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Abstract— This paper studies the concept of jointly utilizing
the data information (DI) and channel state information (CSI)
in order to design symbol-level precoders for a multiple input
and single output (MISO) downlink channel. In this direction, the
interference among the simultaneous data streams is transformed
to useful signal that can improve the signal to interference
noise ratio (SINR) of the downlink transmissions. We propose
a maximum ratio transmissions (MRT) based algorithm that
jointly exploits DI and CSI to gain the benefits from these useful
signals. In this context, a novel framework to minimize the power
consumption is proposed by formalizing the duality between the
constructive interference downlink channel and the multicast
channels. The numerical results have shown that the proposed
schemes outperform other state of the art techniques.

I. I NTRODUCTION

In the last decade, multiuser MISO techniques have attracted
a lot of attention due to their capability of serving co-channel
users in the same frequency and time slots. The applications of
these techniques vary according to the requested service. The
first service type is known as broadcast in which a transmitter
has a common message to be sent to multiple receivers. In
physical layer research, this service has been studied under
the term of multicasting [1]. Since a single data stream is
sent to all receivers, there is no need to combat the interuser
interference. In the remainder of this paper, this case will be
referred to as multicast. The second service type is known
as unicast, in which a transmitter has an individual message
for a receiver. Due to the nature of the wireless medium and
the use of multiple antennas, multiple simultaneous unicast
transmissions are possible in the downlink of a base station
(BS). In these cases, multiple streams are simultaneously
sent, which motivates precoding techniques that mitigate the
interuser interference. In information theory terms, this service
type has been studied using the broadcast channel [2]. In
the remainder of this paper, this case will be referred to as
downlink.

The concept of jointly using the DI and CSI in symbol
level was originally proposed in [6]- [7]. Taking into account
the data information, the cross correlations among the users’
subspaces can be optimized. The contributions of this paper
can be summarized in the following points:
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• As preliminary step, we develop a new constructive
interference algorithm, called constructive interference
maximum ratio transmissions (CIMRT). This technique
is shown to outperform the constructive rotation zero
forcing precoding (CRZF) in [7].

• We illustrate the relation between the constructive inter-
ference precoding and constrained constellation multicast
precoding and as a result we establish a suitable upper-
bound for constructive interference precoding systems.
To characterize the multicast performance, we derive the
minimum power that is required to satisfy the quality of
service of multicast MISO for MPSK inputs.

• We verify the convexity of the power minimization
with the additional constraints. Therefore, we formulate
the optimal precoders for power minimization for con-
strained constellation multicast channel. Finally, we show
that there is a duality between constructive interference
downlink channel (CIDC) and constrained constellation
multicast channel (CCMC). Based on this duality, we
derive the optimal precoding for constructive interference
downlink channel.

Notation: We use boldface upper and lower case letters
for matrices and column vectors, respectively.(∙)H , (∙)∗ stand
for Hermitian transpose and conjugate of(∙). E(∙) and ‖ ∙ ‖
denote the statistical expectation and the Euclidean norm,⊗
denotes the kronecker product, andA � 0 is used to indicate
the positive semidefinite matrix.∠(∙), | ∙ | are the angle and
magnitude of(∙) respectively.R(∙), I(∙) are the real and the
imaginary part of(∙). Finally, the vector of all zeros with
length ofK is defined as0K×1.

II. SYSTEM AND SIGNAL MODELS

We consider a single-cell multiple-antenna downlink sce-
nario, where a single BS is equipped withnt transmit antennas
that supports data traffic toK user terminals, each one of
them is equipped with a single receiving antenna. We assume
a quasi static block fading channelhj ∈ C1×nt between the
BS antennas and thejth user. Letwk be theCnt×1 normalized
precoding vector for the userj. The received signal atjth user
yj is given by

yj =
√
pjhjwjdj +

∑

k 6=j

√
pkhjwkdk + zj (1)

wherezj denotes the noise atjth receiver, which is assumed
independent and identically distributed (i.d.d) complex Gaus-



sian distributed variableCN (0, 1). A more compact system
formulation is obtained by stacking the received signals and
the noise components for the set of K selected users as
y = HWP

1
2d + z, with H = [h1, ...,hK ]

T ∈ CK×nt,
W = [w1, ...,wK ] ∈ Cnt×K as the compound channel
and precoding matrices. Notice that the transmitted signal
d ∈ CK×1 includes the uncorrelated data symbolsdk(t) for
all users withE[|dj |2] = 1, P

1
2 is the power allocation matrix

P
1
2 = diag(

√
p
1
, . . . ,

√
p
K
). The CSI and DI are available at

the transmitter side.

