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ABSTRACT
Judgment aggregation investigates the problem
of how to aggregate several individuals’ judg-
ments on some logically connected propositions
into a consistent collective judgment. The major-
ity of work in judgment aggregation is devoted
to studying impossibility results, but the (so-
cial) dependencies that may exist between vot-
ers is traditionally not studied. In this paper,
we use techniques from social network analysis
to study the relations between the individuals
participating in a judgment aggregation problem
by analysing the similarity between their judg-
ments in terms of social networks. We show that
using these techniques we obtain a more fine-
grained approach than the prototype voter rule in
addition to identifying closely related groups of
agents sharing some common interests concern-
ing the given issues. We provide both theoretical
and empirical results supporting our claims, in
addition to analysing the complexity of the ap-
proach adopted.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multi-agent systems, Cooperation and coordination

General Terms
Experimentation, Theory

Keywords
Artificial social systems, Social and organizational structure,
Collective decision making

1. INTRODUCTION
The interactions within a multiagent system include co-

operation and coordination. To be able to coordinate and
cooperate, intelligent agents need to reach collective con-
sents, namely binding group decisions, over issues such as
beliefs, action and desires. Recently, it has been recognized
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that such multiagent problems can benefit from social choice
methods (see e.g. [24] for an overview). Social choice theory
studies the problem of reaching collective consent between
a group of people in the scope of economic theory. It in-
cludes voting theory, preference aggregation and judgment
aggregation.

The problem of judgment aggregation investigates how to
aggregate individual judgments on logically related proposi-
tions to a group judgment on those propositions. Examples
of groups that need to aggregate individual judgments can
be expert panels, legal courts, boards, and councils. The
problem of aggregating judgments started to attract con-
siderable attention in the last ten years, since it has been
shown to be general in the sense that it subsumes voting
theory and preference aggregation [16].

The majority of work in judgment aggregation is devoted
to studying impossibility results in the style of the work
in preference aggregation by Arrow [1, 17], leading to the
development of several aggregation rules such as majority
outcome, premise-based aggregation, and conclusion-based
aggregation [16]. These rules are all concerned with the gen-
eral problem of selecting outputs that a consistent or com-
patible [15] with individual judgments. However, the (social)
dependencies that may exist between the voting agents and
how this influences the outcome of the voting scenario is
largely neglected.

A representation of the social structure of a judgment ag-
gregation problem makes it possible to identify influential
voters in the entire group or in a subgroup of voters. Such
information can for instance be used to detect cartels in vot-
ing scenarios, or to simplify the voting problem (i.e. reduce
the number of voters), to the extreme case where a single
agent is chosen to represent the entire group. It seems that
the well-known science fiction writer Isaac Asimov had some-
thing similar in mind when he was writing the story ”Fran-
chise”, in which the election process in the United States is
controlled by super-computer Multivac, who selects a single
representative individual from the entire population as the
representative voter [2]:

“The man presented credentials, stepped into the
house, closed the door behind him and said ritual-
istically, ’Mr. Norman Muller, it is necessary for
me to inform you on the behalf of the President
of the United States that you have been chosen
to represent the American electorate on Tuesday,
November 4, 2008.”

It does not seem obvious to extract such information from
a voting scenario, merely by relying on the votes of the indi-
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vidual agents. However, we believe that a possible natural
solution to this problem can be provided by using techniques
from social network analysis (SNA) to characterise depen-
dencies between voters. SNA views social relationships in
terms of graph theory, consisting of nodes (representing in-
dividual agents within the network) and ties (which repre-
sent relationships between the agents, such as friendship,
kinship, organisational position, sexual relationships, etc.)
[22, 10].

In this paper, we explore the possibility to apply SNA to
judgment aggregation by translating a judgment aggrega-
tion problem to two social networks, depicting respectively
agreement between agents and correlation between issues.
We analyse the first network using three common measures
of node centrality from SNA: degree, closeness, and between-
ness. We proof an equivalence between the prototype vot-
ing rule and an instance of the degree centrality measure.
We further investigate the possibility to select representa-
tive voters from a judgment aggregation scenario using these
measures by performing experiments and obtain promising
results, providing strong evidence for the use of using tools
from SNA in order to analyse judgment aggregation scenar-
ios.

