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Abstract. We consider extensions of some classical rational axioms in-
troduced in conventional choice theory to valued preference relations.
The concept of kernel is revisited using two ways: one proposes to de-
termine kernels with a degree of qualification and the other presents a
fuzzy kernel where every element of the support belongs to the rational
choice set with a membership degree. Links between the two approaches
is emphasized. We exploit these results in Multiple-attribute Decision
Aid to determine the good and bad choices. All the results are valid if
the valued preference relations are evaluated on a finite ordinal scale.

1 Introduction

We consider a pair wise comparison multiple-attribute decision making proce-
dure that assigns to each ordered pair (x, y), x, y ∈ A (the set of alternatives) a
global degree of preference R(x, y). R(x, y) represents the degree to which x is
weakly preferred to y.

We suppose that R(x, y) belongs to a finite set L : {c0, c1, . . . , cm, . . . , c2m}
that constitutes a (2m+ 1)-element chain {c0, c1, . . . , c2m}. R(x, y) may be un-
derstood as the level of credibility that “a is at least as good as b”. The set
L is built using the values of R taking into consideration an antitone unary
contradiction operator ¬ such that ¬ci = c(2m−i) for i = 0, . . . , 2m.

If R(x, y) is one of the elements of L, then automatically ¬R(x, y) belongs
to L. We call such a relation an L-valued binary relation.

We denote L�m : {cm+1, . . . , c2m} and L≺m : {c0, . . . , cm−1}.
If R(x, y) ∈ L�m, we say that the proposition “(x, y) ∈ R” is L-true. If

however R(x, y) ∈ L≺m, we say that the proposition is L-false. If R(x, y) = cm,
the median level (a fix point of the negation operator) then the proposition
“(x, y) ∈ R” is L-undetermined. If R(a, b) = cr and R(c, d) = cs, cr < cs, it
means that the proposition “a is at least as good as b” is less credible than “c is
at least as good as d”.

In the classical case where R is a crisp binary relation (m = 2, and R(x, y)
is never rated c1; R(x, y) = c2 = 1 is denoted xRy and R(x, y) = c0 = 0
corresponds to ¬xRy, we define a digraph G(A,R) with vertex set A and arc
family R. A choice in G(A,R) is a non empty set Y of A.
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R can be represented by a Boolean matrix and the choice Y can
be defined with the use of a subset characteristic row vector Y (.) =
(. . . , Y (x), . . . , Y (y), . . . ) where

Y (x) =
{

1 if x ∈ Y
0 otherwise, for all x ∈ A.

The subset characteristic vector of the successors of the elements of the vertex
set Y : {x ∈ A | ∃ y ∈ Y, yRx} is denoted Y ◦R and is obtained using the Boolean
composition

(Y ◦R)(x) = ∨y 6=x(Y (y) ∧R(y, x)) (1)

where ∨ and ∧ represent respectively “disjunction” and “conjunction” for the
2-element Boolean lattice B = {0, 1}.

The choice Y should satisfy some of the following rationality axioms (Ȳ
represents the complement of Y in A):

• Inaccessibility of Y (or GOCHA rule, cf.[5], [10])
∀y ∈ Y,∀x ∈ Ȳ ,¬xRy
Ȳ ◦R ⊆ Ȳ , “the successors of Ȳ are inside Ȳ ”.
• Stability of Y (see [9], [11])
∀y ∈ Y,∀x ∈ Y,¬yRx
Y ◦R ⊆ Ȳ , “the successors of Y are inside Ȳ ”.
• Dominance of Y (or external stability, see [9],[11])
∀x ∈ Ȳ ,∃ y ∈ Y, yRx
Ȳ ⊆ Y ◦R, “the successors of Y contain Ȳ ”.
• Strong dominance of Y (or GETCHA rule, cf. [5], [10])
∀y ∈ Y,∀x ∈ Ȳ , yRx ≡ ¬yRdx
(Rd is the dual relation, i.e. the transpose of the complement of R)
Ŷ ◦Rd ⊆ Ȳ .

The maximal set of all non-dominated alternatives (inaccessibility and sta-
bility are satisfied) is called the core of Y and the internally and externally
stable set corresponds to the kernel. The GETCHA set is such that the strong
dominance rule applies.

No specific property like acyclicity or antisymmetry will be assumed in the se-
quel. The core guarantees a rather small choice but is often empty. The GETCHA
set corresponds to a rather large set and, in this general framework, the kernel
(see [5], [8]) seems to be the best compromise. However its existence or unique-
ness cannot be guaranteed. . It has been mentioned in [5] that for random graphs
– with probability .5 – a kernel almost certainly exists and that in a Moon-Moser
graph with n nodes the number of kernels is around 3n/3.

