu-
rations [71, 72] could incorporate optimized compiler options to build the
customer provided source code. Another direction to energy-efficient appli-

24

cations is the client-side javascript runtime, to move some computation out
of the data center. Finally, cloud providers also offer access to complete
applications (Google Docs), which provide even more control to the cloud
operator.

2.2 Arrays of Wimpy Nodes

The biggest cost items in a cloud data center are the computing equipment
purchase (45%) and the infrastructure (40%), as discussed in Section 2.1.1.
Infrastructure costs are driven by the critical power requirements. An array
of wimpy nodes (AWN) is a set of low-power, low-performance and low-cost
machines. Successfully exploiting AWN appears promising to reduce signifi-
cantly the TCO. The exact size of a wimpy node is an open question: “The
more interesting discussions today are between low-end server nodes and
extremely low-end (so-called wimpy) servers” [8]. AWN concurs with the
opinion that energy-efficiency must be addressed at the hardware level [18],
as discussed in Section 2.1. The recent explosion in mobile computing makes
AWN a more realistic proposition. This section presents AWN, the main
assumption of this work.

2.2.1 AWN as a distributed system

The first AWN implementation we present is a cluster of low-power System
on Chip (SoC).

Early approaches

The first works on wimpy nodes were inspired by embedded computing. One
of the first mention of the role of embedded computing for server design as
the importance of power increases can be found in [13].

As computing evolved towards On-Line Transaction Processing (OLTP),
the suitability of the processor design of the time was challenged. In [73],
the authors reported that while processors were becoming increasingly com-
plicated (increased instruction-level parallelism, speculative out-of-order ex-
ecution, floating point operations and multimedia capability), they were
poorly suited to the, then emerging, OLTP applications. From their char-
acterization of the commercial loads, they designed a chip of eight simple
Alpha processor cores with a two-level cache, packaged such as to allow
their aggregation. Although each core is significantly slower than compet-
ing processor cores, the overall system was able to be 3–5 times faster, on the
selected workloads. The workloads are inspired from TPC-B and TPC-D
benchmarks, using an Oracle database server, and are parallel. The results
were obtained from a simulator. Similar chip design experiments include
Chip Multi-Processing (CMP), where even multiple smaller processor cores

25

Metric Comparison with reference architecture
Performance 11% (webmail) – 86% (video streaming)
Performance/infrastructure-$ 90%(webmail) – 650% (video streaming)
Performance/W 100%(webmail) – 720% (video streaming)
Performance/TCO-$ 90%(webmail) – 600% (video streaming)

Table 2.7: Simulated AWN Performance on Web Applications [5]

compared favorably to higher end processors [74]. Although these works
envision the OLTP loads, similar to cloud applications, they did not target
energy-efficiency.

In [75], the authors propose an energy-efficiency benchmark, and present
a system design that achieves ×3.5 better energy-efficiency than the previ-
ous sort benchmark winner. The key finding, which will be often reported,
is that balance of design matters more than individual component per-
formance (they also single out the CPU performance and power). Their
energy-efficient system is based on a low-power CPU (Intel CoreDuo T7600,
34 W Thermal Design Power (TDP)), equipped with a fast I/O board,
laptop-grade disks (5400 rpm), and DDR2 memory. Moreover, the authors
stress the importance of software, especially OS components such file system
(XFS). These findings mean that although balanced designs show superior
performance, it remains specific to a workload.

One of the earliest studies [5] on the design of web application servers
from power-efficient components (such as used for embedded computing) re-
ported promising results in cost and energy, Table 2.7. This study included
power consumption, cooling and local rack networking, albeit from simula-
tions, specifications and industry reports, not measurements. The results
compare the performance-per-infrastructure cost (everything but power and
cooling), performance-per-Watt, performance-per-TCO for a selection of
web applications (web search, web mail, video streaming, and Map-Reduce)
between a reference architecture equivalent to a Xeon (2 processors × 4 cores
@2.6 GHz) based machine (340W and $3.3k) and the equivalent of a P.A.
Semi 1 PA6T (1 processor × 2 cores, @1.2 GHz) based machine (52W and
$0.5k). The embedded component based rack uses memory sharing and re-
mote low-power disks with flash-based disk caching, and relies on aggregated
cooling housed in an enclosure with directed air-flow. An interesting finding
is that a lower power and cost architecture (AMD Geode) performed worse
on all metrics than the reference architecture, which indicate that there are
other factors to consider.

At about the same time, a more detailed study measured the effective-
ness of low-power components for Internet applications [7]. Their contri-

1acquired by Apple in 2008 to contribute to the iPod design

26

bution introduced the term Fast Array of Wimpy Nodes, which we adopt.
The starting point is similar to previous work: new Internet applications
could be hosted on more energy-efficient architectures. For example, they
observe that CPU power increases faster than performance. In addition
to low-power components, the authors expose the problem of balanced de-
sign, by assembling components that match the application’s requirements
and are right-sized in the overall design (computation, memory, I/O). The
tested AWN nodes are an AMD Geode LX CPU @500 MHz, with 256 MB
DRAM, which consumes 6 W. The benchmark application is a specifically
developed distributed key/value store, based on Chord [76], and similar
to memcached. The results show that with a ×3 replication factor, a 720
nodes Fast Array of Wimpy Nodes (FAWN) could serve a 3.8 TB dataset
at 506 K queries/second, or 101 queries/joule, consuming 5 KW (excluding
power distribution and cooling), where an equivalent system using high-end
servers would need 15 KW and cost 50% more. However, their FAWN de-
sign includes high-end servers, that act as front-ends to the wimpy nodes.
The front-ends cache reads, to avoid a possible collapse in throughput when
a single node becomes overloaded (when its keys are frequently accessed).
However, for less than 1024 popular keys, an homogeneous FAWN without
caching performs as well as with caching. Not all the results come from
direct measurements, the results for Geode nodes are extrapolated from
measurements on older embedded devices.

The initial findings were extended and refined in [77]. They identified the
key benefit of AWN by observing that “dynamic power scaling techniques
are less effective than reducing a clusters peak power consumption”, because
the peak power consumption determines the data center’s infrastructure, and
also influences the cost for servers. They considered several data-intensive
workloads: I/O-bound workloads, memory/CPU-bound workloads, latency-
sensitive but non-parallelizable workloads, large memory-hungry workloads.
They also compare newer hardware, Atom @ 1.8 GHz based machine with
256 MB RAM, quad-core i7 860 @ 2.8 GHz with 2 GB RAM (“Desk-
top”), and a high-end 2× quad-core i7 with 16 GB RAM (“Server”). The
FAWN was more energy-efficient for I/O-bound (key/value store, grep)
and memory/CPU-bound loads (matrix transpose multiplication, cryptog-
raphy), but was less efficient on latency-sensitive and large memory-bound
(machine learning) workloads, although with substantial program modifica-
tions the wimpy node performed ×2 better (by using the memory more).
The good performance of AWN on I/O-bound loads was also documented
in [78], where, for the same power budget, an AWN based on Atom proces-
sors was able to deliver ×20 more sequential I/O than a state-of-art high-end
server based system, and for the same cost, delivered ×5 more throughput.
However, those results are derived from the benchmarking of a single node,
extrapolated to a cluster.

In [33], the increasing imbalance in the design of data center servers (be-

27

tween CPU, memory and storage) was also raised. Moreover, this imbalance
is reported to impact latency, which unlike bandwidth, cannot be addressed
with parallelism [79]. This suggested the use of multiple machines with less
powerful CPU, that match the other system components. The main objec-
tives are to reduce the server costs and power. The superior reliability of
servers is said to be superfluous, because servers are usually replaced after
3 years. The reference hardware, based on a 3.6 GHz CPU (with 15k RPM
SCSI disks, and 2GB of main memory, which use 297 W at 60% utiliza-
tion, and costs $2.3 K) is replaced with lower power machine, based on an
AMD Athlon 64 4850e @ 2.5 GHz (with DDR2, which costs $500). The
comparison is made on a real Microsoft Server 2003/II-S web application.
The requests per second drops from 96 to 75, while the requests per joule
increases from 0.33 to 1.25 (×3.9), and the requests per $ increases from
0.04 to 0.15 (×3.7).

In [9], the authors noted the evolution of workloads as a decisive event
for the application of AWN. Internet applications shifted the focus away for
single core performance towards I/O, memory, and power. As mentioned
previously, the size of the data to process increasingly influences the design of
systems (hardware and software) [8]. They chose for evaluation a web search
service (Microsoft’s Bing), which is more computationally intensive than
similar applications (because of the use of statistical machine learning) which
makes server performance more important. Each node keeps in memory a
part of the overall web index, and ranks its indexes according to the query.
The machines compared are a power-optimized Xeon L5420 quadcore @ 2.5
GHz and an Atom dualcore @ 1.6 GHz. The dynamic range of the Xeon is
38–75 W, while the Atom’s is 1.4–3.8 W. However, the fewer Xeon nodes
store more indexes, and thus operate at a high utilization, whereas each
Atom operates at a lower utilization, which translates to a much reduced
power consumption given its better energy-proportionality. On average, a
Xeon core consumes 15.6 W, and an Atom core 1.6 W. A Xeon core achieves
2× the throughput of an Atom core, and is more robust when the query load
varies. Therefore, an Atom core is 5×more energy-efficient then a Xeon core.
The Xeon node achieves 98% latency objective, while the Atom 93%, and
the variance of the Atom’s latency objective is greater. Latency not only
impacts the perceived user response time, but also the quality of the search
results, as late results are not accounted for (cut-off), and latency slack is
exploited to refine results. Reliability in case of node failure, is handled by
spreading the query load across the other nodes. In this scenario, Atom
nodes provided better latency as the increase in load is spread across more
nodes, than for the Xeon nodes. Considering a 15 MW data center, the
TCO of Atom nodes was greater than with Xeon nodes, mainly because
the processor share in power is smaller than for Xeon nodes. The authors
suggested machine modifications (increase the number of cores per node)
to improve the share of processor in overall power. This study showed that

28

for data-parallel compute intensive applications, the Atom-based AWN does
not reduce the TCO.

The potential benefits of AWN are not considered easily reachable. In [80],
the author points several weaknesses in the AWN proposition. The software
often needs to be parallelized, which is difficult and expensive task (when
possible). This added development cost is rarely mentioned in cost com-
parison. Even if the application can be parallelized, the resulting code will
often run at the speed of the slowest thread, and is impacted by the inter-
thread communication parallel applications create. Each of the wimpy node
requires some OS code and application data, replicating common code and
data on all wimpy nodes’ memory. The author states that for these reasons,
practical parallel designs usually operate at the request level, leaving each
request handling code intact, therefore, the wimpy nodes cannot afford to
be too much slower than the current server nodes. The author’s analysis is
useful and correct (good software is expensive, parallelism is difficult, nodes
currently require a full OS), however, the conclusion can nevertheless be
incorrect. It can be incorrect because the analysis implicitly refers to costs,
as of the time of writing. However, costs, as visible in markets, change.
Changes in the cost assumptions can lead the same analysis to a different
conclusion. The interest in AWN originates from an evolution in workloads,
many of which are new Internet data-parallel applications (in 2009, 67% of
the cloud market is Internet services [9]), without necessarily requiring high
inter-thread communications. Moreover, many of the new applications are
deliberately designed to take advantage of the evolving hardware. Although
OS are complex softwares, they still evolve, such as minimal gnu/linux dis-
tributions, thanks in part to free software licenses 2. The costs for software
modifications are not useful in isolation, but are to be compared to the other
costs in data center operation (such as the cost and capability of wimpy
nodes), subject to change. Therefore, a general rule derived from facts valid
only in a point in time are likely to be invalidated.

A similar analysis was presented in [81]. The authors evaluate AWN un-
der complex database workloads (TPC-H based), using parallel databases
(DB-X and Vertica). They compare Atom-based wimpy nodes to Xeon-
based servers. The metric is price/performance, where price includes pur-
chase cost and energy. A cluster of 5 Atoms results in an increase of 11–
31% in price/performance compared to a single Xeon (depending on the
exact benchmark). A cluster of 30 Atoms results in an increase of 23% in
price/performance to a 6 Xeon cluster. These results confirm that not all
applications are suited to the AWN. However, the costs considered do not
cover the infrastructure costs (40% of the TCO), which depend on the criti-
cal power. It is difficult to observe the maximum power requirements in the
two setups described. As mentioned previously, the purchase costs are a key

2https://coreos.com/, https://www.docker.io/

29

component of the analysis, and any change in the cost of wimpy node can
impact the conclusions, as we discuss next.

Smartphones and the ARM processors

The previous works presented so far exploited embedded and laptop compo-
nents (such as Atom processors) to bridge the gaps they noticed between cur-
rent server architectures, emerging data center loads and increasing power-
related costs. The success of smartphones, equipped with ARM processors,
changes the situation. In [82], the author observes that mobile devices were
becoming powerful (2008: 32-bit RISC with gnu/linux support, MB of RAM,
Flash storage), while still dissipating little heat (less than 1W, no active cool-
ing), and suggests that the mobile components could be applied to the data
center, for power reduction. The anticipated objections to the adoption of
mobile technology (unreliable “toys”) are dismissed as the usual barriers to
change, that were raised (and overcome) before, such as in the transition
from mainframes to minicomputers, then onto RISC servers, then onto PC-
type servers. The interesting perspective is that the potential for mobile
technology does not only rely on the ARM CPU, but also on other devices,
such as storage, and low-power memory. These non-CPU components now
play a big role in low-power computing, such as SSD and LPDDR2. The
low-power benefits of these technologies were visible from the battery opera-
tion, and heat dissipation. Software and power-aware resource management
also played a role, but were not acknowledged. Although not a detailed
study, this work detects that the emerging mobile market could provide the
technological components to the data center.

Several works investigate the potential of ARM-based wimpy nodes for
the data center. In [83], the authors compare a small cluster of 4 pand-
aboards (ARM Cortex A9) with a workstation (Intel Core2 Q9400), us-
ing several benchmarks: a web server, an in-memory database, and video
transcoding. The results show that the ARM based cluster is 1.21× more
energy-efficient for static web loads, 1.3× more for video transcoding, and
2.6–9× more for in-memory database. However, they do not provide much
insight on how to overcome the performance penalty resulting from the use
of ARM processors, or how to design data center scale systems for cloud
loads.

The ARM processor characteristics are presented in [84]. Like the x86,
the ARM A9 processor employs out-of-order execution, when previous ARM
A8 or Atom processor do not. ARM processors are usually packaged with
additional chips (such as GPU, memory controller, I/O ports), into a ARM-
based SoC, whereas a typical x86 requires additional components (dissipat-
ing as much as 30 W). For example, the OMAP 4430 SoC found in the
pandaboard, packages a dual-core A9, a GPU, a DSP, two M3 cores, a
memory controller, an interface to external DDR and I/O ports. The ARM

30

designs have a larger dynamic range, in part due to more frequency-voltage
points available to DVFS than x86. The authors evaluate the ARM A9
and A8 based SoC, a Xeon X3450-based server, and two laptops. Unfortu-
nately, they set the maximum frequency of all the machines to that of the
A9: 1 GHz, while the Xeon can run at up to 3 GHz. I consider, contrary
to the author’s position, that this is unfair, because the Xeon’s higher clock
frequency is a key feature of the server class processor.

ARM processors are also investigated for HPC [85, 86, 87]. In [85, 88], a
Tegra 2 SoC (ARM A9-based) is evaluated with micro benchmarks (Stream,
Dhrystone, SPEC CPU 2006) and Linpack. The same performance and
energy-efficiency results were obtained, as in previously mentioned studies.
One interesting observation is that only 6% of the total power consumed by
an ARM node is used on the CPU cores, 30% on the Ethernet interface and
memory module, and the rest (60+%) on PSU, USB, HDMI. The authors
suggest two improvements to reduce this overhead: increase the core count
(also suggested in [9]) and add additional logic, such as a Single Instruction
Multiple Data (SIMD) unit (useful for scientific loads). These recommen-
dations can be considered as the application of the balanced design idea to
HPC.

Although the case for AWN was made before the ARM processors were
widely used, there are surprisingly little academic publications on their im-
pact for cloud data centers, which already exploit scale out designs. In
contrast, the industry appears more interested in AWN, and most of the
latest projects consistent with the review of past AWN designs.

In January 2014, ARM released a Server Base System Architecture
(SBSA) specification 3, in collaboration with software (Canonical, Citrix
-owns the Xen hypervisor-, Linaro, Microsoft, Red Hat, SUSE), and hard-
ware companies (AMD, Dell, HP, Applied Micro, Texas Instruments). This
specification is directly targeted at the data center. It defines the interface
between the hardware and the system software (OS, hypervisor, firmware),
such as to allow system software images to run on compliant hardware.
It defines the CPU characteristics, such as endianess, required SIMD, in-
terrupt controller (GICv2), hypervisor support features. This specification
was greeted by the Open Compute Project 4, a project initiated by Face-
book, to “enable the delivery of the most efficient server, storage and data
center hardware designs for scalable computing”. The Open Compute Foun-
dation’s chairman, and Facebook’s vice president of infrastructure, recently
joined Calxeda’s board of directors. However, this did not prevent the pio-
neer in ARM-based server fabric (integrated cluster) from apparently closing
business. AMD announced the launch of ARM based CPU for the server in

3http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0029/

index.html
4http://www.opencompute.org

31

Figure 2.1: Microserver (source: Intel)

Q1 2014. Their A1100 is planned to include 4–8 A57 cores, a 64-bit ARM
core @ 2 GHz, for an expected power of 25 W. Intel’s recent Atom C2000
processor family is directed at AWN clusters, up to 8 cores @ 2.6 GHz with
a minimum power of 6 W.

The industry’s AWN implementations are often called microservers 5,
Figure 2.1. Boston claim to be the first provider of ARM-based microservers 6.
Their microserver contains up to 192 cores in 48 independent quadcore ARM
A9 @ 1.1 GHz and A15 @ 1.8 GHz (provided by Calxeda) consuming less
than 300 W. Dell’s Copper ARM microserver is an integrated cluster, of up
to 48 nodes, each based on quadcore Marvell XP @ 1.6 GHz. HP offers a
similar product, codenamed Project Moonshot, an integrated cluster of low-
power nodes, up to 45 hot-pluggable servers. A possible node is the AMD
X2150, low-power quadcore x86 @ 1.1–1.9 GHz, with an integrated GPU,
consuming less than 22 W, for hosting remote desktops.

2.2.2 AWN in a System On Chip

As mentioned in Section 2.2.1, the ARM processor is actually a SoC, which
packages more than just the CPU cores. For example, the ARM SoC de-
signed by Calxeda [89] includes a networking component, to improve the
interconnect across nodes. The idea of balanced design as the key to perfor-
mance and energy-efficiency could motivate the implementation of a com-
plete AWN in a single SoC, in contrast to assembling a cluster of SoC.

Graphical Processing Unit

The GPU implements the AWN concept as an accelerator chip, which de-
livers a part of the AWN in a low cost, low-power form. The GPU provides
a dedicated chip for graphics related processing. The class of applications
suited to GPU are those requiring computation intensive operations over a

5http://www.intel.com/content/www/us/en/servers/microservers.html
6http://www.boston.co.uk/solutions/viridis/default.aspx

32

large data set, which can be processed in parallel (as independently as possi-
ble), with throughput as the main performance objective [90]. While General
Purpose GPU (GPGPU) was possible on the GPU (expressing non-graphics
computation in graphics terms), interest lead the manufacturers to provide
a more accessible API, such as Nvidia’s CUDA SDK [91] or OpenCL [92].
There are several APIs now available which aim to ease the use of GPU,
such as OpenACC [93]. A recent GPU board such as the Tesla K40 can
deliver up to 1.43 Tflops with 2880 cores @ 775 – 875 MHz, and can support
12 GB of memory, requiring 235 W. Such a device is a special-purpose large
cluster on a chip, for a modest power budget. The capability of GPU make
it common component in the design of HPC systems, as evidenced by the
presence of GPU in supercomputer rankings such as www.top500.org. Each
core is less powerful than the ARM, laptop and embedded CPUs mentioned
so far.

The programming difficulties raised in the context of wimpy nodes ap-
ply even more to the GPU. The design specificities of the GPU must be
exploited in program designs to achieve the desired performance, such as
the throughput oriented design objective. Also, the GPU being an acceler-
ator, it is not meant as a general purpose computer, and does not provide
networking, I/O nor standard programming interface (such as Unix) and
libraries (although many are available). This leads the program design to
split the processing between GPU and CPU.

In an effort to bridge the CPU/GPU differences and to benefit from the
SoC integration, new hybrid platforms are packaging both technologies in a
single SoC. The recent Nvidia Tegra K1 is such an example, it combines an
ARM CPU and a low-power GPU 7. The ARM multicore is itself heteroge-
neous, 4 A15 cores @ 2.3 GHZ, and one low-power (and lower performance)
core. The GPU offers 192 cores. The main memory is DDR3 and LPDDR3
(as discussed in Section 2.1.1).

AWN in a System on a Chip

In [94], the authors study the performance of Atom-based nodes and Xeon-
based node for the execution of memcached (a distributed, in-memory, key/value
store). Their conclusion is that both platforms are inefficient, as the pro-
gram executes far from the theoretical performance of both the network
interface and the memory subsystem. They identify the cause for the bot-
tlenecks (poor instruction caching, virtual memory bottleneck, branch pre-
diction bottleneck) and propose a SoC of small CPU cores, a fast network
card, and an FPGA to implement some memcached functions.

Intel Xeon Phi 8 [95] is a family of co-processors, that provides up to 61

7http://www.nvidia.com/object/tegra-k1-processor.html
8http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.

html

33

Figure 2.2: Epiphany SoC Cluster (source: Adapteva)

x86 cores (supporting 4 threads/core) @ 1 GHz, 6 – 16 GB memory, a PCIe
interface (PCIe is the Phi’s the form factor), a memory controller, power
management functions, consuming 225 – 300 W (TDP) and is passively
cooled. The programming environment is standard (C/C++, OpenMP,
MPI, OpenCL), as is the ISA. Although targeted at HPC, the Phi can be
considered an AWN on SoC, similar to the GPU. Prices are reported in the
k$ range, similar again to the GPU.

Epiphany 9 is a 2 W (maximum) SoC cluster, composed of 16 nodes
(32-bit RISC @ 1 GHz, dissipating 25 mW), arranged in a 2D array, con-
nected by a low-latency mesh network-on-chip, Figure 2.2. Each node is an
independent machine, with local memory, and ANSI-C programmable. The
memory model exposed to the application is a unique shared memory ad-
dress space. Memory locations outside a node is accessed through the mesh
network. The network is based on atomic 32- bit memory transactions and
is transparent to the program (except for latency). The key advantage of the
Epiphany SoC is its programming model, which is ANSI-C. One Epiphany-
based computer is Parallela, which includes a dual core ARM A9 CPU, an
FPGA, the Epiphany 16 or 64 cores SoC, a 1 GB Ethernet, 1 GB RAM,
consuming 5 W (for 66 cores), at 99$.

At the extreme end of the low-power AWN SoC range is the GA144 10.
Although unsuitable for cloud data center applications, its extreme design
highlights the strengths of AWN. This chip packages 144 independent nodes
(F18A), which operate asynchronously (similar to event handlers). The

9http://www.adapteva.com/
10http://www.greenarraychips.com/

34

Figure 2.3: AES Node Placement on the GA144 [2]

maximum power requirement is 650 mW (each instruction consumes 7 pico-
joules). The SoC is almost completely energy-proportional, idle it consumes
14 µW, an idle node consumes 100 nW (each node can be suspended in mid-
instruction). Each node has very limited memory (64 18-bit words), the full
GA144 can hold 41472 bytes. Therefore, the GA144 needs an additional
memory component to store larger programs. However, the instructions to
be executed can be streamed to each node, freeing local memory for data.
The available programming language is colorForth, a variant of Forth where
color has syntactic meaning (the inventor of the Forth language founded
GreenArrays). In [2], the authors implement two cryptographic algorithms:
AES and RSA in Forth for the GA144. The AES code requires only 17
nodes of the 144, therefore multiple instances of AES can run in parallel,
the placement of the running nodes per AES instance is shown in Figure 2.3.
The placement depends on the need for I/O to and from the chip, and de-
fines an interesting optimization problem. The RSA-1024 implementation
uses 107 nodes. AES-128 encryption on the GA144 takes 37.9 µs (and 0.90
µJ), while an ASIC implementation takes 1.23 µs and a microcontroler 455
µs. RSA-1024 encryption on the GA144 takes 513.7 µs (and 24.6 mJ), while
a reconfigurable cryptographic processor takes 3.84 µs, and a microcontroler
4,730 µs.

2.2.3 Abstract AWN Model

We summarize the above presentation of AWN, by defining an AWN model,
to serve as a reference for the remainder of the document. An AWN is a
distributed system, composed of low-power, low performance nodes, inter-
connected by a slower network than found within chips. The main bene-
fit of the AWN is the energy-efficient scale-out, by combining independent
low-power nodes, instead of relying on a single higher performance node
(because its power increases faster than its performance). Scaling out can-
not be reduced to adding cores, but also requires scaling out memory and
networking, to accommodate for the Internet scale applications hosted in
cloud data centers. Accelerators, such GPU, Xeon Phi, and AWN SoC, do

35

not meet this requirement. For reducing the data center TCO, the AWN
should be competitively priced. The individual components from the mo-
bile and embedded market (with orders of magnitude volume compared to
traditional server technology), exploit the commodity-off-the-shelf (COTS)
benefits.

2.3 Performance of AWN

Green computing is not only concerned with reducing power (either max-
imum or used) or energy, but must also address performance. Ideally, a
green alternative should offer similar performance levels as current non-
green solutions. In Section 2.2.1, we provided performance reports across
several architectures and workloads. In summary, on Internet related work-
loads with data parallelism and I/O intensive (such as distributed in-memory
storage, web search) the AWN provide better or equal performance. How-
ever, for more complex applications, either less parallelism or more CPU
intensive (such database servers, machine learning enhanced web search),
the improved energy-efficiency is usually obtained at the cost of a drop in
performance. However, most of these results were not obtained with recent
ARM-based AWN.

In this section, we report our own performance experiments of the first
available AWN microserver, the Boston Viridis, within our HPC platform11.
The Viridis microserver is a self contained, high-density 2U rack mount
enclosure featuring 48 low-power SoC based on ARM A9 processors (quad-
core), packaged in 12 Calxeda EnergyCard modules, and an integrated high-
speed 10 GbE interconnect, Figure 2.4. The distinctive feature of the Viridis
microserver are the Calxeda provided interconnect, and the power manage-
ment. Each node runs Ubuntu 12.10 and a customized Linux kernel 3.5.0.
The Viridis configuration is diskless, persistent storage is available via a net-
work file system, external to the ARM microserver. The announced network
uplink of 10 GbE was actually only 1 GbE.

2.3.1 Comparison of the Viridis ARM microserver and a

GPU

In [96], we compared the performance of an ARM microserver and a GPU
for Map-Reduce workloads, in terms of performance and power efficiency.
The characteristics of the two platforms are summarized in Table 2.3.1. We
have seen that both platforms can be considered AWN, although the GPU
offers partial scale out capability, especially for lack of memory. For this
comparison, the Map-Reduce applications’ input size was limited by the

11http://hpc.uni.lu

36

Figure 2.4: A Boston Viridis enclosure: general overview and Calxeda EnergyCard
modules.

Table 2.8: GPU and ARM Microserver Overview

Hardware Core CPU Maximum
count clock power

Nvidia M2090 512 1.3 GHz 225 W
(GPU only)
Viridis ARM microserver 192 1.1 GHz 300 W

GPU’s 6 GB of DDR5. The combination of these two platforms is also
possible, as in the Mont-blanc project12.

The assumption for the comparison is that both AWN could serve as the
building block, to construct a much larger system (data center scale). The
microserver and GPU can be considered comparable building blocks based
on their total power (including the GPU host machine’s power), core count
and core clock frequency. Under this assumption, we wish to measure the
performance and energy-efficiency of a single building block.

Map-Reduce workloads

The most popular Map-Reduce implementation today is Hadoop [97]. For
this evaluation on the ARM microserver, we did not choose Hadoop, but
another more recent Map-Reduce implementation from Nokia Research,
Disco [98]. Disco core is implemented in Erlang, and runs user-supplied
functions in Python or Ocaml. Moreover, like Hadoop, Disco users can
use the language of their choice via an external interface. This choice is
motivated by the following:

• Disco is simpler to use than Hadoop. This is a critical factor because
the main feature of Map-Reduce is its simplicity for the user. Disco,
by default, supports user-supplied functions in Python, a very pro-
ductive language, popular in both the industry and academia. Disco’s

12http://www.montblanc-project.eu/

37

simplicity is also reflected in its configuration, it is easier to configure
Disco than Hadoop, although Hadoop provides more flexibility and
features.

• Disco’s more recent implementation is also simpler. It benefits from
the Erlang language and runtime, which is designed for concurrent and
distributed applications. This leads to a much smaller code size (×6)
than Hadoop [99].

• Disco is often faster than Hadoop [99]. This is surprising given the
slower runtimes of Erlang and Python compared to Java. Job overhead
latency, distributed data storage throughput and latency are ×6− 30
better than Hadoop’s. However, the total execution time for some
large jobs is about the same.

The Disco services that control data access run on one of the nodes in the
ARM microserver (all Map-Reduce services run in the ARM microserver).
Also, the data items managed by Disco are, when possible, cached in the
nodes’ memory. This means that although the input data is small, data
accesses may resolve to the network file system.

For the GPU, we selected Mars [100], a well-known Map-Reduce imple-
mentation for a single GPU, which executes most of the code on the GPU.
The benchmark applications used in the comparison are taken as-is from the
Mars code base. Mars compares favorably to Phoenix [101], a multicore im-
plementation of Map-Reduce, which is an indication of its quality. Although
the GPU is a good match for Map-Reduce applications, its characteristics
bias the comparison in several aspects:

• The GPU global memory is very limited compared to the distributed
storage of a cluster, making it unsuitable for larger jobs. The only
alternative is to use additional resources, either CPU or other GPU,
to provide this necessary capability, complicating its application.

• The data access is faster than in a distributed platform because the
threads can directly access any data item in the shared memory space.
This simplifies the design of the Map-Reduce framework.

• The scheduling of tasks is largely handled by the GPU microcode,
and given the shared memory space, there is no need for data/process
placement.

• The executable code is native on both the CPU and GPU, while Disco
executes distributed Erlang and Python code.

We selected 5 benchmarks for this evaluation [98, 100]. They represent
typical loads: web document searching (Word Count and String Match),
float manipulation (Matrix Multiplication) and web log analysis (Page View

38

Count and Page View Rank). These applications are commonly used to
compare Map-Reduce frameworks.

Performance results

Figure 2.5 shows measurements for the Word Count application. It is rep-
resentative of all the Map-Reduce applications tested that include a reduce
step: Word Count, Page View Count, Page View Rank. The input size is
limited on the GPU by its 6 GB of global memory.

The energy-efficiency measures the amount of work done per energy unit.
Energy is the average power over several instantaneous power measures. The
power readings were obtained from the ARM microserver with Intelligent
Platform Management Interface (IPMI), which captured the average power
consumption over the time period (1 second) across all nodes. For the GPU,
nvidia-smi was used. A baseline of 30 W is added to the measurements,
to account for the power required by the host, a relatively low estimate.

We notice that the results are similar, in terms of performance and power.
The only difference relates to the small input sizes, where the Disco/Viridis
suffers from more overhead such as initialization, related to the more com-
plex software and hardware environment, than the Mars/GPU.

Figure 2.6 shows the performance measurements for String Match on
both platforms. It is representative of all the Map-Reduce applications
tested that do not include a reduce step: String Match and Matrix Multi-
plication. Mars on the GPU is less than one order of magnitude faster than
Disco on ARM cluster. The GPU is much faster for small input sizes. The
faster communication between threads (between map and reduce) is favor-
ing the GPU where the data is stored in the GPU main memory. The Disco
initialization is again penalizing the performance.

Two power plots, real and adjusted, are presented for the GPU, Fig-
ure 2.6b. This is a consequence of the short execution times on Mars. Indeed,
the nvidia-smi power measurement command impacts the performance of
the GPU if ran too often. Therefore the few real measures were modified
based on measures from longer runs (processing bigger inputs).

Figure 2.7 shows the runtime of all applications, on the ARMmicroserver
and the GPU. The largest input data is used in each of the benchmark. The
breakdown of the runtime in the different steps is also shown. The left bar
represents Mars on the GPU, while the right bar represents Disco on the
ARM microserver. Mars includes the preprocessing and input/output (IO)
times. The suffix ’1’ and ’2’ refer to a chained Map-Reduce execution, where
an application is splitted in two Map-Reduce executions, the case only for
the Page View Count (PVC) application.

Disco is faster only for Word Count. The biggest difference in speed
in favor of Mars is for Matrix Multiplication. Overall, the performance
difference is less than one order of magnitude.

39

(a) Total time

(b) Power average

(c) Energy-efficiency

Figure 2.5: Results for the Word Count application

40

(a) Total time

(b) Power average

(c) Energy-efficiency

Figure 2.6: Results for the String Match application

41

Figure 2.7: Performance per Application for the Largest Input.
Mars/GPU: left, Disco/ARM microserver: right

Discussion

Both platforms were considered as equivalent building blocks for the assem-
bly of a larger system. The fundamental differences in architecture leads to
very different Map-Reduce frameworks: Mars/GPU runs native code on a
tightly integrated chip, while Disco/Viridis runs bytecode on a distributed
system. The same software runtime could further determine the architecture
differences, but that would require the same codebase to be used on both
platforms, which is hardly possible.

Even though, the performance is not so different between the two envi-
ronments, except perhaps for Matrix Multiplication. One can only conjec-
ture what the performance of a faster Map-Reduce application would be on
a microserver with faster interconnect, but an order of magnitude improve-
ment does not seem unreachable (given the performance difference between
Python code and native code).

2.3.2 Comparison of the Viridis ARM microserver and a

multi-core CPU

As an extension of the previous comparison, we compare the performance of
the ARM microserver to a multi-core server. The assumed building blocks
for the comparison is the Calxeda EnergyCard (4 integrated quadcore nodes)
and multi-core server serve as the building block in a much larger system
(data center scale). Under this assumption, we wish to measure the perfor-
mance and energy-efficiency of a single building block. For the comparison,
we selected to evaluate 4 nodes (16 cores) of the ARM microserver and 1

42

Table 2.9: CPU and ARM Microserver Overview

Hardware Core CPU Maximum Memory
count clock power

Calxeda EnergyCard 16 1.1 GHz 25 W 4 GB
2× Intel Xeon E5-2660 16 2.26 GHz 2× 95 W (max. TDP) 32 GB

Table 2.10: Selected Workloads

Dwarf [13] Selected
workload

Dense and Sparse Computations High Performance Conjugate Gradient,
MrBayes

Structured grids Cellular automata
(Represented by a regular grid; points (Conway’s game of life)
on grid are conceptually updated
together. It has high spatial locality.)
Map-Reduce HiBench, PigMix, Starfish
Bioinformatics AbySS, FASTA

Intel server (12–16 cores). The 4 nodes are packaged in a Calxeda Ener-
gyCard, and should consume less than 30 W, where the Intel processors
consume about 95 W, and 315 W at 75% utilization (estimated with the HP
Power Advisor tool). The assumption is that both blocks hold about the
same core count, and are building blocks for larger systems.

Selected workloads

The benchmark applications selected are inspired by [13], where the authors
identify computation and communication patterns (“dwarfs”), as opposed
to full applications or micro benchmarks. These patterns define classes of
computation and communication pattens. Moreover, they list computation
patterns that attempt to cover most of the applications today. To this list,
we added benchmarks from the bioinformatics field.

We selected representative applications for several dwarfs.
The new High Performance Conjugate Gradient benchmark [102], devel-

oped as a modern alternative for the well-established Linpack benchmark,
as implemented in the reference HPL. The design goal of HPCG has been
to achieve a better correlation to real scientific application performance, by
stressing a systems memory, network bandwidth and latency, balance and
scatter/gather features which have a greater impact on general application
performance than the compute rich, dense matrix computations exhibited in
HPL. MrBayes [103] is a popular bioinformatics application for the Bayesian
estimation of phylogeny, using Markov chain Monte Carlo methods.

43

Table 2.11: HPCG v1.1, MrBayes v3.2.2

Workload Calxeda performance Xeon performance

HPCG 0.75 GFlops 2.07 GFlops
MrBayes 4,200 s 400 s

Conway’s game of life is a two-dimensional cellular automaton, where
rules have a 9 cells neighborhood, and the grid is updated synchronously.
The implementation is MPI-based. One node acts as the master, while
the others perform the cell transitions. The decomposition is data-parallel,
where the cells are equally split (approximatively) across the slave nodes.
The chosen grid size is 200 × 200 cells. The simulation ends with 500 gen-
erations (all cells updated 500 times).