The paper is organised as follows: We start by discussing
related work in Section 2. In Section 3 we introduce the
basic notitions of judgment aggregation and several voting
rules, and we introduce basic terminology from social net-
work analysis in Section 4. In Section 5 we show how we
can obtain two social networks from a judgment aggrega-
tion problem using matrix operations. We use these net-
works in Section 6, where we show correspondence between
properties of the graph and different measures in judgment
aggregation. Empirical results and a complexity analysis
are discussed in Section 7; Future work and conclusions are
given in Section 8.

2. RELATED WORK
There have been several approaches that have combined

notions from graph theory with social choice theory. For
instance, [12] considers the problem of graph aggregation,
where individuals do not give a judgment over alternatives,
but instead provide a directed graph over a common set of
vertices. Judgment aggregation reduces then to computing
a single graph that best represents the information inher-
ent in this profile of individual graphs. This is considerably
different from our work, since we obtain a graph from the de-
pendencies between voters, assuming that voters give a judg-
ment over alternatives. [5] proposes a qualitative graphical
representation of preferences that reflects conditional depen-
dence and independence of preference statements under a ce-
teris paribus (all else being equal) interpretation. This does
not take into account the dependencies between individuals
that may exist based on their judgment, but only those be-
tween preferences. Salehi-Abari and Boutilier [23] take the
opposite direction than we do: Where we take social choice
theory as the starting point and apply social network theory
to it, they propose to apply social choice techniques to social
networks where agents derive utility based on both their own
intrinsic preferences and the satisfaction of their neighbors.
In [9], each voter is assume to have an argumentation net-
work that motivates its judgments, which can then be used
to select outcomes which are not just consistent, but com-
patible with the individuals argumentation network. Our

work does not assume any additional information from the
voter, which makes it considerably different.

3. JUDGMENT AGGREGATION
In this section we recall the framework of judgment aggre-

gation [16, 24], which we shall be working with. We will for-
mulate the judgment aggregation problem as binary aggrega-
tion with integrity constraints, which is shown to be equiva-
lent to judgment aggregation when the individual judgments
of the agents are complete and consistent [14]. Besides in-
troducing the basic framework, we also define several voting
rules that we will use throughout the paper.

3.1 Basic Definitions
Let N = {1, 2, . . . , n} be a finite set of agents, and let
I = {1, 2, . . . ,m} be a finite set of issues. We want to
model collective decision making problems where the group
of agents N have to jointly decide for which issues in I
to choose ”yes” and for which to choose ”no”. A ballot B ∈
{0, 1}m associates either 0 (“no”) or 1 (“yes”) with each issue
in I. We write Bj for the jth element of B. Thus, Bj = 1
denotes that the agent has accepted the jth issue, and Bj =
0 denotes that the agent has rejected it.

In general, not every possible ballot might be a feasible or
rational choice. For instance, if the issues are tasks that are
to be executed by a group of agents, then a task constraint
might mean that deciding to execute certain tasks makes it
impossible to execute other tasks.

Formally, let PS = {p1, . . . , pm} be a set of propositional
symbols, one for each issue I. An integrity constraint is
a formula IC ∈ LPS , where Lps is obtained from PS by
closing under the standard propositional connectives. Let
Mod(IC) ⊆ {0, 1}m denote the set of models of IC, i.e. the
set of rational ballots satisfying IC.

A profile is a vector of rational ballots B = (B1, . . . , Bn) ∈
Mod(IC)n, containing one ballot for each agent. We write
Bij to denote the ith agent’s choice about the jth issue,
i.e. the jth choice of ballot Bi. Since ballots are vectors
themselves, we can consider B as a matrix of size n × m.
The support of a profile B = (B1, . . . , Bn) is the set of all
ballots that occur at least once within B:

Supp(B) = {B1} ∪ . . . ∪ {Bn}.

A voting rule F : {0, 1}m×n → 2{0,1}
m

is a function that
maps each profile B to a set of ballots. This means that
an aggregation rule can have one or multiple outcomes, also
called an irresolute voting rule. A voting rule is called collec-
tively rational when all outcomes satisfy the integrity con-
straints.

