Irreducible decomposition for local representations of quantum Teichmüller space

Jérémy Toulisse

April 22, 2014

Abstract

We give an irreducible decomposition of the so-called local representations HBL07 of the quantum Teichmüller space $\mathcal{T}_{q}(\Sigma)$ where Σ is a punctured surface of genus $g>0$ and q is a N-th root of unity with N odd.

Let Σ be an oriented surface of genus $g>0$ with s punctures v_{1}, \ldots, v_{s} such that $2 g-2+s>0$ (this condition is equivalent to the existence of an ideal triangulation of Σ, ie. a triangulation whose vertices are exactly the v_{i}). Let $\mathcal{T}(\Sigma)$ be the Teichmüller space of Σ, that is the moduli space of complete hyperbolic metrics on Σ. Given λ an ideal triangulation of Σ, W.P. Thurston Thu98 constructed a parameterization of $\mathcal{T}(\Sigma)$ by associating a strictly positive real number to each edge λ_{i} of the ideal triangulation, $i \in\{1, \ldots, n\}$ (where $n=6 g-6+3 s$ is the number of edges of λ). These coordinates are called shear coordinates associated to λ. In this coordinates system, the coefficients of the Weil-Petersson form on $\mathcal{T}(\Sigma)$ depend only on the combinatoric of λ and are easy to compute.

For a parameter $q \in \mathbb{C}^{*}$, L.O. Chekhov, V.V. Fock FC99 and independently R. Kashaev Kas98 defined the so-called quantum Teichmüller space $\mathcal{T}_{q}(\Sigma)$ of Σ (the construction of R. Kashaev differs a little from the one of L.O. Chekhov and V.V. Fock), which is a deformation of the Poisson algebra of rational functions over $\mathcal{T}(\Sigma)$. This algebraic object is obtained by gluing together a collection of non-commutative algebra $\mathcal{T}_{q}(\lambda)$ (called Chekhov-Fock algebra) canonically associated to each ideal triangulation of Σ. A representation of $\mathcal{T}_{q}(\Sigma)$ is then a family of representation $\left\{\rho_{\lambda}: \mathcal{T}_{q}(\lambda) \rightarrow \operatorname{End}(V)\right\}_{\lambda \in \Lambda(\Sigma)}$, where $\Lambda(\Sigma)$ is the space of all ideal triangulations of Σ, and ρ_{λ} and $\rho_{\lambda^{\prime}}$ satisfy compatibility conditions whenever $\lambda \neq \lambda^{\prime}$. For $\lambda \in \Lambda(\Sigma)$, the representation ρ_{λ} is an avatar of the representation of $\mathcal{T}_{q}(\Sigma)$ and carries almost all the information.

When q is a N-th root of unity, $\mathcal{T}_{q}(\lambda)$ admits finite-dimensional representations. In this paper, we will consider N odd. The irreducible representations of $\mathcal{T}_{q}(\lambda)$ have been studied in BL07]. In particular, they show that an irreducible representation of $\mathcal{T}_{q}(\lambda)$ is classified (up to isomorphism) by a weight $x_{i} \in \mathbb{C}^{*}$ assigned to each edge λ_{i}, a choice of N-th root $p_{j}=\left(x_{1}^{k_{j_{1}}} \ldots x_{n}^{k_{j_{n}}}\right)^{1 / N}$ associated to each puncture v_{j} (where $k_{j_{i}}$ is the number of times a small simple loop around
v_{j} intersects $\left.\lambda_{i}\right)$ and a square root $c=\left(p_{0} \ldots p_{s}\right)^{1 / 2}$. Such a representation has dimension $N^{3 g-3+s}$.

In HBL07, the authors introduced another type of representations of $\mathcal{T}_{q}(\lambda)$, called local representations, which are well behaved under cut and paste. A local representation of $\mathcal{T}_{q}(\lambda)$ is defined by a an embedding into the tensorial product of triangle algebras (see definitions below). The local representations of $\mathcal{T}_{q}(\lambda)$ are classified (up to isomorphism) by a weight $x_{i} \in \mathbb{C}^{*}$ associated to each edge λ_{i} and a choice of N-th root $c=\left(x_{1} \ldots x_{n}\right)^{1 / N}$. Such a representation has dimension $N^{4 g-4+2 s}$.