The first Map-Reduce applications are selected from HiBench [104]: Word
Count (mostly CPU bound), TeraSort (CPU and I/O bound) and PageR-
ank (balanced workload). The second Map-Reduce workload is PigMix [105].
PigMix is a set of Pig programs that are used as a benchmark to measure
the comparative performance of the Pig programming language in a Hadoop
environment. Apache Pig is a platform for analyzing large data sets that
consists of a high-level language for expressing data analysis programs. Pigs
infrastructure layer consists of a compiler that produces sequences of Map-
Reduce programs. Pig is used to write complex Map-Reduce transforma-
tions using a simple scripting language, Pig Latin, such as aggregate, join
and sort. The last Map-Reduce application is a TF-IDF benchmark from the
StarFish project [106]. TF-IDF stands for term frequency-inverse document
frequency. Both Map-Reduce benchmarks are implemented in Java.

AbySS, Assembly By Short Sequences [107], is a de novo parallel paired-
end sequence assembler, developed to enable the efficient assembly of the
vast amounts of data generated from large-scale sequencing projects, such
as the sequencing of individual human genomes to catalog natural genetic
variation. FASTA is a suite of bioinformatics applications [108] used to
find regions of local or global similarity between Protein or DNA sequences.
Since its introduction in 1985, it has become widespread in the bioinfor-
matics community, seeing constant development and its FASTA file format
becoming a de facto standard for describing bio sequences.

Performance results

Table 2.3.2 summarizes the results for the first two benchmarks. Surpris-
ingly, the Calxeda SoC performs well compared to the single node 16-core
Xeon. However, a single Calxeda node achieves only 0.19 GFlops, but with
only 4 cores. For the MrBayes test, Calxeda performs an order a magnitude
worse than the Xeon node. For most of these results, their statistical signifi-
cance lies with the duration of the runs (HPCG requires about several hours

44

Table 2.12: Structured grid (cellular automata)

Machine runtime

Calxeda 1.25 s
Xeon E5-2660 0.8 s

Table 2.13: Map-Reduce (Hadoop/HiBench)

Workload Calxeda runtime Xeon runtime
(average) (average)

Word Count 395 s 301 s
TeraSort 88 s 186 s
PageRank 50 K 323 s 723 s
PageRank 1 M 877 s 1,067 s

to complete). The long running times should cancel the micro variations in
the executions.

Table 2.3.2 presents the main result from the experiments, the Calxeda
4 node performance is surprisingly good given the frequent coordination
(required by the synchronized updates) which should penalize the slower
Calxeda interconnect.

The parameters for Word Count are: data size = 500 MB, num maps =
16, num reds = 48. For TeraSort: data size = 100 MB, num maps = 48,
num reds = 24. For PageRank, data size = 800 MB and 300 MB, num maps
= 96, num reds = 48, num iterations = 3, block = 0, block width = 16.

The first results from the Map-Reduce HiBench applications show that,
except for Word Count, the Calxeda ARM board performs better than the
single node Xeon. This is driven by the CPU intensive nature of Word
Count, where the faster and more advanced CPU helps.

Table 2.3.2 summarizes the performance results for the two additional
Map-Reduce benchmarks. The first two columns report the runtime over
16 cores, while the two last columns report the runtime over 4 cores. The
difference lies with the number of data nodes configured. For 16 cores,
Calxeda is configured with one data node per node (4 data nodes), while for
4 cores, only one data node is used. For the Xeon node, only one data node
was configured in both core counts. This configuration difference allows to

Table 2.14: Map-Reduce (Pig/Starfish)

Workload Calxeda (16) Xeon (16) Calxeda (4) Xeon (4)
runtime runtime runtime runtime

PigMix 2,117 s 2,940 s 4,826 s 2,966 s
Starfish 4,383 s 7,555 s 17,060 s 7,038 s

45

Table 2.15: Bioinformatics

Workload Calxeda runtime Xeon runtime

AbySS v1.3.6 3,400 s 510 s
FASTA v36.3.6d fasta 240,000 s 50,000 s
FASTA v36.3.6d ssearch 50,000 s 7,500 s

show the performance difference per core, and also shows the good scalability
of the Calxeda nodes.

The bioinformatics results of Table 2.3.2 show the poor performance of
the Calxeda SoC compared to the Seon machine. Currently, the ARM SoC
is not suitable for bioinformatics loads.

Discussion

We considered as building blocks for a larger system a Calxeda SoC, pack-
aging 4 quadcore ARM A9 nodes, and a single node with two 8-core Xeon
processors. The power consumption is an order of magnitude less for the
Calxeda SoC, while the Xeon’s clock is only twice the A9’s.

The more balanced workload performs well on the ARM SoC (only three
times slower than the Xeon). For example, HPCG aims to include com-
putation patterns with lower computation-to-data-access ratios, irregular
memory access, and fine-grain recursive computations. The same pattern
is present in the cellular automata, where the computation-to-data-access
ratio is also low. The Map-Reduce workloads are very favorable to the ARM
SoC, as they perform even better than the single node Xeon. However, for
the more CPU intensive workloads, such as the bioinformatics loads, the
ARM SoC is too slow to represent a viable alternative, although about as
energy-efficient.

2.4 Summary

The impact of energy on a cloud data center identified that critical power,
the purchase price of equipment, and the poor energy-proportionality are the
key factors to the TCO. AWN attempts to address precisely those factors.
AWN is a lower-power alternative because power increases only linearly
with capacity (as wimpy nodes are added to the cluster-like system). The
huge market size of mobile computing have commoditized many computing
components, lowering costs and attracting innovation. Finally, wimpy nodes
are packaged in SoC, which package other components and improve the
energy proportionality.

Even if green computing is possible with AWN, extracting performance
from the AWN requires specific parallel algorithms. We have noticed that ex-

46

isting applications do not perform well on AWN, but that new applications,
more parallel and distributed by design (such as Map-Reduce), perform well.
This can be considered an instance of a more spontaneous co-design. Co-
design [109] is the coordinated and deliberate design of both software and
hardware in order to achieve an overall system quality. Here, wimpier nodes
provide low-power alternatives for the cloud data center, prompting the re-
design of Internet applications. An example are microservices 13, where
Unix design patterns are provided with web protocols and leverage cloud
computing, as pioneered by Netflix 14.

Finally, accelerators or special-purpose co-processors implement the AWN
concept, but while they match the scale out of processing cores, they fail to
do so for memory or I/O, and limit their benefits to some applications.

The next chapters present case studies of parallel designs to solve an
optimization problem from the scheduling domain.

13http://martinfowler.com/articles/microservices.html
14http://www.infoq.com/interviews/Adrian-Cockcroft-Netflix

47

Chapter 3

Parallel Programming for

Arrays of Wimpy Nodes

The usual meaning of parallel programming is to modify a program to benefit
from parallel hardware while preserving the original algorithm (the under-
lying “recipe”). Except for lower-level changes (as performed by compilers),
these changes are the result of a manual process. In this chapter, we exper-
iment with this view of parallelism in the context of AWN. Section 3.1 ad-
dresses code-parallelism with software pipelining, and applies resource man-
agement optimization to extract performance from the AWN. Section 3.2
experiments with data-parallelism on two well-known algorithms from the
optimization domain. We summarize our findings in Section 3.3.

3.1 Code Parallelism

In this section, we explore code parallelism in the context of AWN. Code
parallelism extracts parallelism from instructions, as opposed to data. It is
found in microprocessors’ instruction-level parallelism. Processors provide
instruction-level parallelism thanks to a number of architectural designs,
such as: instruction pipelining, superscalar execution, speculative execution
and out-of-order execution. Pipelining aims to improve the throughput, and
not the latency, of a processor. The instruction cycle is decomposed into
dependent steps, from 2 (controllers) to more than one thousand (Xeler-
ated X10q network processor [110]), which can overlap in the processing
of independent instruction cycles, as in a factory assembly line. A typical
instruction cycle is: instruction fetch, instruction decode, execution, write-
back. Compilers can help the processor by reorganizing the order of the
generated machine code. Superscalar execution allows the execution of mul-
tiple instructions by multiple circuits. Speculative execution mitigates the
delays of branches, by starting the execution of a code path before knowing
if it will be taken.

48

Software pipelining [111] aims to offer the same benefits as processor
pipelining, but at the software level. The chosen message-based decompo-
sition is software pipelining (also called stream processing), can be traced
back to D. Mc Ilroy in Unix shells. This technique is interesting because
it can parallelize sequential codes, and is well suited to the Internet appli-
cations (as hosted in the cloud) where throughput is important. Once an
application is decomposed into dependent steps, one question is where to
locate each decomposed step in the AWN, so as to achieve a performance
objectives, such as latency. This question can be stated as a scheduling
problem. It relies on the a priori knowledge of the decomposed steps (or
tasks, in the context of scheduling), and the AWN. We present methods for
obtaining this a priori information [112] in Section 3.1.1.

The AWN, with it’s performance limitations (Section 2), holds one po-
tential benefit: they could reduce the contention present in modern archi-
tectures (because a large single machine is replaced with a cluster of smaller
ones). This possible benefit is explored in Section 3.1.2.

With these elements, we proceed to analyze the opportunity of software
pipelining on the AWN in Sections 3.1.3, 3.1.4.

3.1.1 Task Performance Prediction

Runtime task profiling approach

In order to make correct mapping decisions, the decision process needs to
evaluate the different alternatives. This implies some prediction model of the
performance of the tasks, on the distributed system available (for example,
the AWN). This highlights a difference between the OS scheduler and the
higher-level mapping considered here. The former cannot assess the overall
service performance because their scope is the machine, and more generally
because their objective is resource management (of hardware), rather than
business performance. This limitation also occurs in multi-server (micro-
kernel) OS [113], which can justify the use of such a predictor for a single
machine.

Models to predict performance were usually derived from a detailed un-
derstanding of the inner workings of tasks and machines [114]. However,
the growing complexity of these multi-core based computers do not lend
themselves well to such an approach. These machines although sometimes
considered parallel, actually share several components (memory, last level
caches, I/O interfaces), which lead to contention [115, 116], as we will present
in Section 3.1.2. Therefore, the actual performance of a task depends on the
concurrent activity on other cores and processors. OS (virtual memory man-
agement, timesharing) and related tools (power management) further add
to this hardware complexity. For example, paging faults considerably hurt
an expected performance [117]. Modeling tasks is not simpler. They are

49

often considered to be defined by the source code in a high level language,
however their behavior is set by compilers (optimization techniques) and
runtime libraries. Moreover, some tasks can change behavior at execution
time, in order to use a different amount of resource. For example: a task
that relies on the slab allocator [118] can be requested to reduce its memory
footprint. This prevents accurate prediction of a task’s performance based
on past performance in a different environment (different loads from differ-
ent concurrent tasks). All these components prevent the accurate modeling
of the computation, and the performance prediction of a given task on a
given machine. Even if such an accurate model was developed, it would
only be valid up to the next change in any of its components: hardware,
OS, compiler, runtime library or task source program.

The question then is how to model task performance, when it depends on
so many parts (each difficult to accurately model). Preferably, the prediction
model should work for all possible machines and tasks. A possible approach
is to avoid, as much as possible, a priori knowledge on the inner workings of
the system, but should rather observe the execution of the tasks on the actual
machines (hardware and related software such as OS). This is sometimes
called runtime task profiling. The goal is not a descriptive, but a predictive
model. This approach is based on a preliminary step to the mapping process,
which measures the execution time of the tasks, on the targeted system, but
during a limited time. In addition, the task profiling should explore the
effects of contention, present in modern multi-core machines. This could
be achieved by observing the task’s performance when the machine is under
various resource-specific loads, for a given profile run. Ideally, this extension
should provide more accurate results but it ought not significantly increase
the effort to build the model. The next section presents a review of previous
efforts in this direction, grouped by field of application.

Distributed computing

As one of the first field to operate large computer infrastructures, HPC
has identified the need for task performance prediction a long time ago.
However, the original works focused around proprietary parallel machines,
with dedicated system software. Since then, large infrastructure shifted to
distributed systems composed of commodity machines and software.

The scheduling problem, presented in [119, 120], express the need for:

• profiling the tasks to execute,

• benchmarking the machines.

However it does not take into account the sources of contention in recent
multi-processor, multi-core computers.

Several works [121, 122], and [123] investigate task runtime prediction
from their past performance, on the same machines. This approach derives

50

from their context of application: a shared grid, where tasks controlled
elsewhere are running on the same grid. This is a different problem from the
one presented in this review. Here, the environment is completely controlled,
but the problem is to map tasks in order to achieve specific results. Although
this may seem an easier problem to solve, the problem of optimally mapping
independent tasks on an heterogeneous system is NP-hard.

In [124], a Real-Time Advisor (RTA) predicts a task’s performance. The
RTA is used with a scheduler (real-time scheduler advisor), to place task
on appropriate machines. The RTA predicts performance based on the ob-
served runtime of the task when run on a vacant machine, and on the load
of the machine where the task is planned to run. This formulation is due to
the context for the prediction: how to map tasks on unreserved machines;
which are under some load, outside of the mapper’s control. Several aspects
of the problem are similar to the problem defined in this thesis. Notably,
the prediction of a task’s runtime given a machine’s load addresses the con-
tention of shared resources. However, there are several differences. The tasks
considered are computation-bound (busy loops), and therefore the shared
resource is the processor. The machines are also single-core single-processor,
so contention related to multi-core, multi-processor machines are not con-
sidered. Moreover, the predictor relies on the task’s measured runtime, on
the machine available, but only when run on a vacant machine (loadless).
Finally, the scheduling problem is slightly different, the objective in [124] is
to select the most suitable machine for a task, while the mapping problem
is combinatorial: it tries to find the optimal mapping of all tasks, onto the
vacant machines.

In [125], the authors design a prediction model for the grid, but opt to
focus on a specific application in order to improve its accuracy. Applications
run on a grid, where each computing node is a cluster. This is different from
the context of this thesis, where a computing node is a machine. Contention
at the machine level is therefore not included. Their approach is based on a
limited run of the applications: executing the application against some input
data, on one cluster. Predictions of runtime in other configurations (different
data sets or clusters) are extrapolated from this initial measurement. A
similar approach is reported in [126]. The host machine used for their study
is a 32 processor Symmetric Multi-Processor (SMP) machine, but their work
is applicable to other configurations. However, the tasks are quite specific.
The execution model is that of work-stealing. A task is executed by the
first available processor. It is not a long-running service, but rather a job,
which is started and ends. A task can create other tasks. The objective of
the study is to predict performance of the overall application. The tasks
are profiled by monitoring their execution over a limited time. Memory
contention is partially accounted for. The number of threads used for each
task execution is varied, in order to assess the scalability of each task. A task
which does not scale well reflects some contention (locking, cache conflicts,

51

etc) within the task. However, the objective is the task’s scalability, and
not the characterization of each task.

The problem of application performance prediction is studied in [127].
The authors propose an exploratory phase, called the pro-active training
phase, which consists of running the tasks on the machines. They identify
the cost of this training phase as a problem, and develop a method to min-
imize this effort. The method suggests to run the application on all nodes
for a subset of the input values, and on the fastest machine for the full set
of inputs. This formulation assumes a HPC application, which is run over
a range of inputs. The data collected is then used for prediction of the real
application on various machines. The problem formulation and the HPC
setting differ from the problem defined here, but the approach to rely on
actual executions and their observed runtime is very similar. The effort to
minimize the preliminary phase is noteworthy, even if the solution is HPC
specific. Moreover the question of contention in multi-core based machines
is not considered.

In [128], the runtime of a task on a machine is predicted from the load of
the task in isolation, the characteristic of the machine and the current load
of the machine (due to other tasks). This prediction also relies on 5 rules
that capture the interaction of tasks. This recent contribution is interesting
because it bases its prediction on actual task execution, and limits their
cost by only executing tasks in isolation. It also casts the problem in the
context of quality of service, which is the end-user perspective included in
the proposed direction. The literature review is also noteworthy. However,
there are differences between approaches. The model used to predict task
load does not address contention in multi-core, but mentions it as an OS
concern. The tasks considered are essentially CPU-bound, because this
allows the authors to link host load to task runtime. While this may be
true for CPU-bound tasks, it is most unlikely in memory, network or any
other contention prone situation. The domain of application for the profiling
is HPC. Therefore the tasks are considered long-running (measurements
are based on 5 second sampling), and directly related to a user id on the
machine. The tasks in the present paper are different from these HPC
tasks, because they are the instructions necessary to process a request, as
part of a daemon or service. The 5 rules necessary to predict runtime from
exploratory data are based on an understanding of the machines and the
nature of task execution, which represents a big assumption.

A performance predictor, Dimemas, is presented in [129]. This simulator
relies on execution traces of applications, on some characterized hardware.
It can then predict the runtime of the same application on different hard-
ware. The CPU burst, and network activity is considered in the model.
The context is different from the one presented here, because the tasks are
MPI-based HPC applications, and the varying hardware environment is the
network performance. Therefore, a specific model for the task is used, which

52

is not the case in the proposed setting.
Runtime prediction is classified into three groups: code analysis, code

profiling/analytic benchmarking, and statistical methods [130]. From such
classification, the authors present a hybrid approach: statistical and analytic
benchmarking. This classification clearly exposes different approaches to
task performance prediction. However, two hypothesis in this work define a
different problem to the one studied here. First, each task is assumed to have
exclusive use of the machine on which it runs, such that a task’s execution
time does not depend on other tasks. This is clearly different from the
problem defined here, where contention for shared resource, by concurrently
running tasks, is one key hypothesis. Second, this previous work considers
that a task execution time depends on its input data. This is perhaps specific
to HPC environments. However, there is no such hypothesis in this thesis.

Thread scheduling

The method of profiling tasks based on their actual execution is proposed
in [131]. This work looks at the execution of multiple threads of a process.
It aims to identify data dependencies between threads. Data dependency
occurs when multiple threads access the same data. Although the method
is based on runtime analysis, compared to static source code analysis, it
does not include machine characteristics, and does not consider contention
beyond the data that threads share.

In [132], the relation workload and a machine’s resource utilization (such
as memory, CPU) is explored. The target application is capacity planning.
The method relies on measured execution (called automated profiling). How-
ever, the relation sought does not involve performance estimation, because
of the intended application in capacity planning. It does not consider con-
tention in multi-core based machines.

Scheduling for simultaneous multi-threading architectures

The next papers consider how schedulers can improve the performance of
threads when executed on Simultaneous Multi-Threading (SMT) architec-
tures. SMT improves ILP by executing different threads at each cycle. The
consequence is that some threads will achieve greater parallelism when co-
scheduled together than other combinations.

This question shares some similarity with our question. Contention is
present in SMT; however it is possible to minimize it in order to achieve
greater performance. This depends on the nature of the threads (which are
called tasks here). Co-scheduling threads on an SMT processor is analo-
gous to mapping tasks on the same multi-core processor (or multi-processor
machine). However, there are differences which prevent a direct application
of the results from this field. The contention in SMT is limited in scope

53

(processor core), while this thesis places no restriction on the sources of
contention within a machine (hardware and software stack). In addition,
we are investigating a predictor for task runtime, while a SMT scheduler is
concerned about processor utilization, a lower-level information. Neverthe-
less, some methods from the field of co-scheduling for SMT could be applied
here.

A SMT scheduler [133, 134] minimizes contention on a superscalar pro-
cessor, to improve utilization and performance of the threads. Their sched-
uler initially co-schedules threads according to fair policy, and then attempts
to discover which threads run well together, by deliberately changing the co-
schedule and observing the resulting performance. The adaptive nature of
the approach is unsuitable to our question, because the unsuccessful co-
schedules would impact the QoS and fail the SLA. Moreover, the combina-
torial space of co-schedules is so large so as to make the above risk likely
(because the scheduling is not limited to a SMT processor, but to an entire
distributed system).

The target of [135] is the Simultaneous Multi-Threaded cores platform,
such as Intel’s HyperThreading. The objective is thread scheduling to reduce
contention. This scheduling can either be performed at the CPU level, or
at the OS level. The model is based on measurements of a real thread
execution. However, there are notable differences. The approach is not
exploration based (it does not require a preparation step which explores
the behavior of tasks), but adaptive. The measurements deal with resource
usage, such as caches and registers. Their model is based on the detail
knowledge of the internals of the SMT processor, and therefore uses of a
simulator to obtain results. The approach presented here tries to avoid
both this knowledge and the use of a simulator.

Real-time and embedded system scheduling

In [136], the authors propose an energy-efficient soft real-time scheduler.
The scheduler relies on runtime predictions, based on limited task execu-
tion, which is the approach considered in the present review. Soft real-time
(meeting a fraction of all deadlines) expresses the problem of meeting SLA
requirements, because SLA typically allows some deadlines to be missed,
and sets penalties when more deadlines are missed. The deadlines capture
the end-user view of performance. However, contention is not part of the
model (which focuses on the CPU, for specific tasks). Also, energy efficiency
is a consequence of DVFS control by the scheduler, which is not necessarily
better than the race-to-idle policy. Finally, this scheduler is the finest grain
OS scheduler, which operates at a lower-level than in our context.

A real-time scheduler where activities are subject to resource constraints
is presented in [137]. The constraint is that shared resources are accessed se-
quentially. They mention both physical resources, such as disks, and logical

54

resources, such as critical sections guarded by mutexes. Only one task (ac-
cording to our definition, not theirs) can access a shared resource at a time.
Tasks are defined with statistical properties. However, how such properties
are obtained is not described; it is likely that they are derived from actual
executions. However, the task properties do not include resource contention.
Constraints on shared resources are managed through scheduling access to
resources, under a given model. Although their study does not match this
review’s scope of task profiling, it does address the higher level question of
scheduling tasks under resource contention.

Internet Protocol routers

Some closely related works from a different field than data center comput-
ing are presented in [138, 139, 140]. These papers present and study pro-
grammable internet routers, based on network processors. One of the main
issue with programmable routers is the mapping of tasks to processors.

In [138], the suitability to internet routing of different machine architec-
tures is reported. They do mention contention as a critical bottleneck in
network processors, but it is not part of the profiling or mapping study.

Dynamic profiling to support task mapping is proposed in [139, 140].
This profiling aims to characterize the tasks. The dynamic profiling is mo-
tivated by the variability of the input traffic, both in volumes and nature.
Contention is not part of the study, although it is presented in their previous
paper.

3.1.2 Task mapping with resource contention

In this section, we investigate the impact of resource contention when execut-
ing concurrent tasks, co-located on the same machine. This investigation is
conducted by modeling contention to shared resources in modern machines,
and DVFS, and simulating it with a modified scheduling heuristic [141].

Design innovations on modern processors allow multiple execution cores
to be integrated into a single processor, with each core having its own re-
sources. Yet, some interdependence between cores need be taken into ac-
count for optimal performance and energy efficiency. At different levels,
cores in a processor share some resources leading to contention if appli-
cations running in parallel on the cores compete for the shared resources.
Contention can induce not only to degrade the application performance, but
also to inefficient use of energy, since cores waiting for a resource to become
available dissipate energy without carrying out progress [142].

For example, we have carried out a simple experiment to demonstrate
how contention for shared resources can slow down the application perfor-
mance. In this experiment, we have executed one benchmark application
(stream [143]) on a 2.4 GHz Intel Core 2 Duo. This application is main

55

memory bound. First, we have executed the application activating only one
core and we measured the time that the application need to complete its
execution. It took around 10 seconds. Then, we ran two stream applications
in parallel on the two cores sharing a memory domain. The completion time
of both applications was around 20 seconds because of the contention. This
example clearly shows the negative effects on the performance and energy
consumption without any consideration of contention on multi-core proces-
sors.

We are interested in the efficient executions of the applications on shared
resources based computing machines with the aim of minimize both the
energy consumption and the completion time. Since the resource manager
is the component of a system responsible for deciding which application
run on the processors simultaneously, resource allocation and scheduling are
crucial for performance and energy efficiency.

We explore the impact of contention by simulating a resource allocation
which models contention caused by concurrent tasks. The resource allocator
is a heuristic based on the Min-Min resource allocation algorithm [144, 145].
The algorithm consider the multi-objective problem. This algorithms first
compute the completion time for each job on each core. The core that has the
minimum completion time for each application is selected (it corresponds to
the first Min objective in the algorithm and is based on estimated completion
times for the applications). Then the application with the overall minimum
completion time is selected and affected to the machine or the core (it cor-
responds to the second Min objective of the algorithm). And this process
is repeated. We have modified the first function of the Min-Min algorithm
by adding a parameter that take into account the performance degradation
on the completion time for the application when it is in memory contention
conflict with another application that is in execution.

Problem statement

We consider computing architectures with a set P of M heterogeneous pro-
cessor packages each package containing a set ofm homogeneous/heterogeneous
cores. The cores in general will be heterogeneous in time and energy require-
ments. These cores share last level cache and memory. One example of this
kind of architecture could be machines with large shared memory having
two 2.5 GHz Intel Xeon E5000 processor package series of two or four cores
each. Each core may only execute one task at a time (i.e., no multi-tasking).
Furthermore, we assume that processor packages are equipped with DVFS
features.

We assume a set of independent tasks. They have to be individually
processed by a single resource (non-preemptive mode). The tasks could
specify hardware and/or software requirements over resources. These tasks
could be memory bound and/or CPU intensive. For each task, we assume

56

that an estimated time to compute (Expected Time to Compute (ETC)) on
each core has been provided. This ETC is estimated without consideration
of contention. However, in our model we provide the resource allocation
heuristic with a mechanism that penalize the objective function in the case
of contention. An the final assignation of tasks to processing elements are
done taking into account this situation. More precisely, assuming that the
computing time needed to perform a task is known (assumption that is
usually made in the literature [145, 146, 147]), we use the ETC model by
Braun et al. [145] to formalize the instance definition of the problem as
follows:

• A number of independent tasks to be scheduled.

• A number of heterogeneous machine/cores candidates to participate
in the planning.

• The workload of each application (in millions of instructions).

• The computing capacity of each machine/core (in mips).

• Ready time readym indicates when core m will have finished the pre-
viously assigned tasks.

• The Expected Time to Compute (ETC) matrix (nb tasks×nb machines)
in which ETC[t][m] is the expected execution time of task t on core m.

In terms of resource allocation problem, the goal of this work is to as-
sign the tasks on P , the set of mM processor packages so that the total
completion time (i.e. makespan) of the last executed application over all
the machines is minimum and the efficient use of energy is maximized. The
completion time of a core m is defined as the time in which core m will final-
ize the processing of the previous assigned task as well as of those already
planned tasks for the processing elements. This parameter measures the
previous workload of a core. Notice that this definition requires knowing
both the ready time for a core and the expected time to complete of the
tasks assigned to the machine.

The proposed approach

The proposed solution is based on the Min-Min resource allocation algo-
rithm [144, 145]. It is a two phase greedy heuristic. The algorithm starts
with a set of all unmapped tasks and iteratively assigns tasks to process-
ing elements by computing their expected minimum completion time. For
each task this is done by first tentatively scheduling it to each core and
estimating the task’s completion time on each core. Also for each task, a
metric function f1 (i.e., the core that has the minimum completion time for

57

each application is selected) is computed over all expected completion times.
Then the (task, core) pair with the best metric match is selected by using
a selection function f2 (i.e., the task with the overall minimum completion
time is selected). After that, the task is mapped to the core. Again, this
process is repeated with the remaining unmapped tasks.

We modified the Min-Min algorithm to adapt it to the contention prob-
lem. The modification lies essentially with the calculation of the quality of
a mapping of a task to a core. The new scoring function takes into account
potential memory contention and the voltage-frequency scaling of the indi-
vidual cores and processors. In addition to all the task-to-core mappings
considered, we consider the different voltage-frequency operating points.

The score of each mapping is calculated with

score = α×MCT + (1− α)× Energy, (3.1)

where MCT is the time the core takes to execute all its currently assigned
tasks, and α sets the tradeoff between the objectives: energy and MCT .
The energy spent executing the this task is calculated with the relation

Energy = V 2 × CT, (3.2)

where CT is the time needed to execute that task on this core. The total
completion time is the sum of the completion time of each task, on this core
is

MCT (m) =
n∑

i=1

CTi(m). (3.3)

As an hypothesis, the time needed to execute each task t on each core c,
CTi(c), is considered known. These times are based on a dedicated machine,
at maximum processor speed. They are presented in an estimated time to
compute (ETC) matrix. The machines in our model are heterogeneous. The
model is also inconsistent: one core may be faster than another to compute
one task, yet slower than another core for another task.

The memory contention and voltage-frequency scaling are introduced as
modifying factors to the ETC. Both of these can degrade the completion
time of the task, as described in the following subsections.

Memory contention penalty The shared resource we model is the ac-
cess to main memory. We define a memory contention when several memory-
bound tasks are concurrently executed on the same machine. We suppose
that the memory requests are not met with the various cache memories.
Min-Min maps tasks to cores or processors, without specifying any execu-
tion order. This prevents the identification of a concurrent execution of
memory-bound tasks. To reconcile these two views, we use a statistical ap-
proach. When considering the mapping of a memory-bound task to a core,

58

Parameter Value

Tasks 36
Cores 6
Distinct machines 4
% of memory-bound tasks 50

Table 3.1: Parameters

we calculate the percentage of the time the other cores on the same machine
spend executing memory-bound tasks. This reflects the probability for this
task to execute concurrently with another.

PenaltyM = 1 +

n∑

c=1

pctc. (3.4)

The original ETC time is then multiplied by PenaltyM , to reflect the impact
of memory contention. For example: on a 2 core single processor, if one
core is executing only memory-bound tasks, then mapping another memory-
bound task on the other core results in doubling the basic ETC for this task
on this core. As mentioned earlier, this is in line with actual measurements
made with a memory intensive benchmark application.

Voltage-frequency scaling penalty We assume that each core can op-
erate at a distinct voltage-frequency. The frequency directly influences the
performance of the core (lower frequency means greater CT), and the volt-
age its energy consumption. We suppose that each core of a processor can
operate at different voltage-frequencies, and that memory-bound tasks are
not affected by frequency changes; their CT do not change.

Simulation

In this section we present the setup for our simulations, and the results
obtained.

Parameters The parameters are summarized in 3.1. There are four ma-
chines, two of them are composed of a single core processor, and the other
machines of two cores or SMP processors. About half of the tasks are
memory-bound.

The model for our voltage-frequency scaling is presented in table 3.2.
These voltage-frequency operating points are arbitrarily chosen.

Results Table 3.3 summarizes the results obtained with our proposed al-
gorithm across several weights (α), and a point of comparison with a model

59

Operating point Performance penalty Voltage (V)

0 ×2.0 0.5
1 ×1.5 1.0
2 ×1.0 2.0

Table 3.2: Voltage-frequency operating points.

α Makespan Energy
(time) (J)

0.5 310 380
0.8 240 880
1 205 2200

Min-Min 264 1055
(baseline) 195

Table 3.3: Effect on contention and DVFS on task mapping

that ignores contention and DVFS (baseline model). We then correct the
baseline Min-Min solution by taking into account the memory contention
effect, as described in 3.1.2. The baseline makespan, when accounting for
contention and DVFS, increases the makespan from 195 to 264. This ad-
justment also impacts the energy computed in the baseline model.

Higher values for α favor the makespan, while lower values favor energy.
The α value of 0.8 provides the best trade-off between makespan and energy.
We observe that our model for contention and DVFS influence the mapping
founds (makespan ranges from 310 to 205), and impacts the original baseline
results. Although this is based on a set of assumptions, these effects should
not be ignored in mapping tasks to cores, and shows the potential benefit
from using contention-free architectures, such as AWN.

3.1.3 Pipeline mapping on AWN with contention

The previous sections provided some background information which we can
use to explore code-parallelism on AWN. This first study presents simulation
results for the mapping of pipelined tasks onto a AWN, in order to assess
its potential benefits [148].

The approach is to develop a model of the current multi-core processors,
the tasks intended to run on these multi-core processors and their OS. The
model is intended for middleware tools, such as schedulers. Multi-core pro-
cessors suffer from contention for shared resources, such as main memory,
which may significantly affect the expected performance and energy con-
sumed. Moreover, current operating systems such as GNU/Linux timeshare

60

the processor cores, in order to overlap blocking I/O with computation. The
kernel typically includes power management services which control the volt-
age/frequency scaling automatically, based on user specified policies (gov-
ernor). The proposed model accounts for these facts, and therefore enables
the scheduler of a data centers to make better decisions.

Contention is defined as the concurrent access to a shared resource within
a machine [141]. This concurrency results when multiple cores execute dif-
ferent processes simultaneously, which may request access to the shared
resource. Examples are: network interface, main memory, last-level cache,
co-processors (such as a graphical processing unit, GPU).

In this section, the new model helps evaluate an alternative processing
platform, AWN. It is important to note that the AWN processors can be
multi-core themselves, but with a smaller number of cores than typically
found in data center servers. The limited number of cores of AWN reduce
contention, by reducing shared resources. A practical drawback to the mil-
licluster comes from its distributed nature: it is a cluster. Each AWN has
limited computing performance, therefore applications must be decomposed
and distributed. This will break the binary compatibility for some pro-
grams. We address this requirement by suggesting to apply a well-known
decomposition pattern; pipelining.

In this section:

• We propose a new model for multi-core processors that accounts for
self-regulated DVFS by the operating system and time sharing of the
processors by the operating system.

• We adapt a well-known off-line scheduling algorithm to this model,
with the additional objective of energy efficiency. The main focus
of this study is contention modeling, in order to improve scheduling
accuracy. Therefore its benefit can only be assessed in combination
with a scheduling algorithm. this thesis proposes such a scheduling
algorithm, which aims at both maximum performance and minimum
energy consumption. The algorithm retains the qualities of the original
version, but extends it for energy minimization while applying the
proposed model.

• Provides simulation results for different architectures, based on the
new model, to put AWN proposal in perspective.

• Suggests and evaluates the decomposition pattern of pipelining, to
port existing applications to AWN.

Problem definition

The context of the problem addressed in this study is the efficient map-
ping/scheduling of tasks to a set of processing elements. Mapping/scheduling

61

is defined as the procedure that assigns tasks (executable code) to some com-
putational resources, the processing elements, and define a date at which the
tasks should be executed, to optimize a performance objective. A process-
ing element is a processor core, either a single-core processor, or one core
of a multi-core processor. These cores can be considered components of a
cluster of independent computers, or a computational grid. Efficiency refers
to the fulfillment of some predefined objectives. This study considers dual
objectives: (a) performance and (b) energy. The objective of a mapping
algorithm is therefore to identify a mapping that delivers good performance
at low energy consumption levels.

The field of scheduling has provided many algorithms to perform this
mapping activity. However, all cluster computing and grid computing map-
ping algorithms rely on a simple model for the tasks and the processing
elements.

Processing elements As already mentioned, the set of processing ele-
ments are processor cores. The cores are packaged in processors, which are
themselves grouped in a computing machine. this thesis supposes that each
core is capable of dynamic voltage frequency scaling (DVFS); that is, it can
be operated on a set of supply voltages and different speed performance
(associated to different clock frequencies) [149, 150]. DVFS seeks to exploit
the convex relationship between the core supply voltage (that impacts the
speed of execution) and the energy consumption. Moreover, different cores
of a same processor are assumed able to independently operate at different
voltage/frequency points. This assumption is used by the mapping algo-
rithm.

Tasks A task is executable code, which is started to perform some amount
of work and then stops after completion. For each task, an estimated time to
complete (ETC) their work, on each of the different processors, is provided.
The ETC matrix (nb tasks × nb cores) in which ETC[t][c] is the expected
execution time of task t on core c. These times are provided for each task in
isolation of the other tasks, without any consideration for contention for a
shared resource. This assumption is often made in the literature [145, 151,
152].

In this work, the ETC of a task is further broken into three parts:

• I/O part, this represents the latency associated with an I/O operation;

• contention part (such as memory operations), this is the time spent in
contention prone operations;

• a pure CPU part, the rest of the instructions of the task.

62

This classification is based on the instruction mix of the tasks. Mem-
ory intensive tasks perform significant load and store instructions to main
memory. On the contrary, CPU-bound tasks perform little load and store
instructions.

Energy-efficient mapping This study considers the energy-efficient exe-
cution of the tasks on shared resource based cores with the aim of minimizing
both the energy consumption and the overall performance.

Performance is defined by two complementary indicators: the flowtime
and the longest task time. The longest task is defined as the time needed
for the longest task to complete. The inverse of Longest Task Time (LTT)
is throughput. Indeed, if more than this throughput is queued into the
application, then queues will build up in input of all the tasks which are too
slow. By choosing a throughput based on the slowest task, queues can not
build up. This is particularly applicable to pipeline systems.

Flowtime is the sum of the runtime for all tasks across the different cores.