One of the most well-known voting rules is the (weak)
majority rule, which accepts an issue if a weak majority of
the agents accept it:

Maj(B)j = 1 iff |{i ∈ N | Bij = 1}| ≥
⌈n

2

⌉
.

Example 3.1. Suppose a judgment aggregation scenario
consisting of six agents (a, b, c, d, e, f) voting on an agenda
composed of four issues (p, q, r, z). The agenda is subject to
the following integrity constraint: IC = (p ∧ q ∧ r)⇔ z.



Issue: p q r z
a 0 1 1 0
b 1 0 0 0
c 1 1 1 1
d 1 0 0 0
e 1 0 1 0
f 0 0 1 0

Maj 1 0 1 0

3.2 The Distance-Based Rule
The Hamming distance between two ballotsB = (B1, . . . , Bm)

and B′ = (B′1, . . . , B
′
m) is defined as the sum of the amount

of issues on which they differ:

H(B,B′) = |{j ∈ I | Bj 6= B′j}|

For example, H((1, 0, 0), (1, 1, 1)) = 2. The Hamming dis-
tance between a ballot B and a profile B is the sum of the
Hamming distances between B and the ballots in B:

H(B,B) =
∑
i∈N

H(B,Bi)

Definition 1. Given an integrity constraint IC, the distance-
based rule DBR is the following function:

DBRIC(B) = argmin
B∈Mod(IC)

∑
i∈N

H(B,Bi)

Note that the DBRIC is collectively rational by defini-
tion because it only considers outcomes in Mod(IC). It has
good social choice-theoretic properties and is one of the most
studied rules in preference aggregation. However, it has a
rather high complexity of Θp2.

3.3 The Prototype Voter Rule
Grandi and Pigozzi propose in [15] a way to minimize the

complexity of computing an outcome of a judgment aggrega-
tion problem. The space of the possible outcomes is reduced
by taking into consideration as possibilities only the ballots
proposed by the voters. This way of selecting an outcome is
a generalised dictatorship and proposed in judgment aggre-
gation under the name prototype rule [18]:

Definition 2 (Prototype Rule). The prototype rule
is the voting rule that selects those individual ballots that
minimise the Hamming distance to the profile:

PRO(B) = argmin
B∈Supp(B)

H(B,B)

The complexity of winner determination for PRO is in
O(mn logn), which is considerably better than the DBR,
but the outcomes are less optimal they are restricted to the
ballots of the voters.

4. SOCIAL NETWORK ANALYSIS
A social network usually is represented as a graph. The

vertices are the individuals, and the edges represent the so-
cial connections. In this paper, we consider the symmetric
case where social networks are represented by undirected
graphs. An edge which joins a vertex to itself is called a
loop. The number of edges that are incident to a vertex is
called the degree of a vertex. The neighborhood of a vertex
v is the set of all vertices adjacent to v.

We denote a weighted network (or weighted graph) with
G = (V,E,W ) with the vertex set V (G) = {v1, . . . , vn},
edge set E, and weight matrix W , where each edge e =
(vi, vj) is labeled with a weight wij . We assume that if
two vertices are not connected, then there exists an edge of
weight 0 connecting them. Since we only consider undirected
networks, wij = wji. We define the sum-weight si of a vertex
vi with si =

∑n
j=1 wij =

∑
u∈N(vi)

wviu, where N(vi) is the

neighborhood of vi. We denote the degree ki of a vertex vi
with ki = |N(vi)|, i.e. ki denotes the number of neighbors
of vi.

The centrality of vertices, identifying which vertices are
more ”central” than others, has been a key issue in network
analysis. Freeman [13] originally formalized three different
measures of vertex centrality: degree, closeness, and be-
tweenness. Degree is the number of vertices that a focal
vertex is connected to, and measures the local involvement
of the vertex in the network. To also take the global struc-
ture of the network into account, closeness centrality was
defined as the inverse sum of shortest distances to all other
vertices from a focal vertex. A main limitation of closeness is
the lack of applicability to networks with disconnected com-
ponents: two vertices that belong to different components
do not have a finite distance between them. Betweenness
provides a solution by assessing the degree to which a ver-
tex lies on the shortest path between any two other vertices.