It follows that a local representation of $\mathcal{T}_{q}(\lambda)$ is not irreducible. In this paper, we adress the question of the decomposition of a local representation into its irreducible components. In particular, we prove the following result:

Theorem 1. Let λ be an ideal triangulation of Σ and ρ be a local representation of $\mathcal{T}_{q}(\lambda)$ classified by weight $x_{j} \in \mathbb{C}^{*}$ associated to each edge λ_{j} and a choice of N-th root $c=\left(x_{1} \ldots x_{n}\right)^{1 / N}$. We have the following decomposition:

$$
\rho=\bigoplus_{i \in \mathcal{I}} \rho^{(i)} .
$$

Here, $\rho^{(i)}$ is an irreducible representation classified by the same x_{j}, a N-th root $p_{j}^{(i)}=\left(x_{1}^{k_{j_{1}}} \ldots x_{n}^{k_{j_{n}}}\right)^{1 / N}$ associated to each puncture, and the same c. Moreover, for each choice of N-th root $p_{j}=\left(x_{1}^{k_{j_{1}}} \ldots x_{n}^{k_{j_{n}}}\right)^{1 / N}$ for each puncture and $c=$ $\left(p_{0} \ldots p_{s}\right)^{1 / 2}$, there exists exactly N^{g} elements $i \in \mathcal{I}$ with $p_{j}^{(i)}=p_{j}$ for all $j \in$ $\{0, \ldots, s\}$.

This result may be used to define representations of the so-called Kauffman skein algebra $\mathcal{S}^{A}(\bar{\Sigma})$ Tur91 (where $\bar{\Sigma}$ is the surface Σ without marked points) which corresponds to a quantization by deformation of the character variety

$$
\left.\mathcal{R}:=\operatorname{Hom}\left(\pi_{1}(\bar{\Sigma}), P S L(2, \mathbb{C})\right) / / P S L(2, \mathbb{C})\right)
$$

where $\operatorname{PSL}(2, \mathbb{C})$ acts by conjugation on the morphisms and the double slash means that we take the quotient in the sense of Geometric Invariant Theory. In BW11, Theorem 1], the authors constructed a morphism

$$
T r_{\omega}(\lambda): \mathcal{S}_{A}(\Sigma) \longrightarrow \hat{\mathcal{Z}}_{\omega}(\lambda)
$$

where $q=\omega^{4}, A=\omega^{-2}$ and $\hat{\mathcal{Z}}_{\omega}(\lambda)$ is an algebra of non-commutative rational fractions such that $\mathcal{T}_{q}(\lambda)$ consists of rational fractions in $\hat{\mathcal{Z}}_{\omega}(\lambda)$ involving only even powers of the variables. This morphism, composed with a representation ρ of $\mathcal{T}_{q}(\lambda)$ is studied in BW12a and BW12b to define a new kind of representations of $\mathcal{S}^{A}(\Sigma)$. However, if one wants to define representation of $\mathcal{S}^{A}(\bar{\Sigma})$ in the same way, one has to consider the direct sum of N^{g} irreducible components of a local representation $\rho: \mathcal{T}^{q}(\lambda) \rightarrow \operatorname{End}(V)$ arising in the decomposition of Theorem 1 and find a subspace $E \subset V$ stable by $\rho \circ \operatorname{Tr}_{\omega}(\lambda)$ such that $\left(\rho \circ T r_{\omega}(\lambda)\right)_{\left.\right|_{E}}$ defines a representation of $\mathcal{S}^{A}(\bar{\Sigma})$ (see BW14 for the construction). Hopefully, this representation of $\mathcal{S}^{A}(\bar{\Sigma})$ should be used to define a more intrinsic version of
the Kashaev-Baseilhac-Benedetti TQFT (see Kas95, Kas99, BB04, BB05] and [BB07]).

In the first section, we recall the definition of the Chekhov-Fock algebra, the quantum Teichmüller space, the triangle algebra and the local representations. In the second one, we prove the Theorem [The proof is done in two steps: we first prove the result for a special triangulation λ_{0} and special weights; we then extend to the general case.