FT =
∑

t

ETC[t][c] , (3.5)

where c is the core to which task t is mapped.
The energy E and power P relations used in this thesis are derived

from the power consumption model in digital complementary metal-oxide
semiconductor (CMOS) logic circuitry. Energy and power are defined as
follows:

E = P · T , (3.6)

where T is the time needed to perform an application.
The mapping problem is therefore a multi-objective problem, where the

objectives conflict with each other [153, 154]. That is, the aim is to maximize
the performance of the system (i.e., to minimize the LTT and flowtime)
while minimizing the energy consumption. This bi-objective problem can
be approximated as a (scalar) single objective problem, defined as a weighted
average of the two objectives. This is a traditional approach used to solve
multi-objective problems. This way of tackling multi-objective optimization
problems is widely accepted despite of its main drawbacks: only one solution
from the Pareto front (a set containing the best non-dominated solutions to
the problem) is found in each run, and only solutions located in the convex
region of the Pareto front will be found. However, the use of the weighted
function is justified in our case by the convex search space of the studied
problem and also by the need of providing a unique solution, since there is
not any decision maker to select the most suitable solution from a set of
non-dominated ones. In the weighted approach, each objective is multiplied
with a weight representing its importance. In this work, the weight for the
LTT and flowtime is α, with real values in the interval [0...1]. The weight

63

for the energy consumption is 1−α. The α parameter is chosen to represent
the relative importance of one objective or the other. This choice belongs
to the user of the mapping algorithm. So, each the output to the mapping
algorithm, with specific voltage/frequency points, can be evaluated with:

score = α ·MS + (1− α) · E . (3.7)

Because the mapping algorithm aims to minimize both objectives, the opti-
mal mapping is the one with the minimal score.

Model

This section presents the model of a processing element, a task, and the oper-
ating system services. This model is an extension of an existing model [141],
which introduced the effect of memory contention.

The model takes as input:

• the proposed assignment of a task to a core,

• the current state of the mapping: the currently assigned tasks.

The model outputs three values:

• the flowtime for the resulting schedule;

• the LTT in the schedule;

• the associated energy consumption.

The model is not specific to any shared resource of a multi-core processor
for which contention occurs. However, in order to clarify the presentation of
the model, this thesis will choose a source of contention. Given the dominant
impact of main memory access [155], for the rest of the paper, the shared
resource modeled is that of main memory.

ETC modifiers Section 3.1.3 introduced the ETC. This time is provided
for a task in isolation of any other (the task is running by itself on the
machine), and at nominal voltage/frequency.

In the proposed model, the ETC of each task is decomposed into a
latency part (for I/O), a contention-prone part, and the rest, a CPU part.
This proportion can be derived from the instruction mix of the program, by
examining the machine instructions to detect those which access the shared
resource. In the case of contention for main memory, this would amount
to the number of memory stores and loads. Alternatively, this part can be
determined by analyzing the runtime behavior of a task. In an analogy with
Amdahl’s law for speedup under parallelization, the runtime T of a task can
be rewritten as:

ETC[t][c] = Tmem[t][c] + Tlat[t][c] + Tcpu[t][c], ∀c , (3.8)

64

where Tlat, Tmem and Tcpu are the runtime of the latency, contention-
prone and CPU parts respectively. They are defined as follows:

Tmem[t][c] = βt · ETC[t][c]∀c , (3.9)

Tlat[t][c] = γt · ETC[t][c], ∀c , (3.10)

Tcpu[t][c] = (1− βt − γt) · ETC[t][c], ∀c . (3.11)

The contention factor is proportional to the memory parts of the other
tasks running on the other cores of the same machine (which is the scope of
our contention, section 3.1.3). Tasks running on the same core are not sub-
ject to contention because they do not run concurrently, but are preempted
by the OS. This effect of contention on Tmem is approximated by the sum
over all the other cores of the machine, of the proportion of runtime spent
in memory related activity. Let N represent the other cores of the same
machine, and β the ratio of memory runtime, then:

T ′
mem = Tmem · (1 +

N∑

c

∑tasks
i βi · ETC[i][c]
∑tasks

i ETC[i][c]
) . (3.12)

This statistical estimation is independent of the actual ordering of the exe-
cution of tasks on the different cores in the machine, because this is assumed
to be the responsibility of the OS scheduler.

The time spent by the CPU waiting on the completion of an I/O oper-
ation is modified at this stage by the location of the endpoints to the com-
munication. The target software architecture is a pipeline, therefore, the
communication is uni-directional. If the location of the endpoints in this
communication are on the same physical machine, then fast inter-process
communication (IPC) are considered used transparently by the tasks. An
example of such IPC is shared memory, and the appropriate synchronization
primitives. In this case, the time allocated to latency is removed.

Finally, the modified ETC of a task is then:

ETC ′(t, c) = T ′
mem(t, c) + T ′

lat(t, c) + Tcpu(t, c) . (3.13)

Performance evaluation Performance was defined as LTT and flowtime
in Section 3.1.3. These indicators are global, in the sense that they can
only be computed on the entire schedule (unlike the ETC modifiers). When
computing LTT, the latency is ignored when adding times, unless there is
only one task allocated to a core. This is because if multiple tasks are
assigned to a core, the OS scheduler can run them alternatively, to overlap
I/O with computation (in the case of a single task, this is not possible).
Both flowtime and LTT use the modified ETC values for each task, due to
memory contention and local IPC.

65

Energy evaluation Energy-efficient scheduling using DVFS often con-
sider that a scheduler should specify the voltage/frequency point of opera-
tion of each core. In this section, we depart from this approach. Indeed,
inspection of the kernel power management tools of the GNU/Linux kernel
version 2.6.35-24, reveals that DVFS is very dynamic and self-regulated.
Default values for the On-demand governor show a sampling rate of 10
ms (time period when a DVFS change is considered). Fundamentally, the
complexity of a cluster, grid or cloud is such that whenever possible, local
decision making should be preferred over a global one. In this case, the
regulation is based on CPU utilization, which is also under the control of
the kernel.

We suppose that the OS manages power using the cpu-freq tools under
the on-demand governor. The on-demand governor implements the race-to-
idle policy. Whenever there is a need for CPU, then the voltage/frequency
is set to its maximum value. Later, when the utilization decreases, the
voltage/frequency point of operation is chosen so as to match the needed
load.

The makespan is used to compute the total energy spent executing the
tasks. Makespan is defined as the maximum latest completion time CT over
all the resources used in a mapping. Formally, for a processing element c,
the completion time of c without consideration for contention, is defined as:

CT [c] =
∑

t∈S(c)

ETC[t][c] , (3.14)

where S(c) is the set of tasks assigned to core c. The makespan MS is then
defined as:

MS = {max{CT [c] : c ∈ cores} }. (3.15)

When busy, the cores are supposed to be operating a maximum volt-
age/frequency, under the on-demand governor. When a core has completed
its tasks, then it switches to the lowest voltage/frequency. Formally:

E = BL ·N ·MS +
∑

c

(Phigh · CT + Plow · (MS − CT)) , (3.16)

where BL is a constant power term, N is the number of machines powered
on, Phigh the CPU power consumption when operating at maximum volt-
age/frequency, Pmin the CPU power consumption when operating at mini-
mum voltage/frequency. A machine which is not used (no task assigned) is
considered powered off.

Model parameters The previous subsection presented the model from
which the required parameter list can be derived. It is presented in Table 3.4.

66

Table 3.4: Summary of parameters of the model

Parameter Definition Example
value

α weight for the performance objective 0.6
ETC estimated time to complete a task on a core, in ms 1230.5
βt ratio, per task, of memory related operations 30%
γt ratio, per task, of latency 20%

Plow power at minimal DVFS operating point 10 W
Phigh power at minimal DVFS operating point 100 W
BL constant power term 200 W

Applications of the model

The model presented is used to compare the relative performance of a two
dual-core server and a AWN.

AWN Current many-core processors propose the view of a unified and
shared memory. This leads to complicated memory path design which still
requires great care from the programmer. Yet, this increased programming
effort provides diminishing returns in terms of performance [13]. The well-
known alternative to shared memory parallel programs is the message pass-
ing parallel model [156]. This model of parallel programming is widely used
in the supercomputing area, where many distributed machines are typically
needed. In addition to the large distributed system, this message passing
model is effective when managing complexity, by forcing the decomposi-
tion of larger applications into many, smaller, independent lightweight pro-
cesses [157]. Although decomposition is a well-known and frequently used
technique to face complexity, it is also necessary when developing reliable
programs, as highlighted by the practice of formal methods [158]. The de-
composition pattern chosen is the pipeline. A software pipeline is simply a
series of tasks, connected via uni-directional communication links. The ad-
vantage of a pipeline is to increase throughput, at the cost of increased delay
for completing all the steps in the pipeline. Pipelining offers to increase the
performance of sequential programs. So, this thesis supports the suggestion
to combine the hardware devices from the mobile computing area with the
middleware ideas and software from the distributed supercomputing area.

Suggesting alternatives to the current multi-core processor (with its ever
increasing number of cores) design may appear a risky proposition. But, the
current multi-core design does not appear to be the definitive answer to the
problem of increased performance [13]. An implicit objective of the current
design of multi-core processors is binary compatibility with existing pro-

67

Table 3.5: Processor specifications for platform comparison

Parameter dual core AWN

ETC
perf. ratio 1 10

Plow 10 W 0.1 W
Phigh 100 W 2 W
BL 200 W 20 W

grams. This objective conflicts with the other objective of designing parallel
machines. The motivation for parallelism comes from, among other aspects,
the combined limitations (“walls”), in memory access, power consumption
and instruction-level parallelism. This leads to the formula [155, 13]: Power-
wall + Memory-wall + ILP-wall = brick-wall.

It is interesting to point out that AWN can help address some of these
limitations, and address the parallelism objective better then the current
multi-core design. Indeed, many low-power components allows for a finer
grain control of the power consumption in the cluster. Memory access and
ILP can also operate in parallel in each AWN.

Comparison configuration The model proposed in this thesis will help
to conduct a comparison of the different platforms. The first platform is
two processor machine, each processor is dual-core. The second platform
is a four node AWN, where each node is composed of a dual-core ARM
processor.

The dual-core is based on the Intel 5400 series Xeon processor. The
AWN is based on the ARM A9 Cortex processor. Table 3.5 summarizes
the parameters for each platform. The ETC performance ratio indicates the
relative speed of each processor. The ARM A9 is considered ten times less
powerful than the Intel based processor. The power specifications are taken
from the constructor’s website.

To simulate the effect of pipelining, three large tasks are decomposed
into four steps of a pipeline each. The cumulated ETC is about 10-20%
greater for the pipeline tasks, to represent the increased workload to queue
messages between tasks. The three different parts of the large tasks are
overall preserved across the pipeline tasks, but not at each step.

Results The comparison is performed with a mapping algorithm based
on the Min-Min resource allocation algorithm [144, 145], adapted to this
model.

Figure 3.1 shows the effect of pipelining an application. The regular

68

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.2 0.4 0.6 0.8 1

tim
e

(m
s)

weight α

flowtime pipelined
flowtime regular

LTT pipelined
LTT regular

Figure 3.1: Performance for pipeline simulation on dual-core bi-processor

version of the application and the pipelined version are mapped on the same
bi-processor machine. We can observe that for both performance objectives,
the pipelined version is better. This is due to the better utilization of the
CPU. The pipelined version offer much finer grain control over the coarse
grain, regular version.

Figure 3.2 compares the regular version on the Intel bi-processor with
the pipeline version on the AWN. We notice that the AWN performs worse,
especially in term of flowtime. This is due to the performance penalty of 10
between the two processor speed, and the relatively small number of cores
in the AWN, only a factor of 2.

Finally, Figure 3.3 show the energy results for all versions. Unsurpris-
ingly, the AWN performs better than the others. We can notice that the
pipeline version achieves better results than the regular version. This is an
added benefit of the smaller tasks in a pipeline.

Conclusion

this thesis exposed the consequences of pipelining for energy-efficient map-
ping. A model that captures contention, operating system behavior for local
scheduling and power management was presented. An existing mapping al-
gorithm was adapted to rely on this model, and simulation experiments were
conducted to evaluate the AWN microserver and compare it with multi-core
processor based servers. Although the performance of AWN remains inferior
to server class multi-core processors, it compensates in terms of total energy
consumption and longest task time, which is directly related to throughput.

69

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 0.2 0.4 0.6 0.8 1

tim
e

(m
s)

weight α

flowtime regular on dual cores
flowtime pipelined on millicluster

LTT regular on dual cores
LTT pipelined on millicluster

Figure 3.2: Performance comparison for pipeline simulation

 700

 750

 800

 850

 900

 950

 1000

 0 0.2 0.4 0.6 0.8 1

en
er

gy
 (

J)

weight α

energy regular on dual cores
energy pipelined on dual cores
energy pipelined on millicluster

Figure 3.3: Energy comparison for pipeline simulation

3.1.4 Pipeline mapping on AWN with contention and soft

deadlines

We further investigate pipelining as a candidate approach for parallelism
for the AWN [159]. Soft real-time constraints are added to the tasks to
account for the performance objectives of the overall application. The study
compares three known heuristics, modified to suit our context. We also
introduce SA as a tool to evaluate the proposed model.

70

We consider that an application is decomposed into a pipeline of tasks,
connected by message queues. Several copies of the same tasks may be run
concurrently, all serving the same queue. However, this possible set up is
not investigated further here.

The objective is to match the performance of the application on data
center class machines. However, the application’s overall performance is
now distributed across the tasks. Each task must respect some service level,
in order for the application to do as well. Soft real-time deadlines provide
a natural way to express this constraint. Each task is therefore given a
deadline. The overall pipeline performance is equal to the slowest task’s
performance. The performance of a task is modeled as a time needed to
process a unit of input, called the estimated time to complete (ETC) [160].
Therefore, the deadline for each task is the largest ETC. All tasks share the
same deadline. In practice, that deadline is extended by a factor, delta, to
account for variability in the ETC of the slowest task.

Energy model

We consider that each core is capable of dynamic voltage frequency scaling
(DVFS); that is, it can be operated on a set of supply voltages and differ-
ent speed performance (associated to different clock frequencies) [149, 150].
Energy-efficiency using DVFS often considers that application could specify
the voltage/frequency point of operation of each core. This is not the as-
sumption in this thesis. Indeed, inspection of the kernel power management
tools of the GNU/Linux kernel version 2.6.35-24, reveals that DVFS is
very dynamic and self-regulated. Default values for the On-demand gover-
nor show a sampling rate of 10 ms (time period when a DVFS change is
considered). Fundamentally, the complexity of a cluster is such that when-
ever possible, local decision making should be preferred over a global one.
In this case, the regulation is based on CPU utilization, which is also under
the control of the kernel. Here, the operating system manages power using
the cpu-freq tools under the on-demand governor. The on-demand gover-
nor implements the race-to-idle policy. Whenever there is a need for CPU,
then the voltage/frequency is set to its maximum value. Later, when the
utilization decreases, the voltage/frequency point of operation is chosen so
as to match the needed load. It should be mentioned that the automatic
adjustment of the CPU frequency results in jitter, delayed comunications,
in a large-scale system, which is the case of the AWN.

Processor is not the only component of the nodes of an AWN to consume
energy. Because the intention is to capture the total energy consumption of
the AWN, other components need to be included. The power model adopted
is summarized by the relation:

Pm = Pconstant + Phigh, (3.17)

71

where Pm is the total power of a machine (node in an AWN), Pconstant

represents the constant power term, for components which do not scale
according to voltage or frequency, this also include the network, and Phigh

represents the power increase, compared to the idle state, when components
subject to DVFS are in high performance mode (in an active state, the
machine dissipates Pconstant +Phigh). This is automatically adjusted by the
OS and the hardware, and does not only include the processor. This model
is preferable because it lends itself to experimental validation through power
measurements.

Energy is the product of power and time. The energy should also reflect
the race-to-idle policy. Total energy is defined below by:

Em = Pconstant × CTmax + Phigh ×
cores∑

c

CTc, (3.18)

where CTc is the sum of all ETC of the tasks assigned to a core of a ma-
chine (its finishing time), and CTmax is the maximum CTc over all cores
of all machines. If no tasks are run on a machine, then that machine is
considered switched off. When running a task, the core is at maximum
voltage/frequency consuming Phigh, when idle, only Pconstant. The idle time
lasts until the last core finishes its tasks. All machines in the AWN are
considered identical in this study.

The nodes part of the AWN are multi-core, and are subject to contention.
The contention considered in this study is related to components shared
across a machine, such main memory. The contention factor is proportional
to the memory parts of the other tasks running on the other cores of the
same machine. Tasks running on the same core are not subject to contention
because they do not run concurrently, but are preempted by the OS.

Contention effects impact the ETC of a task (access of a shared resource
are serialized). Each task is defined by an ETC, which is split into:

• ETC under possible contention,

• the rest of the ETC, which is independent of sources of contention.

This effect of contention on a task’s ETC is approximated by a delay added
to its ETC. This penalty delay is the sum over all the other cores of the
machine, of the time period spent concurrently in contention prone activity.

Scheduling pipelines in AWN

As mentioned previously, efficiently running software pipelines on a AWN
of multi-core processors requires the precise scheduling of the tasks onto the
cores. Before describing the algorithms proposed in this thesis, which is the
topic of the next section, the nature of the scheduling in the AWN must

72

be made precise. Indeed, various components in a computing system use
schedulers, making the term scheduling ambiguous.

The scheduler investigated here is a non-privileged instance of a program,
operating at the cluster level. The main activity of the AWN scheduler is
to periodically define the set of concurrent tasks in a processor, so as to
minimize contention, meet task deadlines and save energy. It is similar to
an OS long term scheduler, described in [161] by: “The long-term scheduler
deals with the high-level or “big picture” issues; it is invoked infrequently
and tasked with deciding which processes should inhabit the ready queue.
The idea is that the long-term scheduler takes on the role of load balancing:
it might try to maintain a mix of I/O-bound (i.e., those that perform mainly
I/O) and computationally bound processes for example, in order to give the
best overall system performance.”

The AWN scheduler defines the current list of processes, per machine,
that a usual OS scheduler (or short term) schedules for execution at a much
higher frequency. The core on which to run the process is not important,
because the machines are considered single processor (yet multi-core), and
the exact core mapping is not important (as opposed to the concurrent set
of processes).

Algorithms for simulation In this section, three scheduling algorithms
are presented to meet the stated objectives. The particular context for the
scheduling question lies at the intersection of two fields:

• distributed system, for the scheduling independent tasks (tasks in a
pipeline have become independent tasks, which is another benefit of
this program structure),

• soft real-time, because of the deadlines for each task.

The first algorithm evaluated is a variant of Min-Min [144, 145], a map-
ping algorithm for resource allocation. It originates from the field of dis-
tributed systems. It is a greedy algorithm, which considers all possible
task-to-core mappings, and then performs the assignment of the best map-
ping, constructing the schedule incrementally. “Best” is defined here by the
Energy Delay Product (EDP) D · E, where:

• D is the total time by which all tasks exceeded their deadlines, D =∑tasks
t max(0, deadline− finishing time),

• E is the total energy spent.

To influence the decisions of the algorithm, a paramater α is introduced,
such that a mapping is considered better than the current best Max, if
α ·D · E < Max.

73

The other two algorithms we consider are inspired from real-time schedul-
ing algorithms: rate monotonic and earliest deadline first [162]. These algo-
rithms have been proven optimal in a specific context, which is not the one
set here, but similar. These variants are called Shortest Slack First (SSF)
and Longest Slack First (LSF). SSF orders the tasks to schedule in in-
creasing slack time, the difference between their deadline and ETC. It then
assigns a core (which minimizes the EDP according the same rule as Min-
Min) for each task in turn, incrementally constructing the schedule. LSF
works identically, but orders the tasks by decreasing slack.

Before these algorithms can be experimentally compared, all the param-
eters of the different models (task, machine, energy, contention, algorithm)
need to be set. It is best done once their respective influence is established.
This is the topic of the next section.

Sensitivity analysis SA [163] of a model provides many benefits. First
it determines the influence of each of the factors of the model. This allows
future users of the model to focus on the most important parameters of
the model, while ignoring the least influential. It also helps design models,
because understanding the influence of each factor allows to verify of the
model. For example, SA allowed the authors to uncover an error in the
earlier version of a model. The SA reported that a presumed key factor had
in fact almost no influence.

The objective for this SA is Factors Prioritization (FP), whose goal
is [163] “to make a rational bet on what is the factor that one should fix to
achieve the greatest reduction in the uncertainty of the output”. A factor
corresponds to our model parameters.

The different parameters for our model are presented in Table 3.6, with
their range of possible values. Parameter maximum ETC is the maximum
value used for the random generation of ETCs of all tasks. The maximum
contention rate is the maximum value for the proportion of the ETC the
task spends in contention prone instructions. This value is used for the
generation of ETC. Deadline is the additional time added to the largest
ETC to obtain the common deadline. It is an additional percentage to
the largest ETC. Powers have been defined in Section 3.1.4. The values
for Phigh is taken from the specifications of the ARM A9 processor. The
values for Pconstant are arbitrarily chosen, to reflect the non-processor re-
lated components. Parameter α is part of the objective function defined
in Section 3.1.4. A small value for α indicates that sub-optimal scheduling
decisions are allowed, whereas greater than 1 values indicate that scheduling
decisions improve the objective by a greater margin.

Two SA are performed: a quantitative and a qualitative method. The
quantitative method used is an extension to the Fourier Amplitude Sensitiv-
ity Test [164]. This method allows the computation of first order effects and

74

Table 3.6: Model parameter variation

Parameter Probability Range of values

maximum ETC uniform 15 – 30 [time unit]
Contention rate max uniform 30 – 60%

Deadline delta uniform 0 – 30%
Power (constant) uniform 15 – 25 W

Power high uniform 0.1 – 2.0 W
α uniform 0.7 – 1.2

ETC max Contention max Deadline Power Power High Alpha

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Figure 3.4: Fast99 of Performance

interactions for each parameter. Parameters interaction occurs when the
effect of the parameters on the output is not a sum of their single (first or-
der) effects. This variance decomposition method has the following desirable
properties [163]. It is model independent (it does not place requirements on
the type of model to work). It evaluates the effect of a parameter while
all others are also varying. Finally, it copes with the influence of scale and
shape (the probability density function and its parameters).

The results for this method are shown in Figures 3.4, 3.5. The output
in the case of performance is the amount of time by which the deadlines
were exceeded. Part of the hypothesis for the SA was a small number of
machines, such that most tasks failed to meet their deadline. The amount
of time by which they failed to meet their deadlines is the output.

Regarding the performance analysis, the factors have predominantly a

75

ETC max Contention max Deadline Power Power High Alpha

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Figure 3.5: Fast99 of Energy

linear impact on the output. The most influent factor is α. Maximum
ETC, the deadline factor and maximum contention playing minor roles.
Indeed, the definition of α makes it play an influential role. Maximum ETC
sets the maximum value for the task generation. The ETC for each task
is randomly chosen in a given range. A higher value for maximum ETC
leads to heterogeneous task ETC. Regarding the energy analysis, the three
important factors are α, maximum ETC and power. This highlights the
relation between performance and energy.

The qualitative method used is a One factor At a Time (OAT). It is
commonly used for screening the least important factors from the rest. The
method used here is the method of Morris. It also captures the linear and
non-linear interaction of factors. Qualitative methods require less computa-
tions than quantitative ones.

The results for the method of Morris are shown in Figures 3.6, 3.7.
The x-axis indicates the linear impact of the factor, while the vertical axis
indicates the non linear impact.

Regarding the performance analysis, deadline and α show the strongest
impact. Maximum ETC and maximum contention play a minor role. Both
SA methods find the same four important factors, but in different order of
importance. Regarding the energy analysis, maximum ETC, power and α
have the most influence on the output. This is identical to the results of
Fast 99.

76

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

µ*

σ

ETC max
Contention max

Deadline

Power

Power High

Alpha

Figure 3.6: Morris of Performance

0.1 0.2 0.3 0.4 0.5 0.6

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

µ*

σ

ETC max

Contention max

Deadline

Power

Power High

Alpha

Figure 3.7: Morris of Energy

Comparison of the scheduling heuristics This section compares the
three scheduling heuristics presented in Section 3.1.4. The SA results show

77

Table 3.7: Model parameters for heuristic comparison

Parameter Value

tasks 16
machines 4

processor/machine 1
cores/processor 2

ETC range 5 – 25 [time unit]
Contention range 10 – 60%
Deadline delta 10%

Power (constant) 20 W
Power high 1.0 W

that special care should be taken when setting the parameters α, maximum
ETC and to a lesser extent deadline and maximum contention. Therefore,
experiments ran the different heuristics on the same ETC instances (30
instances for each run). Table 3.7 lists the parameter settings. The choice
for the machines are based on ARM A9 processors. The power values come
from the hardware specifications.

Figure 3.8 presents the performance results for the three heuristics. The
x-axis lists different values for α, the heuristic score parameter. Performance
is the amount of time by which the deadlines were exceeded. All heuristics
reach their best score when α ≃ 1. LSF is the best algorithm for perfor-
mance, but only slightly better than Min-Min. However, it is faster than
Min-Min.

Figure 3.9 presents the total energy results for the three heuristics. All
heuristics reach their best score when α = 1. SSF is the best algorithm for
energy, and LSF is slightly better than Min-Min.

Conclusion

Software pipeline is a parallel application architecture to overcome the lim-
ited individual performance of each node of an AWN, and may allow to ben-
efit from a low-power system. Three scheduling algorithms were introduced
and evaluated to further reduce the energy consumption while meeting per-
formance objectives, by adding soft real-time considerations to the software
pipeline. The contention in multi-core processors is also part of the model.

3.2 Data Parallelism

The simulations of pipeline models for AWN and multi-core processors
showed that pipelining for AWN does not match the performance objec-

78

 50

 100

 150

 200

 250

 300

 350

 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

pe
rf

or
m

an
ce

 (
tim

e)

α

Min-Min
SSF
LSF

Figure 3.8: Comparison of 3 heuristics on performance

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

en
er

gy
 (

J)

α

Min-Min
SSF
LSF

Figure 3.9: Comparison of 3 heuristics on energy

tives of brawny nodes, even for throughput. Another, more frequently used
source of parallelism is data. Data parallelism keeps the programs as is, but
splits the input data to be processed in independent pieces. When possible,
this decomposition is more practical than code-parallelism. We explore this
source of parallelism by designing data-parallel solvers for the optimization
problem we selected, which is presented next, in Section 3.2.1. The chosen
solvers are a heuristic, Section 3.2.2, and a metaheuristic, Section 3.2.3.

79

3.2.1 Use case: a scheduling optimization problem

For our investigation of data parallelism on AWN, we will often use the
same problem: the independent task mapping optimization problem. The
algorithms used to solve this problem (or find solutions of good quality)
will be re-designed for increased parallelism, and evaluation on AWN. A
possible confusion may arise because this problem was found in our previous
investigations on code-parallelism (to support task placement of pipeline
steps). In contrast, here the problem and its associated algorithms serve
only as a test case for exploring the design of parallel application, the solvers’
results are not used in any way.

The problem is how to assign independent tasks onto the different pro-
cessors in an heterogeneous cluster, in order to minimize the makespan.
Makespan is the completion time of the last machine (when the last ma-
chine finishes its tasks). Makespan is defined more formally later in this
section. A machine is an independent computing unit, such as a single core
in a multi-core processor.

This NP-complete problem [165] arises frequently in parameter sweep
applications, such as Monte-Carlo simulations [166]. In these applications,
many tasks with almost no interdependence are generated and submitted
to a distributed system. In fact, more generally, the scenario in which the
submission of independent tasks to a cluster is quite natural given that
cluster users independently submit their tasks to the system and expect an
efficient allocation of their tasks. We notice that efficiency means to allocate
tasks as fast as possible and to optimize some criterion, such as makespan
or flowtime. Makespan is among the most important optimization criteria
of a distributed system; it is a measure of its productivity (throughput).

More precisely, assuming that the computing time needed to perform a
task is known (assumption that is usually made in the literature [145, 146,
147]), we use the Expected Time to Compute (ETC) model by Braun et
al. [145] to formalize an instance of the problem, as follows:

• A number of independent (user/application) tasks to be assigned.

• A number of heterogeneous machine candidates to participate in the
planning. A machine is general term for a computing unit, such as a
core.

• The workload of each task (in millions of instructions).

• The computing capacity of each machine (in mips).

• Ready time indicating when machine m will have finished the previ-
ously assigned tasks. In this work, we consider, without loss of gener-
ality, that all the machines are available to process the assigned tasks
(readym = 0).

80

• The Expected Time to Compute (ETC) matrix (of size nb tasks ×
nb machines) in which ETC[t][m] is the expected execution time of
task t on machine m.

We consider the task assignment as a single objective optimization prob-
lem, in which makespan is minimized. Makespan, the finishing time of latest
task, is defined as:

max{completion[m] | m ∈Machines} , (3.19)

where completion is the completion time of a machine. This time indicates
when the machine will finalize the processing of the previous assigned tasks
as well as of those already planned. Formally, for a machinem and a schedule
S, the completion time of m is defined as follows:

completion[m] = readym +
∑

t∈S−1(m)

ETC[t][m] . (3.20)

The complexity of the independent task mapping problem confines candi-
date algorithms to heuristic and metaheuristic approaches (except for small
problem instances).

3.2.2 Data-parallel Min-Min for the GPU

This section presents the design of a parallel Min-Min for the GPU, that
improves the performance for large problem instances [167], the runtime
becomes O(T 2 ×M/cores).

The most well-known heuristic algorithm for the independent tasks map-
ping problem is Min-Min [144]. As mentioned before, it is a deterministic,
greedy algorithm that constructs the solution iteratively. It is one of sev-
eral list algorithms, where the order of assignment can change (for example:
Max-min). Due to its accuracy and simplicity, the algorithm has been used
as a reference in many research papers since then [145, 168, 169] or as a com-
ponent for the design of more efficient algorithms [170, 171, 172]. Faster se-
quential variants of the previous list algorithms were proposed in [173, 174],
they sort the tasks to reach a runtime in O(M × T × log(T)), instead of
(O(M × T 2), at the expense of increased memory size. Nesmachnow et
al. [175] proposed GPU implementations of two scheduling heuristics, in-
cluding Min-Min. They report a maximum speedup of about 5 with respect
to the sequential version of the heuristic. We obtain a greater speedup, as
presented in Section 3.2.2, although their GPU hardware seems comparable
to ours. Their paper does not detail the parallel algorithm used, therefore
we cannot explain the difference.

81

Parallel Min-Min

The Min-Min algorithm iteratively proceeds in three steps. First, it finds
the best machine assignment for each unassigned task (the first “min”).
Here, best means minimal completion time. Second, it chooses among all
the previous possible assignments, the one with the minimum completion
time (the second “min”). Finally, it assigns that task to the corresponding
machine. The process continues until all tasks have been assigned.

Algorithm 1 Pseudo-code for Min-Min heuristic on the GPU

for all Tasks of one solution do

min ct <<< Tasks >>> (results) // Step 1
cudaMemcpy (results, temp, cudaMemcpyDeviceToDevice)
// Step 2: parallel reduction
n← 2
while Tasks/n ≥ 1 do

min task <<< Tasks/n >>> (temp)
n← n× 2

end while

assign <<< 1 >>> (temp, solution) // Step 3
end for

Our proposed GPU implementation for the Min-Min algorithm is pre-
sented in Algorithm 1. The f <<< n >>> () notation reflects the CUDA
macros: it indicates that kernel f is launched across n threads. The first step
is the launch of the min ct kernel. For each task, a thread finds the best ma-
chine for a given task, by selecting the machine with the minimum estimated
completion time. This kernel is launched with Tasks threads, because the
selection of the best machine can be conducted in parallel. Threads of pre-
viously assigned tasks are also run, but immediately return from the kernel.
Then, the results are copied, from device memory to a temporary area on
device memory, for the parallel reduction. The parallel reduction presented
here (lines 5-9) is a simplified version of the code actually used to identify
the best (minimal) task/machine assignment. Finally, one thread runs the
assign kernel to update the solution with the best assignment. When all
tasks have been assigned, the solution found can either be copied to the host
memory or kept into the device memory, depending if the algorithm is run
alone or not.

Experimentation

In this section, we study the performance of the parallel Min-Min. First, we
describe in Section 3.2.2 the problem instances generated for the simulations.
Then, we evaluate in Section 3.2.2 the GPU version of Min-Min heuristic
proposed.

82

The computer used in the experiment is a Dell Precision T5400, which
includes an Intel Xeon E5440 processors (dual processor, of 4 cores each),
clocked at 2.83 GHz, with 16 GiB of main memory. The computer runs the
GNU/Linux operating system Ubuntu Server (64-bit kernel, version 2.6.35-
27). The GPU installed on this computer is a Nvidia Tesla C2050, with
CUDA driver version 3.20 (capability 2.0). This GPU holds 14 multiproces-
sors (of 32 cores each), clocked at 1.15 GHz, and with a global memory of 2
GiB. All programs are written in C, except for the GPU kernels which are
written in CUDA C. The operating system’s Pthread library is used for the
multi-threaded versions of the parallel CPU versions.

Problem instances We study six different instance sizes, specifically
512 × 16, 4096 × 128, 8, 192 × 256, 16, 384 × 512, 32, 768 × 1, 024, and
65, 536 × 2, 048, where the first figure is the number of tasks and the sec-
ond the number of machines the tasks must be assigned to. A machine is
independent computing unit, such as a core in multicore architectures.

The chosen problem instances are generated with high task and machine
heterogeneity, which we consider realistic. This reflects different tasks and
different processor types. Large problem instances should reflect different
processor types, as a cluster is often the result of several machine acquisi-
tions.

The instances were randomly generated (we created them as described
in [160], using R), therefore 20 different instances were considered for every
problem size in our experiments.

Performance Evaluation of Parallel Min-Min We evaluate in this
section the performance of the parallel Min-Min design presented in Sec-
tion 3.2.2. Because the Min-Min heuristic is a deterministic algorithm, and
the parallel Min-Min performs exactly the same search as the sequential
Min-Min, we only compare execution time. We implemented two different
parallel versions of the algorithm: a multi-threaded CPU implementations
(using 4 and 8 cores), and the GPU implementation.

We show in Figure 3.10 the speedup results of the different parallel Min-
Min implementations. The speedup is measured as the time the sequential
Min-Min requires over the CPU over the time of the corresponding algo-
rithm. The x-axis is represented in logarithmic scale. As it can be seen,
the two parallel Min-Min algorithms scale well with the problem size, pro-
viding similar speedup values for all of them. However, the algorithm does
not scale so well with the number of cores. This is probably due to mem-
ory contention. The parallel Min-Min with 8 cores is always faster than the
equivalent version with 4 cores, but the average speedup increases from 4.024
to 5.918 when doubling the number of cores from 4 to 8. It is worth empha-
sizing that the parallel Min-Min on 4 cores is achieving linear speedups in

83

Figure 3.10: Speedup results of the GPU versus the equivalent sequential
and parallel CPU Min-Min (logarithmic scale)

average for the considered problem sizes. Additionally, we notice that the
algorithm performs super-linear speedups for the 8192 tasks instance: 7.11
for 4 cores and 10.67 for 8. We suspect this is due to higher cache hit ratios
thanks to memory sharing.

We now turn to the results of the GPU version. We can see that its per-
formance is clearly higher with respect to the CPU versions, with speedups
ranging from 9 for the smallest instance to 538 for the biggest one (the se-
quential Min-Min algorithm takes more than 3 days to find a solution for
this instance). Additionally, the algorithm scales well with the problem size,
since the bigger the problem, the higher the speedup obtained. Therefore,
the performance of the parallel GPU version with respect to the parallel
CPU ones is better when the problem size increases.

We should mention that the GPU version is slightly different than the
parallel CPU ones. They differ in the way the second step of the Min-
Min algorithm is implemented, where it searches for the task that is earlier
accomplished among those chosen in the first step. In the CPU version,
tasks are iteratively traversed to choose the earliest accomplished one, while
in the GPU algorithm this is done with a parallel reduction, benefiting from
the massively parallelization provided by the GPU, which requires log2(T)
iterations (cf., Section 3.2.2).

The GPU program only uses the global device memory, therefore addi-
tional speedup may be achievable using the faster GPU memories, for ex-
ample the read-only instance matrices. Also, the default parameter settings
for the cache size were used.

84

Conclusion

In this section, we parallelized the well-known Min-Min heuristic. The ob-
served speedups, although quite high, expose limits to the scalability of
the data decomposition, although straitforward. The performance improve-
ment between runs with 4 and 8 cores is not linear. With 4 and 8 cores, the
speedup (compared to the sequential version) even decreases with problem
size. With the GPU, the speedup increases with problem size, but less so
with larger problems.

3.2.3 Parallel Cellular Genetic Algorithm

We mentioned that the selected optimization problem, because of its com-
plexity, calls for inexact methods, heuristic or metaheuristic algorithms.
Many evolutionary approaches have been applied to the selected problem [176].
Here, we evaluate a data-parallel version of a kind of genetic algorithm: a
fine-grain multi-threaded Cellular Genetic Algorithm (CGA) for multi-core
processors [177]. We present the CGA in the following section, and our
design in Section 3.2.3.

Overview of parallel cellular genetic algorithms

CGA CGAs [178, 179, 180] are structured population algorithms with a
high explorative capacity. The individuals composing their population are
(usually) arranged in a two dimensional toroidal mesh. This mesh is also
called grid. Only neighboring individuals (i.e., the closest ones measured in
Manhattan distance) are allowed to interact during the breeding loop (see
Figure 3.11). This way, we introduce a form of isolation in the population
that depends on the distance between individuals. Hence, the genetic infor-
mation of a given individual spreads slowly through the population (since
neighborhoods overlap). The genetic information of an individual will need
a high number of generations to reach distant individuals, thus avoiding
premature convergence of the population. By structuring the population in
this way, we achieve a good exploration/exploitation trade-off on the search
space. This improves the capacity of the algorithm to solve complex prob-
lems [178, 181].