These measures are originally formalised for binary graphs
[13], but we will consider recent proposal [21] that uses a
tuning parameter α to control the relative importance of
number of edges compared to the weights on the edges. We
now introduce the three centrality measures for degree (CD),
closeness (CC), and betweenness (CB).

The degree centrality measure is defined as the product
of the number of vertices that a focal vertex is connected
to, and the average weight to these vertices adjusted by the
tuning parameter. The degree centrality for a vertex i is
computed as follows:

CWα
D (i) = ki ×

(
si
ki

)α
= k

(1−α)
i × sαi (1)

where W is the weight matrix of graph, α is a positive tuning
parameter, ki is the size of the neighborhood of vertex i and
si the sum of the weights of the incident edges. If α is
between 0 and 1, then having a high degree is favorable over
weights, whereas if it is set above 1, a low degree is favorable
over weights. In Section 6 we elaborate on different levels of
α for degree centrality.

The closeness and betweenness centrality measures rely
on the identification and length of the shortest paths among
vertices in the network. Dijkstra [11] proposed an algorithm
that finds the path of least resistance, and was defined for
networks have the weights represented costs. Since weights
in our network are operationalisations of tie strength and
not the cost of them, the tie weights need to be reversed
before directly applying Dijkstra’s algorithm to identify the
shortest paths in these networks:

dWα(i, j) = min

(
1

(wih)α
+ . . .+

1

(whj)α

)
(2)

where h are intermediary vertices on paths between vertex
i and j and α is again a positive tuning parameter. Again,
α controls the relative important of edge weight compared
to number of edges. We will return to the analysis of α for



closeness and betweennees in Section 7.
We define closeness centrality and betweenness centrality

as follows:

CWα
C (i) =

[
N∑
j

dWα(i, j)

]−1

(3)

CWα
B (i) =

gWα
jk (i)

gWα
jk

(4)

where gjk is the number of binary shortest paths between
two vertices, and gjk(j) is the number of those paths that
go through vertex i.

5. TOWARDS A SOCIAL NETWORK
In this section we describe how a judgment aggregation

problem can be translated into two social networks. This
technique was originally introduced in social theory by Breiger
[8], although there it was used to analyse the membership of
people to groups. We take a slightly different approach and
use it in judgment aggregation to obtain graphs that rep-
resent agreement between voters and correlation between
issues.

5.1 Matrix Translation
In order to obtain social networks from a voting profile we

use different matrix transformations. We use the following
two types of matrices in this translation.

Definition 3 (Similarity matrix). Given a profile ma-
trix B. The similarity matrix B is obtained from B as fol-
lows:

Bij =

{
1 if Bij = 1
−1 if Bij = 0

Definition 4 (Normalised matrix). Given a similar-
ity matrix B of size n × m and A = B(BT ), where multi-
plication is ordinary (inner product) matrix multiplication.
The normalised matrix O of A is constructed as follows:

Oij =
Aij +m

2

Here we state the main result of this section, showing that
it is possible to obtain a matrix from a binary matrix that
counts the number of similarities between the rows.

Theorem 1. Let B be a profile matrix of size n×m, B the
similarity matrix of B, and O the corresponding normalised
matrix of B. Oij contains the amount of equal elements in
row i and j of B, i.e.:

Oij = |{Bik | Bik = Bjk, 1 ≤ k ≤ m}|
Proof. Suppose arbitrary rows Bi,Bj of some profile

matrix B. Let y = |{Bik | Bik = Bjk, 1 ≤ k ≤ m}| and
x = m − y. Thus, y is the amount of equal elements be-
tween rows i and j in B, and x is the amount of elements
that are unequal. Let B the similarity matrix of B and O
the normalized matrix of A = B(BT ) (Definition 4). From
the definition of inner product multiplication, it follows that
each cell of the matrix A is calculated as follows: Aij =∑m
k=1 BikBjk. From Definition 3 it follows that if Bik = Bjk,

then BikBjk = 1, and otherwise BikBjk = −1. Thus it fol-
lows that

∑m
k=1 BikBjk = y − x. Therefore Aij = y − x.

Following from applying the normalisation of Definition 4:

Oij =
Aij+m

2
= y−x+m

2
= y−x+x+y

2
= y.