Acknowledgment : I would like to thank Francis Bonahon for the time he spent explaining me the subtilities of the quantum Teichmüller theory. This work has been supported by a "Summer Regs" grant from GEAR in summer 2013.

1 The Chekhov-Fock algebra and the irreducible representations of $\mathcal{T}_{q}(\Sigma)$

The results of this section come from BL07 and HBL07. From now, for $n \in \mathbb{N}$, define $\mathbb{N}_{n}:=\mathbb{Z} / n \mathbb{Z}$ and denote by $\mathcal{U}(N)$ the group of N-th root of unity.

1.1 The Chekhov-Fock algebra

Let λ be an ideal triangulation of Σ. The Chekhov-Fock algebra $\mathcal{T}_{q}(\lambda)$ associated to λ is the algebra generated by the elements $X_{i}^{ \pm 1}$ associated to each edge λ_{i} of the triangulation λ. These elements are subjects to the relations:

$$
X_{i} X_{j}=q^{\sigma_{i j}} X_{j} X_{i}
$$

where the coefficients $\sigma_{i j}$ are the coefficients of the Weil-Petersson form in the shear coordinates associated to λ and depend only on the combinatoric of λ. Namely, we have $\sigma_{i j}=a_{i j}-a_{j i}$ where $a_{i j}$ is the number of angular sector delimited by λ_{i} and λ_{j} in the faces of λ with λ_{i} coming before λ_{j} counterclockwise. In practice, elements of $\mathcal{T}_{q}(\lambda)$ are just Laurent polynomials in the variables X_{i} satisfying non-commutativity conditions. We will sometimes denote $\mathcal{T}_{q}(\lambda)$ by $\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]_{q}$ to reflect this fact.

Let $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ be a multi-index; to a monomial X composed of a product of $X_{i}^{k_{i}}$, we associate its quantum ordering:

$$
[X]:=q^{-\sum_{i<j} \sigma_{i j}} X_{1}^{k_{1}} \ldots X_{n}^{k_{n}} .
$$

It allows us to associate a monomial $X_{\mathbf{k}} \in \mathcal{T}_{q}(\lambda)$ to each each multi-index $\mathbf{k} \in \mathbb{Z}^{n}$.

To study finite-dimensional representations of $\mathcal{T}_{q}(\lambda)$, one needs to determine its center.

Proposition 1 (BL07, Proposition 15). The center of $\mathcal{T}_{q}(\lambda)$ is generated by:

- X_{i}^{N} for each $i \in\{1, \ldots, n\}$.
- For each puncture v_{j}, the puncture invariant P_{j} associated to the multiindex $\boldsymbol{k}_{j}=\left(k_{j_{1}}, \ldots, k_{j_{n}}\right)\left(\right.$ where $k_{j_{i}}$ is the number of intersections of λ_{i} with a small simple loop around v_{j}).
- The element H associated to the multi index $\boldsymbol{k}=(1, \ldots, 1)$.

Note that $\left[P_{1} \ldots P_{s}\right]=H^{2}$.

1.2 Triangle algebra

Let T be a disk with three punctures $v_{1}, v_{2}, v_{3} \in \partial T$ endowed with the natural triangulation λ composed of three counterclokwise directed edges λ_{1}, λ_{2} and λ_{3} (as in Figure 11).

Figure 1: The triangle T
Define the triangle algebra as the the Chekhov-Fock algebra $\mathcal{T}:=\mathcal{T}_{q}(\lambda)$. It is generated by $X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, X_{3}^{ \pm 1}$ with relations $X_{i} X_{i+1}=q^{2} X_{i+1} X_{i}$ for all $i \in \mathbb{N}_{3}$. The center of \mathcal{T} is given by $X_{1}^{N}, X_{2}^{N}, X_{3}^{N}$ and $H=q^{-1} X_{1} X_{2} X_{3}$. Irreducible finite dimensional representations of \mathcal{T} have dimension N and are classified (up to isomorphism) by a choice of weight $x_{i} \in \mathbb{C}^{*}$ associated to each edge λ_{i} and a central charge, that is a choice of a N-th root $c=\left(x_{1} x_{2} x_{3}\right)^{1 / N}$ (see HBL07, Lemma 2]).