Individuals evolved in parallel across the population usually evolve to-
gether, which requires synchronization. Asynchronous evolution relaxes this
global time constraint [182, 183]: individuals evolve independently and the
population is not of the same age (underwent the same number of evolu-
tions). Asynchronous models are also known to improve search capabil-
ity [184]. In an asynchronous CGA, the population is updated with next
generation individuals immediately after their creation. These new individ-
uals can interact with those belonging to their parent’s generation. Alterna-
tively, we can place all the offspring individuals into an auxiliary population,

85

Selection Recombination

Mutation

Replacement

Figure 3.11: In cellular GAs, individuals are only allowed to interact with
their neighbors.

Algorithm 2 Pseudo-code for a canonical CGA (asynchronous).

1: while ! StopCondition() do
2: for all ind in population do

3: neigh← get neighborhood(ind);
4: parents← select(neigh);
5: offspring ← recombine(p comb, parents);
6: mutate(p mut, offspring);
7: evaluate(offspring);
8: replace(ind, offspring);
9: end for

10: end while

and then replace all the individuals of the population, with those from the
auxiliary population, at once. This last version is referred to as the syn-
chronous CGA model. As it was studied in [178, 185], the asynchronous
CGAs converge the population faster than the synchronous CGAs.

A canonical CGA follows the pseudo-code of Algorithm 0. In this basic
CGA, each individual in the grid is iteratively evolved (line 2). A genera-
tion is the evolution of all individuals of the population. Individuals may
only interact with individuals belonging to their neighborhood (line 3), so
parents are chosen among the neighbors (line 4) with a given criterion. Re-
combination and mutation operators are applied to the individuals in lines 5
and 6, with probabilities p comb and p mut, respectively. Afterwards, the
algorithm computes the fitness value of the new offspring individual (or in-
dividuals) (line 7), and replaces the current individual (or individuals) in
the population (line 8), according to a given replacement policy. This loop
is repeated until a termination condition is met (line 1), for example: the
total elapsed processing time or a number of generations.

86

Proc. 1 Proc. 2 Proc. 3 Proc. n........

Proc. 1 Proc. 2

Proc. 3 oc. 4

Figure 3.12: CAGE (left) and the combined parallel model of CGA (right)

Parallel CGA Some pioneer works in this line are those by Mander-
ick and Spiessens [179, 186], Mühlenbein [187, 188], Gorges-Schleuter [189],
and Collins [190]. With the popularity loss of massively parallel machines,
some authors proposed different parallel implementations of cellular Genetic
Algorithm (GA)s, more appropriate for the distributed architectures that
started to be available from the 90’s. In 1993, Maruyama et al. proposed
in [191] a peculiar version of a parallel CGA for a cluster of machines in a
LAN in which single solutions are located in the processors, and after every
generation solutions exchange information with only one randomly selected
neighbor, as an attempt to reduce communications overhead. This is simi-
lar to the distributed parallel Evolutionary Algorithm (EA) class presented
in [181].

After this first work on parallel CGAs for LAN architectures, there are
a number of more recent papers proposing other designs that better fit the
dynamics of the canonical sequential model. Nakashima et al. proposed
in [192] a combined CGA where the population is divided into smaller square
sub-populations, interacting through their borders. An image of this model
can be seen on the right-hand side of Fig. 3.12, where the gray cells represent
the solutions exchanged in the inter-processors communications. Folino et
al. contributed in [193] with CAGE, a parallel cellular GP in which the
population is divided into groups of columns (or rows) which constitute sub-
populations (see the graph on the left in Fig. 3.12) to be run on different
processors. This way they can reduce the number of messages with respect
to the previous model, but messages will be bigger.

Luque et al. compared the performance of several parallel GAs in LAN
environments [194]. Among them, both distributed and cellular GAs were
the best performing ones, being the cellular algorithm slightly slower (from

87

3% to 10%) than the distributed one, but providing better solutions. Later,
the authors analyzed different parallel CGA designs in [195], and proposed
the use of asynchronous communications among processors in [196]. Dor-
ronsoro et al. proposed PEGA in [197], a new parallel GA distributed in is-
lands, with a CGA in every island, which can be executed either in local area
network environments or in computational grids. PEGA was successfully ap-
plied to the largest existing instances of the VRP problem, contributing to
the state of the art with some new solutions. We proposed the first parallel
implementations of CGA for multi-core architectures, with applications to
real-world problems as DNA sequencing [198] or scheduling [177].

Finally, there are a number of implementations of parallel CGAs in GPU
architectures. The first works had to deal with complex data structures
to map the algorithm data to texture rendering based on GPU, i.e., the
information contained in the solutions must be allocated in form of pixels
in the GPU [199, 200, 201].

The appearance of tools like CUDA [202] or OpenCL [203] gave a major
boost for the development of new parallel algorithms on GPU architectures.
Among them, a few recent works are targeting Cellular EA. Soca et al. [204]
proposed a framework for the implementation of cellular EAs on GPUs.
Vidal and Alba also proposed a parallel version of CGA in a single GPU [205]
and multiple ones [206]. Li et al. designed a fine-grained parallel immune
algorithm [207].

A data-parallel CGA for the optimization problem

Parallel asynchronous CGA Our Parallel Asynchronous CGA (PA-
CGA) is based on [198]. We partition the population into a number of
contiguous blocks with a similar number of individuals (Figure 3.13). Each
block contains pop size/#threads individuals, where #threads represents
the number of concurrent threads executed. We partition the population
by assigning successive individuals to the same block. The successor of an
individual is its right neighbor. We move to the next row when we reach the
end of a row (our grid is 2-dimensional). We assign each block to a different
thread, which will evolve the individuals of its block.

In order to preserve the exploration characteristics of the CGA, commu-
nication between individuals of different blocks is made possible. As men-
tioned in the previous section, at each evolution step of an individual, we
define its neighborhood. This neighborhood may include individuals from
other population blocks. This allows an individual’s genetic information to
cross block boundaries.

Threads evolve their population block independently. They do not wait
on the other threads to complete their generation (the evolution of all the in-
dividuals in their block) before pursuing their evolution. Hence, if a breeding
loop takes longer for an individual of a given thread, the individuals evolved

88

Figure 3.13: Partition of an 8× 8 population over 4 threads.

by the other threads may go through more generations.
The combination of a concurrent execution model with the neighbor-

hoods crossing block boundaries leads to concurrent access to shared mem-
ory. For example, the neighbor n of an individual i might belong to a
different block. The thread evolving this other block could be updating
individual n precisely when the thread evolving i is accessing it. Without
care, this can result in incorrect results. This error can occur when selecting
a parent from a neighborhood (non-atomic read operation), or recombining
(a non-atomic read operation of the parent) that belongs to another block
and is currently being replaced (a non-atomic write operation). To enable
safe concurrent memory access, we synchronize access to individuals with
a POSIX [208] read-write lock. This high-level mechanism allows concur-
rent reads from different threads, but not concurrent reads with writes, nor
concurrent writes. In the two latter cases, the operations are serialized.

Asynchronous CGAs can visit individuals in different orders [185]. In
this work, all threads will sweep through their population in the same fixed
order. This means that we are using the line sweep policy in every block.
Note that this is not exactly the same as the line sweep policy typically used
in asynchronous CGAs. In our case, all blocks are updated concurrently. We
experimented different sweep orders for different blocks, in hope of limiting
memory contention, but we did not notice any significant improvement in the
algorithm’s execution speed. We attribute this to the unpredictable nature
of the thread’s execution, while the alternative sweep policies per thread
assumed a predictable, fixed, thread execution by the operating system.

Algorithms 0 and 0 provide a more detailed description of the algo-
rithm. Function do parallel(f, parm) means that f(parm) is executed by
all threads in parallel, but on different data items. All threads join before

89

Algorithm 3 Pseudo-code for our proposed parallel asynchronous CGA
(PA-CGA).

1: t0 ← time(); ⊲ record the start time
2: pop← setup pop(); ⊲ initialize population
3: par ← setup blocks(pop); ⊲ set parameters for all threads
4: do parallel(initial evaluation, par); ⊲ each thread evaluates its block
5: do parallel(evolve, par, t0); ⊲ each thread evolves its block, see Algorithm 0

the next instruction.

Algorithm 4 Pseudo-code for evolve().

1: while time()− t0 ≤ time do

2: for all ind in a thread’s block do

3: neigh← get neighborhood(ind);
4: parents← select(neigh);
5: offspring ← recombine(p comb, parents);
6: mutate(p mut, offspring);
7: H2LL(p ser, iter, offspring);
8: evaluate(offspring);
9: replace(ind, offspring);

10: end for

11: end while

Function initial evaluation() computes the fitness of all individuals in
the initial population. The stop condition for this grid scheduling problem
is a wall clock time. The asynchronous model moves the stop condition
verification into evolve.

From Algorithm 0, we notice that the thread checks the current time
after evolving all the individuals of its block. This could let the thread run
for longer than the allowed time. We accept this approximation since one
generation of the entire block takes less than 6 ms in our experiments, while
the time is expressed in tens of seconds. The evolution step also performs a
local search operation. This operation is presented in the next subsection.
We parameterize Highest To Lower Loaded (H2LL), our problem-specific
local search, with a number of iterations iter, which sets the number of
passes. Finally, evaluate() computes the makespan of the schedule.

Local search and solution representation We also propose a new local
search operator for the problem considered.

We refer to a machine’s completion time as its load. The local search
operator moves a task, randomly chosen, from the most loaded machine to
a selected candidate machine (the most loaded machine’s completion time
defines makespan). The candidate machines are the N least loaded (N is a
parameter). A candidate machine is selected if its new completion time, with

90

Task 1

Task 2

Task N

Completion

Time 1Machine i

Machine j

Machine k

Machine 1

Completion

Time 2Machine 2

Completion

Time mMachine m

Figure 3.14: Representation of solutions. In addition to the task-machine
assignments (left-hand side), we store the completion time for every machine
too (right-hand side). Variation operators are only applied on the task-
machine assignments.

the addition of the task moved, is the smallest of all the candidates. This new
completion time must also remain inferior to the makespan. Algorithm 0
describes this operator.

The representation we use for independent task scheduling on grids is
shown in Figure 3.14. It is composed of:

• an array S of integers, S[t] = m, representing the assignment of task
t to machine m,

• an array CT of floating point values, CT [m] = c, representing the
completion time of each machine m.

The completion times are often used, therefore maintaining up-to-date com-
pletion times for all machines speeds up computations. The evaluate() func-
tion of Algorithm 0 only finds the maximum completion time. The comple-
tion times are kept up-to-date by each operator (recombine, mutation, local
search). Such updates are efficiently performed by adding or removing the
ETC of a task on a machine to the appropriate completion time. As can
be noticed from Algorithm 0, we use the transposed ETC matrix. This in-
creases the cache hit rate, and thus the overall performance of the algorithm.
Indeed, when accessing an ETC for a task on a machine, this ETC value is
cached, but so are the neighboring values (caches operate on cachelines). If
we store the transposed ETC matrix, then these neighboring values are the
ETC values for the next few tasks on the same machine (exactly how many
depends on the size of a cacheline). So, if the schedule assigns one of the

91

next tasks to the same machine, then this ETC value is present in cache.
We measured an improvement in the algorithm’s execution time of 5-10%.
Indeed, this improvement is comparable to the uniform probability for such
an event (next task assigned to same machine), 1/#machines, we use 16
machines in our experiments.

Algorithm 5 Pseudo-code for H2LL, our local search.

1: for all iter iterations do
2: sort machines on ascending completion time
3: task ← random task from last machines;
4: best score← CT [last machines]; ⊲ makespan
5: for all mac in pop size/2 first machines do

6: new score← CT [mac] + ETC[mac][task];
7: if new score < best score then

8: best mac← mac;
9: best score← new score;

10: end if

11: end for

12: move task to best mac if any
13: end for

Experimentation

This section presents the results of our experiments with PA-CGA. Sec-
tion 3.2.3 describes both the parameterization of the algorithm and the
instances of the problem we are solving. Section 3.2.3 reports and discusses
the results.

Parameters and problem instances The algorithm parameters are
summarized in Table 3.8. We are using a population of 256 individuals. The
population is initialized randomly, except for one individual. The schedule
for this individual results from the Min-Min heuristic [144]. The linear 5 (L5)
neighborhood, also called Von Neumann neighborhood, is composed of the 4
nearest individuals, plus the individual evolved. This neighborhood is cho-
sen to reduce concurrent memory access. The 2 best neighbors are selected
as parents. The recombination operators used are the one-point (opx) and
the two-point crossover (tpx). The mutation operator moves one randomly
chosen task to a randomly chosen machine. The newly generated offspring
replaces the current individual if it improves the fitness value. Finally, the
termination condition is an execution time of 90 seconds. The number of
threads used in all our experiments ranges from 1 to 4. All threads run on
one processor. The processors used for the experiments are a 4-core Intel
Xeon E5440 clocked at 2.83 GHz, with 6 MB L2 cache, a 6-core Intel Xeon
L5640 @ 2.8 GHz with 12 MB L2 cache, and a quadcore ARM A9 @ 1.1
GHz with 4 MB of L2 cache (Calxeda ECX-1000).

92

Table 3.8: Parameterization of PA-CGA.

Population 16× 16
Population initialization Min-Min (1 ind)
Cell update policy fixed line sweep per block
Neighborhood linear 5
Selection best 2
Recombination one-point and two-point crossover, p comb = 1.0
Mutation move, p mut = 1.0
Local search H2LL, p ser = 1.0, iter = 5, 10
Replacement replace if better
Stopping criterion 90 seconds, wall time
Number of Threads 1 to 4

The benchmark instances consist of 512 tasks and 16 machines. These
instances represent different classes of ETC matrices. The classification is
based on three parameters: task heterogeneity, machine heterogeneity and
consistency [160]. Instances are labelled as u x yyzz.k where:

u stands for uniform distribution (used in generating the matrix).

x stands for the type of consistency (c for consistent, i for inconsistent, and
s for semi-consistent). An ETC matrix is considered consistent when
the following is true: if a machine mi executes a task j faster than
machine mj , then mi executes all tasks faster than mj . Inconsistency
means that a machine is faster for some tasks and slower for some
others. An ETC matrix is considered semi-consistent if it contains a
consistent sub-matrix.

yy indicates the heterogeneity of the tasks (hi means high, and lo means
low).

zz indicates the heterogeneity of the resources (hi means high, and lo means
low).

k numbers the instances of the same type.

We report computational results for the following 12 instances, for which we
provide their Blazewicz [209] notation:

• u c hihi.0 : Q16|26.48 ≤ pj ≤ 2892648.25|Cmax;

• u c hilo.0 : Q16|10.01 ≤ pj ≤ 29316.04|Cmax;

• u c lohi.0 : Q16|12.59 ≤ pj ≤ 99633.62|Cmax;

• u c lolo.0 : Q16|1.44 ≤ pj ≤ 975.30|Cmax;

93

• u i hihi.0 : R16|75.44 ≤ pj ≤ 2968769.25|Cmax;

• u i hilo.0 : R16|16.00 ≤ pj ≤ 29914.19|Cmax;

• u i lohi.0 : R16|13.21 ≤ pj ≤ 98323.66|Cmax;

• u i lolo.0 : R16|1.03 ≤ pj ≤ 973.09|Cmax;

• u s hihi.0 : R16|185.37 ≤ pj ≤ 2980246.00|Cmax;

• u s hilo.0 : R16|5.63 ≤ pj ≤ 29346.51|Cmax;

• u s lohi.0 : R16|4.02 ≤ pj ≤ 98586.44|Cmax;

• u s lolo.0 : R16|1.69 ≤ pj ≤ 969.27|Cmax.

Results We now present and discuss the results of our computational
experiments. The discussion includes a comparison with other algorithms
in the literature.

We first study the speedup of the algorithm as an indication of its scal-
ability: how performance improves with the number of threads. This study
helps tune the optimal number of threads for the experiments. Speedup is
usually defined as:

S(n) = time(1)/time(n) , (3.21)

where n is the number of machines, or processor cores.
We exchange time for the total number of evaluations. With time, a

performance improvement corresponds to a smaller execution time, but with
evaluations, an improvement corresponds to more evaluations. This leads
to the following definition of speedup used in this thesis:

S(n) = #evaluations(n)/#evaluations(1) , (3.22)

where #evaluations(n) is the mean number of evaluations over 100 inde-
pendent runs, and n is the number of threads.

Figures 3.15, 3.16 and 3.17 show how performance evolves with the:

• number of threads,

• number of local search iterations.

On the Xeon processors, we first observe that without local search (0
iteration) the performance decreases with the number of threads. This re-
sult is essentially due to thread synchronization. Without local search, the
evolution of an individual requires less computation, but the same effort
of synchronization (for recombination and replacement). So the proportion
of synchronization over total computation is the highest. Given the parti-
tion of the population, a smaller block means that more individuals are on

94

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4

E
va

lu
at

io
ns

 in
cr

ea
se

 %

Threads

0 iteration
1 iteration

5 iterations
10 iterations

Figure 3.15: Speedup of the algorithm on Xeon E5440.

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 1 2 3 4

E
va

lu
at

io
ns

 in
cr

ea
se

 %

Threads

0 iteration
1 iteration

5 iterations
10 iterations

Figure 3.16: Speedup of the algorithm on Xeon L5640.

the boundary of the block, where the neighborhood therefore crosses block
boundaries and may cause synchronization delays. The combination of these
factors lead to more synchronization delays, which decreases performance
when the number of threads increases.

As the number of local search iterations increases, more computation
outside synchronization is performed (local search is performed on the off-
spring). This reduces synchronization delays, and we achieve positive speedups.
Yet, we notice that with 5 or 10 local search iterations, there is no more per-

95

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4

E
va

lu
at

io
ns

 in
cr

ea
se

 %

Threads

0 iteration
1 iteration

5 iterations
10 iterations

Figure 3.17: Speedup of the algorithm on ARM A9 ECX-1000.

formance gained when increasing the number of threads from 3 to 4. This
is caused by the smaller block sizes. Although more time is spent in lo-
cal search, the proportion of individuals on the boundary of their block
increases, and with fewer individuals to process, synchronization is more
frequent. Finally, the processor level 2 cache is shared across all running
threads. Increasing the number of threads with little data locality nega-
tively impacts performance. From the speedup results, we notice that 3
threads reach the maximum number of evaluations, so we adopt this model
for the next studies in this thesis.

The Calexda ARM A9 results are similar to the Xeon with regards to
local search iterations, but with a much improved scalability. The speedup
is almost linear up to 3 threads. Without local search, the effect of synchro-
nization appears with 4 threads, but less so than on the Xeon processors.
The added computation of the local search iterations reduce the effect of
synchronization. This is because the A9 is much slower than the Xeon for
regular operations, while synchronization operations are similar in perfor-
mance. The good synchronization performance of ARM A9 multi-core was
also observed in other experiments (with a shared memory, multi-threaded
Map-Reduce implementation).

Finally, the Xeon L5640 achieves ×4.6 – 7.5 more evaluations than the
ARM A9. However, the more the local search iterations, the faster the ARM
(×4.6 slower for 10 local search iterations).

Next, we examine the influence of the recombination operators (opx and
tpx), and the number of local search iterations (5 and 10). Figures 3.18–3.20
present these results. They are obtained over 100 independent runs. Three

96

opx/5 tpx/5 opx/10 tpx/10

7.42

7.44

7.46

7.48

7.5

7.52

x 10
6

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_c_hihi.0

opx/5 tpx/5 opx/10 tpx/10

1.54

1.542

1.544

1.546

1.548

1.55

1.552

1.554

1.556

1.558
x 10

5

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_c_hilo.0

opx/5 tpx/5 opx/10 tpx/10
2.4

2.41

2.42

2.43

2.44

2.45

2.46

2.47

x 10
5

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_c_lohi.0

opx/5 tpx/5 opx/10 tpx/10

5220

5230

5240

5250

5260

5270

5280

5290
A

ve
ra

ge
 M

ak
es

pa
n

Instance u_c_lolo.0

Figure 3.18: Comparison of recombination operators and local search itera-
tions, consistant instances.

threads are used. A box plot is provided for each instance file. In these
plots, when the notches in the boxes does not overlap, we can conclude,
with 95% confidence, that the true medians differ. We notice that overall,
the tpx recombination operator provides better mean makespan results than
opx. Furthermore, 10 iterations of our local search H2LL achieve a better
mean makespan than 5. With statistical significance, we can state that
tpx/10 performs better than opx/5 for all instances. It finds the best mean
makespans in most instances, but not in all. For the consistent instances,
opx and tpx find similar mean makespan values. For the next results of this
section, we use the tpx recombination and 10 local search iterations.

Table 3.9 presents a comparison of our results with others found in the lit-
erature. Results for cMA + LTH (a CGA hybridized with Tabu search) [211]
and struggle GA (a non-decentralized population GA) [210] are averages over
10 independent runs, and they were taken from the original papers. We pro-
pose 2 sets of results for our algorithm, PA-CGA. One for runs of 10 seconds,

97

opx/5 tpx/5 opx/10 tpx/10

4.18

4.2

4.22

4.24

4.26

4.28

4.3

4.32

4.34

x 10
6

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_s_hihi.0

opx/5 tpx/5 opx/10 tpx/10

9.7

9.75

9.8

9.85

9.9

9.95

x 10
4

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_s_hilo.0

opx/5 tpx/5 opx/10 tpx/10
1.24

1.245

1.25

1.255

1.26

1.265

1.27

1.275

1.28

x 10
5

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_s_lohi.0

opx/5 tpx/5 opx/10 tpx/10

3500

3520

3540

3560

3580

3600
A

ve
ra

ge
 M

ak
es

pa
n

Instance u_s_lolo.0

Figure 3.19: Comparison of recombination operators and local search itera-
tions, semi-consistant instances.

Table 3.9: Comparison versus other algorithms in the literature. Mean
makespan values.

instance
Struggle GA cMA + LTH PA-CGA

PA-CGA
[210] [211] 10 sec

u c hihi.0 7752349.4 7554119.4 7518600.7 7437591.3
u c hilo.0 155571.48 154057.6 154963.6 154392.8
u c lohi.0 250550.9 247421.3 245012.9 242061.8
u c lolo.0 5240.1 5184.8 5261.4 5247.9
u s hihi.0 4371324.5 4337494.6 4277497.3 4229018.4
u s hilo.0 983334.6 97426.2 97841.6 97424.8
u s lohi.0 127762.5 128216.1 126397.9 125579.3
u s lolo.0 3539.4 3488.3 3535.0 3525.6
u i hihi.0 3080025.8 3054137.7 3030250.8 3011581.3
u i hilo.0 76307.9 75005.5 74752.8 74476.8
u i lohi.0 107294.2 106158.7 104987.8 104490.1
u i lolo.0 2610.2 2597.0 2605.5 2602.5

another for runs of 90 seconds. For both times, the results presented are
averages of 100 independent runs. Makespan values in bold indicate the
best results for an instance, or if 10 seconds of runtime of our algorithm

98

opx/5 tpx/5 opx/10 tpx/10

2.98

3

3.02

3.04

3.06

3.08

3.1

x 10
6

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_i_hihi.0

opx/5 tpx/5 opx/10 tpx/10

7.4

7.42

7.44

7.46

7.48

7.5

7.52

7.54

7.56

x 10
4

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_i_hilo.0

opx/5 tpx/5 opx/10 tpx/10
1.03

1.035

1.04

1.045

1.05

1.055

1.06

1.065

1.07

x 10
5

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_i_lohi.0

opx/5 tpx/5 opx/10 tpx/10
2570

2580

2590

2600

2610

2620

2630

2640

2650

2660
A

ve
ra

ge
 M

ak
es

pa
n

Instance u_i_lolo.0

Figure 3.20: Comparison of recombination operators and local search itera-
tions, inconsistant instances.

achieves better results than the literature. All experiments are performed
on the Xeon E5440.

We present results for runs of 10 seconds because of the difference in
computing platforms used in [211] and in our experiments. In [211], all
experiments were conducted on a AMDK6 450 Mhz processor. This machine
is slower than the one we use. To account for this difference, we wish to
reduce the runtime in our experiments, in the same proportion. We therefore
benchmark both machines, compute the performance ratio of the 2 machines,
and apply it to our runtime. Unfortunately, we do not have access to a
AMD K6 450 Mhz machine. However, there exists one benchmark whose
results for this machine have been published, and is available for execution
on our machine. It is the program TSCP 1.7.3 [212]. One advantage of
this benchmark is that it implements a combinatorial algorithm, and does
not test a specific processor feature. Executing the benchmark shows a
performance ratio of 9 between the 2 machines. Therefore, we provide results

99

 7.44e+06

 7.45e+06

 7.46e+06

 7.47e+06

 7.48e+06

 7.49e+06

 7.5e+06

 7.51e+06

 7.52e+06

 7.53e+06

 7.54e+06

 5000 10000 15000 20000 25000 30000

M
ea

n
M

ak
es

pa
n

Generations

1 thread
2 threads
3 threads
4 threads

Figure 3.21: Evolution of the algorithm.

for runs of 90/9 seconds, as a comparison point.
Table 3.9 shows that PA-CGA improves most previous results. Par-

ticularly, it provides the best results for inconsistent instances (where the
performance of a machine varies from one task to another) and for instances
of high heterogeneity in tasks and resources. It improves half of the results
for consistent, and semi-consistent instances. It does not improve results
for instances where the tasks and resources have a low heterogeneity (ho-
mogeneous). These results are useful because inconsistent instances, and
instances with high task and resource heterogeneity, represent the more com-
plex problem formulation of independent task scheduling. Also, scheduling
independent near-homogeneous tasks on near-homogeneous machines can be
effectively addressed with alternative simpler and faster methods, such as
heuristics [145]. We can also notice that our algorithm improves the results
for instances with greater makespan values.

Figure 3.21 shows how makespan, averaged across the population (all
threads) and over 100 independent runs, evolves with the number of genera-
tions. All runs process the u c hihi.0 instance file. The stop condition is 90
seconds wall time. Each line corresponds to a different number of threads.
In order to display differences, a subset of the domain (generations) is plot-
ted. First, we notice that running the algorithm with one thread evolves for
less generations than with more threads, in the allocated time. Also, one
thread finds worse average makespan, at any generation. It is important
to note that our algorithm configured for one thread represents the canon-
ical asynchronous CGA of Section 3.2.3. With 4 threads, we observe that
the algorithm converges faster initially, but fails to reach the best solutions.
Running the algorithm with 3 threads finds the best solutions.

100

Conclusion

In this section, we manually designed a fine-grain multithreaded CGA for
multi-core processors. The data parallelism was introduced at the popula-
tion level. The work-to-synchronization ratio is tunable with the number of
threads and the intensity of the local search operator. The resulting program
improves the quality of the solution found (the performance of the search al-
gorithm), and the speed of the program. However, as shown in Figure 3.15,
increasing the number of threads is only beneficial up to 3 threads. With
4 threads, the program performs less iterations, and finds worse solutions
than with 3 threads. This is a consequence of the increased inter-thread
communication. The situation improves on a quadcore A9, due to its slower
core but fast locking mechanism.

3.3 Summary

In this chapter, we explored code and data parallelism in the context of
AWN. Simulations of software pipelines (code-parallelism) showed that the
wimpy nodes, although more energy-efficient, cannot achieve the perfor-
mance of brawny nodes, even when contention for shared resources is taken
into account. Experiments with data-parallel versions of known algorithms
showed clear benefits (such as super-linear speedup), but also exposed their
limits, in scalability (with the size of input data, and the number of cores),
but also in more basic configurations (Section 3.2.3).

An interesting finding is that although contention in access of shared
components has a negative impact on performance and energy, it can also
provide some benefits, as observed with the super-linear speedup of the
parallel Min-Min (attributed to cache memory) and the improved solutions
of a parallel genetic algorithm (attributed to the exploration/exploitation
trade-off).

The usual approach to parallelism we experimented does not seem to
allow us to meet our performance objectives for the AWN, another approach
seems necessary. The unexpected positive influence of contention can serve
as an inspiration for exploring alternative sources of parallelism, the topic
of the next chapter.

101

Chapter 4

An Alternative Approach to

Parallel Programming for

AWN

4.1 Introduction

The previous chapter discussed the traditional approach to parallel design,
where the semantics of the program were preserved by parallelization. Here,
we propose a change in perspective: the semantics of the program is not
preserved by parallelization. Although the program implements a different
algorithm, it should nevertheless perform the same function or solve the same
problem. This view represents an increase in abstraction: the program’s
function needs to be preserved, but not it’s original program, and not even
it’s algorithm.

The chosen use case of the optimization problem suits this change of
view, because the problem is well separated from the algorithm. Indeed,
any solution found by an algorithm can be evaluated (its quality) regardless
of how it was found. Therefore, an alternative approach is to change the
original algorithm, to better match the AWN architecture, and yet find
solutions of comparable quality.

The two sections of this chapter report on the experiments with two
parallel algorithm designs, that modify a cellular genetic algorithm to better
suit the AWN. The AWN platforms used are a 40-core shared memory
processor (Section 4.2), and a GPU (Section 4.3).

102

4.2 The Parallel Cellular Genetic Algorithm Re-

visited

In this first section, we revisit the parallel asynchronous cellular genetic
algorithm introduced in Section 3.2.3, by simplifying it at the expense of
correctness [213]. The simplification consists in the removal of the thread
locks when accessing shared memory. This deliberate error aims to improve
the scalability of the parallel algorithm, while preserving its search capa-
bility. We experiment the change on three benchmark search problems (we
do not use the scheduling problem of the previous chapter), and observe an
improvement in runtime, and unexpectingly, a slight improvement in search
capability, with statistical significance.

The source for parallelism in the proposed algorithm remains the pop-
ulation, it is a case of data-parallelism. The concurrency in a genetic al-
gorithm’s population is generally found in three ways: master-slave, island
and cellular. The master-slave model dispatches the operators’ work to a
number of slaves. In the island model, the population is partitioned into iso-
lated evolutionary processes, which periodically exchange individuals. The
cellular model, introduced in Section 3.2.3, can be seen as fine-grained island
model.

4.2.1 The PA-CGA Simplification

We present three parallel models for a PA-CGA: the Island [194], Lock [198,
177] and Free. The Free model, this section’s contribution, removes the
thread protection when accessing shared memory. It is an incorrect imple-
mentation of a PA-CGA: by removing the thread locks, data consistency
is not ensured. This is meant to improve the runtime and scalability of
the PA-CGA. However, this change is also expected to impact the search
capability of the PA-CGA.

In the PA-CGA Island model, as presented in Algorithm 6, each thread
operates on two populations: (a) its local partition, and (b) the global popu-
lation. The local partition (a) is a thread-local partition, used for evolution
over a number of generations, set to 100. Once 100 generations are com-
pleted, the thread-local partition (a) is copied to the global population (b).
This copy is performed asynchronously (one individual at a time). The
global population (b) is accessed by threads when they require individuals
from another partition. This occurs at crossover, when a parent selected
belongs to another partition. POSIX read-write locks [208] are used by the
threads to read individuals from another partition, and to commit their par-
tition to the global population. The Island model aims to reduce contention
on the shared population by operating on a thread-local data as much as
possible.

The PA-CGA Lock model, presented in Algorithm 7, is the closest to the

103

Algorithm 6 Island model

while < max gens do

while < max gens & not every 100 gens do ⊲ evolve local partition
100×

for all individual in local partition do

individual← evolved(individual) ⊲ “←” follows replacement
policy

end for

end while

for all individual in global partition do ⊲ update the global partition
rw lock(global individual)
global individual← local individual
rw unlock(global individual)

end for

end while

Algorithm 7 Lock model

for all gens do
for all individual in global partition do

child← evolved(individual)
rw lock(global individual)
global individual← child ⊲ “←” follows replacement policy
rw unlock(global individual)

end for

end for

104

classic asynchronous CGA. The only difference is that each thread evolves
the individuals of its partition only. Each individual is protected with a
POSIX read-write lock. This allows for concurrent read access. When an
individual can be replaced with a better child, the change occurs immedi-
ately (provided a thread lock is acquired), and is then visible to all other
threads. Individuals that are unreachable from other threads (placed in the
“middle” of a partition) are still protected with a lock, although it is al-
ways granted. The Lock model requires more communication across threads
than the Island model, however, changes (improvements) are communicated
immediately.

Algorithm 8 Free model

for all gens do
for all individual in global partition do

child← evolved(individual)
global individual← child ⊲ “←” follows replacement policy

end for

end for

The PA-CGA Free model is the simplest of all models, as per Algo-
rithm 8. A thread evolves its partition, and updates the global population
immediately. However changes in the global population are made without
any thread locking. This is apparently incorrect, because a thread may read
an individual that is currently being updated (dirty read). Thus the indi-
vidual read is a combination of the previous individual and its replacement.
This is possible because of the representation of an individual; usually a
large array of word size elements, not an atomic operation. This model is
considered wait-free, because a thread’s progress is bound by a number of
steps it has to wait before progress resumes. The Free model is proposed
to accelerate the execution by removing thread locks, yet retain the benefits
of immediate updates to the population as in the Lock model. Increasing
the number of threads makes dirty reads more frequent, because it reduces
the size of each partition, each thread evolves its partition faster, and more
individuals lie on the border of a partition.

4.2.2 Experimentation

To investigate the behavior of the Free model, we compare the models across
a selection of benchmark problems, presented in Section 4.2.2. The behavior
of the models is observed across several indicators, presented in Section 4.2.2.
The parameters and environment is summarized in Section 4.2.2.

105

Table 4.1: Benchmark of combinatorial optimization problems

Problem Fitness function n Optimum

MTTP fMTTP (~x) =
n∑

i=1
xi · wi 200 -400.0

PPEAKS fPPEAKS(~x) = 100 100.0
1
N
max1≤i≤p(N −HammingD(~x, Peaki))

MMDP fMMDP (~s) =
∑k

i=1 fitnesssi 240 40.0
fitnesssi = 1.0 if si has 0 or 6 ones
fitnesssi = 0.0 if si has 1 or 5 ones
fitnesssi = 0.360384 if si has 2 or 4 ones
fitnesssi = 0.640576 if si has 3 ones

Benchmarks

The benchmark problems selected for our comparison are well-known com-
binatorial optimization problems, displaying different features like multi-
modality, epistasis, large search space, etc. The reader is referred to [178] for
details on these benchmarks. They are summarized in Table 4.1 (name, fit-
ness value, number of variables –n–, and optimum). They are the Massively
Multi-modal Deceptive Problem (MMDP) –instance of 40 subproblems of
6 variables each–, the MTTP –instances of 200 tasks–, and the PPEAKS
problem, with 100 peaks.

Metrics

The metrics for the comparison aim to capture the behavior of the three
algorithms as the number of threads increases. Our first metric is execution
speed. It is the wall-clock runtime of the algorithms for the maximum
number of generations. However, increased speed is useless if the search
capability is degraded such that it requires more generations, therefore we
add the following metrics:

• Success rate: the number of experiments when the optimum was found.

• Evaluation-efficiency: the number of evaluations required to find the
optimum, when found. This is measured in evaluations (calculation
of the fitness of an individual) instead of generations, because of the
concurrent evolution in each partition.

• Time-efficiency: speed and evaluation-efficiency are combined by mea-
suring the wall-clock time required to find the optimum (when found).
This is useful from the perspective of a potential user of the algorithm.

106

Table 4.2: PA-CGA parameters

Parameter Value

Population size 40× 40
Asynchronous mode fixed line sweep
Selection operator L5, binary tournament
Crossover operator two-point crossover
Crossover probability 1.0
Mutation operator ×2 flips
Mutation probability 1.0
Maximum generations 2500
Island synchronization period 100 generations
Runs 100

Experimental setup

Table 4.2 summarizes the various parameters for the PA-CGA. The asyn-
chronous mode sets the order in which the threads evolve the individuals in
their partition [184]. Mutation consists in randomly flipping two items in the
individual. The maximum number of generations is the stop condition per
thread. The Island synchronization period specifies when the thread-local
partition is committed to the global population (for other threads to access).
For each benchmark, 100 searches or runs are performed. The individuals
are randomly (uniform) generated for each run.

The computer used for the experiments is a Bullx S6030, where one board
holds four Intel Xeon E7-4850 @ 2 GHz processors of 10 cores each. This
computer can be considered an AWN, given the number of cores (40) and
their relatively slow clock frequency. However, the total power requirement
(in the order of the KW) prevents its use as a low-power infrastructure. The
operating system is GNU/Linux 2.6.32-5-amd64 (Debian), GCC is version
4.4.5.

Results

In this section, we present the results from the benchmark problems, grouped
by metric.