After transforming a judgment aggregation profile B into
a similarity matrix B, we can perform the following inner
product multiplications to obtain two matrices. The first,
V ∗, measuring the agreement between voters, and the sec-
ond, I∗, measuring the correlation between the issues.

V ∗ = B(BT ) (5)

I∗ = BT (B) (6)

We normalise V ∗ and I∗ according to Definition 4, obtain-
ing the the voter-to-voter matrix V and the issue-to-issue
matrix I. It follows now from Theorem 1 that Vij contains
the number of equal votes between voter i and j for the
same issue. Thus, Vij denotes the number of times that
both voters i and j voted “yes” or they both voted “no” for
the same issue. Similarly, Iij contains the number of voters
that have voted the same for both issues i and j. In this
case, this means that Iij denotes the number of voters that
have voted “yes” for both issues i and j, or voted “no” for
both issues.

Example 5.1 (Continued). We can translate the ma-
trix B of Example 3.1 that corresponds to this voting profile
to a similarity matrix (Figure 1). Next, we calculate V ∗ and
I∗ using Eq. (5) and (6). We obtain the the voter-to-voter
matrix V and the issue-to-issue matrix I after normalising
(Figure 2).

p q r z
a -1 1 1 -1
b 1 -1 -1 -1
c 1 1 1 1
d 1 -1 -1 -1
e 1 -1 1 -1
f -1 -1 1 -1

Figure 1: Translating a voting profile B

a b c d e f
a 4 1 2 1 2 3
b 1 4 1 4 3 2
c 2 1 4 1 2 1
d 1 4 1 4 3 2
e 2 3 2 3 4 3
f 3 2 1 2 3 4

(a) Voter-to-voter (V)

p q r z
p 6 2 2 3
q 2 6 4 5
r 2 4 6 3
z 3 5 3 6

(b) Issue-to-issue (I)

Figure 2: Normalised voting matrices

These matrices are both symmetric with respect to their
main diagonal: If some voter i agrees with a voter j on some
issues, then j agrees with i on the same issues as well. This
implies reflexivity : a voter always agrees with itself over
every issue, and similarly for any issue. Therefore, the main
diagonal of the voter matrix is always equal to the number
of issues, and consequently the main diagonal of the issues
matrix is always equal to the number of voters.

5.2 Relational Graphs
The voter-to-voter matrix V and the issue-to-issue matrix

I can be represented as two undirected, weighted graphs. In
such a graph, a voter (respectively an issue) is represented by



a node, and an edge represented the agreement between two
voters (resp. correlation between issues). Formally, an edge
(i, j) connects two vertices i and j if the matrix entry Vij
(resp. Iij) has a value larger than 0. We denote the obtained
graphs with GV = (VV , EV ,WV ) and GI = (VI , EI ,WI),
respectively. Note that the V and I matrices are the same as
the weight matrices for the corresponding graphs, i.e. V =
WV and I = WI . We call the graph GV the voter graph and
the graph IV the issue graph.

Example 5.2 (Continued). Figure 3 shows the graphs
resulting from the matrices depicted in Figure 2.

2

3 4

3
2

2
3

3

3

b d

a c

f e

(a) Voter graph (GV )

5

3 3

2

2 4
z

q

p r

(b) Issue graph (GT )

Figure 3: Voting graphs

Figure 3a shows that the strongest connection is between
agents b and d, representing the fact that their ballots are
equivalent. Differently, agent c can be considered an outlier
due to its weak connections with the other agents. For the
issue graph, the issue z seems to be mostly correlated with
other issues and therefore has a central position.

For the sake of readability, the edges with a weight of 1
have not been labeled in Figure 3a and reflexive edges have
been omitted in both figures.

Due to space limitations, we use the the remainder of the
paper to discuss the voter-to-voter matrix and the corre-
sponding voter graph. We discuss further work related to
the issue-to-issue matrix and the issue graph in the conclu-
sions (Section 8).

6. THEORETICAL ANALYSIS
In this section we relate the Hamming distance between

ballots and profiles to the voter graph, and we discuss a cor-
respondence between the prototype voting rule and the de-
gree centrality measure, introduced in Section 4. We start
out with a straightforward equivalence between the Ham-
ming distance between two voters and the edge that con-
nects the two voters in the corresponding voting graph.