To be more precise, for V the N-dimensional complex vector space generated by $\left\{e_{1}, \ldots, e_{N}\right\}$ and ρ an irreducible repesentation of \mathcal{T} classified by $x_{1}, x_{2}, x_{3} \in$ \mathbb{C}^{*} and $c=\left(x_{1} x_{2} x_{3}\right)^{1 / N}$. Up to isomorphism, the action of \mathcal{T} on V defined by ρ is given by:

$$
\left\{\begin{array}{l}
X_{1} e_{i}=\widetilde{x}_{1} q^{2 i} e_{i} \\
X_{2} e_{i}=\widetilde{x}_{2} e_{i+1} \\
X_{3} e_{i}=\widetilde{x}_{3} q^{1-2 i} e_{i-1}
\end{array}\right.
$$

where \widetilde{x}_{i} is an N-th root of x_{i} such that $\widetilde{x}_{1} \widetilde{x}_{2} \widetilde{x}_{3}=c$. Note that, up to isomorphism, ρ is independent of the choice of the N-th root \widetilde{x}_{i} with $\widetilde{x}_{1} \widetilde{x}_{2} \widetilde{x}_{3}=c$.

In particular, for the representation ρ classified by $x_{1}=x_{2}=x_{3}=1$ and $c \in \mathcal{U}(N)$, as $\rho\left(X_{i}\right)^{N}=I d_{V}$, the spectrum of $\rho\left(X_{i}\right)$ is a subset of $\mathcal{U}(N)$. For $h \in \mathcal{U}(N)$, denote by $V_{h}\left(X_{i}\right)$ the eigenspace of $\rho\left(X_{i}\right)$ associated to the eigenvalue h. We have the following lemma which will be usefull in the next section:

Lemma 1. For each $i \in\{1,2,3\}$ and $h \in \mathcal{U}(N), \operatorname{dim}\left(V_{h}\left(X_{i}\right)\right)=1$.

Proof. We use the explicit form of the representation ρ in $V=\operatorname{span}\left\{e_{1}, \ldots, e_{N}\right\}$. Take $\widetilde{x}_{1}=\widetilde{x}_{2}=1$ and $\widetilde{x}_{3}=c$.

For $i=1$, one sees that $V_{h}\left(X_{1}\right)=\operatorname{span}\left\{e_{k}\right\}$ where $h=q^{2 k}$.
For $i=2$, the vector $\alpha_{k}:=\sum_{i \in \mathbb{N}_{N}} q^{-2 k i} e_{i}$ satisfies $X_{2} \alpha_{k}=q^{2 k} \alpha_{k}$ and $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ form a basis of V. Then $V_{h}\left(X_{2}\right)$ is generated by α_{k}.

For $i=3$, we use the fact that $X_{1} X_{2} X_{3} e_{i}=c e_{i}$, where c, the central charge of ρ, lies in $\mathcal{U}(N)$.

1.3 Local representation of $\mathcal{T}_{q}(\lambda)$

Let λ be an ideal triangulation of Σ. Such a triangulation is composed of m faces T_{1}, \ldots, T_{m} and each face T_{j} determines a triangle algebra \mathcal{T}_{j} whose generators are associated to the three edges of T_{j}. It provides a canonical embedding \mathfrak{i} of $\mathcal{T}_{q}(\lambda)$ into $\mathcal{T}_{1} \otimes \ldots \otimes \mathcal{T}_{m}$ defined on the generators as follow:

- $\mathfrak{i}\left(X_{i}\right)=X_{j i} \otimes X_{k i}$ if λ_{i} belongs to two distinct triangles T_{j} and T_{k} and $X_{j i} \in \mathcal{T}_{j}, X_{k i} \in \mathcal{T}_{k}$ are the generators associated to the edge $\lambda_{i} \in T_{j}$ and $\lambda_{i} \in T_{k}$ respectively.
- $\mathfrak{i}\left(X_{i}\right)=\left[X_{j i_{1}} X_{j i_{2}}\right]$ if λ_{i} corresponds to two sides of the same face T_{j} and $X_{j i_{1}}, X_{i j_{2}} \in \mathcal{T}_{j}$ are the associated generators.