Runtime Figure 4.1 plots the average runtime (wall-clock) over the 100
runs (in msec), as defined in Section 4.2.2. We can observe that all models
reduce their runtime as the number of threads increases. The Free model
is the fastest and scales the best, which is expected given the wait-free
design, although not significantly for PPEAKS, Figure 4.1b. The small
difference between models for PPEAKS is due to the fitness function of
PPEAKS, which is more time consuming than Minimum Tardiness Task

107

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(a) MTTP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(b) PPEAKS

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(c) MMDP

Figure 4.1: Runtime

Problem (MTTP) and MMDP and therefore dominates the synchronization
delays. The speedup observed may seem low (especially for MTTP and
MMDP), but the load is essentially due to synchronization.

Evaluation efficiency Figures 4.2 show the average number of evalu-
ations needed to find the optimum (Section 4.2.2). Because this metric
applies to runs where the optimum is found, we first discuss the success
rate.

The success rate for the different PA-CGAmodels for MTTP and PPEAKS
is 100% across the runs (and is not plotted). For MMDP, Figure 4.2c, the
rate is below 100%. All models display about the same success rate, which
also decreases from 35 threads and up. At this point, the partitions become
too small, the generations too fast, thus reducing diversity in the partitions,
which damage the search.

Regarding evaluation-efficiency, the Free model obtains similar or better
results than Lock (Wilcoxon Signed-Rank test). On MTTP, PPEAKS and
MMDP, Free is better in respectively 5, 10 and 20% of the cases. Also,
the Lock and Free obtain constant results with the number of threads. The
dirty reads in the Free model slightly help its evaluation-efficiency. The

108

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 0 5 10 15 20 25 30 35 40

av
er

ag
e

ev
al

ua
tio

ns
 o

ve
r

10
0

ru
ns

threads

lock
free

isl

(a) MTTP

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 0 5 10 15 20 25 30 35 40

av
er

ag
e

ev
al

ua
tio

ns
 o

ve
r

10
0

ru
ns

threads

lock
free

isl

(b) PPEAKS

 82

 84

 86

 88

 90

 92

 94

 96

 98

 0 5 10 15 20 25 30 35 40

su
cc

es
s

ra
te

 %
 o

ve
r

10
0

ru
ns

threads

lock
free

isl

(c) MMDP Success rate

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 0 5 10 15 20 25 30 35 40

av
er

ag
e

ev
al

ua
tio

ns
 o

ve
r

10
0

ru
ns

threads

lock
free

isl

(d) MMDP

Figure 4.2: Evaluations to optimum (when found)

other observation is that the Island model does not scale well.

Time efficiency Figures 4.3 show the time elapsed to reach the optimum,
when found (Section 4.2.2). For the Island model, Figures 4.3a, 4.3c show
that the gain in runtime is offset by the loss in evaluation-efficiency. For
PPEAKS, the gain in runtime is so high, that time-efficiency increases. The
Lock and Free models improve their time-efficiency with a greater number
of threads, mainly because of the gain in speed. The Free model obtains
the best results. This is due to the surprisingly good evaluation-efficiency,
which means that the dirty reads do not harm the search, and actually help.

4.2.3 Conclusion

We proposed a new parallel asynchronous CGA model, called Free. The
Free model is based on a deliberate design error in the PA-CGA: all thread
locks are removed, and access to the shared population leads to dirty reads.
The absence of thread locks also makes it wait-free. It is the simplest PA-
CGA design. This new model was compared to existing models: Island
and Lock. The evaluation consisted in solving three benchmark problems
(MTTP, PPEAKS, MMDP) using 1 to 40 threads, on a 40-core shared

109

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(a) MTTP

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(b) PPEAKS

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 5 10 15 20 25 30 35 40

av
er

ag
e

w
al

l t
im

e
ov

er
 1

00
 r

un
s

threads

lock
free

isl

(c) MMDP

Figure 4.3: Time to optimum (when found)

memory machine. These benchmarks are not computationally intensive,
therefore the differences between models is more apparent. Experiments
show that the Free model scales the best, and provides better or equal
search capability, compared to the previously published Island and Lock
models. The Free model, although at fault with respect to the original
CGA design, preserves the principle behind evolutionary search. The dirty
reads do not introduce noise, but provide another source of randomness in
the sampling of previous individuals (parents). An another finding is that
the well-known Island model provides worse search capability as the number
of threads increases. Indeed, the improved runtime cannot compensate for
the degraded efficiency of the model.

4.3 Parallel Cellular Genetic Algorithm for the

GPU

The previous section presented a modification to the population-based de-
composition in a CGA, for improved data-parallelism. While the change
illustrated the benefits of the alternative approach to parallelism (Section
4.1), the performance gains were reported on experiments with a large pop-

110

Figure 4.4: Common design of the two parallel recombination operators.

ulation (40× 40).
This section presents another application of the proposed alternative ap-

proach, to a CGA but with smaller population sizes, the more usual case. In
addition to the reduced population size, we target a hardware platform with
more parallelism, a GPU. We design a CGA to solve the scheduling opti-
mization problem for the GPU [167]. The optimization problem is described
in Sections 3.2.1 and 3.2.3. The modified CGA applied to the scheduling
problem is called GraphCell.

4.3.1 Parallel Synchronous CGA

GraphCell is a highly parallel synchronous cellular genetic algorithm for
GPU architectures. We depart from the usual population-based decom-
position, where one individual (or solution) is evolved by a single thread.
Instead, new recombination operators run in a single thread per part of a
solution (a task assignment in the context of the scheduling problem consid-
ered). In addition, each solution of the population is recombined in parallel.
This leads to a high number of threads, which scales with the size of the
problem, regardless of the chosen population size. The details are summa-
rized in Algorithm 9, and a description is provided below.

GraphCell introduces two new recombination operators. In order to
study the effect of these operators, in isolation and interaction, they are
combined into a single operator. The combination is called Uniform Pro-
portional Recombination (UPR). The two recombination operators of UPR
are specifically designed for algorithms implementing cellular topologies in
massively parallel architectures like GPUs.

Figure 4.4 shows how the recombination operators update each task of
a solution. The arrays displayed represent the solutions, each cell of the
array corresponds to a task assignment. The number in a cell of the array
is the machine to which this task is assigned (the task is identified by it’s
index in the array). The circled task of the center solution shows the task

111

being updated. Nine solutions are shown. The solutions directly above,
below, to right of, to the left of, the center solution define the neighbor
solutions. The other solutions are ignored by both recombination operators.
The new machine assignment for the circled task is computed by a dedicated
thread (if Tasks is the number of tasks of a solution, Tasks threads are run
to compute the new solution). The two proposed recombination operators
follow the same design: the offspring solution is generated by assigning to
each task, the machine of one of the neighboring solutions, according to a
proportionate selection mechanism. The operators only differ in the criterion
used for this selection:

• Fitness (UPRf): we choose the assignment for each task of one neigh-
boring solution with a proportionate selection mechanism based on the
fitness of the solutions (i.e., the probability for choosing one neighbor-
ing solution is given by its fitness value over the sum of the fitness of
all the neighbors). Therefore, parent i will be chosen with probability:

PFSolutioni
=

Fitness(Solutioni)∑No. Solution
j=0 Fitness(Solutionj)

.

• Completion time (UPRct): we choose the assignment for each task
of one neighboring solution with a proportionate selection mechanism
based on the estimated time to complete on the machine to which the
considered task is assigned in the neighboring solution. In this case,
the probability of choosing the assignment of neighboring solution i is:

PCTSolutioni
=

ETCi,j∑No. Solution
k=0 ETCk,j

,

where ETCi,j is the execution time of task j to the machine to which
it is assigned in neighboring solution i. This value is given by the ETC
matrix of the considered instance.

We study different combinations of these operators by defining the probabil-
ity (Psel) to apply the fitness based operator. The probability to apply the
completion time operator is 1 − Psel. This decision is made for each task,
and not for the entire solution.

The percentages shown in Figure 4.4 highlight this selection mechanism.
From this description, we notice that the total number of threads used for
the recombination UPR is: population size × solution size (which is the
total number of tasks). This generates a high number of lightweight threads
(more than 106), which is well suited to the GPU. Algorithm 9 presents
the pseudo-code for GraphCell. GraphCell, the Min-min heuristic and the
CGA, is executed only on the GPU.

GraphCell initializes the population of solutions randomly (with a uni-
form distribution), except for one solution, which is the result of the Min-min

112

Algorithm 9 Pseudo-code of GraphCell

1: // Population initialization:
2: // First, initialize one solution with Min-min (Section 3.2.2):
3: for all Tasks of one solution do

4: min ct <<< Tasks >>> (results)
5: cudaMemcpy (results, temp, cudaMemcpyDeviceToDevice)
6: n← 2
7: while Tasks/n ≥ 1 do

8: min task <<< Tasks/n >>> (temp)
9: n← n× 2
10: end while

11: assign <<< 1 >>> (temp, solution)
12: end for

13: // The rest of population is initialized randomly.
14: // The CGA:
15: while not stop condition() do

16: neighborhood prob <<< Pop >>> ()
17: upr <<< Pop× Tasks >>> ()
18: mutate <<< Pop >>> ()
19: fitness <<< Pop >>> ()
20: replace <<< Pop >>> ()
21: end while

heuristic, also computed on the GPU as presented in Section 3.2.2. UPR is
implemented in the two GPU kernels neighborhood prob, and upr. Ker-
nel neighborhood prob computes the probability for each solution in the
neighborhood to be chosen under fitness proportionality. This kernel is run
by one thread per solution, because the fitness is defined per solution, but it
could also be recomputed by each thread per task. The kernel upr randomly
selects (with a uniform distribution) the recombination operator (UPRf or
UPRct) to apply for a task, according to probability Psel. Then, the kernel
randomly chooses a task assignment among the same tasks of neighborhood
solutions, applying the proportionate selection mechanism. It computes the
different probabilities for the estimated completion time proportionality, if
needed, on demand because this is task dependent. Kernel upr is run by
one thread per task per solution, because the assignment decision for a task
is independent of all the other tasks. The other kernels, mutate, fitness,

replace are launched with one thread per solution. Kernel mutate changes
the assignment of a randomly chosen task, to a randomly chosen machine.
Kernel fitness computes the makespan for the solution. Kernel replace
replaces the old solution with the new computed solution if it is not worse
(in terms of makespan). These last three kernels are standard operators
in genetic algorithms. The stopping condition can either be a maximum
number of evaluations, or time (wall-clock).

113

Table 4.3: Configuration for GraphCell

Population size 8× 8 solutions
Population initialization 1 solution with Min-min and the rest random
Neighborhood von Neumann
Recombination Uniform Proportional Recombination (UPR)
Recombination probability pr = 1.0
Mutation Random
Mutation probability pm = 1.0/numberOfTasks
Replacement Replace if Better or Equal
Termination condition 100,000 generations

4.3.2 Experimentation

We present in Section 4.3.2 the GraphCell configuration, and its performance
(in terms of solution quality) in Section 4.3.2.

We study six different instance sizes, 512tasks×16machines, 4096×128,
8192 × 256, 16384 × 512, 32768 × 1024, and 65536 × 2048. The instances
were generated according to Section 3.2.2.

The computer used in the experiment is a Dell Precision T5400, which
includes an Intel Xeon E5440 processors (dual processor, of 4 cores each),
clocked at 2.83 GHz, with 16 GiB of main memory. The computer runs the
GNU/Linux operating system Ubuntu Server (64-bit kernel, version 2.6.35-
27). The GPU installed on this computer is a Nvidia Tesla C2050, with
CUDA driver version 3.20 (capability 2.0). This GPU holds 14 multiproces-
sors (of 32 cores each), clocked at 1.15 GHz, and with a global memory of 2
GiB. The GPU kernels are written in CUDA C.

Algorithm configuration

Table 4.3 presents the configuration of the algorithms. The neighborhood
used is von Neumann, also called L5. The recombination operators are
combined into the new Uniform Proportional Recombination (UPR). The
solutions are encoded in an integer array of length the number of tasks,
where the content of a cell is the machine to which the task (denoted by
the array index) is assigned. The mutation operator consists of assigning a
random machine to a task with probability one over the number of tasks.
Finally, new solutions replace previous solutions in-place, if their fitness is
less or equal than the previous solutions. The execution stops after 100,000
generations (each solution is evolved 100,000 times).

Results

In this section, we analyze the quality of the solutions found by GraphCell,
across different problem sizes. The effect of each of the two recombination

114

0 20000 40000 60000 80000 100000

0
1

2
3

4
5

6

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(a) 512 tasks × 16 machines

0 20000 40000 60000 80000 100000

0
1

2
3

4
5

6

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(b) 4096 tasks × 128 machines

0 20000 40000 60000 80000 100000

0
1

2
3

4
5

6

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(c) 8192 tasks × 256 machines

0 20000 40000 60000 80000 100000

0
1

2
3

4
5

6

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(d) 16384 tasks × 512 machines

0 20000 40000 60000 80000 100000

0
1

2
3

4
5

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(e) 32768 tasks × 1024 machines

0 20000 40000 60000 80000 100000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(f) 65536 tasks × 2048 machines

Figure 4.5: Improvement of best solution, compared to Min-Min solution

operators is explored by varying the UPR parameter Psel. When Psel = 1,
then the fitness proportionate selection is chosen (i.e., UPRf). When Psel =
0, then the estimated completion time proportionate selection is chosen (i.e.,
UPRct): other values reflect the interaction of the two operators. The results
shown were obtained after 20 independent runs of the algorithm, solving a
different problem instance every time.

Figure 4.5 shows the evolution of the improvement of the best solution
in the population (averaged over the 20 instances), compared to the solution
generated with the Min-min heuristic, for the five different configurations
of UPR. These configurations are different values of the Psel probability.
These values are Psel = 1, 0.75, 0.5, 0.25, and 0. Therefore, these plots show
how the performance of the CGA part of GraphCell improves upon Min-min

115

with the five considered UPR configurations. We can observe that increasing
the weight of the fitness proportionate operator improves the performance
of the algorithm. Indeed, from the first generations the algorithms using
Psel = 1 (this is UPRf) and 0.75 are able to improve Min-min solution
by 3%, while the original algorithm with Psel = 0.5 is not able to achieve
this improvement in the 100,000 generations allowed. Therefore, GraphCell
improves very quickly the initial Min-min solution, and the improvement
continues until the end of the run, especially for the biggest instances.

It is well known that increasing the neighborhood size leads to faster
convergence speeds in cellular evolutionary algorithms [178]. Therefore we
tried to accelerate the convergence speed of the algorithm by employing a
larger neighborhood, namely C13, composed by the solution itself plus the
12 nearest ones in Manhattan distance. We ran the GraphCell algorithm for
50,000 generations with the two neighborhood structures on the 20 instances
of each of the problem sizes, but did not notice any statistically significant
differences (according to the unpaired Wilcoxon signed rank test) on the
quality of solutions found (the p-values obtained were 0.4291, 0.718, 0.698,
0.57, and 0.5291 for the instances from smaller to larger, respectively). How-
ever, the runtime of the program increased with the neighborhood size.

Figure 4.6 reports the evolution of the average fitness over the popula-
tion for the GraphCell algorithm with the five different UPR configurations.
Since the population is initialized with random solutions, except one with
the Min-min heuristic, the initial average fitness is low. We see that the
results are similar to the ones discussed in the previous experiment. The
value of Psel has a significant impact on the improvement of the population
during the run, and the larger the number of tasks to schedule, the more
important the difference with Psel = 1 is. With respect to the other con-
figurations, only for the smallest instances two of them are able to perform
significant improvements on the average quality of the solutions in the initial
population: Psel = 0.75 for 512 and 4096 tasks, and Psel = 0.5 for 512 tasks.

4.3.3 Conclusion

In this section, we presented a new design for a parallel CGA, to solve a
scheduling optimization problem, on the GPU. This new design goes be-
yond the usual population-based decomposition of parallel CGA, and ex-
tracts greater data-parallelism at the solution level, usually a large array
of primitive types (such as integers or floats). This is often the case in so-
lutions to combinatorial optimization problems. Even small problems (512
tasks assigned to 16 machines), arranged in a normal genetic population (64
solutions), can exploit thousands of weak cores.

The design illustrates the alternative approach of the introduction: the
new parallel CGA does not preserve the original CGA. The modification is
introduced in the parent selection and recombination operators, with two

116

0 20000 40000 60000 80000 100000

65
70

75

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(a) 512 tasks × 16 machines

0 20000 40000 60000 80000 100000

70
75

80
85

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(b) 4096 tasks × 128 machines

0 20000 40000 60000 80000 100000

74
76

78
80

82
84

86

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(c) 8192 tasks × 256 machines

0 20000 40000 60000 80000 100000

74
76

78
80

82
84

86

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(d) 16384 tasks × 512 machines

0 20000 40000 60000 80000 100000

76
78

80
82

84
86

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(e) 32768 tasks × 1024 machines

0 20000 40000 60000 80000 100000

78
80

82
84

86
88

generations

im
pr

ov
em

en
t (

%
)

100%
75%
50%
25%
0%

(f) 65536 tasks × 2048 machines

Figure 4.6: Improvement of fitness average across population, compared to
fitness average across initial population

new operators that merge parent selection and crossover in a parallel algo-
rithm. The new design is specifically designed for the GPU AWN, there is
no equivalent sequential implementation (although it could be ported to a
sequential machine). Other genetic operators could be modified in a similar
fashion.

117

4.4 Summary

In this chapter we experimented with two parallel designs that deliberately
change the original algorithm (and not just the algorithm’s implementation),
the alternative considered here. The first parallel design, Section 4.2, pro-
posed a simplification in the population-based data-parallel CGA that, as a
side-effect, introduces an error. This simplification improves the scalability
of the program, by reducing the inter-thread communication. The error does
not degrade the search capability of the algorithm, it improves it instead.
This observation can be seen as a further encouragement to reconsider an
algorithm in order to improve some property, in our case the scalability with
the number of cores. The second parallel design, Section 4.3, replaces the
standard genetic operators with more data-parallel alternatives, that imple-
ment a different algorithm. The result is several orders of magnitude more
parallelism, available even to small problem instances.

These experiments illustrate that in order to extract the needed paral-
lelism required by the AWN, the algorithm to parallelize can be modified
without loss of capability. However, these experiments point to two weak-
nesses. First, only one of the algorithm extracts parallelism from small
problems. Second and more significant, these designs are completely ad
hoc, and manually designed, at the cost of time-consuming trial-and-error.
Modifying an algorithm for increased parallelism is only practical if we have
a more systematic method to find alternative designs.

118

Chapter 5

Algorithm Design with

Sensitivity Analysis

5.1 Introduction

The previous chapter showed that changing the algorithm (and not the only
the program) can improve scalability, a desired property for the concurrent
algorithm, and still preserve its function or capability. The tested algorithm
is a search algorithm; its capability can be measured as the quality of the
solutions to an optimization problem. This raises the question: how to
systematically identify what to change in the algorithm?

There are two directions to this. One direction is to first make changes
that improve on the desired property, and then observe the resulting capa-
bility of the algorithm, hoping to preserve it, at least. This is the approach
of the previous chapter. It is a natural approach because properties are
easily measurable, for example: a profiler to measure the runtime property.
The disadvantage of this approach is its uncertainty: the consequences of
a change on the algorithm’s capability are not predictable, therefore the
process is essentially trial-and-error. Another direction is first to determine
how each part of the algorithm contributes to its capability, then to preserve
the key parts (semantically; the code can be different), but to change the
rest to improve on a property. The changes made are better informed on
the impact to the new algorithm’s capability.

However, the second direction raises another question: how to determine
the contribution of each part in an algorithm? Further decomposing this
question, we may ask what method can help us. One answer is statistical
analysis, and more specifically SA. The original purpose of SA is to analyze
a model through the interaction of its parameters on the model’s output,
for example: to verify the occurrence of a known behavior that the model
is intended to capture.

Section 5.2 introduces the SA method used in this chapter. We have

119

mentioned it earlier, in Section 3.1.4. SA is applied to the analysis of an
EA: how its different components influence the capability of the algorithm,
for the specific problem tackled. Then, in Section 5.3, the results of the SA
are exploited to guide the modifications to the algorithm, to improve on a
chosen property, while preserving the algorithm’s capability.

5.2 Tuning Program Parameters with Sensitivity

Analysis

We apply a generic SA method to measure the influence and interdepen-
dencies of the parameters on the capability of an EA [214]. The EA is the
PA-CGA, presented in Sections 3.2.3 and 4.2.

The ultimate intention of the SA experiments is to guide algorithm mod-
ifications. However, the SA of an EA is immediately beneficial to set its
various parameters for improved solutions. The nature-inspired EAs func-
tion by iteratively applying specific operators in order to modify potential
solutions to a problem and converge to an optimal or near-optimal solution.
Despite their application success, EAs remain highly dependent on their pa-
rameterization but also on the problem. It is common practice to augment
a generic EA with problem specific components. As mentioned by De Jong
in [215], the No Free Lunch theorems, stating that no single algorithm that
will outperform all other algorithms on all classes of problems, induce sev-
eral key questions, including: “what EA parameters are useful for improving
performance?” Although a lot of work has been conducted in the field of
parameter setting for EAs, most of these focused on searching for the best
parameter values without considering if these parameters have a direct in-
fluence on the EA capability (its ability to find good solutions). Moreover,
the effect of the different parameters and components of an EA can also be
quantified with SA.

5.2.1 Sensitivity Analysis of a Program

SA originally targets the modeling activity. Here, we seek to apply this
technique to a program.

The context of EA

Parameter setting can greatly influence the performance of EAs and there-
fore focused the interest of many researchers. Comprehensive surveys have
been introduced by De Jong in [215], Eiben [216] and more recently by
Kramer in [3].

As mentioned by Maturana et al. in [217], one of the main problems
is to assess which parameters can lead to the algorithm transformation, i.e.
improvement. They proposed a classification of parameters, distinguishing

120

behavioral parameters (operators probabilities, population size) and struc-
tural parameters (encoding, choice of operators). A similar classification was
proposed by Smit and Eiben in [218] distinguishing between numerical and
symbolic parameters. In this analysis we focus on behavioral, respectively
numerical parameters setting.

The EA parameter space can be explored offline (before the search) or
online (during the search). Eiben in [219] classified these parameter tech-
niques as parameter tuning, and parameter control. In this work we are
interested in parameter setting before the run (i.e. tuning), for which a
taxonomy extension has been proposed by Kramer in [3] (see Fig. 5.1).

Tuning by hand induces user experience for setting the EA parame-
ters beforehand. This solution is largely predominant in the literature in
which parameters are usually set based on empirical evaluations as men-
tioned in [217].

The second tuning class, Design of Experiments (DoE), refers to Bartz-
Beielstein work on Sequential Parameter Optimization (SPO) [220] which
is a heuristic combining classical and modern statistical techniques. The
objective is to design the experimental plan prior to the experiments.

Other works have attempted to analyze the sensitivity of parameters,
but limited to the study of the independent influence of parameters values
on the fitness. De Castro et al. in [221] studied the sensitivity of three pa-
rameters (number of antibodies, number of generated clones and amount an-
tibodies to be replaced) of their Clonal Selection Algorithm (CLONEALG).
Similarly, Ho et al. in [222] have analyzed the sensitivity of parameters of
their Intelligent Genetic Algorithm (IGA), including mutation and crossover
probabilities. In [223] Min et al. analyze the sensitivity of the population
size and the termination condition (maximum number of generations) of
a standard GA on a reverse logistics network problem. Finally, Geem et
al. in [224] analyzed the sensitivity of Harmony Search (HS) parameters

Parameter Setting

Tuning Control

By Hand

Design

of Experiments

Meta-Evolution Deterministic

Adaptive

Self-Adaptive

during the runduring the r

Figure 5.1: Parameter setting in EA’s taxonomy [3].

121

(harmony size, memory considering rate and pitch adjustment).
The last parameter tuning class, meta-evolution, is also referred to as

nested evolution. This is a two-level evolutionary process in which one
algorithm optimizes the parameters of the second one. A recent approach
has been proposed by Nannen and Eiben in [225], Relevance Estimation
and Value Calibration of Evolutionary Algorithm (REVAC) parameters. It
estimates the expected performance of the EA when parameter values are
chosen from a Probability Density Function (PDF) and includes a measure
of the parameter relevance (normalized Shannon entropy).

SA for EA

This section describes how SA can correct the drawbacks of the aforemen-
tioned approaches. SA tries to identify how uncertainty in each of the pa-
rameters influence the uncertainty in the output [163] of a model. This
technique allows to answer the following question (among others): which
factors cause the most and the least uncertainty in the output (screening).
This measures the importance of factors in the model analyzed. It is useful
in the DoE and parameter setting, because it allows to focus on the most
influential factors, possibly setting arbitrary values to the least influential
ones.

Moreover, this knowledge is also useful at design-time. The designer of
a model intuitively develops an idea of its behavior. SA allows the designer
to verify his hypothesis, and modify the model accordingly. This study
therefore proposes to use SA to study the influential parameters of an EA
on a specific problem class, i.e. scheduling problem of independent tasks in
a grid. The objective is to reduce the chosen algorithm’s parameter search
space.

There are several ways to conduct a SA. Section 5.2.1 listed a few. Before
presenting the suggested method, the desired characteristics of a method for
SA are presented below. The method should:

• be model independent (it does not place requirements on the type of
model to work on),

• evaluate the effect of a parameter while all others are also varying,

• cope with the influence of scale and shape (the probability density
function and its parameters),

• quantify the influence of the uncertainty in factors,

• capture the interaction between factors.

These desired properties restrict the possible methods (such as using
entropy as a measure of output uncertainty [225]). The chosen method is

122

based on decomposing the variance of the output, as introduced by Saltelli et
al. in [163]. The exact implementation used is an extension to the Fourier
Amplitude Sensitivity Test, called Fast99 [164]. This method allows the
computation of first order effects and interactions for each parameter. Pa-
rameters interaction occurs when the effect of the parameters on the output
is not a sum of their single (first order) effects.

5.2.2 Experimentation

The chosen method benefits from the properties presented in Section 5.2.1,
therefore there are no model specific restrictions. First, the goal of the anal-
ysis must be stated and the output of the model defined accordingly. For an
EA, this can be the quality of the solutions, the number of evaluations, the
runtime of the implementation, etc. In our case, the output is the solution
quality, which represents the fundamental function or capability of the algo-
rithm. For each parameter of the model analyzed, the range of possible of
values is required, along with their distribution in the range. These values
come from experts in the application domain, or from the literature. Un-
less there are many parameters (greater than 30) or if the evaluation takes
too much time (due to the number of parameters combinations), the Fast99
method mentioned in Section 5.2.1 is suitable. Otherwise, the qualitative
method of Morris is better suited (it is a One-At-a-Time method, or OAT).
The method then produces a list of parameter combinations, for which the
model is evaluated. In the case of an algorithm, the implementation of the
algorithm is run with the prepared parameter combinations. The number of
combinations is samples×Nb parameters. The method for the SA then col-
lects the evaluation results and presents the linear and non-linear influence
of each parameter. The next sections present its application.

Experiments configuration

The presented sensibility analysis is performed on an EA. This EA algo-
rithm is the PA-CGA implemented for multi-core processors presented in
Sections 3.2.3 and 4.2. The PA-CGA solves the scheduling of independent
tasks problem, described in Section 3.2.1.

The PA-CGA is configured as follows. The population is initialized ran-
domly, except for one individual. The schedule for this individual results
from the Min-min heuristic [144]. The linear 5 neighborhood, also called
Von Neumann neighborhood, is composed of the 4 nearest individuals, plus
the individual evolved. The two best neighbors are selected as parents.
The recombination operators used are the one-point (opx) crossover. The
mutation operator moves one randomly chosen task to a randomly chosen
machine. The newly generated offspring replaces the current individual if it
improves the fitness value.

123

Table 5.1: Uncertainty in the model parameters

Factor Distribution Range of values

Population size uniform 8× 8 – 32× 32
Mutation probability uniform 0.1 – 1.0
(P mutation)
Mutation iterations uniform 1 – 5
(Iter mutation)
Local search probability uniform 0.1 – 1.0
(P search)
Local search iterations uniform 1 – 10
(Iter search)
Load for local search uniform 0.1 – 0.9
(Load search)
Threads uniform 1 – 4

The parameters of the EA to analyze, called factors in the context of
SA, are summarized in Table 5.1. For each factor considered in this study,
a uniform distribution of the values is considered since we have no a priori
indication of the correct values. Population size represents the dimension
of the square shaped grid of the CGA, which can range between 8 × 8 to
32 × 32 individuals. Crossover rate is taken from a range between 0.1 to
1.0. Mutation is defined by its rate, ranging between 0.1 and 1.0, and the
maximum number of mutations, ranging from 1 to 5. Local search is defined
by the same properties (rate between 0.1 and 1.0 and maximum number of
iterations between 1 and 10). The value range for the number of least
loaded machines to consider is 0.1 to 0.9. This is an additional parameter
of the problem-specific local search operator. Finally, as the algorithm can
be parallelized, the number of threads varies between 1 and 4. The stop
condition for each run of the PA-CGA is 100 generations. Each set of factors
generated for the analysis is used for 4 runs. The result is the average of the
makespan (solution quality for the scheduling problem considered) over those
4 runs. The SA therefore considers a total of 6400 parameters combinations.
Sensitivity analysis is performed on the algorithm for two different instance
files: u c 512x16 hihi 1 and u c 512x16 lolo 1. The intention is to discover
if different problem instances modify the factor prioritization results. The
Fast99 implementation of the SA is provided by the R Sensitivity Analysis
package [226].

124

Pop P_mutation Iter_mutation P_crossover P_search Iter_search Load_search Threads

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Figure 5.2: SA, hihi instance

Results

Figure 5.2 presents for each factor, their linear and non-linear (or interac-
tion) effects on the output for the problem instance with high tasks and
resources heterogeneity: the quality of the solution (the average makespan
over 4 independent runs).

The benefits of the SA are immediately visible. Indeed, the local search
parameters and notably the maximum number of iterations, influence the
most the output. It is indeed twice more important than the second most
influential parameter, the local search rate. This result is consistent with
related works in the scheduling literature which enlightened the importance
of the local search when dealing with hybrid metaheuristics [227]. This
also justifies the hand tuning of the parameters performed for [177] The
third most important parameter the crossover rate. This is highlighted in
Figure 5.3 which analyzes the effects on the output of the GA parameters,
thus using fixed values for the local search. It appears that the crossover
rate is at least six times more important than all the other GA parameters.

These results also highlight that several parameters play a limited role,
i.e. population size, mutation rate and iterations as well as the number of
threads. This is also beneficial because values which have a positive impact
on other aspects of the algorithm, such as runtime, can be selected without

125

Pop P_mutation Iter_mutation P_crossover Threads

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Figure 5.3: SA, hihi instance with fixed local search parameters

impacting the quality of the solutions. Indeed, this algorithm was designed
to be run for a limited period of time (wall clock), therefore choosing a
smaller population size and a higher number of threads will allow more
generations.

Figure 5.4 shows the same analysis for the instance with low tasks and
resources heterogeneity. The two most influential parameters are similar
to the hihi instance, local search iterations followed by the of local search
rate. One difference can be noticed at the level of the third parameter in
terms of importance. This parameter now consists in the EA population
size while the crossover rate was used for the hihi instance. As can be
seen in Figure 5.5, crossover has indeed 40% less influence than population
size. Finally the load for local search has almost no influence on the output
in the hihi case. Figure 5.5 shows that there are significant interaction
effects, which mean that the remaining parameters combined, influence the
output more than individually. The interaction amount summarizes all the
interactions (between two, three, etc parameters).

5.2.3 Conclusion

In this first section, a variance based SA has been proposed to study the
influence and interdependencies of the parameters of a PA-CGA. Experi-

126

Pop P_mutation Iter_mutation P_crossover P_search Iter_search Load_search Threads

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Figure 5.4: SA, lolo instance

mental results on two different instance classes of a scheduling problem have
shown that, for both problem instances, the two most influential parame-
ters are those related to local search. As expected, the genetic algorithm’s
parameters have a limited influence on the solution quality, except for the
crossover rate and the population size, respectively for the hihi and lolo
instances. Current implementations are available [226] to make this analy-
sis a systematic step in any EA experiment. However, sensitivity analyses
are expensive computationally, but an improved setup can result in faster
execution (such as parallel execution).

5.3 SA-Guided Modifications to an Algorithm

In this section, the SA of a CGA with local search, presented in Sec-
tion 5.2, is used to re-design a new and faster heuristic, called Two-Phase
Heuristic (2PH), for the problem of mapping independent tasks to a dis-
tributed system [228, 229]. The proposed heuristic finds better solutions
than Min-Min, and solutions of similar quality to the original CGA but in
a significantly reduced runtime (×1, 000 faster). The discovery process for
these modifications is not trial-and-error. In this section, SA is not tar-
geted at parallelism, nor energy-efficiency, but decreasing the runtime of an

127

Pop P_mutation Iter_mutation P_crossover Threads

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Figure 5.5: SA, lolo instance with fixed local search parameters

algorithm. It is exploited to illustrate an approach.

5.3.1 A Modified PA-CGA: the Two-Phase Heuristic

This section presents the proposed modifications to the original PA-CGA.
First, the key findings of the SA, detailed in the previous section, are listed.
Then, the implications are applied to the design of a new algorithm.

Summary of the SA

Our original algorithm for the SA guided modification is the PA-CGA, in-
troduced in Section 3.2.3. Summarizing: the PA-CGA is a CGA, where one
solution in the initial population is the output of the Min-Min algorithm, it
also includes a problem-specific local search applied to every new solution
generated. Finally, it is designed for concurrency, by splitting the population
into several, partially independent blocks.

The SA conducted in Section 5.2.2 showed, Fig. 5.2, that the local search
parameters and notably the maximum number of iterations influence the so-
lution quality the most. Moreover, the number of local search iterations is
twice as influent as the second most influential parameter: the local search
rate. The chosen SA method is quantitative, therefore it justifies such com-

128

parisons, in contrast to qualitative methods that can only indicate the order
in importance. The result of the analysis is consistent with related works
in the literature that acknowledge the importance of local search in meta-
heuristics [227].

The results can also be interpreted to show that the other parameters
play only a limited role for the considered problem instances, i.e., population
size, mutation rate and mutation iterations as well as the number of threads.
The relative unimportance of the number of threads and population size on
solution quality is significant. In Sections 3.2.3 and 4.2, concurrency was
introduced in the PA-CGA by splitting the population across concurrent
threads, to exploit multi-core parallelism. This source of parallelism has
the disadvantages of requiring large population size, and exposed limita-
tions in scalability with the number of cores. The SA measured that these
disadvantages do not improve the capability of the algorithm much.

2PH description

As a consequence from the SA results, the modified algorithm, 2PH, is
simply the sequential execution of Min-Min, followed by a single execution
of the local search operator H2LL, both taken as is from the PA-CGA.
The genetic evolution is removed completely. In addition, the number of
iterations for the local search H2LL is increased from 5 to 30 or 100 (both
values are experimented). The local search is performed only once for 2PH.
In the original PA-CGA, the local search H2LL was applied on each new
individual in the population, at each generation. Therefore, even a greater
number of H2LL iterations, still performs far less local searches than in the
PA-CGA.

Although the 2PH algorithm is simple, and considerably faster, the SA
provides us with a priori evidence that it should also perform well (find good
quality solutions). The next section reports exactly how well, in comparison
with the original algorithm and Min-Min.

5.3.2 Experimentation

Experiments configuration

The benchmark application used to evaluate the 2PH algorithm is the inde-
pendent task mapping problem, presented in Section 3.2.1. The quality of a
solution is called makespan (the time when the last task mapped completes).

The 2PH algorithm is compared to Min-Min, and to the original PA-
CGA. Wall-clock times for the 2PH and the PA-CGA implementations are
useful to measure the speed of the algorithms, as mapping independent tasks
can benefit from fast execution times. The experiments were performed on
an Intel Core 2 Duo CPU P8800 @ 2.66 GHz running under Gnu/Linux

129

Table 5.2: Settings for the comparison with other algorithms in the litera-
ture.

Parameter Value

Instance size 128 tasks × 16 machines
Instance classes 12
Instances per class 30
Runs per instance 10
PA-CGA runtime 3 seconds
PA-CGA population 8× 8
PA-CGA threads 1
PA-CGA mutation probability 1.0
PA-CGA mutation iteration 1
PA-CGA crossover probability 1.0
PA-CGA search iterations 5
2PH search iterations 30, 100

operating system. Table 5.2 summarizes the different points of comparison
for the evaluation of 2PH.

A total of 360 instances were used in the comparison (30 instances of
12 classes). The problem instances generated for this evaluation belong
to different classes of ETC matrices. The classification is based on three
parameters: (a) task heterogeneity, (b) machine heterogeneity, and (c) con-
sistency [160]. In this work, instances are labeled as g x yyzz where:

g stands for Gamma distribution (used for generating the matrix).

x stands for the type of consistency (c for consistent, i for inconsistent,
and s for semi-consistent). An ETC matrix is considered consistent
if a machine mi executes a task t faster than machine mj , then mi

executes all tasks faster than mj . Inconsistency means that a machine
is faster for some tasks and slower for some others. An ETC matrix is
considered semi-consistent if it contains a consistent sub-matrix.

yy indicates the heterogeneity of the tasks (hi means high, and lo means
low).

zz indicates the heterogeneity of the resources (hi means high, and lo means
low).