III. C ONSTRUCTIVE INTERFERENCEPRECODING

The interference among the simultaneous spatial streams
leads to deviation of the received symbols from their detection
region. However, in some cases (e.g. M-PSK) this interference
pushes the received symbols further into the correct detection
region and, as a consequence it enhances the system per-
formance. Therefore, the interference can be classified into
constructive or destructive based on whether it facilitates or
deteriorates the correct detection of the received symbol.

A. Constructive Interference Definition

Assuming both DI and CSI is available at the transmitter,
the normalized created interference from thekth data stream
on jth user can be formulated as:

ψjk =
hjwk
‖hj‖‖wk‖

. (2)

Since the adopted modulations are M-PSK ones, a definition
for constructive interference can be stated as

Lemma1: For any M-PSK modulated symboldk is said to
receive constructive interference from another simultaneously
transmitted symboldj which is associated withwj if and only
if the following inequalities hold

∠dj −
π

M
≤ tan−1

(
I{ψjkdk}
R{ψjkdk}

)

≤ ∠dj +
π

M
(3)

R{dk}.R{ψkjdj} > 0, I{dk}.I{ψkjdj} > 0. (4)

Proof: For any M-PSK modulated symbol, the region of
correct detection lies inφj ∈ [∠dj − π

M
,∠dj + π

M
]. In order

for the interference to be constructive, the received interfering
signal should lie in the region of the target symbol. For the first
condition, thearctan(∙) function checks whether the received
interfering signal originating from thedkth transmit symbol is
located in the detection region of the target symbol. However,
the trigonometric functions are not one-to-one functions. This
means that it manages to check the two quadrants which the
interfering symbol may lie in. To find which one of these
quadrants is the correct one, an additional constraint is added
to check the sign compatibility of the target and received
interferingsignals.

IV. CONSTRUCTIVE INTERFERENCEPRECODING FOR

MISO DOWNLINK CHANNELS

In the remainder of this paper, it is assumed that the
transmitter is capable of designing precoding on symbol level
for each time instance utilizing both CSI and DI, so that the

created interference among the simultaneous spatial streams is
constructive.
A. Correlation Rotation Zero Forcing Precoding (CRZF)

The precoder aims at minimizing the mean square error
while it takes into the account the rotated constructive inter-
ference [7]. The optimization problem can be formulated as

J = min
W

E{‖Rφd− (HWd+ z)‖
2}.

The solution can be easily expressed as

WCRZF = γH
H(HHH)−1Rφ (5)

whereγ =
√

P

tr
(
RHφ (HH

H)−1Rφ

) ensures the power normal-

ization. The cross correlation factor between thejth user’s
channel and transmittedkth data stream can be expressed as

ρjk =
hjh

H
k

‖hk‖‖hj‖
. (6)

The relative phaseφij that grants the constructive simultane-
ous transmissions can be expressed as

φij = ∠dj − ∠(ρij .di). (7)

The corresponding rotation matrix can be implemented as:
Rφ(j, k) = ρjk exp(φjki), (8)

and the received signal atjth user can be expressed as

yj
a
= γ‖hj‖(

K∑

k=1

ρjkdk)
b
= γ‖hj‖(

K∑

k=1

εjk)d, (9)

whereεjk has the same magnitude asρjk but with different
phase, andd : d ∈ C1×1, |d| = 1,∠d = θ, θ ∈ [0, 2π]. By
taking a look at (9-b), it has a multicast formulation since it
seems for each user that BS sends the same symbol for all
users.

Remark1: It can be noted that this solution includes a zero
forcing step and a correlation stepRφ. The correlation step
aims at making the transmit signals constructively received at
each user. Unfortunately, this design fails when we deal with
co-linear usersρjk → 1. However, intuitively having co-linear
users should create more constructive interference and higher
gain should be anticipated. It can be easily concluded that
the source of this contradiction is the zero forcing step. In an
effort to overcome the problem, we propose a new precoding
technique in the next section.