In order to illustrate all these concepts, we consider a small example.
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Example 1 Consider the following example with 8 alternatives: A :
{a, b, c, d, e, f, g, h}. The Boolean matrix R together with the outgoing and in-
going scores S(+) and S(−) are presented in Table 1.

S(+)
R a b c d e f g h
a · 1 1 1 0 0 0 0 3
b 1 · 1 1 1 1 1 1 7
c 1 1 · 1 1 0 1 1 6
d 1 1 1 · 1 0 1 1 6
e 0 1 1 1 · 0 1 1 5
f 0 1 1 1 1 · 1 1 6
g 0 1 1 1 1 1 · 1 6
h 0 1 1 1 1 0 0 · 4

S(−) 3 7 7 7 6 2 5 6

Table 1 : Boolean matrix R and scores

Core (non dominated elements) : empty set.
Kernels (maximal stable and minimal dominant sets) : {b}, {a, f}, {a, g}.
Minimal GETCHA sets : {b}, {a, e, f, g, h}.
We may define generalizations of the previous crisp concepts in the valued

case in two different ways:

(i) Starting from the definition of a rational choice in terms of logical predicates,
one might consider that every subset of A is a rational choice with a given
qualification and determine those sets with a sufficient degree of qualification.

(ii) One might also extend the algebraic definition of a rational choice. In that
case, there is a need to define proper extensions of composition law ◦ and
inclusion ⊆.

Solutions that correspond to this approach give a fuzzy rational set Ỹ , each
element of A belonging to A to a certain degree (membership function).

It should be interesting to stress the correspondence between these two ap-
proaches. The choice of the operators is closely related to the type of scale that
is used to quantify the valued binary relation R, i.e. an ordinal scale.

2 Qualification of crisp kernels in the valued ordinal
context

We now denote GL = GL(A,R) a digraph with vertices set A and a valued arc
family that corresponds to the L-valued binary relation R . This graph is often
called outranking graph in the context of multi-attribute decision making.

We define the level of stability qualification of subset Y of X as

∆sta(Y ) =

{
c2m if Y is a singleton,
min
y 6=x

min
x6=y
{¬R(x, y)} otherwise
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and the level of dominance qualification of Y as

∆dom(Y ) =

{
c2m if Y = A,
min
x6∈Y

max
y∈Y

R(y, x) otherwise.

Y is considered to be an L-good choice, i.e L-stable and L-dominant , if
∆sta(Y ) ∈ L�m and ∆dom(Y ) ∈ L�m. Its qualification corresponds to

Qgood(L) = min(∆sta(Y ),∆dom(Y )) ∈ L�m.

We denote Cgood(GL) the possibly empty set of L-good choices in GL.
The determination of this set is an NP-complete problem even if, following

a result of Kitainik [5], we do not have to enumerate the elements of the power
set of A but only have to consider the kernels of the corresponding crisp strict
median-level cut relation R�m associated to R, i.e. (x, y) ∈ R�m if R(x, y) ∈
L�m.

As the kernel in G(X,R�m) is by definition a stable and dominant crisp
subset of A, we consider the possibly empty set of kernels of G�m = G(A,R�m)
which we denote Cgood(G�m).

Kitainik proved that

Cgood(GL) ⊆ Cgood(G�m).

The determination of crisp kernels has been extensively described in the
literature (see, for example [9]) and the definition of Cgood(GL) is reduced to
the enumeration of the elements of Cgood(G�m) and the calculation of their
qualification.

Example 2 We now consider the comparison of 8 cars (a, b, c, d, e, f, g) on the
basis of maximum speed, volume, price and consumption. Data and aggregation
procedure will not be presented here (for more details, see [2]). The related
outranking relation is presented in Table 2.

R a b c d e f g h
a 1 .75 .70 .62 0 0 0 0
b .76 1 .90 .82 .82 .82 .82 .80
c .70 .86 1 1 1 .46 .80 .91
d .64 .65 .94 1 .88 .22 .94 .74
e .33 .57 .93 1 1 0 .80 .86
f 0 .73 .64 .92 .76 1 .96 .80
g 0 .63 .73 .85 .82 .70 1 .81
h 0 .60 .64 .60 .77 0 0 1

Table 2 : Outranking relation related to eight cars
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We will consider only the ordinal content of that outranking relation and we
transpose the data on a L-scale with c0 = 0, c2m = 1,m = 27 and cm = .5.

The strict median-cut relation R�m corresponds to data of Table 1. The set
Cgood(G�m) corresponds to ({b}, {a, f}, {a, g}) with the following qualifications:

Qgood({b}) = .76, Qgood({a, f}) = Qgood({a, g}) = .70.