PA-CGA is run for 3 seconds, wall-clock time, using 1 thread. The other
parameters have identical values to those chosen for the SA. In our previous
work [228], the algorithm showed similar performance for different run times
ranging from 1 to 5 seconds. These times are far from those used in other
previous works [177], where 90 seconds were used as time limit. However,

130

Min−Min PA−CGA 2PH−30 2PH−100

40
0

45
0

50
0

55
0

60
0

65
0

M
ak

es
pa

n

(a) g c hihi instances

Min−Min PA−CGA 2PH−30 2PH−100

70
0

80
0

90
0

10
00

11
00

M
ak

es
pa

n

(b) g c hilo instances

Min−Min PA−CGA 2PH−30 2PH−100

20
0

30
0

40
0

50
0

60
0

70
0

M
ak

es
pa

n

(c) g c lohi instances

Min−Min PA−CGA 2PH−30 2PH−100

78
0

80
0

82
0

84
0

86
0

M
ak

es
pa

n

(d) g c lolo instances

Figure 5.6: Makespan for the consistent instances.

PA-CGA with 1 thread completes over 100, 000 evaluations per second of
runtime, which is sufficient for the algorithm to converge to good solutions.
Moreover, the SA showed that the number of threads does not play a large
role in the search for good solutions.

As mentioned earlier, two versions of 2PH with 30 and 100 iterations
were chosen instead of 5 for the PA-CGA. 2PH with 30 iterations only
completes in 3 milliseconds per problem instance.

Results

This section presents the experimental results of the different algorithms:
(a) the Min-Min heuristic, (b) 2PH with 30 and 100 iterations, and (c) the
PA-CGA. The results are shown as box-and-whisker plots. The boxplots
are generated with the median of the makespan values obtained after the
10 independent runs for each of the 30 different instances of every problem
class. The boxplots show the minimum and maximum values, as well as the
first and third quartiles and the median value. The boxes with overlapping

131

Min−Min PA−CGA 2PH−30 2PH−100

25
0

30
0

35
0

40
0

M
ak

es
pa

n

(a) g s hihi instances

Min−Min PA−CGA 2PH−30 2PH−100

70
0

80
0

90
0

10
00

M
ak

es
pa

n

(b) g s hilo instances

Min−Min PA−CGA 2PH−30 2PH−100

20
0

30
0

40
0

50
0

60
0

70
0

80
0

M
ak

es
pa

n

(c) g s lohi instances

Min−Min PA−CGA 2PH−30 2PH−100

70
0

72
0

74
0

76
0

M
ak

es
pa

n

(d) g s lolo instances

Figure 5.7: Makespan for the semi-consistent instances.

notches mean that there are not statistically significant differences (with
95% confidence level) between the algorithms they represent.

Overall, the 2PH improves the quality of the resource allocation signif-
icantly over Min-Min, and provides results of similar quality to PA-CGA,
requiring only 3 milliseconds to achieve them.

The results for the consistent, semi-consistent, and inconsistent instances
are shown in Fig. 5.6, Fig. 5.7, and Fig. 5.8, respectively. We see that
there are not significant differences between 2PH with 30 and 100 iterations
for any of the four problems considered with different resource and task
heterogeneities. PA-CGA is clearly the best algorithm for problems with
low task and resources heterogeneities, and Min-Min is always the worst
one for every instance, with the exception of the instances with low task
and high resources heterogeneities, for which all algorithms provide similar
results. For the other problem classes, the 2PH algorithms show similar
performance to the PA-CGA.

To evaluate the overall performance of the compared algorithms on all
the problems, we used the Friedman statistic test to perform a ranking of the

132

Min−Min PA−CGA 2PH−30 2PH−100

20
0

25
0

30
0

35
0

M
ak

es
pa

n

(a) g i hihi instances

Min−Min PA−CGA 2PH−30 2PH−100

70
0

80
0

90
0

10
00

M
ak

es
pa

n

(b) g i hilo instances

Min−Min PA−CGA 2PH−30 2PH−100

30
0

40
0

50
0

60
0

M
ak

es
pa

n

(c) g i lohi instances

Min−Min PA−CGA 2PH−30 2PH−100

68
0

69
0

70
0

71
0

72
0

73
0

74
0

M
ak

es
pa

n

(d) g i lolo instances

Figure 5.8: Makespan for the inconsistent instances.

algorithms according to the solutions found. The Friedman test assigns small
ranking values to those algorithms providing the highest solutions. There-
fore, as the objective is minimization, those algorithms with highest rank
value are the best performing ones. We computed a p-value of 1.955e − 10
with the Friedman test, so there are statistically significant differences with
95% confidence on the performance of the algorithms for all the problems
considered in this work.

The rank is shown in Table 5.3. We can see that the ranking supports
our conclusions on the results. PA-CGA is the best performing algorithm,
followed by the two 2PH versions (very close from each other). However,
the 2PH algorithms find the solution about ×1, 000 faster than the PA-CGA
(2PH runs for a few milliseconds versus the 3 seconds of the PA-CGA). This
makes the 2PH algorithm the best option for large scale systems. Finally,
Min-Min is clearly the worst algorithm of the compared ones.

133

Table 5.3: Rank of the algorithms (higher rank is better).

Algorithm Rank

PA-CGA 3.99
2PH-100 2.725
2PH-30 2.21
Min-Min 1.079

5.3.3 Conclusion

This paper exploits the results of the SA of a parallel asynchronous CGA,
with local search. The analysis led to the design of a simple two-phase
heuristic for the mapping of independent tasks. The new 2PH heuristic was
compared against two algorithms from the literature, (a) the PA-CGA, and
(b) the Min-Min heuristic. In most problem instances, 2PH found equivalent
mappings in much less time (milliseconds versus seconds) than the CGA.
The proposed heuristic also significantly improves the mappings found by
the Min-Min heuristic, with little additional computation cost.

5.4 Summary

In this section, a SA method, a statistical procedure designed to evaluate
models, was applied to a program: a problem-specific GA. The intent was
to gain insight on how each component in the algorithm contributes to the
quality of the solutions found, in order to guide modifications that improve
a chosen property, with some confidence that its core function is preserved.
The targeted property was the speed of execution of the algorithm, and the
core function was the search for good solutions to a scheduling optimiza-
tion problem. Experiments showed that SA provided correct insight: the
straightforward modifications deducted from the analysis produced a new
algorithm that runs ×1, 000 faster while finding acceptable solutions.

The results nevertheless suggest several improvements. First, the prop-
erty improved was execution speed, and not parallelism. Second, the method
is still largely manual, the SA results required interpretation, and the mod-
ifications were not automatic.

The finding from these experiments is that statistical methods are not
only useful, but also practical because as we are given an original algorithm
to improve, we can execute it at will to generate observations. The next
section will further investigate statistical processing, as a path to automatic
parallelization.

134

Chapter 6

Savant: Automatic

Generation of Parallel

Solvers

6.1 Introduction

The previous chapter showed how statistical analysis can successfully guide
the search for algorithm modifications, to improve upon an algorithm’s prop-
erty, such as parallelism. One question is could this analysis and modifica-
tion process be automated to generate new, parallel algorithms? In this
chapter, we propose such an automatic parallel program generation, called
the Savant approach [230]. The Savant approach relies on statistical anal-
ysis, but not on the sensitivity analysis of the previous chapter. Savant is
both an approach to parallel program generation, and the name of the re-
sulting parallel algorithm. Both uses of the term should be distinguishable
in this chapter.

The Savant approach is inspired by the savant syndrome, as described
in Section 6.2.2. The syndrome is a condition that affects up to 10% of
people suffering from autistic spectrum disorder. Other occurrences of the
Savant syndrome result from brain injury, either from accident or illness.
The Savant syndrome is characterized by immediate display of spectacular
abilities, such as performing seemingly sequential tasks in a very short time,
using a massively parallel machine similar to the AWN: the brain.

In this chapter, we propose a design for a virtual savant, the Savant
algorithm. This virtual savant is made parallel by design, it learns the
behavior of a given algorithm with statistical machine learning. The given
algorithm can therefore be considered parallelized, and the Savant algorithm
represents its parallel version. The Savant approach should also be able to
parallelize small problems (operating on small data, with limited computa-
tion), a valuable property in the context of AWN. Although parallelizing

135

small problems may not seem useful, it does force to challenge the current
sources of parallelism, and may in turn be applied to larger problems.

Automatic parallelization is an ambitious task. The evaluation of the
Savant approach to automatic parallelization is limited to one optimization
problem, presented in the next section. Section 6.2 presents the Savant ap-
proach. Section 6.3 reports on the results of the approach to the considered
use case.

6.1.1 Use Case for the Savant Approach

The Savant approach for automatic parallelization, presented in Section 6.2,
is applied to the resolution of a combinatorial optimization problem. The
problem is the independent tasks mapping problem, previously defined in
Section 3.2.1. The key characteristics of the problem are summarized as
follows. Solutions to this problem are the assignments of each task to a ma-
chine, such that a scheduling objective (makespan) is minimized. Makespan
is the time when the last task finishes. Finding the task-to-machine map-
pings that minimizes makespan is an NP-complete problem. The problem
is fully defined by (a) the tasks’ estimated time-to-complete on each ma-
chine, and (b) the formula for makespan. The estimated execution times
are presented in a task/machine matrix, called ETC.

The Savant approach generates a concurrent program from solved prob-
lem instances. The problem considered is NP-complete, therefore, the solved
problem instances are obtained from an existing optimization algorithm.
Several are used in the experiments:

• Min-Min, a well-known problem specific heuristic, previously presented
in Section 3.2.2,

• a specialized CGA: the PA-CGA of Section 3.2.3, and configured in
Section 6.3.1,

• a brute force algorithm that finds the optimal solutions for very small
problems only.

The solved instances are the input to the Savant approach. However,
because the solved instances come from an existing algorithm, the parallel
solver generated by Savant can be considered a parallel version of the initial
algorithm. Each of the algorithms listed above lead to the generation of a
parallel program. The automatic parallelization perspective to the Savant
approach suggest to briefly survey past automatic parallelization efforts, in
the next section.

6.1.2 Automatic Parallel Program Generation

Parallelism was considered a part of the automatic build of executables
from source code [231]. This optimization step is usually approached by

136

applying source-to-source transformations [232, 233]. Transformations in-
clude loop-unrolling, data access patterns, and rely on a careful inspection
of data dependencies to extract concurrency from the source program. This
approach to parallelization preserves the algorithm and most of the source
code, by applying transformations that respect the semantics of the origi-
nal program. The transformations are carefully defined, so as to guarantee
identical behavior, and may even rely on formal reasoning [234]. Other au-
thors apply AI techniques such as GA to select the source transformations
and their order of application [235, 236, 237, 238]. In contrast, the Savant
approach does not attempt to modify the implementation while preserving
the algorithm, but produces a new algorithm.

In [239, 240], the authors review the applications of AI and machine
learning to software engineering. Among the several applications mentioned,
the transformation of programs for parallelism matches our objective. How-
ever, the approaches cited opt to restructure the source while preserving
its semantics. Other related application domain include the generation of
test cases for a given program, from inductive learning of programs from
finite sets of input-output examples, and the synthesis of search programs
for a Lisp code generator in the domain of combinatorial integer constraint
satisfaction problems [241].

Genetic Programming (GP) [242] shares the same approach as the Sa-
vant approach. Indeed, GP aims to automatically evolve a program that
performs a desired function. Moreover, the algorithm can be evolved to
meet additional properties: a multi-objective search [237]. Parallelism can
be introduced as an additional objective.

A combined GP and source-to-source transformation technique was in-
troduced in [243]. Paragen disassembles a program into its constituent state-
ments, and attempts to rebuild it in a parallel form using these statements
and a combination of the parallel and serial functions available. The gen-
erated programs are tested for functional equivalence. Moreover, the func-
tional equivalence are reported provable, however no detail is provided. The
multi-objective search is performed using two populations, one per objective
(correctness and parallelism). One unusual assumption is that the execution
is considered on a synchronous virtual machine, where the cores operate at
exactly the same clock, limiting concurrent access to shared memory.

In [244, 245], parallel programs are evolved using a linear GP for a multi-
Arithmetic Logic Unit (ALU) processor register machine (MAP). An inter-
nal cross-bar network allows a number of registers to be shared. Using the
linear GP, the programs are sequences of assembler instructions. The MAP
is a virtual processor, and programs are simulated on this machine. The pro-
gram generation is evaluated across 14 functions (including the Fibonacci
series, numeric functions, boolean functions, artificial ant, and data classi-
fications). Up to 8 ALU are considered, and each program length is 128
instructions at most. The termination condition is 108 tournaments or no

137

improvement over 107 tournaments. The focus of the study is the speed of
the evolutionary search. An interesting finding is that evolving a parallel
program is faster than evolving a sequential one.

In [246], the authors report on an unusual experiment that explores the
generation of a parallel version of an initial program, by an evolutionary
search similar to GP. The initial program performs self-replication. How-
ever, when replicated, the program is randomly altered. The alteration can
introduce parallel instructions, that operate on the shared memory of the
virtual machine used. Once the memory of the virtual machine is full, older
programs are removed. The effect of these basic rules is that programs
that replicate faster will survive, thus guiding the evolutionary search. The
results show that initially the program undergo modifications on the sequen-
tial code that allow for faster replication. The programs are made shorter
to accelerate the self-replication. Afterwards, the evolutionary process cre-
ates parallel versions, that perform the replication in parallel. The final
solutions are able to use up to 32 threads for replication. The solutions
are obtained after 109 clock cycles. Though limited to a simple function
(self-replication), the unique evolutionary process is able to generate new
programs that achieve the same self-replication in a parallel fashion.

The perspective on parallel program generation is common to the Savant
approach, however we consider that the evolutionary approach is limited in
its capability. We found that the programs evolved were relatively small
(O(100) assembly instructions), and required considerable computational
effort to find; the stopping condition is the absence of progress in the last
106 − 108 evolutions, or 109 clock cycles. The EA is a general technique
that comes with drawbacks, such as the computational effort required by
the large search space. Modeling parallelism as an objective function for
the evaluation of a program is an elegant formulation of the problem, that
fits well into the evolutionary search. However, introducing parallelism as
an additional objective in a multi-objective search is an unreliable path
to parallelism, because the achieved parallelism is unpredictable and often
limited.

GA were considered capable of evolving rules of computation, instead
of a solution to a problem [247]. The rules found by an evolutionary pro-
cess need not be complete programs, but rather rules that react to state
transition events, and in turn trigger additional state transitions. Such an
application of the evolutionary process could in principle be used for auto-
matic parallelization but we have not found previous work.

Cellular Automata (CA) rules were noticed to be amenable to evolution-
ary search [248]. The evolutionary process is used to find rules that allow
the CA to achieve a desired function. Although the CA is often consid-
ered a parallel machine, the periodic computation performed in parallel at
each cell (by the simple CA rule) is far less time consuming than the nec-
essary communication, for reading the cell’s neighborhood but mostly for

138

synchronization, therefore limiting the degree of parallelism.

6.2 The Savant Approach

6.2.1 A Parallel Algorithm Template

In Section 6.1.2, we mentioned that the previous GP approaches considered
parallelism as an additional objective, which leads to an uncertain degree
of parallelism. In contrast, Savant addresses the parallelism problem by
specifying a target parallel template for the generated programs. The Savant
approach only produces algorithms that conform to a design that guarantees
a suitable form of parallelism. This chosen form of parallelism is meant to
fit the AWN (Section 2.2), and should display:

• limited computation on each node, because the nodes are “wimpy”,

• limited inter-node communication, because the nodes are considered
connected over a slow interconnect, capable of connecting a great num-
ber of cores, unlike the shared memory machines mentioned in Sec-
tion 6.1.2,

• scalability with the number of nodes, and exploit hundreds of cores,
even on small problems.

The chosen algorithm template is a scatter-gather design, such as a
Map-Reduce application. Open source and Free Software frameworks ex-
ist for this model, across different architectures (GPU, multi-core, clusters),
which makes it a practical choice. Moreover, theoretical works have found it
equivalent to Bulk Synchronous Parallel (BSP) and Parallel Random Access
Machine (PRAM) [249], both well-studied parallel models.

In the chosen template, the input data is first processed independently
by many mappers, whose results are then further processed, independently,
by reducers. Independent processing means that the mappers and reducers
do not communicate or otherwise synchronize. The mappers and reducers
do not perform computationally intensive functions. In addition to this
qualitative definition of the parallel model, we wish for a high number of
mappers and reducers, even on small problems. Also, the new programs
must scale with respect to problem size and hardware resources, meaning
the mappers and reducers should decompose the problem into small parts.

Section 6.2.3 details the algorithm template, in the context of the selected
use case. In summary, the template can be viewed as a universal algorithm,
that is adapted to the algorithm to parallelize. However, before presenting
the design, the following section introduces the source of inspiration, which
influence the design of the template algorithm.

139

6.2.2 Analogy with the Savant Syndrome

We looked for previous occurrences where a massively parallel machine (sim-
ilar to the AWN, composed of “wimpy” nodes to ensure the reliance on par-
allel processing), was able to solve small, sequential problems in a short time.
This question lead to the Savant syndrome [250, 251, 252, 253, 254, 255].

People displaying symptoms of this syndrome can compute small se-
quential tasks, such as calendar computation (finding the day of the week
of a given date), in a very short time (700 msec) [254], using largely un-
known methods [252]. The Savants’ methods for calendar computation are
reported unknown because experiments showed that the distribution of the
response times does not match those of known algorithms. Certain date
calculations were expected to take longer to compute because of the calen-
dar rules. Moreover, Savants can perform other date computations (such as
finding the years that match a given weekday, date and month) with simi-
lar performance, which is considered more time-consuming for a computer
algorithms [252].

Although not fully understood, neuroscientists believe that the Savants
discover pattern recognition rules from data, which are later applied, in
parallel, to new input [254, 255]. The rules extracted capture perceived
regularities in the data, such as found in calendars and prime numbers. The
Savant’s perception of data appears different, more precise (“high resolution
data” [250]) than our ordinary higher-level, conceptual memory [251, 253,
255]. Some descriptions of the Savant’s internal perception of numbers [256]
display synesthesia [257]. The learned pattern recognition is also consistent
with studies of chess perception in players of different skill [258, 259].

These findings could explain their ability to perform calendar compu-
tation while ignoring the complicated details of calendars, or to enumerate
prime numbers while ignoring what a prime number is, or even how to mul-
tiply and divide. The mental activities that some Savants describe incline us
to believe that their pattern-recognition learning method is supervised [256].

6.2.3 Application to the Automatic Solver Generation

We now combine the different items presented above: we apply the Savant
syndrome analogy (Section 6.2.2) to implement the desired parallel algo-
rithm template (Section 6.2.1), for the generation of a parallel solver for the
scheduling problem (Section 6.1.1).

Figure 6.1 provides an overview of the Savant algorithm. The “input” to
the combinatorial optimization problem is an ETC matrix of Ntasks columns
and Nmachines rows, and a fitness function which computes the makespan
of a solution (Section 6.1.1). The “output” of a solver is a solution to a
problem instance, the solution can be compactly represented by an array of
integers or labels, where the index of the array denotes the task assigned,

140

Figure 6.1: Overview of the Savant parallel algorithm

and each value in the array denotes the machine identifier to which the
task is assigned. Typical problem instances involve many more tasks than
machines, hundreds of tasks for even small problems.

The mapper

Concurrency in the Savant algorithm is first introduced by decomposing the
tasks’ assignment in a solution into multiple, independent task assignments.
Each task assignment is performed by a mapper, in the Map-Reduce context,
and represented by theM boxes in Figure 6.1. The approach is data-parallel,
and each mapper operates independently of the others, avoiding communi-
cation. This output decomposition can exploit the parallelism of an AWN,
even for small problem instances. By analogy with the Savant syndrome,
each mapper is based on pattern recognition, and the tasks’ assignments
are parallel pattern recognitions. Each mapper is a multi-class classifier,
implemented with Support Vector Machines (SVM), using libSVM [260].
The classes of the SVM are the machines the tasks are assigned to. The
mappers’ SVM implement supervised machine learning, which are trained
with solved problem instances. The solved problem instances are obtained
from an existing solver, which we wish to parallelize. Each mapper/SVM is
trained independently of the others, and attempts to learn the assignment

141

logic from the solver. Each mapper is trained for a single task. Because the
ETCs are randomly generated, according to procedure [145], the ETC data
is sorted. The assumption behind sorting the ETC is that pattern recogni-
tion rules are considered dependent on the nature of the task and machine
(smaller/larger task, slower/faster machine), but are common to similar
tasks and machines across ETC instances. The tasks (ETC columns) are
sorted in the order of increasing execution time, taken as the sum of ETC
values across machines. The machines (ETC rows) are also sorted in the
order of increasing execution time. The low-index tasks (the column num-
ber) have smaller execution times than the high-index tasks. The low-index
machines (the row number) are faster than the high-index machines.

The reducer

We have not yet stated the output of a mapper because this output needs
to address a concern in the above mentioned decomposition. The task de-
composition of the solution is a priori a poor choice, because by definition
the combinatorial optimization problem requires the full solution, while the
proposed decomposition assigns each task independently. The reducers (the
R boxes in Figure 6.1) are designed to bridge the gap between the indepen-
dent mapper assignments and the full solution nature of the optimization
problem. Moreover, the reducers use the other defining component of the
optimization problem, the fitness function (which in the considered use case
computes the makespan). The reducers assemble a full solution to the op-
timization problem, from the output of the mappers. The reducers are not
limited to the assembly of the solution, but also search fit solutions (with low
makespan). In order to keep the reducers generic, they perform a random
search in the solution space, storing the best solution found. The random
search is not very efficient, therefore, the search is guided by the output of
the mappers. Therefore, a mapper’s output is not a definite task assign-
ment, but an assignment probability vector (Figure 6.1). The probability
vector holds the probability to assign the task to the different machines,
based on the learned behavior from the initial solver. SVM can be trained
to produce such prediction probabilities. The probability vector does not
only provide the most likely assignment (highest probability value), but also
how likely the other assignments are. The vector allows for ambiguity in
the task assignment (similar probabilities). Interestingly, the mental pro-
cess of “analogy”, when the brain associates events to categories, is known
to be a non-deterministic function (that would otherwise map an event to
a single concept), but defines weighted and temporary relations between an
event and multiple concepts. The mappers’ probabilities for task-to-machine
assignment resembles these weighted links between events and concepts.

Each reducer generates solutions randomly, according to the assignment
probability vector. Solutions generated are evaluated with the fitness func-

142

Figure 6.2: Feature selection rule

tion that computes the makespan, and the best solution is finally selected.
The reducer’s search for fit solutions is malleable [261], because the com-
putation time required is only a function of the iterations (solution eval-
uations). Both the random generation and fitness evaluation are stateless
and can be split across any number of nodes. For example, a single reducer
thread performing 10K iterations can be split into two threads perform-
ing 5K iterations. Moreover, the generation of a single solution could also
be parallelized, either data-wise (by partitioning the tasks or machines) or
code-wise (by pipelining the task assignment and ETC lookup). The ran-
dom number generation required for this search can be of low-complexity.
The fitness evaluation can in general require significant computation, but
not for makespan computation. Moreover, the makespan computation can
also be parallelized.

The SVM feature selection

An important consideration for training the mappers in the Savant algorithm
is the selection of features for the SVM. An obvious choice of features is the
entire ETC matrix, because it includes all task and machine information.
However, choosing the entire ETC matrix values for classification yields poor
prediction results, and requires longer training time. We have chosen, after
experimentation, to use a very simple feature selection rule: the features
used for the mapper of a given task are the values of the ETC column of
that task. In other words, a mapper/SVM will rely only on the estimated
execution times of that task on every machine. The above mentioned feature
selection rule is called the heuristic rule in the text below.

The good performance of the feature selection heuristic is surprising be-
cause the nature of both the combinatorial optimization problem (minimiz-
ing a complete solution fitness) and the solvers (which also operate on full

143

ETC) suggest that correctly assigning a task requires more information than
just the profile of a single task. Therefore, we also investigated other feature
selection rules. However, none improved the prediction scores of the above
rule. First, we extended the features for a task’s classifier to the ETC values
of similar tasks. Because the ETC is sorted (Section 6.2.3), the similar tasks
are the neighboring tasks in the ETC. Extending the neighborhood by 1–4
columns of the ETC lead to worse predictions on new, unseen instances.

In an effort to systematically explore feature selection rules, we used a
genetic algorithm (CGA) that searched for the best features for each map-
per/SVM. Searching for the features of each task’s mapper can be cast as an
optimization problem: what are the features that maximize the prediction
accuracy of the mapper. The motivation was to depart from the heuristic
feature sets, at the expense of a long computerized search. Another objective
of the genetic search was to determine if different tasks required different
feature selection rules (due to their different profiles), and if common pat-
terns would emerge. In the CGA context, a feature selection rule for each
task is represented as per Figure 6.2. The feature rule is a binary vector,
of length the number of tasks. The binary representation allows to use the
standard genetic operators (crossover, mutation). A ‘1’ value means that
all the ETC values for this task are part of the features. The selection rule
representation must facilitate the detection of patterns. Selection rules for
different tasks are thus comparable. Therefore, the vector index is relative
to a task: the first binary value in the vector refers to the task for which the
rule applies. The second and third vector values point to the left and right
neighbors of the task, in the ETC matrix, and so on, as indicated by the
arrows in the Figure. If there is no neighbor available (because we reached
the edge of the ETC matrix), then that neighbor is taken in the other di-
rection. As a consequence, the same rule vector will select different features
for different tasks. The heuristic rule finally applied can be represented in
the binary vector form, as indicated at the bottom of Figure 6.2 (“heuristic
rule”). The heuristic rule is common to all tasks.

The CGA search found very irregular and complex feature sets. Inci-
dentally, the best feature selections included the task’s ETC column (a “1”
in the first value of the rule vector). Although the search proposed features
that improved the prediction (by 5–10%), the application on completely un-
seen instances proved slightly worse than the heuristic rule. Most likely,
the CGA search suffered from overfitting, which we were not able to mit-
igate. Mitigation efforts included randomly changing the training problem
instances.

Discussion

The Savant parallel algorithm presented provides much freedom in imple-
mentation. For example, the synchronization phase at the end of the SVM

144

mapping is not strictly required, the reducers could start generating par-
tial solutions as soon as probability vectors become available. Moreover,
there are numerous ways to communicate between threads, and several ex-
isting parallel frameworks are suited to the algorithm. We prefer to keep
the algorithm’s presentation more conceptual, rather than list the various
implementation details which add little to the understanding.

In summary to this section, we would like to comment on the described
parallel program generation. Our goal is to generate a parallel version of an
existing algorithm. However, we did not only present a method, but a com-
plete parallel algorithm, without saying anything of the original algorithm.
The presented parallel algorithm appears generic and independent of the
original algorithms, but this is not the case. The Savant parallel algorithm
presented is indeed generic, but it is specialized to the original algorithm.
The mappers are trained to learn the behavior of the original solver to par-
allelize, from the instances it solved. The reducers exploit the mapper’s
probabilistic view of the solution space, and apply the fitness function that
completes the makespan minimization problem. Therefore, the Savant is a
generic parallel solver that learns, through supervised learning, an original
solver.

6.3 Experimentation

6.3.1 Configuration

The problem instances and evaluated algorithms

The scheduling problem instances for the combinatorial optimization prob-
lem are the ETC matrices. The ETC are generated following the procedure
presented in [145]. As such, the ETC are randomly generated following
probability distributions that attempt to represent real scenarios. We stud-
ied two types of ETC: high and low machine heterogeneity. The tasks are
always chosen of high heterogeneity. The ETC instances of high task and
machine heterogeneity are noted hihi, while instances of high task but low
machine heterogeneity are noted hilo. Three problem sizes are simulated,
instances of 12 tasks to map onto 4 machines (denoted 12 × 4), 128 tasks
and 4 machines (denoted 128× 4), and 512 tasks and 16 machines (denoted
512× 16). The ETC data is sorted as indicated in Section 6.2.3.

The algorithms used to train the Savant mappers were listed in 6.1.1:
an exhaustive search, the Min-Min heuristic, and the PA-CGA. For the
smallest problem instances, the optimal solutions were found by an exhaus-
tive search. The Min-Min heuristic was presented in Section 3.2.2. Table 6.1
summarizes the parameters used for the PA-CGA. The parameters are listed
for completeness, the PA-CGA itself is described in Section 3.2.3.

145

Table 6.1: Parameters for the CGA

parameter value

Stop condition 30s wall-clock time
Population size 8× 8
Thread(s) 1
Neighborhood Von Neumann
Crossover Two-points, with probability 1.0
Mutation Bit flip, with probability 1.0
Local search 10 iterations of H2LL, with probability 1.0
Replacement Replace if better

Table 6.2: ETC instances for the SVM training and testing

ETC size available subsets of test ETC
tasks×machines training ETC training ETC

12× 4 1,000 200 – 1,000 200
128× 4 1,000 200 – 1,000 200
512× 16 4,000 1,000 – 4,000 200

Training the mappers

Section 6.2.3 mentioned that the mappers are multi-class SVM classifiers,
implemented in libSVM. The supervised training procedure follows the prac-
tical guide 1: the chosen kernel is RBF, cross-validation is used to determine
the SVM parameters, and the input data (the features extracted from the
ETC with the heuristic rule) is scaled.

The amount of training data influences the quality of the SVM mappers,
and the size of the SVM model (number of support vectors). Before we
can evaluate the performance of the Savant algorithm, we must select the
appropriate amount of training data for each problem size. We wish to select
the fewest training observations that provide reasonably good results.

Table 6.2 is an overview of the observations used for the SVM. An ob-
servation is composed of an ETC matrix and the solution found by the algo-
rithm we aim to parallelize. The table indicates the total number of available
observations, and the different subsets that were evaluated for training the
mappers. In all instances, 200 observations were used for testing. The test
ETC are reserved for testing, and never used in training. We use a maximum
training set of 1,000 observations for scheduling problems of 4 machines, and
4,000 observations for problems of 16 machines. The number of SVM classes
are the number of machines. Therefore, we try to maintain a constant ratio
between number of machines and observations, across the different problem
sizes.

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/

146

200 400 600 800 1000

0
50

10
0

15
0

20
0

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(a) After the Savant mapper

200 400 600 800 1000

0
2

4
6

8
10

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(b) After 10K iterations of the Savant reducer

Figure 6.3: Impact of training size on 12×4 hihi ETC with Savant/optimal.

Fig. 6.3–Fig.6.7 present a representative sample of the impact of train-
ing sizes on the Savant performance. The above mentioned figures present
results as boxplots, where notches indicate statistical significance. The box-
plots show the quality (makespan) of the solutions found by the Savant
algorithm, using various training set sizes. The boxplots show Savant so-
lution quality for the 200 unseen test ETC instances. Each figure depicts
two boxplots: (1) results for the Savant from the mappers (the SVM clas-
sification), and (2) results for the Savant after 10K iterations of a reducer.
In Section 6.2.3, we mentioned that a Savant mapper produces a probabil-
ity vector. However, in order to evaluate how training set sizes influences
the Savant’s mappers, the first boxplots are computed with the most likely

147

200 400 600 800 1000

0
20

40
60

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(a) After the Savant mapper

200 400 600 800 1000

−
12

−
10

−
8

−
6

−
4

−
2

0

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(b) After 10K iterations of the Savant reducer

Figure 6.4: Impact of training size on 128 × 4 hihi ETC with Savant/Min-
Min.

machine assignment.
In all figures, the quality of the solution is makespan. The quality is

represented by the ratio of the makespan of the Savant solution relative to
a reference solution:

• For the Savant mappers, the quality measure is the most likely SVM
classification, relative to a reference solution.

• For Savant with a reducer, the quality measure is the Savant’s median
solution over 30 runs, relative to a reference solution, because the
reducer is stochastic.

148

200 400 600 800 1000

0
20

40
60

80

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(a) After the Savant mapper

200 400 600 800 1000

2
4

6
8

10
12

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(b) After 10K iterations of the Savant reducer

Figure 6.5: Training size impact on 128 × 4 hihi ETC instances with Sa-
vant/CGA.

Table 6.3: Reference solutions for training size comparisons

Figure ETC size Observation Reference solution
source for each ETC

Fig. 6.3 12× 4 Optimal optimal solution
Fig. 6.4 128× 4 Min-Min Min-Min solution
Fig. 6.5 128× 4 PA-CGA Best PA-CGA solution of 10 runs
Fig. 6.6 512× 16 Min-Min Min-Min solution
Fig. 6.7 512× 16 PA-CGA Best PA-CGA solution of 10 runs

149

1000 2000 4000

10
20

30
40

50
60

70

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(a) After the Savant mapper

1000 2000 4000

−
2

0
2

4
6

8

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(b) After 10K iterations of the Savant reducer

Figure 6.6: Impact of training size on 512× 16 hilo ETC with Savant/Min-
Min.

Table 6.3 summarizes the chosen solution references for each figure. The
reference solution is simply a reference quality measure for a given ETC,
that allows the comparison across training set sizes and ETC instances. The
“Optimal” and “Min-Min” solutions are unique per problem instance (i.e.
ETC), they are the reference solutions. However, for the CGA, the reference
solution is the best of 10 runs (10 runs is enough given the variance of CGA
results, as shown in the next section). This apparent mismatch between
median and best solutions is acceptable because the reference only serves to
produce a ratio that remains valid across training set sizes.

For problems of size 12× 4, Fig. 6.3 shows the influence of the training

150

1000 2000 4000

20
40

60
80

10
0

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(a) After the Savant mapper

1000 2000 4000

15
20

25

training set size

qu
al

ity
 (

m
ed

ia
n

vs
 r

ef
er

en
ce

, i
n

%
)

(b) After 10K iterations of step 2

Figure 6.7: Impact of training size on 512×16 hihi ETC with Savant/CGA.

set size on the Savant’s performance, when trained with optimal solutions.
We can observe that the training set size must be greater than 200 observa-
tions (solved ETC), although this is not apparent from the Savant mappers’
results.

For problems of size 128× 4, Fig. 6.4 and Fig.6.5 show that the Savant
mappers’ results do not reveal any difference in training set size. However,
Savant after 10K iterations of the reducer shows that a training set size
of 600 or more provides better quality solutions, for Savant trained with
Min-Min or PA-CGA solutions.

For problems of size 512 × 16, Fig. 6.6, and Fig.6.7, also show that the
Savant mappers do not benefit from additional training data. The results for

151

Table 6.4: Selected training set sizes

ETC size Number of observations

12× 4 600
128× 4 600
512× 16 4,000

the hilo instances (only Min-Min are presented here) show that after 10K
iterations of the reducer, there is little benefit gained with more training
data. However, hihi instances clearly show that more training data helps
(only PA-CGA results are presented).

Therefore, for the further evaluation of the Savant algorithm of the next
section, we select the smallest training set sizes that nevertheless provide
good results (less training data yields less support vectors in the models).
Table 6.4 lists the chosen training data size per ETC size.

6.3.2 Results

In this section, we report on the evaluation of the Savant algorithm.

The Savant mapper performance

This section compares the solutions to the scheduling problem found by
the Savant mappers, to the ones found by the Min-Min heuristic, on un-
seen problem instances. The solutions are compared literally (genotype in
the GA vocabulary), and not through their quality (phenotype). For the
comparison, the reducer used only assembles the prediction results from the
task classifiers, it does not apply the local search. Although, the goal of
the Savant is the solutions’ quality, the mappers are essential to the algo-
rithm’s behavior. The performance is reported in two ways: by similarity
and probability to solution.

The similarity score is the count of correct task-to-machine classifica-
tions across 100 evaluation problem instances, for each task. The mapper’s
prediction follows the most probable machine assignment in the probability
vector. Fig. 6.8 shows the similarity for 128× 4 problems. It shows that the
accuracy for the smaller and bigger tasks is lower than average. The aver-
age accuracy across tasks is approximately 82%, which is quite high, given
that the Min-Min algorithm chooses machine assignments based on more
information (the ETC values of all unassigned tasks, and the current ma-
chine completion times) than the 4 ETC values used by each Savant mapper.
When below average, the accuracy is still greater than 60%. The assignment
errors for larger tasks is understandable because the Min-Min assignment
for larger tasks occurs later in the algorithm’s execution, and depends on
the previous task assignments, information that the Savant mapper does not

152

65
70

75
80

85
90

task

si
m

ila
rit

y
(%

)

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

savant per task
savant average

Figure 6.8: Savant mapper solution similarity for 128× 4 problems.

40
50

60
70

task

si
m

ila
rit

y
(%

)

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

savant per task
savant average

Figure 6.9: Savant mapper solution similarity for 512× 16 problems.

have. The mismatch between the Savant’s mapper and Min-Min could also
be caused by the approximation in the task’s sorting (Section 6.2.3), which
determines the mapper model to apply for a task. However, errors for the
smaller tasks is acceptable because they have little influence on the overall
solution quality.