B. Proposed Constructive Interference Maximum Ratio Trans-
mission (CIMRT)

The maximum ratio transmissions (MRT) are not suitable
for simultaneous downlink transmissions in MISO system due
to the intolerable amount of the created interference. On the
other hand, this feature makes it a good candidate for con-
structive interference. Thenaivemaximum ratio transmission
(nMRT) can be formulated as

WnMRT =
[
h1
H

‖h1‖
, h2

H

‖h2‖
, . . . , hK

H

‖hK‖

]
. (10)

A new look at the received signal can be viewed by exploit-
ing the singular value decomposition ofH = SVD, and
WMRT = D

HV
′
SH as follows



y = HWd = SVDDHV
′

SHP1/2d (11)

G = SVV
′

, B = SH (12)

whereS ∈ CK×K is a unitary matrix that contains the left-
singular vectors ofH, the matrixV is anK × nt diagonal
matrix with nonnegative real numbers on the diagonal, and
D ∈ Cnt×nt contains right-singular vectors ofH. V

′
is the

power scaled ofV to normalize each column inWMRT to
unit. The received signal can be as

yj = ‖hj‖(
K∑

k=1

√
pkρjkdk). (13)

Utilizing the reformulation ofy in (11), the received signal
can be wriiten as

yj = ‖gj‖
K∑

k=1

√
pkξjkdk = ‖gj‖

K∑

k=1

√
pkξjk exp(θk)d (14)

wheregj is thejth row of the matrixG, ξjk =
gjbk
‖gj‖

. SinceB
is a unitary matrix, it can have uncoupled rotations which can
grant the constructivity of interference. LetRkj be the rotation
matrix in the (bk,bj)-plane, which performs an orthogonal
rotation of thekth andjth columns of a unitary matrix while
keeping the others fixed, thus preserving unitarity. Assume
without loss of generality thatk > j. The rotation matrix in
the (bk,bj)-plane can be written as

Rkj(α, δ) =














1 0 . . . 0 . . . 0
...

. . .
...

...
...

...
0 . . . cosα . . . sinαe−δi . . .
...

...
...

...
...

...
... sinαe−δi . . . cosα . . .

... . . . . . .
... . . . 1














(15)

where the non trivial entries appear at the intersections ofkth

andjth rows and columns. Hence, any unitary matrixB
′

can
be expressed using the following parameterization

B
′

= B
K∏

j=1

K∏

k=j+1

Rkj . (16)

It can be seen from the structure of the matrix in (15) that
rotation in the (bk,bj)-plane does not change the directions of
the remaining beamforming vectors. Therefore, it just modifies
the value ofξkk, and the precoder reads as

WCIMRT = DHV
′

B
′

. (17)

To grant constructive interference, we need to rotate the
(bk,bj)-plane by formulating the rotation as a set of non-linear
equations as

ξ
′

kkdk = ξkk cos(α)dk − ξkj sin(α)e
−jδdj

ξ
′

jjdj = ξjk sin(α)e
jδdk + ξjj cos(α)dj (18)

Since the set of non-linear equations can have different roots,
the function needs to be evaluated at the obtained root in order
to find the optimal ones. The optimal solution can be found

when solving for ξ
′

kk =
√
ξ2kk + ξ

2
kj , ξ

′

jj =
√
ξ2jj + ξ

2
jk.

Sometimes it is not feasible to solve forξ∗kk and ξ∗jj , and
their values need to be reduced correspondingly. The proposed
algorithm can be illustrated in the followingtable:

A1: Constructive Interference Rotation for CIMRTAlgorithm

1) FindP assuming all the users have constructive interference.
2) Find singular value decomposition forH = SVD.
3) ConstructB, G.
4) Select (bk, bj )-plane for all users pair.
5) Find the optimal rotation parametersα, δ for (bk,bj ) consid-

eringP by solving (18).
6) UpdateB = BRkj(α, δ)

V. M ULTICAST MISO SYSTEMS

The multicast channel is defined as the channel in which
a multiantenna transmitter sends a single message to multiple
single antenna users [1]- [5].