3 Fuzzy kernels

A second approach to the problem of determining a good choice is to consider
the valued extension of the Boolean system of equations (1).

If Ỹ (.) = (. . . , Y (x), Y (y), . . . ), where Ỹ (x) belongs to L for every x ∈ A is
the characteristic vector of a fuzzy choice and indicates the credibility level of
the assertion that “x is part of the choice Ỹ ”, we have to solve the following
system of equations:

(Ỹ ◦R)(x) = max
y 6=x

[min(Ỹ (y), R(y, x))] = ¬Ỹ (x), ∀x, y ∈ A. (2)

The set of solutions to the system of equations (2) is called Ỹ dom(GL).
In order to compare these fuzzy solutions to the solutions obtained in

Cgood(GL), we define the crisp choice

KỸ ⊂ A
{
x ∈ KỸ if Ỹ (x) ∈ L�m
x 6∈ KỸ otherwise

(3)

and we consider a partial order on the elements of Ỹ dom(GL) : Ỹ is sharper than
Ỹ ′, noted Ỹ ′ � Ỹ , iff ∀x ∈ A : either Ỹ (x) ≤ Ỹ ′(x) ≤ cm, either cm ≤ Ỹ ′(x) ≤
Ỹ (x).

The subset of the sharpest solutions in Ỹ dom(GL) is called F dom(GL).
Bisdorff and Roubens have proved that the set of crisp choices constructed

from F dom(GL) using (3) and denoted K(F dom(GL)) coincides with Cdom(GL).
Coming back to Example 2, we obtain 3 sharpest solutions to equation (2)

Ỹ{b} = (.24, .76, .24, .24, .24, .24, .24, .24)

Ỹ{a,f} = (.70, .30, .30, .30, .30, .70, .30, .30)

Ỹ{a,g} = (.70, .30, .30, .30, .30, .30, .30, .70).

In this particular case, we obtain only Qgood and ¬Qgood as components of
the Ỹ ’s but this is not true in general.

4 Good and bad choices in Multi-attribute decision
making

In the framework of decision making procedures, it is often interesting to deter-
mine choice sets that correspond to bad choices. These bad choices should be
ideally different from the good choices. To clarify this point, let us first consider
the crisp Boolean case and define the rationality axiom of
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• Absorbance of Y (see [10])
∀x ∈ Ȳ ,∃ y ∈ Y, xRy = yRtx
Ȳ ⊆ Y ◦Rt, “the predecessors of Y contain Ȳ ”.

As the stability property can be rewritten as Y ◦ Rt ⊆ Ȳ , we immediately
obtain the Boolean equation that determines the absorbent kernel (stable and
absorbent choice):

Ȳ = Y ◦Rt.

We notice that for some digraphs (dominant) kernels and absorbent kernels
may coincide (consider a digraph G(A,R) with vertices A : {a, b, c, d} and four
arcs (a, b), (b, c), (c, d), (d, a). {a, c} as well as {b, d} are dominant and absorbent
kernels or good and bad choices).

This last concept can be easily extended in the valued case. Consider the
valued graph GL introduced in Section 2. We define the level of absorbance
qualification of Y as

∆abs(Y ) =

{
c2m if Y = A,
min
x6∈Y

max
y∈Y

R(x, y) otherwise.

The qualification of Y being a bad choice corresponds to

Qbad(Y ) = min(∆sta(Y ),∆abs(Y )) > cm.

If Qbad(Y ) ≤ cm, Y is not considered to be a bad choice.
A fuzzy absorbent kernel is a solution of equation

(Ỹ ◦Rt)(x) = max
y 6=x

min(Ỹ (y), Rt(y, x)) = ¬Ỹ (x), ∀x ∈ A. (4)

The set of solutions of equations (4) denoted Ỹ abs(GL) can be handled in the
same way as done in Section 3 for Ỹ dom(GL) and creates a link between these
solutions (4) and subsets of Y being qualified as bad choices.

Reconsidering Example 2, we observe that {b}, {c}, {d}, {a, e} and {a, h} are
absorbent kernels in G(A,R�m). Qualification can be easily obtained and we
get Qbad({a, c}) = .76, Qbad({a, h}) = .74, Qbad({c}) = .64, Qbad({d}) = .60,
Qbad({b}) = .57.

We finally decide to keep car b as the best solution noticing however that it
is a bad choice. Going back to digraph G(A,R�m), we see that b is at the same
time dominating and dominated by all the other elements. Car b is indifferent to
all the other cars which is not true for a, c, d, e, f, g, h, since indifference is not
transitive in this example.
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