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Motivation

Problem: Analysis of an heterogeneous materials. Vague 
information available. The position of the particles is not available.
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Motivation

Problem: Analysis of an heterogeneous materials. Vague 
information available. The position of the particles is not available.

Solution: Homogenisation.

New problem: 
Asses the validity of the 
homogenisation.
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Proposed solution

Idea: Understand the original problem as an SPDE (the center of particles 
is a random variable) and  bound the distance between both models
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Proposed solution

SPDE: Stochastic partial differential equation.
Collection of parametric problems + probability density function
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QoI: Quantity of interest. The output. Scalar that depends of the solution.

Proposed solution

Remark: The quantity of interest is an expectation.

(linear)
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Notation

Boundary value problem

Heat equation
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Notation

Boundary value problem Homogenised boundary value problem

Heat equation
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Notation

Boundary value problem Homogenised boundary value problem

Aim: Bound  

The computation of the bound must be purely deterministic.

Heat equation
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Derivation

Hypothesis

Deterministic boundary conditions
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Derivation

Hypothesis

Deterministic boundary conditions

Constant volume fraction
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Derivation

Hypothesis

Deterministic boundary conditions

Constant volume fraction

Constant PDF over the domain
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Derivation

1) Adjoint problem

Ladevèze et al. (1983) Error estimate procedures in the finite element method and applications 
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Derivation

3) Constitutive relation error

1) Adjoint problem

2) Cauchy-Schwarz inequality 
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Derivation

3) Constitutive relation error

Use that

Flux field such that

and that fulfill flux Bcs.
“Stress FE”

1) Adjoint problem

2) Cauchy-Schwarz inequality 

Ladevèze et al. (1983) Error estimate procedures in the finite element method and applications 
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Derivation

3) Constitutive relation error

Use that

 to conclude through Pythagoras that

Flux field such that

and that fulfill flux Bcs.
“Stress FE”

1) Adjoint problem

2) Cauchy-Schwarz inequality 

Ladevèze et al. (1983) Error estimate procedures in the finite element method and applications 
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Derivation

Combining all the results
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Derivation

Combining all the results

Expanding 
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Derivation

Combining all the results

Expanding 

Deterministic quantity (similar for the residue)
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How do we choose k0?

Derivation
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“Usual” FE

“Stress” FE



27

How do we choose k0?

If       fine enough, it is possible to set 

Derivation

“Usual” FE

“Stress” FE



28

How do we choose k0?

If       fine enough, it is possible to set 

Derivation

“Usual” FE

“Stress” FE



29

How do we choose k0?

If       fine enough, it is possible to set 

Derivation

“Usual” FE

“Stress” FE

There is always a minimum for
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Validation

The “exact” quantity of interest is computed with 512 MC iterations.

The quantity of the interest is the average temperature in the exterior faces. 
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Validation

Studied in a domain homogenised through rule of mixture.
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Validation

Studied in a domain homogenised through rule of mixture.

Dual problem
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Validation

Studied in a domain homogenised through rule of mixture.

Dual problem

Two problems solved twice:
– Using “usual” FE
– Using “equilibrated” FE
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Validation
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Numerical example
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Numerical example

First problem, different material properties.
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Numerical example

First problem, different material properties.
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For this problem, it is possible to write the error bound as a function of 
the homogenised conductivity.

Numerical example
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For this problem, it is possible to write the error bound as a function of 
the homogenised conductivity.

Numerical example

which is a form of the inequality between the harmonic and the arithmetic 
mean.
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For this problem, it is possible to write the error bound as a function of 
the homogenised conductivity.

Numerical example

Only equal to 0 if

In summary, the interval grows as we increase the contrast 
between the material properties.
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Work in progress

How representative is the expectation? Are the QoIs concentrated 
around one point?
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Work in progress

How representative is the expectation? Are the QoIs concentrated 
around one point?

 
Solution: Bound the variance

Characteristics of the bound

- Purely deterministic
- Depends on the shape of the particle (covariance).

No numerical examples available at the moment.
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Work in progress

– Improve the bounds.
• Averaged solution of the Prager-Synge hypercircle. 
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Work in progress

– Improve the bounds.
• Averaged solution of the Prager-Synge hypercircle. 

• Adapt the bound presented in “Multi-scale goal-oriented adaptive 
modelling of random heterogeneous materials”  by Romkes, Oden and 
Prudhomme.
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Summary

– A bound was presented for heterogenous problems that are 
homogenised.

– The computation of the bound is purely deterministic.

– The error estimate, should be used with care when there is a high 
contrast between the materials.
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Summary

– A bound was presented for heterogenous problems that are 
homogenised.

– The computation of the bound is purely deterministic.

– The error estimate, should be used with care when there is a high 
contrast between the materials.

Thank you for your attention.
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