Fig. 6.9 reports on the similarity for 512×16 problems. The general shape
of the plot is similar to that of the 128 × 4 problem size, where accuracy
for small and large tasks are below average. The accuracy of the mappers
is worse than for the smaller problems (63%). Overall, the accuracy of the
classifiers, operating on only 16 factors (the ETC values for the task), is
high. The prediction is more difficult for mappers because the assignment

153

0
20

40
60

80
10

0

task

pr
ob

ab
ili

ty
 to

 s
ol

ut
io

n
(%

)

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Figure 6.10: Savant mapper probability to solution for 128× 4 problems.

0
20

40
60

80
10

0

task

pr
ob

ab
ili

ty
 to

 s
ol

ut
io

n
(%

)

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Figure 6.11: Savant mapper probability to solution for 512× 16 problems.

is to be chosen among 16 classes.
The probability to solution is the probability from the mapper’s proba-

bility vector, to choose the correct assignment. A correct assignment means
matching the Min-Min assignment. The probability to solution is different
to the similarity mentioned above (Fig. 6.8, and Fig.6.9). The similarity
records the mapper’s decision, which is the classifier’s highest probability
estimate. In contrast, the probability to solution is not necessarily the great-
est probability. Such an indicator is very useful for the Savant evaluation,
because even in case of mis-assignment (when the greatest probability is in-
correct), the mapper’s probability for the correct assignment influences the
Savant’s reducer. The probability to solution also represents a broader ac-

154

curacy measure of the mappers. Indeed, the probability estimates of a task
for the various machine assignments vary greatly. Several assignments can
have very close probabilities, reflecting an ambiguous choice, whereas some
choices for machine assignments have very different probabilities, reflecting
a strong preference.

For smaller problem instances, Fig. 6.10 shows that the prediction of the
SVMs is highly accurate. Because of this high accuracy (greater than 50%),
similarity and probability to solution are very similar. For the 512×16 prob-
lems, Fig. 6.11 shows much lower probabilities than the similarity of Fig. 6.9,
because the probability of machine assignments is spread across more ma-
chines/classes. Also, the mappers are less accurate than for smaller problem
instances. The distribution of the probabilities across tasks is different to
Fig. 6.9, where the accuracy does not degrade for larger tasks.

The Savant capability

In this section, we investigate the Savant’s capability: how fit are the solu-
tions found by our automatically generated parallel Savant algorithm, for the
considered combinatorial problem. The capability of the Savant algorithm
can be observed from Fig. 6.12–Fig.6.17, covering the different problem sizes.
For each problem size, we present the median and best solutions, over 30
runs, in separate figures. All results are obtained on the 200 unseen test
instances.

All figures present the quality of the solutions found by the:

• Savant algorithm trained with optimal solutions, for 12× 4 problems,

• Savant algorithm trained with Min-Min solutions,

• Savant algorithm trained with the best PA-CGA solutions.

Results for the three Savant versions are presented for several iteration count
of the reducer: 10K, 20K, 10K×tasks/4, 10K×tasks/2, 10K×tasks. The
size of the problem is then reflected in the number of reducer iterations. The
results with the chosen number of iterations show convergence, and include
the major solution quality improvements.

Savant results for 12×4 problems are presented in Fig. 6.12, and Fig. 6.13.
The quality of the solutions are relative to a reference solution quality for
each ETC. For the 12 × 4 problem size, the optimal solution is available
through an exhaustive search. Therefore the reference is simply the optimal
solution, which explains why no points are below the 0% mark. The boxplot
to the far right presents the PA-CGA results. The Min-Min solutions are
not shown, because they are far from the optimal (about 40% worse) and
would further reduce the clarity of the figure, if plotted. We notice that
the PA-CGA finds near optimal solutions. The PA-CGA is configured with

155

algorithms

qu
al

ity
 (

m
ed

ia
n

vs
 b

es
t m

ed
ia

n
re

fe
re

nc
e,

 in
 %

)

2.
5

7.
5

0
5

10
15

Savant from MIN
Savant from CGA
Savant from optimal

10K 20K 30K 60K 120K CGA

(a) hihi

algorithms

qu
al

ity
 (

m
ed

ia
n

vs
 b

es
t m

ed
ia

n
re

fe
re

nc
e,

 in
 %

)

2.
5

7.
5

0
2

4
6

8
10 Savant from MIN

Savant from CGA
Savant from optimal

10K 20K 30K 60K 120K CGA

(b) hilo

Figure 6.12: Savant median solutions for 12× 4 ETC.

the Min-Min solution in the population, and also applies a problem-specific
local search.

Overall, the Savant versions obtain good solutions quickly, less than 2.5%
from the optimal in 10K iterations of the reducer. The solutions found by the
Savant trained with Min-Min are much better than the ones found by Min-
Min. The small solutions (12 tasks) allow the reducer to quickly improve
the solutions, as shown in the makespan improvement between Fig. 6.3a,
and Fig. 6.3b. The efficiency of the reducer is also due to the small ETC
sizes, which allow the mapper to be more accurate, as the features of the
SVM include 1/12 of the ETC for a 4-way classification. Results for the hilo
instances are slightly worse (require ×10 more reducer iterations), especially

156

algorithms

qu
al

ity
 (

be
st

 v
s

be
st

 r
ef

er
en

ce
, i

n
%

)

2.
5

7.
5

0
2

4
6

8

Savant from MIN
Savant from CGA
Savant from optimal

10K 20K 30K 60K 120K CGA

(a) hihi

algorithms

qu
al

ity
 (

be
st

 v
s

be
st

 r
ef

er
en

ce
, i

n
%

)

2.
5

7.
5

0
1

2
3

4
5

6
7 Savant from MIN

Savant from CGA
Savant from optimal

10K 20K 30K 60K 120K CGA

(b) hilo

Figure 6.13: Savant best solutions for 12× 4 ETC.

for the Savant trained with Min-Min observations. The mapper for these
instances seems to be less accurate on hilo instances. Min-Min assignment
decisions are more difficult to learn for the mappers, because the assignment
decisions depend more on information unavailable to the SVM, such as each
machine’s list of assigned task. However, these solutions are still consid-
erably better than those found by Min-Min. Fig. 6.13 compares the best
solutions of the Savant versions, with the best solution for each ETC. For
this problem size, the best solution is the optimal. The Savant trained with
Min-Min finds slightly worse solutions than when trained with the optimal
or PA-CGA solutions, especially for hilo instances. This shows the influence
of the mapper’s accuracy on the overall Savant capability.

157

algorithms

qu
al

ity
 (

m
ed

ia
n

vs
 b

es
t m

ed
ia

n
re

fe
re

nc
e,

 in
 %

)

2.
5

7.
5

0
5

10
15

Savant from MIN
Savant from CGA

MIN 10K 20K 320K 640K 1280K CGA

(a) hihi

algorithms

qu
al

ity
 (

m
ed

ia
n

vs
 b

es
t m

ed
ia

n
re

fe
re

nc
e,

 in
 %

)

2.
5

7.
5

0
2

4
6

8
10

Savant from MIN
Savant from CGA

MIN 10K 20K 320K 640K 1280K CGA

(b) hilo

Figure 6.14: Savant median solutions for 128× 4 ETC.

Fig. 6.14, and Fig. 6.15 present the Savant results for 128× 4 problems.
For this problem size, the reference solution for normalizing the Savant re-
sults is the median PA-CGA solution over 10 runs, chosen because it is
better than the Min-Min solution (the optimal solutions are not available
for this problem size). The PA-CGA relative solution quality is thus near
0%. The first boxplot presents the Min-Min solutions. Results for hihi and
hilo instances are similar. The difference in machine heterogeneity has less
impact on makespan for 128 tasks than with 12 tasks. The Savant ver-
sions find very good solutions quickly. Trained with Min-Min, the Savant
finds much better solutions than the Min-Min algorithm. The Savant even
finds better solutions than the PA-CGA. For example, for hilo instances,

158

algorithms

qu
al

ity
 (

be
st

 v
s

be
st

 r
ef

er
en

ce
, i

n
%

)

2.
5

7.
5

0
5

10
15

Savant from MIN
Savant from CGA

MIN 10K 20K 320K 640K 1280K CGA

(a) hihi

algorithms

qu
al

ity
 (

be
st

 v
s

be
st

 r
ef

er
en

ce
, i

n
%

)

2.
5

7.
5

0
2

4
6

8
10

Savant from MIN
Savant from CGA

MIN 10K 20K 320K 640K 1280K CGA

(b) hilo

Figure 6.15: Savant best solutions for 128× 4 ETC.

after 1,280K iterations, Savant finds better solutions than the PA-CGA in
half of the problems (i.e. 100 instances). As a comparison, the PA-CGA
performs about 6,000K fitness evaluations in the 30s configured to find the
reported results. This is consequence of the reducer’s random search, guided
by the mappers’ results, which if the mappers are accurate, can find new,
fit solutions.

Fig. 6.16, and Fig. 6.17 present the Savant results for 512×16 problems.
The reference solutions used for normalizing the Savant results are chosen
in the same way as for 128 × 4 problems. Solutions found by the Savant
trained with Min-Min are of similar quality to the Min-Min solutions. It
does however, require more iterations than on smaller problems. Another

159

algorithms

qu
al

ity
 (

m
ed

ia
n

vs
 b

es
t m

ed
ia

n
re

fe
re

nc
e,

 in
 %

)

2.
5

7.
5

0
5

10
15

20

Savant from MIN
Savant from CGA

MIN 10K 20K 1280K 2560K 5120K CGA

(a) hihi

algorithms

qu
al

ity
 (

m
ed

ia
n

vs
 b

es
t m

ed
ia

n
re

fe
re

nc
e,

 in
 %

)

2.
5

7.
5

0
5

10
15

Savant from MIN
Savant from CGA

MIN 10K 20K 1280K 2560K 5120K CGA

(b) hilo

Figure 6.16: Savant median solutions for 512× 16 ETC.

difference with the results from the previous problem sizes is that Savant
trained with Min-Min performs better than the Savant trained with PA-
CGA observations. The Savant median solutions are less or equal to 7.5%
of the PA-CGA median solutions. The Savant performance compared to
the PA-CGA is not as good as in the previous, smaller, problem sizes. The
increased problem size from 128 and 12 tasks demands more iterations from
the reducer. Moreover, the increased problem size, especially in the number
of machines, decreases the mapper’s accuracy, which in turn requires more
iterations from the reducer. The difference in the mapper’s accuracy between
Min-Min and PA-CGA is visible from Fig. 6.7a and Fig. 6.6a. The impact
of the reduced accuracy is visible in Fig. 6.6b and Fig. 6.7b. However,

160

algorithms

qu
al

ity
 (

be
st

 v
s

be
st

 r
ef

er
en

ce
, i

n
%

)

2.
5

7.
5

0
5

10
15

Savant from MIN
Savant from CGA

MIN 10K 20K 1280K 2560K 5120K CGA

(a) hihi

algorithms

qu
al

ity
 (

be
st

 v
s

be
st

 r
ef

er
en

ce
, i

n
%

)

2.
5

7.
5

0
5

10
15 Savant from MIN

Savant from CGA

MIN 10K 20K 1280K 2560K 5120K CGA

(b) hilo

Figure 6.17: Savant best solutions for 512× 16 ETC.

because the PA-CGA finds better solutions than Min-Min, Fig. 6.6, and
Fig. 6.7 should not be compared too literally. Fig. 6.7b shows that increasing
the training size from 2,000 to of 4,000 observations improves the solution
quality, whereas increasing the training set size from 2,000 to 4,000 Min-Min
observations does not. More observations could be necessary to train the
Savant for the PA-CGA.

6.4 Summary

In this chapter, we presented a method to automatically generate a parallel
search algorithm, from an existing sequential program. The approach was

161

applied to solve a combinatorial optimization problem from the scheduling
domain. The Savant approach was able to automatically generate parallel
solvers for this problem, in a Map-Reduce design. The generated Savant
solver can exploit a massively parallel machine even for very small instances
of this problem. Moreover, the resulting Savant algorithm is suited to the
parallelism provided by AWN, by limiting the inter-thread communication
and synchronization. The Savant solvers found solutions of comparable qual-
ity to the original sequential solvers, for different problem types and sizes.

However, there are several opportunities for improvements. The current
approach requires the training of one model per small part of a solution.
Although this is required only once (at design time), it remains a very
time-consuming operation, that cannot scale to large problems. We plan
to investigate how to project a Savant algorithm trained on a given problem
size to another, larger problem.

Another improvement is to completely remove the fitness evaluations,
currently part of the Savant reducer. In optimization problems, the compu-
tation cost of the fitness function is sometimes high. The fitness evaluations
are meant to capture a key characteristic of the optimization problem. We
plan to replace the fitness evaluations by a second pattern recognition pro-
cess. The new pattern recognition could predict the full solution from the
probability landscape of the different parts of the solution.

162

Chapter 7

Conclusion and Perspectives

In this thesis, we explored the parallel designs of solvers for an optimization
problem. The parallel designs aimed to extract performance from the AWN,
a possible evolution in computing that can reduce the energy-related costs
of a Cloud data center.

The TCO perspective lead to identify critical power, the purchase price
of equipment, and the poor energy-proportionality as the key factors to the
costs in a cloud data center. The AWN proposal attempts to address those
factors. The market size of mobile computing has commoditized the com-
puting components in an AWN, lowering costs and attracting innovation.
However, we noticed that existing applications do not perform well on AWN,
but that new applications, more parallel and distributed by design (such as
Map-Reduce), perform well.

Simulations of software pipelines (code-parallelism) showed that the “wim-
py” nodes, although more energy-efficient, cannot achieve the performance
of “brawny” nodes, even when contention for shared resources is accounted
for. Experiments with data-parallel versions of known algorithms showed
clear benefits (such as super-linear speedup), but also exposed their limits
in scalability (with the size of input data, and the computing cores).

We proceeded to experiment two parallel designs that deliberately change
the original algorithm (and not only the algorithm’s implementation), the
approach of the thesis. The experiments illustrated that to extract the
needed parallelism required by the AWN, the algorithm to parallelize can
be modified without loss of capability. However, these experiments pointed
to two weaknesses. First, only one of the parallel design extracted paral-
lelism from small problems. More significantly, the designs were ad hoc, and
manually designed by a time-consuming trial-and-error process. Extending
the search space of parallel designs to algorithmic changes is only practical
if we can be guided.

Guidance in the search space was experimented with SA, a statistical
procedure initially targeted for model evaluation. SA was instead applied

163

to a program (GA), to gain insight on how each part of the algorithm con-
tributes to the quality of the solutions found. Experiments showed that
SA provided correct insight: the straightforward modifications suggested by
the analysis lead to a new algorithm that runs ×1, 000 faster while find-
ing solutions of comparable quality to the original algorithm. However, the
results suggested several improvements. First, the property improved was
execution speed, and not parallelism. Second, the method was still largely
manual, the SA results required interpretation, and the modifications were
not automatic. The key finding from this experiment was that statistical
methods are not only useful, but also practical, because we are given an
original algorithm to improve upon, which we can execute on demand to
produce the necessary observations.

The last experiments aimed to automate the statistical analysis → algo-
rithm modification cycle, in order to automatically generate a parallel search
program, from an existing sequential version. The automation method is
called Savant, in reference to the Savant Syndrome. The Savant approach
was able to automatically generate parallel solvers for the use case problem,
in a Map-Reduce form. The generated Savant solver can run on a massively
parallel machine, even for very small instances of this problem. Moreover,
the resulting Savant algorithm is suited to the AWN, by limiting inter-thread
communication and synchronization. The Savant solvers found solutions of
comparable quality to the original sequential solvers, for different problem
types and sizes.

Results for the Savant method are not completely satisfactory. The pro-
gram generation is not fully automated, and the capability of the generated
parallel algorithms needs to be improved. Moreover, the suitability of the
Savant to other problems should be tested. Several paths to improvement
can be explored. We have relied on decomposition for the problem in our
use case. However, any decomposition calls for recombination. The field of
collective intelligence, which includes Cellular Automata, illustrates how the
combination of simple parts is “greater” than it’s sum. The Savant’s com-
bination step could be improved, such as to avoid the repetitive fitness eval-
uations. Further automating the Savant method could be attempted with
evolutionary computation. We have already applied evolutionary search
for one aspect of the Savant’s design. Other manual and problem specific
design decisions could be systematically taken by an evolutionary search.
Evolutionary computation is well suited to design-time activities, because
the search is too time-consuming for runtime. The joint application of ma-
chine learning and evolutionary search has previously been identified as an
appropriate technique for AI problems [262].

164

Appendices

165

Appendix A

Acronyms

2PH Two-Phase Heuristic . 127

ALU Arithmetic Logic Unit . 137

AWN Array of Wimpy Nodes . 10

BSP Bulk Synchronous Parallel . 139

CA Cellular Automata . 138

CGA Cellular Genetic Algorithm. .85

CMP Chip Multi-Processing . 25

CLONEALG Clonal Selection Algorithm . 121

DoE Design of Experiments . 121

DVFS Dynamic Voltage and Frequency Scaling . 16

DMA Direct Memory Access . 16

EA Evolutionary Algorithm . 87

EDP Energy Delay Product . 73

ETC Expected Time to Compute . 57

FAWN Fast Array of Wimpy Nodes. .27

FP Factors Prioritization . 74

GA Genetic Algorithm . 87

GC Garbage Collector. .24

GP Genetic Programming. .137

GPGPU General Purpose GPU . 33

H2LL Highest To Lower Loaded . 90

HPC High Performance Computing . 16

HS Harmony Search . 121

166

IGA Intelligent Genetic Algorithm . 121

LPDDR Low Power DDR . 16

LSF Longest Slack First . 74

LTT Longest Task Time. .63

MTTP Minimum Tardiness Task Problem . 107

MMDP Massively Multi-modal Deceptive Problem 106

OAT One factor At a Time . 76

OLTP On-Line Transaction Processing . 25

PA-CGA Parallel Asynchronous CGA . 88

PDF Probability Density Function. .122

PDU Power Distribution Unit. .18

PRAM Parallel Random Access Machine . 139

PUE Power Usage Effectiveness .18

REVAC Relevance Estimation and Value Calibration of Evolutionary
Algorithm . 122

RTA Real-Time Advisor . 51

SA Sensitivity Analysis . 12

SIMD Single Instruction Multiple Data . 31

SBSA Server Base System Architecture . 31

SoC System on Chip . 25

SSD Solid State Disk. .17

SMP Symmetric Multi-Processor. .51

SMT Simultaneous Multi-Threading . 53

SPO Sequential Parameter Optimization . 121

SSF Shortest Slack First . 74

SVM Support Vector Machines . 141

TDP Thermal Design Power . 26

UPS Uninterruptable Power Supply . 18

VM Virtual Machine . 21

TCO Total Cost of Operation . 10

167

Appendix B

Thesis Output

The work presented in this thesis lead to the following output:

• 5 journal articles, and one in press (3 as first author) [229, 167, 263,
264, 265],

• 11 international conference articles [198, 177, 141, 148, 159, 112, 228,
266, 214, 230, 213],

• one book chapter [267],

• one poster presentation [96],

• two invited presentations 1,

• two panel participations 2 [268].

1http://www.ig.fpms.ac.be/content/fgps175, http://www.metz.supelec.fr/

metz/personnel/vialle/seminars/RGE/ResumesRGE-090611Metz.pdf
2http://www.irit.fr/cost804/index.php/pubdocsmenuitem/doc_download/

103-costic0804-istanbul-5-7nov2012pdf

168

Bibliography

[1] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Manage-
ment of an Academic HPC Cluster: The UL Experience,” in Proc.
of the 2014 Intl. Conf. on High Performance Computing & Simula-
tion (HPCS 2014). Bologna, Italy: IEEE, July 2014.

[2] T. Schneider, I. von Maurich, and T. Guneysu, “Efficient implemen-
tation of cryptographic primitives on the ga144 multi-core architec-
ture,” in Application-Specific Systems, Architectures and Processors
(ASAP), 2013 IEEE 24th International Conference on. IEEE, 2013,
pp. 67–74.

[3] O. Kramer, “Evolutionary self-adaptation: a survey of operators and
strategy parameters,” Evolutionary Intelligence, vol. 3, pp. 51–65,
2010.

[4] W. L. Bircher and L. K. John, “Complete system power estimation: A
trickle-down approach based on performance events,” in Performance
Analysis of Systems & Software, 2007. ISPASS 2007. IEEE Interna-
tional Symposium on. IEEE, 2007, pp. 158–168.

[5] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Rein-
hardt, “Understanding and designing new server architectures for
emerging warehouse-computing environments,” in Computer Archi-
tecture, 2008. ISCA’08. 35th International Symposium on. IEEE,
2008, pp. 315–326.

[6] S. Murugesan, “Harnessing green it: Principles and practices,” IT
professional, vol. 10, no. 1, pp. 24–33, 2008.

[7] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan, “Fawn: A fast array of wimpy nodes,” in Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009, pp. 1–14.

[8] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a com-
puter: An introduction to the design of warehouse-scale machines,”

169

Synthesis Lectures on Computer Architecture, vol. 8, no. 3, pp. 1–154,
2013.

[9] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Mobile proces-
sors for energy-efficient web search,” ACM Transactions on Computer
Systems (TOCS), vol. 29, no. 3, p. 9, 2011.

[10] T. H. Nelson and T. H. Nelson, Computer lib: Dream machines. Tem-
pus Books of Microsoft Press Redmond, 1987.

[11] D. C. Engelbart, “Reflections on our future,” Bulletin of the American
Society for Information Science and Technology, vol. 39, no. 6, pp. 44–
46, 2013.

[12] D. Shasha and C. Lazere, Out of Their Minds: The Lives and Dis-
coveries of 15 Great Computer Scientists, 1st ed. Copernicus Books,
1998.

[13] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
berkeley,” Technical Report UCB/EECS-2006-183, EECS Depart-
ment, University of California, Berkeley, Tech. Rep., 2006.

[14] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya et al., “A taxon-
omy and survey of energy-efficient data centers and cloud computing
systems,” Advances in Computers, vol. 82, no. 2, pp. 47–111, 2011.

[15] A.-C. Orgerie, M. D. De Assuncao, and L. Lefevre, “A survey on
techniques for improving the energy efficiency of large scale distributed
systems,” ACM Computing Surveys, vol. 46, no. 4, pp. 1–35, 2014.

[16] B. Diniz, D. Guedes, W. Meira Jr, and R. Bianchini, “Limiting the
power consumption of main memory,” in ACM SIGARCH Computer
Architecture News, vol. 35, no. 2. ACM, 2007, pp. 290–301.

[17] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the
energy efficiency of a database server,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data. ACM,
2010, pp. 231–242.

[18] L. A. Barroso and U. Holzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[19] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” in ACM Sigplan Notices, vol. 44, no. 3. ACM,
2009, pp. 205–216.

170

[20] Gartner, “Magic quadrant for cloud infrastructure as a service,”
https://www.gartner.com/technology/reprints.do?id=1-1IMDMZ5\
&ct=130819&st=sb, 2013.

[21] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periy-
athambi, and M. Horowitz, “Towards energy-proportional datacenter
memory with mobile dram,” ACM SIGARCH Computer Architecture
News, vol. 40, no. 3, pp. 37–48, 2012.

[22] D. H. Yoon, J. Chang, N. Muralimanohar, and P. Ranganathan,
“Boom: enabling mobile memory based low-power server dimms,” in
ACM SIGARCH Computer Architecture News, vol. 40, no. 3. IEEE
Computer Society, 2012, pp. 25–36.

[23] N. Bellas, I. N. Hajj, C. D. Polychronopoulos, and G. Stamoulis,
“Architectural and compiler techniques for energy reduction in high-
performance microprocessors,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 8, no. 3, pp. 317–326, 2000.

[24] L. Minas and B. Ellison, Energy efficiency for information technology:
How to reduce power consumption in servers and data centers. Intel
Press USA, 2009.

[25] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ACM SIGARCH Computer Architec-
ture News, vol. 35, no. 2. ACM, 2007, pp. 13–23.

[26] D. Kliazovich, P. Bouvry, and S. U. Khan, “Greencloud: a packet-
level simulator of energy-aware cloud computing data centers,” The
Journal of Supercomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[27] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
proportional datacenter networks,” in ACM SIGARCH Computer Ar-
chitecture News, vol. 38, no. 3. ACM, 2010, pp. 338–347.

[28] J. Baliga, R. Ayre, W. V. Sorin, K. Hinton, and R. S. Tucker, “En-
ergy consumption in access networks,” in Optical Fiber Communica-
tion Conference. Optical Society of America, 2008, p. OThT6.

[29] Greentouch, “Increase network energy efficiency by a factor of 1000
compared to 2010 levels,” http://www.greentouch.org, 2014.

[30] P. Vetter, T. Ayhan, K. Kanonakis, B. Lannoo, K. L. Lee, L. Lefèvre,
C. Monney, F. Saliou, and X. Yin, “Towards Energy Efficient Wireline
Networks, An Update From GreenTouch,” in OptoElectronics and
Communications Conference (OECC) 2013, Kyoto, Japan, 2013.
[Online]. Available: http://hal.inria.fr/hal-00925191

171

[31] J. Hamilton, “Internet-scale service efficiency,” in Large-Scale Dis-
tributed Systems and Middleware (LADIS) Workshop (September
2008), 2008.

[32] A. Pratt, P. Kumar, K. Bross, and T. Aldridge, “Powering compute
platforms in high efficiency data centers.”

[33] J. Hamilton, “Cooperative expendable micro-slice servers (cems): low
cost, low power servers for internet-scale services,” in Conference on
Innovative Data Systems Research (CIDR09)(January 2009), 2009.

[34] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 1, pp. 68–73, 2008.

[35] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in Pro-
ceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation-Volume 2. USENIX Association, 2005, pp.
273–286.

[36] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu,
“Delivering energy proportionality with non energy-proportional
systems-optimizing the ensemble.” HotPower, vol. 8, pp. 2–2, 2008.

[37] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,” in
Computer Architecture (ISCA), 2011 38th Annual International Sym-
posium on. IEEE, 2011, pp. 319–330.

[38] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[39] S. Mittal, “A survey of architectural techniques for dram power man-
agement,” International Journal of High Performance Systems Archi-
tecture, vol. 4, no. 2, pp. 110–119, 2012.

[40] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page
allocation,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 105–116,
2000.

[41] X. Fan, C. Ellis, and A. Lebeck, “Memory controller policies for dram
power management,” in Proceedings of the 2001 international sympo-
sium on Low power electronics and design. ACM, 2001, pp. 129–134.

[42] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Kumar, “Per-
formance directed energy management for main memory and disks,”

172

ACM SIGARCH Computer Architecture News, vol. 32, no. 5, pp. 271–
283, 2004.

[43] V. De La Luz, M. Kandemir, and I. Kolcu, “Automatic data migration
for reducing energy consumption in multi-bank memory systems,” in
Design Automation Conference, 2002. Proceedings. 39th. IEEE, 2002,
pp. 213–218.

[44] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller, “Improving energy
efficiency by making dram less randomly accessed,” in Proceedings
of the 2005 international symposium on Low power electronics and
design. ACM, 2005, pp. 393–398.

[45] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar, “Dynamic tracking of page miss ratio curve for memory
management,” in ACM SIGOPS Operating Systems Review, vol. 38,
no. 5. ACM, 2004, pp. 177–188.

[46] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini, “Dma-aware memory
energy management.” in HPCA, vol. 6, 2006, pp. 133–144.

[47] M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced mem-
ory controller design for reducing energy in conventional and 3d die-
stacked drams,” in Proceedings of the 40th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. IEEE Computer Society,
2007, pp. 134–145.

[48] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” in Computer Architecture (ISCA), 2012 39th
Annual International Symposium on. IEEE, 2012, pp. 1–12.

[49] C. Isen and L. John, “Eskimo-energy savings using semantic knowl-
edge of inconsequential memory occupancy for dram subsystem,” in
Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM Inter-
national Symposium on. IEEE, 2009, pp. 337–346.

[50] J. Trajkovic, A. V. Veidenbaum, and A. Kejariwal, “Improving sdram
access energy efficiency for low-power embedded systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3,
p. 24, 2008.

[51] S. Mazumdar, D. M. Tullsen, and J. Song, “Inter-socket victim
cacheing for platform power reduction,” in Computer Design (ICCD),
2010 IEEE International Conference on. IEEE, 2010, pp. 509–514.

[52] S. Phadke and S. Narayanasamy, “Mlp aware heterogeneous memory
system,” in Design, Automation & Test in Europe Conference & Ex-
hibition (DATE), 2011. IEEE, 2011, pp. 1–6.

173

[53] R. Ayoub, K. R. Indukuri, and T. S. Rosing, “Energy efficient proac-
tive thermal management in memory subsystem,” in Low-Power Elec-
tronics and Design (ISLPED), 2010 ACM/IEEE International Sym-
posium on. IEEE, 2010, pp. 195–200.

[54] C.-H. Lin, C.-L. Yang, and K.-J. King, “Ppt: joint perfor-
mance/power/thermal management of dram memory for multi-core
systems,” in Proceedings of the 14th ACM/IEEE international sym-
posium on Low power electronics and design. ACM, 2009, pp. 93–98.

[55] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data
center networks.” in NSDI, vol. 10, 2010, pp. 249–264.

[56] D. Kliazovich, P. Bouvry, and S. U. Khan, “Dens: data center energy-
efficient network-aware scheduling,” Cluster computing, vol. 16, no. 1,
pp. 65–75, 2013.

[57] K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wijay-
sekara, R. Irfan, S. Shrestha, D. Dwivedy, M. Ali et al., “A taxonomy
and survey on green data center networks,” Future Generation Com-
puter Systems, 2013.

[58] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4. ACM, 2009, pp. 51–62.

[59] C. Gunaratne, K. Christensen, B. Nordman, and S. Suen, “Reducing
the energy consumption of ethernet with adaptive link rate (alr),”
Computers, IEEE Transactions on, vol. 57, no. 4, pp. 448–461, 2008.

[60] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wether-
all, “Reducing network energy consumption via sleeping and rate-
adaptation.” in NSDI, vol. 8, 2008, pp. 323–336.

[61] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded soft-
ware: a first step towards software power minimization,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 2, no. 4,
pp. 437–445, 1994.

[62] J. Zambreno, M. T. Kandemir, and A. Choudhary, “Enhancing com-
piler techniques for memory energy optimizations,” in Embedded Soft-
ware. Springer-Verlag, Heidelberg, 2002, pp. 364–381.

[63] C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai, “Compiler optimization
on vliw instruction scheduling for low power,” ACM Transactions on

174

Design Automation of Electronic Systems (TODAES), vol. 8, no. 2,
pp. 252–268, 2003.

[64] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske,
and M. Wolczko, “Heap compression for memory-constrained java en-
vironments,” ACM SIGPLAN Notices, vol. 38, no. 11, pp. 282–301,
2003.

[65] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Wolf,
“Energy savings through compression in embedded java environ-
ments,” in Proceedings of the tenth international symposium on Hard-
ware/software codesign. ACM, 2002, pp. 163–168.

[66] P. Griffin, W. Srisa-An, and J. M. Chang, “An energy efficient garbage
collector for java embedded devices,” in ACM SIGPLAN Notices,
vol. 40, no. 7. ACM, 2005, pp. 230–238.

[67] V. De La Luz, M. Kandemir, G. Chen, and I. Kolcu, “Energy-
conscious memory allocation and deallocation for pointer-intensive ap-
plications,” in Embedded Software. Springer-Verlag, Heidelberg, 2003,
pp. 156–172.

[68] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and
M. Wolczko, “Tuning garbage collection in an embedded java environ-
ment,” in High-Performance Computer Architecture, 2002. Proceed-
ings. Eighth International Symposium on. IEEE, 2002, pp. 92–103.

[69] B. Cmelik and D. Keppel, Shade: A fast instruction-set simulator for
execution profiling. Springer-Verlag, Heidelberg, 1995.

[70] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye,
Energy-driven integrated hardware-software optimizations using Sim-
plePower. ACM, 2000, vol. 28, no. 2.

[71] Y. Chen, L. Keys, and R. H. Katz, “Towards energy efficient mapre-
duce,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-109, 2009.

[72] N. Maheshwari, R. Nanduri, and V. Varma, “Dynamic energy efficient
data placement and cluster reconfiguration algorithm for mapreduce
framework,” Future Generation Computer Systems, vol. 28, no. 1, pp.
119–127, 2012.

[73] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese, Piranha:
a scalable architecture based on single-chip multiprocessing. ACM,
2000, vol. 28, no. 2.

175

[74] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang,
“The case for a single-chip multiprocessor,” ACM Sigplan Notices,
vol. 31, no. 9, pp. 2–11, 1996.

[75] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis, “Joule-
sort: a balanced energy-efficiency benchmark,” in Proceedings of the
2007 ACM SIGMOD international conference on Management of data.
ACM, 2007, pp. 365–376.

[76] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet ap-
plications,” in ACM SIGCOMM Computer Communication Review,
vol. 31, no. 4. ACM, 2001, pp. 149–160.

[77] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin, and
I. Moraru, “Energy-efficient cluster computing with fawn: Workloads
and implications,” in Proceedings of the 1st International Conference
on Energy-Efficient Computing and Networking. ACM, 2010, pp.
195–204.

[78] A. S. Szalay, G. C. Bell, H. H. Huang, A. Terzis, and A. White, “Low-
power amdahl-balanced blades for data intensive computing,” ACM
SIGOPS Operating Systems Review, vol. 44, no. 1, pp. 71–75, 2010.

[79] D. A. Patterson, “Latency lags bandwith,” Communications of the
ACM, vol. 47, no. 10, pp. 71–75, 2004.

[80] U. Hölzle, “Brawny cores still beat wimpy cores, most of the time,”
IEEE Micro, vol. 30, no. 4, 2010.

[81] W. Lang, J. M. Patel, and S. Shankar, “Wimpy node clusters: What
about non-wimpy workloads?” in Proceedings of the Sixth Interna-
tional Workshop on Data Management on New Hardware. ACM,
2010, pp. 47–55.

[82] A. Cockcroft, “Millicomputing: The future in your pocket and your
datacenter,” in USENIX Conference, invited talk, 2008.

[83] Z. Ou, B. Pang, Y. Deng, J. K. Nurminen, A. Yla-Jaaski, and P. Hui,
“Energy-and cost-efficiency analysis of arm-based clusters,” in Cluster,
Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM Inter-
national Symposium on. IEEE, 2012, pp. 115–123.

[84] R. V. Aroca and L. M. G. Gonçalves, “Towards green data centers:
A comparison of x86 and arm architectures power efficiency,” Journal
of Parallel and Distributed Computing, vol. 72, no. 12, pp. 1770–1780,
2012.

176

[85] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez,
“The low power architecture approach towards exascale computing,”
Journal of Computational Science, vol. 4, no. 6, pp. 439–443, 2013.

[86] K. Fürlinger, C. Klausecker, and D. Kranzlmüller, “Towards energy
efficient parallel computing on consumer electronic devices,” in In-
formation and Communication on Technology for the Fight against
Global Warming. Springer-Verlag, Heidelberg, 2011, pp. 1–9.

[87] M. Jarus, S. Varrette, A. Oleksiak, and P. Bouvry, “Performance eval-
uation and energy efficiency of high-density hpc platforms based on
intel, amd and arm processors,” in Energy Efficiency in Large Scale
Distributed Systems. Springer-Verlag, Heidelberg, 2013, pp. 182–200.

[88] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez,
“Tibidabo: Making the case for an arm-based hpc system,” Future
Generation Computer Systems, 2013.

[89] R. Courtland, “The high stakes of low power,” Spectrum, IEEE,
vol. 49, no. 5, pp. 11–12, 2012.

[90] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, 2008.

[91] C. Nvidia, “Compute unified device architecture programming guide,”
2007.

[92] K. O. W. Group et al., “The opencl specification,” A. Munshi, Ed,
2008.

[93] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openaccfirst
experiences with real-world applications,” in Euro-Par 2012 Parallel
Processing. Springer-Verlag, Heidelberg, 2012, pp. 859–870.

[94] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: designing soc accelerators for mem-
cached,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture. ACM, 2013, pp. 36–47.

[95] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Perfor-
mance Programming. Newnes, 2013.

[96] V. Delplace, P. Manneback, F. Pinel, S. Varette, and P. Bouvry, “Com-
paring the performance and power usage of gpu and arm clusters for
map-reduce,” in Cloud and Green Computing (CGC), 2013 Third In-
ternational Conference on. IEEE, 2013, pp. 199–200.

177

[97] D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Hadoop Project Website, vol. 11, p. 21, 2007.

[98] P. Mundkur, V. Tuulos, and J. Flatow, “Disco: a computing plat-
form for large-scale data analytics,” in Proceedings of the 10th ACM
SIGPLAN workshop on Erlang. ACM, 2011, pp. 84–89.

[99] P. Mundkur, “Disco: Beyond mapreduce,” 2013. [Online].
Available: \url{www.erlang-factory.com/upload/presentations/778/
ef2013-disco.pdf}

[100] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a
mapreduce framework on graphics processors,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques. ACM, 2008, pp. 260–269.