Now, a local representation of $\mathcal{T}_{q}(\lambda)$ is a representation which factorizes as $\left(\rho_{1} \otimes \ldots \otimes \rho_{m}\right) \circ \mathfrak{i}$ where $\rho_{i}: \mathcal{T}_{i} \rightarrow V_{i}$ is an irreducible representation of the triangle algebra \mathcal{T}_{i}. In particular, such a representation has dimension N^{m} where $m=4 g-4+2 s$ is the number of faces of the triangulation.

1.4 Classification of these representations

Here we recall [BL07, Theorem 21] and HBL07, Proposition 6] respectively:
Theorem 2. (F. Bonahon, X. Liu) An irreducible representation of $\mathcal{T}_{q}(\lambda)$ is determined by its restriction to the center of $\mathcal{T}_{q}(\lambda)$ and is classified by a non-zero complex number x_{i} associated to each edges λ_{i}, for each puncture v_{j}, a choice of a N-th root $p_{j}=\left(x_{1}^{k_{j_{1}}} \ldots x_{n}^{k_{j_{n}}}\right)^{1 / N}$ and a choice of a square root $c=\left(p_{0} \ldots p_{s}\right)^{1 / 2}$.

Such a representation satisfies:

- $\rho\left(X_{i}^{N}\right)=x_{i} I d$,
- $\rho\left(P_{j}\right)=p_{j} I d$,
- $\rho(H)=c I d$.

Theorem 3. (H. Bai, F. Bonahon, X. Liu) Up to isomorphism, a local representation of $\mathcal{T}_{q}(\lambda)$ is classified by a non-zero complex number x_{i} associated to the edge λ_{i} and a choice of a N-th root $c=\left(x_{1} \ldots x_{n}\right)^{1 / N}$. Such a representation satisfies:

- $\rho\left(X_{i}^{N}\right)=x_{i} I d$,
- $\rho(H)=c I d$.

1.5 The quantum Teichmüller spaces and its representations

If one wants to quantize the Teichmüller space, he has to do it in a canonical way. The definition of the Chekhov-Fock algebra $\mathcal{T}_{q}(\lambda)$ involves the choice of an ideal triangulation. So we have to understand the behavior when one changes from an ideal triangulation λ to another one λ^{\prime}. Set $\mathcal{T}_{q}(\lambda)=\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]_{q}$ and $\mathcal{T}_{q}\left(\lambda^{\prime}\right)=\mathbb{C}\left[X_{1}^{\prime \pm 1}, \ldots, X_{n}^{\prime \pm 1}\right]_{q}$. These algebras admit a division algebras, denoted by $\hat{\mathcal{T}}_{q}(\lambda)$ and $\hat{\mathcal{T}}_{q}\left(\lambda^{\prime}\right)$ respectively, consisting of rational fractions in the variables X_{i} (respectively X_{i}^{\prime}) satisfying some non-commutativity relations.

For each pair of ideal triangulation λ and λ^{\prime}, L.O. Chekhov and V.V. Fock constructed coordinates change isomorphisms

$$
\Psi_{\lambda \lambda^{\prime}}^{q}: \hat{\mathcal{T}}_{q}\left(\lambda^{\prime}\right) \longrightarrow \hat{\mathcal{T}}_{q}(\lambda),
$$

which are the unique isomorphism satisfying naturals conditions (as for example $\Psi_{\lambda \lambda^{\prime \prime}}^{q}=\Psi_{\lambda \lambda^{\prime}}^{q} \circ \Psi_{\lambda^{\prime} \lambda^{\prime \prime}}^{q}$ for each $\lambda, \lambda^{\prime}$ and $\lambda^{\prime \prime}$ ideal triangulations of Σ). See Liu09, for more details and explicit formulae of $\Psi_{\lambda \lambda^{\prime}}^{q}$.