Lemma 1. The Hamming distance between two ballots Bi
and Bj is equal to m−wij in the corresponding voter graph
GV , i.e. H(Bi, Bj) = m− wij.

Proof. Suppose two ballots Bi and Bj containing m is-
sues. Suppose y to be the amount of issues on which the
agents i and j agree. From Theorem 1 it follows that the
voter-to-voter normalised matrix V , constructed from a pro-
file B containing Bi and Bj , has Oij = y. Let GV be the
voter graph constructed from V ; The weight of the edge be-
tween the vertices i and j in GV is y. The Hamming distance
H(Bi, Bj) = m− y, hence H(Bi, Bj) = m− wij .

We use this lemma to obtain an equivalence between the
Hamming distance to a profile and the total weight of the
corresponding node in the voter graph.

Lemma 2. The Hamming distance between a ballot Bi
and a profile B is equal to mn − si, where si is the sum
of the weights of the incident edges of vertex i in the voter
graph constructed from B:

H(Bi,B) = mn− si
Proof. Suppose some profile B, a ballot Bi ∈ B and a

voter graph GV constructed from B. The Hamming distance
between Bi and B is∑

j∈N

H(Bi, Bj)

=
∑
j∈N

m− wij (Lemma 1)

= mn−
∑
j∈N

wij

= mn− si

Example 6.1 (Continued). In Example 3.1, we have
H(a, b) = 3 and H(a,B) = 11. In the corresponding graph
in Figure 3a we have that wab = 1 and thus m−wab = 4−1 =
3, which corresponds to the Hamming distance between a and
b. Moreover, sa = 13 (including the reflexive weight of 4), so
mn−sa = 24−13 = 11, which corresponds to the Hamming
distance between a and the profile B.

Since the prototype voter rule selects the voter that min-
imizes the distance with the profile, we can obtain the fol-
lowing equivalence:

Lemma 3. The prototype rule PRO (Definition 2) selects
the voters corresponding to the maximum total weight ver-
tices in the voter graph, i.e.:

PRO(B) = argmax
i∈VV

si.

Proof.

PRO(B) = argmin
B∈Supp(B)

H(B,B) (Definition 2)

= argmin
i∈VV

(mn− si) (Lemma 2)

= argmax
i∈VV

si

Next, we obtain that the average voter rule corresponds to
the node with the highest degree centrality when the tuning
parameter α = 1:

Theorem 2. The prototype rule select those individual
ballots that have the maximal degree centrality value when
α = 1. Suppose α = 1:

PRO(B) = argmax
i∈VV

CWα
D (i)

Proof. Follows directly from Eq.(1) and Lemma 3



1 2 3 4 5
a 0 1 1 1 1
b 1 0 0 0 0
c 0 1 1 0 0
d 0 0 0 1 1

Maj: 0 ? ? ? ?
AVR: 0 1 1 1 1

0 1 1 0 0
0 0 0 1 1

(a) Profile

2 2

1

3 3

b

a

c d

(b) Voter graph

Figure 4: Judgment aggregation example

6.1 Varying the tuning parameter
We have shown a correspondence between the the proto-

type voter and the degree centrality when the tuning param-
eter α = 1, but we are interested in the effect for varying
α as well. Consider the voting scenario together with the
majority outcomes and the prototype voter outcomes that
are depicted in Figure 4a and the corresponding voter graph
in Figure 4b. The outcome of the degree centrality for vary-
ing α are depicted in Figure 5. As can be seen from the
table, for α = 1, the degree centrality measure corresponds
to the si measure, so node a, c and d are all chosen as the
most representative voter. When α < 1 the amount of con-
nections play are larger role and only c and d are chosen as
the winner, while for α > 1 the weight of the edges play are
larger role and a is picked as the winner. Thus, the intuition
seems to be that in some cases, using the degree centrality
we are able to obtained a more fine-grained approach than
using the prototype voter rule.