A. Constrained M-PSK Multicast Transmissions
The optimal input covariance for power minimization in

multicast system can be found as a solution of the following
optimization

min
Q:Q�0

tr(Q) s.t. hjQh
H
j ≥ ζj , ∀j ∈ K.(19)

whereζj is the required SNR threshold forjth user. Different
solutions in the literature were proposed as in [1]. However,
for M-PSK inputs we should design the multicast precoders so
that the received signal falls into the detection region of desired
symbol. Assuming a unit-rank solution forQ, the optimization
problem can be written as follows
wCMC(d,H) = argmin

w
tr(wwH)

s.t. ∠(hjw) = ∠(d) ∀j ∈ K

hjww
HhHj ≥ ζj ∀j ∈ K.(20)

Here, we have2K additional constraints which limit the
performance of (20) in comparison to (19). These constraints
grant the reception of the symbold with the target SNRζj for
the jth user. More flexible constraints for the detection region
of the target symbols are discussed in [8]. The minimum trans-
mit power in (19)-(20) occurs when the inequality constraints
are replaced by equality (i.e. all users should achieve their
target threshold SNR). We can reformulate the constraint as

min
w

(wHw)

s.t. I{hjw} =
√
ζjI{d} , ∀j ∈ K

R{hjw} =
√
ζjR{d} , ∀j ∈ K (21)

A final formulation can expressed as
min
w

(wHw)

s.t.
hjw − (hjw)H

2i
=
√
ζjI{d}, ∀j ∈ K

hjw + (hjw)
H

2
=
√
ζjR{d}, ∀j ∈ K. (22)

It can be viewed that the constraints in (20) are turned from
inequality constraints to equality constraint (21)-(22) due to
signal aligning requirements. The Lagrangian function can be
derived as follows



L(w) = wHw +
∑

j

μj(−0.5i(hjw −w
HhHj )−

√
ζithI{d})

+
∑

j

αj((hjw +w
HhHj )−

√
ζithR{d}) (23)

where μj and αj are the Lagrangian dual variables. The
derivative for the Lagrangian function can be written as

dL(w)
dw∗

= w + 0.5i
∑

j

μjh
H
j + 0.5

∑

j

αjh
H
j (24)

By equating this term to zero,w can be written as

wCMC = −0.5i
K∑

j=1

μjh
H
j − 0.5

∑

j

αjh
H
j ≡

K∑

j=1

νjh
H
j (25)

whereνj ∈ C = −0.5iμj − 0.5αj . The optimal values of the
Lagrangian variablesμj andαj can be found by substitutingw
in the constraints (22) which result in solving the simultaneous
set of 2K equations (26). The final constrained constellation
multicast precoder can be found by substituting allμj andαj
in (25).

Corollary 1: The optimal precoding for power minimiza-
tionwCMC in CCMC must span the subspaces of each user’s
channel.
Using (25), we can rewrite the received signal atjth receiver
as

yj = hjwCMCd+ zj = hj

K∑

k=1

νkh
H
k d+ zj

= ‖hj‖
K∑

k=1

‖hk‖νkρjkd+ zj

≡ hj
[
|ν1| ∗ hH1 . . . |νK | ∗ hHK

]






d ∗ 1∠(ν1)
...

d ∗ 1∠(νK)




+ zj .

(27)

From (27), the constellation constrained multicast can be
formulated as a constructive interference downlink channel
with set of precodershH1 , . . . ,h

H
K , each one of these precoder

is allocated with power|νk| and associated with symbol
d ∗ 1∠νk.
B. From Multicast to Constructive Interference

In multicast, the cross correlations among users’ channel
are exploited to aid the transmission of the data symbols.
The same cross correlations are translated to interference in
the downlink channel due to the individuality of each user’s
message. However, the constructive interference techniques
in MISO downlink channels exploit these cross correlations,
which raise the question about their relation with multicast
techniques.

Theorem1: The optimal precoder for CIDC

wCIDC(d,H) = argmin
w

tr(wwH)

s.t. ∠(hjw) = ∠(dj) ∀j ∈ K

hjww
HhHj = ζj ∀j ∈ K.(28)

is given bywCMC(d,A(dj)H) in (20), whereA(d)

A(j, k) =

{
exp((∠d− ∠dj)i), j = k

0, j 6= k.
(29)

Proof: We assume that we have the followingequivalent
channel as

He = AH (30)

The power minimization can be rewritten by replacingH by
its equivalent channelHe in (20) as

min
w

(wHe we)

s.t. ∠(he,jw) = ∠(d) ∀j ∈ K

he,jww
HhHe,j = ζj ∀j ∈ K. (31)

wherehe,j is the jth row of theHe. The optimal precoder
we for the equivalent channel can be expressed as

we =

K∑

j=1

νe,jh
H
e,j . (32)

Rewriting the first constraints in (31) as
∠(d− dj)∠(hjw) = ∠(d)

≡ ∠(hjw) = ∠(dj) ∀j ∈ K (33)

shows the equivalence between the constrained constellation
multicast channel and constructive interference downlink chan-
nel.