[101] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scal-
able mapreduce on a large-scale shared-memory system,” in Workload
Characterization, 2009. IISWC 2009. IEEE International Symposium
on. IEEE, 2009, pp. 198–207.

[102] J. Dongarra and M. A. Heroux, “Toward a new metric for ranking
high performance computing systems,” Sandia Report, SAND2013-
4744, vol. 312, 2013.

[103] F. Ronquist, M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling,
S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck,
“Mrbayes 3.2: efficient bayesian phylogenetic inference and model
choice across a large model space,” Systematic biology, vol. 61, no. 3,
pp. 539–542, 2012.

[104] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench
benchmark suite: Characterization of the mapreduce-based data anal-
ysis,” in Data Engineering Workshops (ICDEW), 2010 IEEE 26th In-
ternational Conference on. IEEE, 2010, pp. 41–51.

[105] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayana-
murthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava, “Build-
ing a high-level dataflow system on top of map-reduce: the pig ex-
perience,” Proceedings of the VLDB Endowment, vol. 2, no. 2, pp.
1414–1425, 2009.

[106] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A self-tuning system for big data analytics.” in
CIDR, vol. 11, 2011, pp. 261–272.

178

[107] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
İ. Birol, “Abyss: a parallel assembler for short read sequence data,”
Genome research, vol. 19, no. 6, pp. 1117–1123, 2009.

[108] W. R. Pearson, “Flexible sequence similarity searching with the
fasta3 program package,” in Bioinformatics methods and protocols.
Springer-Verlag, Heidelberg, 1999, pp. 185–219.

[109] W. H. Wolf, “Hardware-software co-design of embedded systems [and
prolog],” Proceedings of the IEEE, vol. 82, no. 7, pp. 967–989, 1994.

[110] J. Carlstrom and T. Bodén, “Synchronous dataflow architecture for
network processors,” Micro, IEEE, vol. 24, no. 5, pp. 10–18, 2004.

[111] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan, “Software pipelin-
ing,” ACM Computing Surveys (CSUR), vol. 27, no. 3, pp. 367–432,
1995.

[112] F. Pinel, J. E. Pecero, P. Bouvry, and S. U. Khan, “A review on task
performance prediction in multi-core based systems,” in Computer and
Information Technology (CIT), 2011 IEEE 11th International Confer-
ence on. IEEE, 2011, pp. 615–620.

[113] N. H. Walfield and M. Brinkmann, “A critique of the gnu
hurd multi-server operating system,” SIGOPS Oper. Syst. Rev.,
vol. 41, pp. 30–39, July 2007. [Online]. Available: \url{http:
//doi.acm.org/10.1145/1278901.1278907}

[114] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry,
J. S. Harper, and D. V. Wilcox, “Pace: A toolset for
the performance prediction of parallel and distributed systems,”
International Journal of High Performance Computing Applications,
vol. 14, no. 3, pp. 228–251, Fall 2000. [Online]. Available:
\url{http://hpc.sagepub.com/content/14/3/228.abstract}

[115] D. Snowdon, S. Ruocco, and G. Heiser, “Power management and dy-
namic voltage scaling: Myths and facts,” 2005.

[116] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay, and
P. Levis, “Integrating concurrency control and energy management
in device drivers,” in Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, ser. SOSP ’07. New
York, NY, USA: ACM, 2007, pp. 251–264. [Online]. Available:
\url{http://doi.acm.org/10.1145/1294261.1294286}

[117] P.-H. Kamp, “You’re doing it wrong,” Communications of the ACM,
vol. 53, no. 7, pp. 55 – 59, 2010. [Online]. Available: \url{http://cacm.
acm.org/magazines/2010/7/95061-youre-doing-it-wrong/fulltext}

179

[118] J. Bonwick, “The slab allocator: an object-caching kernel
memory allocator,” in Proceedings of the USENIX Summer
1994 Technical Conference on USENIX Summer 1994 Technical
Conference - Volume 1, ser. USTC’94. Berkeley, CA, USA:
USENIX Association, 1994, pp. 6–6. [Online]. Available: \url{http:
//portal.acm.org/citation.cfm?id=1267257.1267263}

[119] T. Braun, H. Siegel, and A. Maciejewski, “Heterogeneous computing:
Goals, methods, and open problems,” in High Performance Comput-
ing HiPC 2001, ser. Lecture Notes in Computer Science, B. Monien,
V. Prasanna, and S. Vajapeyam, Eds. Springer-Verlag, Heidelberg,
2001, vol. 2228, pp. 307–318, 10.1007/3-540-45307-5 27.

[120] S. Shivle, P. Sugavanam, H. J. Siegel, A. A. Maciejewski, T. Banka,
K. Chindam, S. Dussinger, A. Kutruff, P. Penumarthy, P. Pichumani,
P. Satyasekaran, D. Sendek, J. Smith, J. Sousa, J. Sridharan, and
J. Velazco, “Mapping subtasks with multiple versions on an ad hoc
grid,” Parallel Comput., vol. 31, pp. 671–690, July 2005.

[121] M. Dobber, R. D. van der Mei, and G. Koole, “Effective prediction
of job processing times in a large-scale grid environment,” in HPDC.
IEEE, 2006, pp. 359–360.

[122] R. Wolski, “Experiences with predicting resource performance on-line
in computational grid settings,” SIGMETRICS Performance Evalua-
tion Review, vol. 30, no. 4, pp. 41–49, 2003.

[123] P. A. Dinda and D. R. O’Hallaron, “Host load prediction using linear
models,” Cluster Computing, vol. 3, no. 4, pp. 265–280, 2000.

[124] P. A. Dinda, “Online prediction of the running time of tasks,” Cluster
Computing, vol. 5, pp. 225–236, 2002, 10.1023/A:1015634802585. [On-
line]. Available: \url{http://dx.doi.org/10.1023/A:1015634802585}

[125] L. Glimcher and G. Agrawal, “A performance prediction framework
for grid-based data mining applications,” in IPDPS. IEEE, 2007, pp.
1–10.

[126] R. Hoffmann and T. Rauber, “Profiling of task-based applications on
shared memory machines: Scalability and bottlenecks,” in Euro-Par
2007 Parallel Processing, ser. Lecture Notes in Computer Science, A.-
M. Kermarrec, L. Bougé, and T. Priol, Eds. Springer-Verlag, Heidel-
berg, 2007, vol. 4641, pp. 118–128, 10.1007/978-3-540-74466-5 14.

[127] F. Nadeem, M. Yousaf, R. Prodan, and T. Fahringer, “Soft
benchmarks-based application performance prediction using a mini-
mum training set,” in e-Science and Grid Computing, 2006. e-Science
’06. Second IEEE International Conference on, dec. 2006, p. 71.

180

[128] S. Seneviratne and D. C. Levy, “Task profiling model for
load profile prediction,” Future Generation Computer Sys-
tems, vol. 27, no. 3, pp. 245 – 255, 2011. [On-
line]. Available: \url{http://www.sciencedirect.com/science/article/
B6V06-511TN6Y-3/2/47447581cb2d7ac8595db2a4d5792f20}

[129] R. M. Badia, F. Escale, E. Gabriel, J. Gimenez, R. Keller,
J. Labarta, and M. S. Muller, “Performance prediction in a
grid environment,” in Grid Computing, ser. Lecture Notes in
Computer Science, F. Fernandez Rivera, M. Bubak, A. Gomez Tato,
and R. Doallo, Eds. Springer-Verlag, Heidelberg, 2004, vol.
2970, pp. 257–264, 10.1007/978-3-540-24689-3 32. [Online]. Available:
\url{http://dx.doi.org/10.1007/978-3-540-24689-3\ 32}

[130] M. Iverson, F. Ozguner, and L. Potter, “Statistical prediction of
task execution times through analytic benchmarking for scheduling
in a heterogeneous environment,” Computers, IEEE Transactions on,
vol. 48, no. 12, pp. 1374 –1379, dec 1999.

[131] C. von Praun, R. Bordawekar, and C. Cascaval, “Modeling optimistic
concurrency using quantitative dependence analysis,” in Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, ser. PPoPP ’08. New York, NY, USA: ACM,
2008, pp. 185–196.

[132] T. Abdelzaher, “An automated profiling subsystem for qos-aware ser-
vices,” in In IEEE Real-Time Technology and Applications Sympo-
sium, 2000, pp. 208–217.

[133] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simul-
taneous multithreading processor,” in ASPLOS, 2000, pp. 234–244.

[134] A. Snavely, D. M. Tullsen, and G. M. Voelker, “Symbiotic jobschedul-
ing with priorities for a simultaneous multithreading processor,” in
SIGMETRICS. ACM, 2002, pp. 66–76.

[135] A. El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas, “Compat-
ible phase co-scheduling on a cmp of multi-threaded processors,” in
IPDPS. IEEE, 2006.

[136] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu
scheduling for mobile multimedia systems,” in SOSP, M. L. Scott and
L. L. Peterson, Eds. ACM, 2003, pp. 149–163.

[137] H. Wu, B. Ravindran, E. D. Jensen, and P. Li, “Energy-
efficient, utility accrual scheduling under resource constraints
for mobile embedded systems,” ACM Trans. Embed. Comput.

181

Syst., vol. 5, pp. 513–542, August 2006. [Online]. Available:
\url{http://doi.acm.org/10.1145/1165780.1165781}

[138] T. Wolf, “Challenges and applications for network-processor-based
programmable routers,” in Sarnoff Symposium, 2006 IEEE, march
2006, pp. 1 –4.

[139] X. Huang and T. Wolf, “Evaluating dynamic task mapping in net-
work processor runtime systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 19, pp. 1086–1098, 2008.

[140] Q. Wu and T. Wolf, “On runtime management in multi-core packet
processing systems,” in Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, ser.
ANCS ’08. New York, NY, USA: ACM, 2008, pp. 69–78.

[141] F. Pinel, J. E. Pecero, P. Bouvry, and S. U. Khan, “Memory-aware
green scheduling on multi-core processors,” in Parallel Processing
Workshops (ICPPW), 2010 39th International Conference on. IEEE,
2010, pp. 485–488.

[142] A. Merkel, J. Stoess, and F. Bellosa, “Resource-conscious scheduling
for energy efficiency on multicore processors,” in Proceedings of the 5th
European conference on Computer systems. ACM, 2010, pp. 153–166.

[143] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high
performance computers,” 1995.

[144] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on nonidentical processors,” Journal of the ACM,
vol. 24, no. 2, pp. 280–289, 1977.

[145] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran,
A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen
et al., “A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing sys-
tems,” Journal of Parallel and Distributed computing, vol. 61, no. 6,
pp. 810–837, 2001.

[146] A. Ghafoor and J. Yang, “Distributed heterogeneous supercomputing
management system,” ECE Technical Reports, p. 270, 1992.

[147] M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous
distributed computing systems,” Concurrency, IEEE, vol. 6, no. 3, pp.
42–50, 1998.

[148] F. Pinel and P. Bouvry, “A model for energy-efficient task mapping
on milliclusters,” Proceedings of the Second International Conference

182

on Parallel, Distributed, Grid and Cloud Computing for Engineering,
2011.

[149] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with pace,” SIGMETRICS Perform. Eval. Rev., vol. 29,
pp. 50–61, June 2001.

[150] V. Venkatachalam and M. Franz, “Power reduction techniques for mi-
croprocessor systems,” ACM Computing Survey, vol. 37, no. 3, pp.
195–237, 2005.

[151] A. Ghafoor and J. Yang, “A distributed heterogeneous supercomput-
ing management system,” IEEE Computer, vol. 26, no. 6, pp. 78–86,
1993.

[152] M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous
computing systems,” in Heterogeneous Computing Workshop. IEEE
Computer Society, 1997, pp. 135–146.

[153] S. U. Khan and I. Ahmad, “A cooperative game theoretical technique
for joint optimization of energy consumption and response time in
computational grids,” Parallel and Distributed Systems, IEEE Trans-
actions on, vol. 20, no. 3, pp. 346–360, 2009.

[154] S. U. Khan and C. Ardil, “A weighted sum technique for the joint
optimization of performance and power consumption in data centers,”
International Journal of Electrical, Computer, and Systems Engineer-
ing, vol. 3, pp. 35–40, 2009.

[155] W. A. Wulf and S. A. McKee, “Hitting the memory wall:
implications of the obvious,” SIGARCH Comput. Archit. News,
vol. 23, pp. 20–24, March 1995. [Online]. Available: http:
//doi.acm.org/10.1145/216585.216588

[156] A. S. William Gropp, Ewing Lusk, Using MPI. MIT Press, 1999.

[157] J. Armstrong, “The development of erlang,” in Proceedings of
the second ACM SIGPLAN international conference on Functional
programming, ser. ICFP ’97. New York, NY, USA: ACM, 1997,
pp. 196–203. [Online]. Available: http://doi.acm.org/10.1145/258948.
258967

[158] J.-R. Abrial, Modeling in Event-B. Cambridge University Press, 2010.

[159] F. Pinel, J. E. Pecero, S. U. Khan, and P. Bouvry, “Energy-efficient
scheduling on milliclusters with performance constraints,” in Proceed-
ings of the 2011 IEEE/ACM International Conference on Green Com-
puting and Communications. IEEE Computer Society, 2011, pp. 44–
49.

183

[160] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Repre-
senting task and machine heterogeneities for heterogeneous,” Journal
of Science and Engineering, Special 50 th Anniversary Issue, vol. 3,
pp. 195–207, 2000.

[161] D. Page, A Practical Introduction to Computer Architecture, 1st ed.
Springer-Verlag, Heidelberg, 2009.

[162] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan, “Op-
timization and approximation in deterministic sequencing and schedul-
ing: A survey,” Annals of Discrete Mathematics, vol. 29, pp. 287–326,
1979.

[163] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity
Analysis in Practice: A Guide to Assessing Scientific Models. Wiley,
2004.

[164] A. Saltelli, S. Tarantola, and K. Chan, “A quantitative, model in-
dependent method for global sensitivity analysis of model output,”
Technometrics, vol. 41, pp. 39–56, 1999.

[165] E. Horowitz and S. Sahni, “Exact and approximate algorithms for
scheduling nonidentical processors,” J. ACM, vol. 23, pp. 317–327,
April 1976.

[166] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics
for scheduling parameter sweep applications in grid environments,” in
Heterogeneous Computing Workshop, 2000, pp. 349–363.

[167] F. Pinel, B. Dorronsoro, and P. Bouvry, “Solving very large instances
of the scheduling of independent tasks problem on the gpu,” Journal
of Parallel and Distributed Computing, vol. 73, no. 1, pp. 101–110,
2013.

[168] G. Ritchie and J. Levine, “A hybrid ant algorithm for scheduling in-
dependent jobs in heterogeneous computing environments,” in 23rd
Workshop of the UK Planning and Scheduling Special Interest Group
(PLANSIG 2004), 2004.

[169] P. Luo, K. Lu, and Z. Shi, “A revisit of fast greedy heuristics for
mapping a class of independent tasks onto heterogeneous computing
systems,” Journal of Parallel and Distributed Computing, vol. 67, pp.
695–714, 2007.

[170] F. Xhafa, J. Carretero, E. Alba, and B. Dorronsoro, “Design and
evaluation of tabu search method for job scheduling in distributed
environments,” in Nature Inspired Distributed Computing (NIDISC)

184

sessions of the International Parallel and Distributed Processing Sim-
posium (IPDPS) 2008 Workshop. IEEE Press, 2008, pp. 2319–2326.

[171] F. Xhafa, E. Alba, B. Dorronsoro, and B. Duran, “Efficient batch
job scheduling in grids using cellular memetic algorithms,” Journal of
Mathematical Modelling and Algorithms, vol. 7, no. 2, pp. 217–236,
2008.

[172] B. Dorronsoro, P. Bouvry, J. A. C. nero, A. A. Maciejewski, and H. J.
Siegel, “Multi-objective robust static mapping of independent tasks on
grids,” in Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC), part of World Conference in Computational Intelligence
(WCCI), 2010, pp. 3389–3396.

[173] C. O. Diaz, M. Guzek, J. E. Pecero, G. Danoy, P. Bouvry, and S. U.
Khan, “Energy-aware fast scheduling heuristics in heterogeneous com-
puting systems,” in High Performance Computing and Simulation
(HPCS), 2011 International Conference on. IEEE, 2011, pp. 478–484.

[174] E. Tabak, B. Cambazoglu, and C. Aykanat, “Improving the perfor-
mance of independent task assignment heuristics minmin, maxmin
and sufferage,” Parallel and Distributed Systems, IEEE Transactions
on, vol. PP, no. 99, pp. 1–1, 2013.

[175] C. M. Nesmachnow S., “Gpu implementations of scheduling heuristics
for heterogeneous computing environments,” in Proceedings of the
XVII Congreso Argentino de Ciencias de la Computación, 2011, pp.
1563–1570. [Online]. Available: http://www.fing.edu.uy/inco/cursos/
hpc/material/clases/gpu hcsp heuristics.pdf

[176] S. Nesmachnow, H. Cancela, and E. Alba, “Heterogeneous computing
scheduling with evolutionary algorithms,” Soft Computing, vol. 15,
no. 4, pp. 685–701, 2010.

[177] F. Pinel, B. Dorronsoro, and P. Bouvry, “A new parallel asynchronous
cellular genetic algorithm for scheduling in grids,” in Parallel & Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), 2010
IEEE International Symposium on. IEEE, 2010, pp. 1–8.

[178] E. Alba and B. Dorronsoro, Cellular Genetic Algorithms, ser. Oper-
ations Research/Computer Science Interfaces. Springer-Verlag, Hei-
delberg, 2008.

[179] B. Manderick and P. Spiessens, “Fine-grained parallel genetic al-
gorithm,” in Third International Conference on Genetic Algorithms
(ICGA), J. Schaffer, Ed. Morgan Kaufmann, 1989, pp. 428–433.

185

[180] D. Whitley, “Cellular genetic algorithms,” in Fifth International Con-
ference on Genetic Algorithms (ICGA), S. Forrest, Ed. California,
CA, USA: Morgan Kaufmann, 1993, p. 658.

[181] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 5, pp.
443–462, October 2002.

[182] T. Maruyama, A. Konagaya, and K. Konishi, “An asynchronous fine-
grained parallel genetic algorithm,” in Proc. of the International Con-
ference on Parallel Problem Solving from Nature II (PPSN-II), ser.
Lecture Notes in Computer Science (LNCS). North-Holland, 1992,
pp. 563–572.

[183] H. Muhlenbein, “Evolution in time and space - the parallel genetic al-
gorithm,” in Foundations of Genetic Algorithms. Morgan Kaufmann,
1991, pp. 316–337.

[184] E. Alba, M. Giacobini, M. Tomassini, and S. Romero, “Comparing
synchronous and asynchronous cellular genetic algorithms,” in Proc.
of the International Conference on Parallel Problem Solving from Na-
ture VII (PPSN-VII), ser. Lecture Notes in Computer Science (LNCS),
J. M. et al., Ed., vol. 2439. Granada, Spain: Springer-Verlag, Hei-
delberg, 2002, pp. 601–610.

[185] E. Alba, B. Dorronsoro, M. Giacobini, and M. Tomassini, Handbook
of Bioinspired Algorithms and Applications. CRC Press, 2006, ch.
Decentralized Cellular Evolutionary Algorithms, pp. 103–120.

[186] P. Spiessens and B. Manderick, “A massively parallel genetic algo-
rithm: Implementation and first analysis,” in Proc. of the Fourth In-
ternational Conference on Genetic Algorithms (ICGA), R. Belew and
L. Booker, Eds. Morgan Kaufmann, 1991, pp. 279–286.

[187] H. Mühlenbein, “Parallel genetic algorithms, population genetic and
combinatorial optimization,” in Proc. of the Third International Con-
ference on Genetic Algorithms (ICGA). Morgan Kaufmann, 1989,
pp. 416–421.

[188] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer, “Evolution al-
gorithms in combinatorial optimization,” Parallel Computing, vol. 7,
pp. 65–88, 1988.

[189] M. Gorges-Schleuter, “ASPARAGOS - an asynchronous parallel ge-
netic optimization strategy,” in Proc. of the Third International Con-
ference on Genetic Algorithms (ICGA), J. Schaffer, Ed. Morgan
Kaufmann, 1989, pp. 422–428.

186

[190] R. Collins and D. Jefferson, “Selection in massively parallel genetic
algorithms,” in Proc. of the Fourth International Conference on Ge-
netic Algorithms (ICGA), R. Belew and L. Booker, Eds. San Diego,
CA, USA: Morgan Kaufmann, 1991, pp. 249–256.

[191] T. Maruyama, T. Hirose, and A. Konagaya, “A fine-grained parallel
genetic algorithm for distributed parallel systems,” in Proc. of the
Fifth International Conference on Genetic Algorithms (ICGA). San
Francisco, CA, USA: Morgan Kaufmann, 1993, pp. 184–190.

[192] T. Nakashima, T. Ariyama, and H. Ishibuchi, “Combining multiple
cellular genetic algorithms for efficient search,” in Proc. of the Asia-
Pacific Conference on Simulated Evolution and Learning (SEAL),
2002, pp. 712–716.

[193] G. Folino, C. Pizzuti, and G. Spezzano, “A scalable cellular imple-
mentation of parallel genetic programming,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 1, pp. 37–53, February 2003.

[194] G. Luque, E. Alba, and B. Dorronsoro, Parallel Metaheuristics: A New
Class of Algorithms. Wiley, 2005, ch. Parallel Genetic Algorithms,
pp. 107–125.

[195] ——, Optimization Techniques for Solving Complex Problems. Wiley,
2009, ch. Analyzing Parallel Cellular Genetic Algorithms, pp. 49–62.

[196] ——, “An asynchronous parallel implementation of a cellular ge-
netic algorithm for combinatorial optimization,” in Proceedings of
the International Genetic and Evolutionary Computation Conference
(GECCO). ACM, 2009, pp. 1395–1402.

[197] B. Dorronsoro, D. Arias, F. Luna, A. Nebro, and E. Alba, “A grid-
based hybrid cellular genetic algorithm for very large scale instances
of the CVRP,” in High Performance Computing & Simulation Con-
ference (HPCS), W. W. Smari, Ed., 2007, pp. 759–765.

[198] F. Pinel, B. Dorronsoro, and P. Bouvry, “A new parallel asynchronous
cellular genetic algorithm for de novo genomic sequencing,” in Soft
Computing and Pattern Recognition, 2009. SOCPAR’09. International
Conference of. IEEE, 2009, pp. 178–183.

[199] Q. Yu, C. Chen, and Z. Pan, Advances in Natural Computation,
ser. Lecture Notes in Computer Science (LNCS). Springer-Verlag,
Heidelberg, 2005, vol. 3612, ch. Parallel Genetic Algorithms on Pro-
grammable Graphics Hardware, pp. 1051–1059.

187

[200] Z. Luo and H. Liu, “Cellular genetic algorithms and local search for
3-SAT problem on graphic hardware,” in IEEE Congress on Evolu-
tionary Computation, 2006, pp. 10 345–10 349.

[201] J.-M. Li, X.-J. Wang, R.-S. He, and Z.-X. Chi, “An efficient fine-
grained parallel genetic algorithm based on GPU-accelerated,” in IFIP
International Conference on Network and Parallel Computing. IEEE,
2007, pp. 855–862.

[202] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming. NVIDIA Corporation, 2011.

[203] K. Group, “Open computing language,”
http://www.khronos.org/opencl/.

[204] N. Soca, J. L. Blengio, M. Pedemonte, and P. Ezzatti, “PUGACE,
a cellular evolutionary algorithm framework on GPUs,” in IEEE
Congress on Evolutionary Computation, 2010, p. eProceedings.

[205] P. Vidal and E. Alba, Nature Inspired Cooperative Strategies for Opti-
mization (NICSO), ser. Studies in Computational Intelligence (SCI).
Springer-Verlag, Heidelberg, 2010, vol. 284, ch. Cellular Genetic Al-
gorithm on Graphic Processing Units, pp. 223–232.

[206] ——, “A multi-GPU implementation of a cellular genetic algorithm,”
in IEEE Congress on Evolutionary Computation, 2010, p. eProceed-
ings.

[207] J. Li, L. Zhang, and L. Liu, “A parallel immune algorithm based on
fine-grained model with GPU-acceleration,” in Proceedings of the 2009
Fourth International Conference on Innovative Computing, Informa-
tion and Control. IEEE Press, 2009, pp. 683–686.

[208] IEEE and The Open Group, “Posix (ieee std 1003.1-2008, open group
base specifications issue 7),” http://www.unix.org, 2008.

[209] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Scheduling
subject to resource constraints: classification and complexity,” Dis-
crete Applied Mathematics, vol. 5, pp. 11–24, 1983.

[210] F. Xhafa, “An experimental study on GA replacement operators for
scheduling on grids,” in The 2nd International Conference on Bioin-
spired Optimization Methods and their Applications (BIOMA), Ljubl-
jana, Slovenia, October 2006, pp. 212–130.

[211] F. Xhafa, E. Alba, B. Dorronsoro, B. Duran, and A. Abraham, “Effi-
cient batch job scheduling in grids using cellular memetic algorithms,”
in Metaheuristics for Scheduling in Distributed Computing Environ-
ments. Springer-Verlag, Heidelberg, 2008, pp. 273–299.

188

[212] T. Kerrigan, “Tom kerrigan’s simple chess program,”
http://www.tckerrigan.com/Chess/TSCP/.

[213] F. Pinel, D. Dorronsoro, P. Bouvry, and S. U. Khan, “It’s not a bug,
it’sa feature: Wait-free asynchronous cellular genetic algorithm,” in
Lecture Notes in Computer Science (LNCS). Springer-Verlag, Hei-
delberg, 2013.

[214] F. Pinel, G. Danoy, and P. Bouvry, “Evolutionary algorithm parameter
tuning with sensitivity analysis,” in Security and Intelligent Informa-
tion Systems. Springer-Verlag, Heidelberg, 2012, pp. 204–216.

[215] K. De Jong, “Parameter setting in eas: a 30 year perspective,” in
Parameter Setting in Evolutionary Algorithms. Springer, 2007, pp.
1–18.

[216] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. Smith, “Param-
eter control in evolutionary algorithms,” in Parameter setting in evo-
lutionary algorithms. Springer, 2007, pp. 19–46.

[217] J. Maturana, F. Lardeux, and F. Saubion, “Autonomous opera-
tor management for evolutionary algorithms,” Journal of Heuristics,
vol. 16, pp. 881–909, 2010.

[218] S. K. Smit and A. E. Eiben, “Comparing parameter tuning methods
for evolutionary algorithms,” in Proceedings of the Eleventh conference
on Congress on Evolutionary Computation, ser. CEC’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 399–406.

[219] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control
in evolutionary algorithms,” IEEE Trans. Evolutionary Computation,
vol. 3, no. 2, pp. 124–141, 1999.

[220] T. Bartz-Beielstein, C. W. G. Lasarczyk, and M. Preuss, “Sequential
Parameter Optimization,” in 2005 IEEE Congress on Evolutionary
Computation, vol. 1. IEEE, 2005, pp. 773–780.

[221] L. de Castro and F. Von Zuben, “Learning and optimization using the
clonal selection principle,” Evolutionary Computation, IEEE Trans-
actions on, vol. 6, no. 3, pp. 239 –251, Jun. 2002.

[222] S.-Y. Ho, H.-M. Chen, S.-J. Ho, and T.-K. Chen, “Design of accurate
classifiers with a compact fuzzy-rule base using an evolutionary scatter
partition of feature space,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 34, no. 2, pp. 1031 – 1044,
April 2004.

189

[223] H. Min, H. J. Ko, and C. S. Ko, “A genetic algorithm approach to
developing the multi-echelon reverse logistics network for product re-
turns,” Omega, vol. 34, no. 1, pp. 56 – 69, 2006.

[224] Z. Geem, “Harmony search algorithm for solving sudoku,” in
Knowledge-Based Intelligent Information and Engineering Systems,
ser. Lecture Notes in Computer Science, B. Apolloni, R. Howlett, and
L. Jain, Eds. Springer Berlin, 2007, vol. 4692, pp. 371–378.

[225] V. Nannen and A. E. Eiben, “Relevance estimation and value calibra-
tion of evolutionary algorithm parameters,” in Proceedings of the 20th
international joint conference on Artifical intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007, pp. 975–980.

[226] G. Pujol, sensitivity: Sensitivity Analysis, 2008, r package version 1.4-
0.

[227] P. Moscato and C. Cotta, “A gentle introduction to memetic al-
gorithms,” in Handbook of Metaheuristics, ser. International Series
in Operations Research and Management Science, F. Glover and
G. Kochenberger, Eds. Springer New York, 2003, vol. 57, pp. 105–144.

[228] F. Pinel, J. Pecero, P. Bouvry, and S. U. Khan, “A two-phase heuris-
tic for the scheduling of independent tasks on computational grids,”
in High Performance Computing and Simulation (HPCS), 2011 Inter-
national Conference on. IEEE, 2011, pp. 471–477.

[229] F. Pinel, B. Dorronsoro, J. E. Pecero, P. Bouvry, and S. U. Khan, “A
two-phase heuristic for the energy-efficient scheduling of independent
tasks on computational grids,” Cluster Computing, pp. 1–13, 2012.

[230] F. Pinel, B. Dorronsoro, P. Bouvry, and S. U. Khan, “Savant: Auto-
matic parallelization of a scheduling heuristic with machine learning,”
in Nature and Biologically Inspired Computing (NaBIC), 2013 World
Congress on. IEEE, 2013, pp. 52–57.

[231] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua, “Automatic
program parallelization,” Proceedings of the IEEE, vol. 81, no. 2, pp.
211–243, 1993.

[232] C. D. Callahan, K. D. Cooper, R. T. Hood, K. Kennedy, and L. Tor-
czon, “ParaScope: A parallel programming environment,” Interna-
tional Journal of High Performance Computing Applications, vol. 2,
no. 4, pp. 84–99, 1988.

[233] F. Irigoin, P. Jouvelot, and R. Triolet, “Semantical interprocedural
parallelization: An overview of the PIPS project,” in Proceedings of

190

the 5th international conference on Supercomputing. ACM, 1991, pp.
244–251.

[234] X. Leroy, “Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant,” in ACM SIGPLAN Notices,
vol. 41, no. 1. ACM, 2006, pp. 42–54.

[235] C. Ryan and P. Walsh, “Paragen ii: evolving parallel transforma-
tion rules,” in Computational Intelligence Theory and Applications.
Springer, 1997, pp. 573–573.

[236] K. P. Williams, “Evolutionary algorithms for automatic paralleliza-
tion,” Ph.D. dissertation, University of Reading, 1998.

[237] C. Ryan, A. H. van Roermund, and C. J. M. Verhoeven, Automatic
re-engineering of software using genetic programming. Kluwer Aca-
demic, 2000.

[238] A. Nisbet, “Gaps: A compiler framework for genetic algorithm (ga)
optimised parallelisation,” in High-Performance Computing and Net-
working. Springer, 1998, pp. 987–989.

[239] D. Zhang and J. J. Tsai, “Machine learning and software engineering,”
Software Quality Journal, vol. 11, no. 2, pp. 87–119, 2003.

[240] M. Harman, “The current state and future of search based software en-
gineering,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 342–357.

[241] S. Minton and S. R. Wolfe, “Using machine learning to synthesize
search programs,” in Knowledge-Based Software Engineering Confer-
ence, 1994. Proceedings., Ninth. IEEE, 1994, pp. 31–38.

[242] J. R. Koza, “Genetic programming as a means for programming com-
puters by natural selection,” Statistics and Computing, vol. 4, no. 2,
pp. 87–112, 1994.

[243] P. Walsh and C. Ryan, “Paragen: a novel technique for the autoparal-
lelisation of sequential programs using gp,” in Proceedings of the First
Annual Conference on Genetic Programming. MIT Press, 1996, pp.
406–409.

[244] S. M. Cheang, K. S. Leung, and K. H. Lee, “Genetic parallel pro-
gramming: Design and implementation,” Evolutionary Computation,
vol. 14, no. 2, pp. 129–156, 2006.

[245] K. S. Leung, K. H. Lee, and S. M. Cheang, “Evolving parallel machine
programs for a multi-alu processor,” in Evolutionary Computation,

191

2002. CEC’02. Proceedings of the 2002 Congress on, vol. 2. IEEE,
2002, pp. 1703–1708.

[246] K. Thearling and T. S. Ray, “Evolving parallel computation,” Complex
Systems, vol. 10, no. 3, p. 229, 1996.

[247] D. E. Goldberg, “Genetic and evolutionary algorithms come of age,”
Communications of the ACM, vol. 37, no. 3, pp. 113–119, 1994.

[248] M. Mitchell, P. Hraber, and J. P. Crutchfield, “Revisiting the edge of
chaos: Evolving cellular automata to perform computations,” arXiv
preprint adap-org/9303003, 1993.

[249] M. F. Pace, “Bsp vs mapreduce,” Procedia Computer Science, vol. 9,
pp. 246–255, 2012.

[250] H. Welling, “Prime number identification in idiots savants: Can they
calculate them?” Journal of autism and developmental disorders,
vol. 24, no. 2, pp. 199–207, 1994.

[251] L. Mottron, M. Dawson, I. Soulieres, B. Hubert, and J. Burack, “En-
hanced perceptual functioning in autism: An update, and eight prin-
ciples of autistic perception,” Journal of autism and developmental
disorders, vol. 36, no. 1, pp. 27–43, 2006.

[252] L. Mottron, K. Lemmens, L. Gagnon, and X. Seron, “Non-algorithmic
access to calendar information in a calendar calculator with autism,”
Journal of autism and developmental disorders, vol. 36, no. 2, pp.
239–247, 2006.

[253] H. Darius, “Savant syndrome-theories and empirical findings,” Ph.D.
dissertation, University of Skövde, 2007.

[254] J. R. Hughes, “A review of savant syndrome and its possible relation-
ship to epilepsy,” 2010.

[255] L. Mottron, L. Bouvet, A. Bonnel, F. Samson, J. A. Burack, M. Daw-
son, and P. Heaton, “Veridical mapping in the development of excep-
tional autistic abilities,” Neuroscience & Biobehavioral Reviews, 2012.

[256] D. Tammet, Born on a blue day: Inside the extraordinary mind of an
autistic savant. Simon and Schuster, 2007.

[257] A. R. Luria, The mind of a mnemonist: A little book about a vast
memory. Harvard University Press, 1968.

[258] W. G. Chase and H. A. Simon, “Perception in chess,” Cognitive
Psychology, vol. 4, no. 1, pp. 55 – 81, 1973. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0010028573900042

192

[259] N. Charness, E. M. Reingold, M. Pomplun, and D. M. Stampe, “The
perceptual aspect of skilled performance in chess: Evidence from eye
movements,” Memory & Cognition, vol. 29, no. 8, pp. 1146–1152, 2001.

[260] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2,
no. 3, pp. 27:1–27:27, May 2011. [Online]. Available: http:
//doi.acm.org/10.1145/1961189.1961199

[261] J. Blazewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram, and
J. Weglarz, “Preemptable malleable task scheduling problem,” Com-
puters, IEEE Transactions on, vol. 55, no. 4, pp. 486–490, 2006.

[262] R. Kurzweil, The age of spiritual machines: When computers exceed
human intelligence. Penguin, 2000.

[263] P. Ruiz, B. Dorronsoro, G. Valentini, F. Pinel, and P. Bouvry, “Op-
timisation of the enhanced distance based broadcasting protocol for
manets,” The Journal of Supercomputing, vol. 62, no. 3, pp. 1213–
1240, 2012.

[264] G. L. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani,
J. Li, L. Zhang, L. Wang, N. Ghani, J. Kolodziej et al., “An overview
of energy efficiency techniques in cluster computing systems,” Cluster
Computing, pp. 1–13, 2011.

[265] H. Hussain, S. U. R. Malik, A. Hameed, S. U. Khan, G. Bickler,
N. Min-Allah, M. B. Qureshi, L. Zhang, W. Yongji, N. Ghani et al., “A
survey on resource allocation in high performance distributed comput-
ing systems,” Parallel Computing, vol. 39, no. 11, pp. 709–736, 2013.

[266] J. Pecero, F. Pinel, P. Bouvry, and H. J. Fraire Huacuja, “A multi-
objective grasp for energy-aware scheduling,” International Congress
on Computer Science Research, 2011.

[267] J. E. Pecero, F. Pinel, B. Dorronsoro, G. Danoy, P. Bouvry, and A. Y.
Zomaya, “Efficient hierarchical task scheduling on grids accounting for
computation and communications,” in Intelligent Decision Systems in
Large-Scale Distributed Environments. Springer-Verlag, Heidelberg,
2011, pp. 25–47.

[268] T. El-Ghazawi, F. Pinel, E.-G. Talbi, S. Vialle, and P. Bouvry, “Hpcs
2011 panel session: Graphical processing units (gpus): Opportuni-
ties and challenges,” in High Performance Computing and Simulation
(HPCS), 2011 International Conference on. IEEE, 2011, pp. 1–11.

193