It is interesting to compare these outcomes with the vec-
tor of “average votes” ( 1

4
, 2
4
, 2
4
, 2
4
, 2
4
), showing for each issue

the proportion of voters who chose 1 rather than 0. This
demonstrates that only the first issue is relatively uncrit-
ical, but that it is not trivial to decide on the other four
issues. This is in line with the outcomes of both the major-
ity voter and the prototype voter, but as we have shown the
degree centrality is able to give a more specific outcome. It
thus seems the structure of the graph can be exploited to
fine-tune distance-based outcomes. In the next section we
will try to strengthen these intuitions by performing several
experiments.

Vertex si CWα
D when α =

0 0.5 1 1.5

a 4 2 2.5 4 6.3

b 2 2 2 2 2

c 4 3 2.9 4 5.5

d 4 3 2.9 4 5.5

Figure 5: Degree centrality scores when different values of
α are used.

7. EMPIRICAL ANALYSIS
To evaluate the outcomes of the centrality measures, we

provide an empirical analysis in this section. We compare
the degree, closeness, and betweenness measures with the
majority and the prototype rule.

7.1 Experimental Setup
The setup of the experiment that we have performed1

consists of a judgment aggregation problem with n voters
and m issues, with the integrity constraint IC = p1 ∧ p2 ∧
. . . pm−1 ↔ pm. The votes are generated pseudo-randomly
such that all votes are complete and the generated ballots
are consistent with the constraint.

In order to compare the different measures we use the
distance-based rule (Definition 1) as the base measure. We
compare the outcome of each measure with the base measure
using the Hamming Distance.

If the distance-based rule produces multiple outcomes, we
consider the distance between a measure and the base rule to
be the minimum distance between the result of the measure
and the set of results of the base rule. For instance, if the
base measure outcome is {[0, 1, 1], [1, 1, 1]} and the majority
outcome is {[0, 1, 0]}, then the distance between the two
outcomes is 1. If a measure produces multiple outcomes, we
measure the distance to the base measure for each result.
All these distances are stored in a list LM for each measure
M .

The experiment is repeated for E times, after which each
list LM is used to compute the mean, the standard devia-
tion σ and the average number of outcomes per benchmark

Oavg, i.e. Oavg = |LM |
E

for the measure M . The value Oavg
can be seen as a measure for resoluteness: The closer this
number is to 1, the more resolute the voting rule is. Addi-
tionally, for the majority measure we also compute the ratio
of inconsistent outcomes, which we denote with ⊥.

7.2 Results
Since the centrality measures used in this paper are based

on graph theory, these measures tend to produce interesting
results on large graphs due to the more dependencies and
similarities between the agents. Initial tests have shown that
the centrality measures produce the best results when the
tuning parameter α = [1, 4].

Figure 6 shows an experiment with a relatively large group
of 25-31 voters and 5-10 issues. We use ranges for the num-
ber of voters and issues to avoid that the outcome depends
on the structure of the voting problem (for instance, if the
number of voters is uneven, the majority rule will always
be resolute). From this figure it can be seen that, as shown
in Section 6, the prototype rule corresponds the degree cen-
trality measure with the tuning parameter α = 1. When
the value of α increases from 1 to 4, the measure becomes
slightly more resolute but also less precise. While resolute-
ness increases with about 4.5%, the mean distance increases
with about 47%. So the distance increases about ten times
as much as the resoluteness. This leads us to the conclu-
sion that increasing α does not lead to better results for the
centrality degree.

When we consider the closeness centrality measure, we see
that this measure becomes more precise when the value of
α increases, while retaining resoluteness. In fact, when α
increases from 1 to 4, the mean decreases with about 48%,
while the resoluteness stays constant. In the end, the mea-
sure is only slightly less precise than the prototype voter
and much more resolute. Intuitively, it makes sense that

1The experiment has been coded in Java and can be found
on the web, but we have left it out in this version to preserve
anonymity of the authors. They will appear in the final
version.



closeness performs well for higher α, because few edges with
lower weights are more likely to correspond to similarity in
voting than more edges with higher weights, simply because
increasing the edges between two nodes makes it less likely
that the weights still correspond to similarities of the two
nodes. For instance, if two nodes are connected by an edge
with weight 1, it is sure that the corresponding agents have
voted the same for one issue, but if there are two edges with
a weight of 2 between these nodes, there is no guarantee
that the agents corresponding to these nodes have reached
any agreement because this depends on the middle agent as
well.