Corollary 2: K different M-PSK symbols can be received
correctly atK different users by using a single precoding
vectorw ∈ Cnt×1, designed according to Theorem 1, at the
BS if K ≤ nt.

VI. N UMERICAL RESULTS

The channel between the base station andjth user terminal
is characterized byhj =

√
γ◦h

′

j whereh
′

j ∼ CN (0, 1), andγ◦
is the average channel power. In order to compare all described
techniques, we used an energy efficiency metric as following

η =

∑
j Rj

Ptot
. (34)

where Rj is the rate achieved by thejth user and given
by log2(1 + ζj), ζj is selected to satisfy the related M-
PSK modulation andPtot is the transmitted power by BS
tr(WWH). The motivation of using this metric is the fact that
CRZF and CIMRT do not aim at minimizing the transmitted
power to grant certain quality of service by their design.
Therefore, in some instance one or more users are given rate
which is higher than the target rate. However for the multicast
related techniques, the optimality holds when the target rate
can be achieved exactly. For the sake of fairness in comparison,
we use the metric in (34).

It can be seen in the Fig. (1) that energy efficiency for
multicast with optimal input outperforms all the proposed
techniques which confirms the fact of its optimality. For
the downlink scheme derived from the constrained multicast
takes the second place. It is shown that CRZF has the worst
performance at all SNR values. However, its peer CIMRT has
a superior performance on the expense of higher complexity
due to the need for solving a non-linear set of equations.



0.5‖h1‖(
∑
k(−μk + αki)‖hk‖ρ1k −

∑
k(−μk + αki)‖hk‖ρ

∗
1k) =

√
ζ1I(d)

0.5‖h1‖(
∑
k(−μki− αk)‖hk‖ρ1k +

∑
k(−μki− αk)‖hk‖ρ

∗
1k) =

√
ζ1R(d)

...
0.5‖hK‖(

∑
k(−μk + αki)‖hk‖ρKk −

∑
k(−μk + αki)‖hk‖ρ

∗
Kk) =

√
ζKI(d)

0.5‖hK‖(
∑
k(−μki− αk)‖hk‖ρKk +

∑
k(−μki− αk)‖hk‖ρ

∗
Kk) =

√
ζKR(d)

(26)
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Fig. 1. Energy efficiency vs average SNR.

Fig. (2) depicts the comparison between the optimal multicast
technique and constrained constellation multicast transmission
from the power minimization perspective. The considered
average SNR is10dB, and all users have the same target rate.
It can be concluded that the optimal multicast outperforms the
constrained constellation multicast for all target rates, due to
the fact that the constrained constellation multicast requires the
phase alignment to ensure the correct reception of the target
symbols.
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Fig. 2. Transmit power vs target rate.

Fig. (3) depicts the comparison between different techniques
from energy efficiency perspective with increasing the target
rates. It is clearly illustrated that CIMRT, CC-multicast and
optimal multicast have very close performance at high target
rates. Moreover, it can be concluded that CRZF has inferior
performance with respect to the other techniques.

VII. CONCLUSIONS

In this paper, we utilized jointly CSI and DI in symbol
based precoding to exploit received interfering signal as use-
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Fig. 3. Energy efficiency vs target rate

ful energy in constructive interference precoding. In these
cases, the precoding design exploits the overlap in users’
subspace instead of mitigating it. Therefore, we proposed a
new technique based on MRT to constructively correlate the
interference to enure the correct reception of data symbols.
This fact enabled us finding the connection between the
constructive interference precoding and multicast precoding
wherein no interference should be mitigated. Therefore, we
found the solution for power minimization considering two
inputs scenario: the optimal input and the constrained constel-
lation. From their closed formulations, we concluded that their
transmissions should span the subspaces of each user. From
the M-PSK constrained constellation multicast, we managed
to find that the optimal constructive interference precoding can
be expressed by solving this multicast problem assuming an
equivalent channel.
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