Lastly, we point out that the betweenness measure does
not seem to perform very well. This can be explained by the
fact that a great proportion of nodes in a network generally
does not lie on a shortest path between any two other nodes,
and therefore receives the same score of 0 [21].

To study the resoluteness of the closeness measure in iso-
lation, we have compared it to the majority measure while
varying the number of agents and the number of issues in
the range [2-10]. The results of this comparison are depicted
in Figure 7. The left chart contains the average number of
outcomes in the case of the majority measure. As can be
seen, the majority rule tends to be irresolute when the num-
ber of voters is even, and the number of outcomes seem to
increase exponentially with the number of issues. The right
chart shows that the amount of outcomes of the closeness
centrality measure is consistently lower.

From our empirical results we can confirm that the de-
gree centrality measure corresponds to the PRO voter when
α = 1. Moreover, in the case of closeness centrality, in-
creasing α results in less outcomes, while the outcomes re-
main generally acceptable. Lastly, the betweenness central-
ity seems unsuitable as a voting rule.

Voting rule α mean σ Oavg ⊥
Majority - 0.03 0.17 1.43 0.03
PRO - 0.17 0.39 1.38 -
Degree 1 0.17 0.39 1.38 -

2 0.21 0.45 1.34 -
3 0.24 0.51 1.32 -
4 0.25 0.53 1.32 -

Closeness 1 0.44 0.62 1.02 -
2 0.28 0.5 1.04 -
3 0.24 0.46 1.05 -
4 0.23 0.48 1.02 -

Betweenness 1 2.09 1.15 10.13 -
2 2.05 1.2 4.16 -
3 2.25 1.26 2.13 -
4 2.58 1.27 1.86 -

Figure 6: Parameters: E = 5000, n ∈ {25, . . . , 31}, m ∈
{5, . . . , 10}

7.3 Complexity Analysis
The time complexity of computing the voter matrix us-

ing the standard schoolbook multiplication is O(n2m). The
time complexity of computing the degree is O(n2), and that
of the closeness and betweenness is O(nm+n2 logn) in both
cases [20] [7].

Therefore the time complexity to compute the outcome of
a judgment aggregation problem using the centrality mea-

sures is dominated by the matrix multiplication in all cases,
resulting in a time complexity of O(n2m), which roughly
corresponds to a cubic time complexity of O(n3), assum-
ing that the number of issues is not much larger than the
number of voters, or at least in the same magnitude.

8. CONCLUSIONS AND FUTURE WORK
To the best of our knowledge, the present paper is the first

attempt to model the (social) relations between judgment
aggregation using techniques from social network analysis.
We have reformulated a classical technique that analyses
the membership of people to groups [8] and applied them to
judgment aggregation, which allows us to model agreement
between agents and correlation between voters.

We have studied the agreement between agents as a social
graph, and showed that well-known notions in judgment ag-
gregation such as Hamming distance and the prototype voter
can be equivalently formulated using the graph.

We empirically analysed how degree, closeness and be-
tweenness centrality measures perform with respect to the
distance-based rule and the prototype voter rule. From the
results it can be noticed that the degree centrality measure
approximates quite well the prototype voting rule, the close-
ness centrality measure turns out to be more resolute but a
little less accurate when using a large enough tuning param-
eter α, and the betweenness centrality measure is unsuited
to be used to solve judgment aggregation problems.

Although we have provided both theoretical and empirical
results, much remains to be done. We have restricted the
theoretical analysis to the degree centrality with the tuning
parameter α = 1, but we plan to investigate whether similar
results can be obtained for the other two measures, closeness
and betweenness, as well.

We have focused on the relations that exist between the
agents in a judgment aggregation scenario, but as we have
seen in Section 5.2, it is possible to perform a similar analysis
on the issues as well. We deem interesting to study whether
the emerging relations between the issues are correlated to
the given integrity constraints, and whether some relations
between the issues may emerge even when no integrity con-
straints were given (i.e.: when the correlation between two
issues is not common knowledge but some of the agents are
aware of it).

Last but not least, depending on the findings concern-
ing the importance of relations between the agents and the
issues, we also aim at providing additional judgment aggre-
gation rules exploiting the emerging relations in a profile.
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