Now, the quantum Teichmüller space $\mathcal{T}_{q}(\Sigma)$ is defined by:

$$
\mathcal{T}_{q}(\Sigma):=\bigsqcup_{\lambda \in \Lambda(\Sigma)} \hat{\mathcal{T}}_{q}(\lambda) / \sim,
$$

where $\Lambda(\Sigma)$ is the set of ideal triangulation of Σ, and the equivalence relation \sim identifies each pair of $\hat{\mathcal{T}}_{q}(\lambda)$ and $\hat{\mathcal{T}}_{q}\left(\lambda^{\prime}\right)$ by the isomorphism $\Psi_{\lambda \lambda^{\prime}}^{q}$. Note that, as each coordinates change $\Psi_{\lambda \lambda^{\prime}}^{q}$ is an algebra isomorphism, $\mathcal{T}_{q}(\Sigma)$ inherits an algebra structure, and the $\mathcal{\mathcal { T }}_{q}(\lambda)$ can be thought as "global coordinates" on $\mathcal{T}_{q}(\Sigma)$.

A natural definition for a finite dimensional representation of $\mathcal{T}_{q}(\Sigma)$ would be a family of finite dimensional representation $\left\{\rho_{\lambda}: \mathcal{\mathcal { T }}_{q}(\lambda) \longrightarrow \operatorname{End}\left(V_{\lambda}\right)\right\}_{\lambda \in \Lambda(\Sigma)}$ such that for each pair of ideal triangulation λ and $\lambda^{\prime}, \rho_{\lambda^{\prime}}$ is isomorphic to $\rho_{\lambda} \circ \Psi_{\lambda, \lambda^{\prime}}^{q}$. Note that, as pointed out in [HBL07, Section 4.2], there exists no algebra homomorphism $\rho_{\lambda}: \hat{\mathcal{T}}_{q}(\lambda) \longrightarrow \operatorname{End}\left(V_{\lambda}\right)$ for V_{λ} finite dimensional. In fact, as $\hat{\mathcal{T}}_{q}(\lambda)$ is infinite dimensional as a vector space and $\operatorname{End}\left(V_{\lambda}\right)$ is finite dimensional, such a homomorphism ρ_{λ} would have non-zero kernel. Hence, there would exists elements $x \in \mathcal{T}_{q}(\lambda)$ such that $\rho_{\lambda}(x)=0$ and so, $\rho_{\lambda}\left(x^{-1}\right)$ would make no sense.

So one defines a local representation (respectively irreducible representation) of $\mathcal{T}_{q}(\Sigma)$ as a family of representation $\left\{\rho_{\lambda}: \mathcal{T}_{q}(\lambda) \longrightarrow \operatorname{End}\left(V_{\lambda}\right)\right\}_{\lambda \in \Lambda(\Sigma)}$ such that for each $\lambda, \lambda^{\prime} \in \Lambda(\Sigma), \rho_{\lambda}$ is a local representation (respectively irreducible representation) of $\mathcal{T}_{q}(\lambda)$, and $\rho_{\lambda^{\prime}}$ is isomorphic (as representation) to $\rho_{\lambda} \circ \Psi_{\lambda \lambda^{\prime}}^{q}$ whenever $\rho_{\lambda} \circ \Psi_{\lambda \lambda^{\prime}}^{q}$ makes sense. We say that $\rho_{\lambda} \circ \Psi_{\lambda \lambda^{\prime}}^{q}$ makes sense, if for each Laurent polynomial $X^{\prime} \in \mathcal{T}_{q}\left(\lambda^{\prime}\right)$, there exists P, P^{\prime}, Q and $Q^{\prime} \in \mathcal{T}_{q}(\lambda)$ such that:

$$
\Psi_{\lambda \lambda^{\prime}}\left(X^{\prime}\right)=P Q^{-1}=Q^{\prime-1} P^{\prime} \in \hat{\mathcal{T}}_{q}(\lambda) ;
$$

now, as $\rho_{\lambda}\left(\mathcal{T}_{q}(\lambda)\right) \subset G L\left(V_{\lambda}\right), \rho_{\lambda}(Q)$ and $\rho_{\lambda}\left(Q^{\prime}\right)$ are invertibles, so we can define:

$$
\rho_{\lambda} \circ \Psi_{\lambda \lambda^{\prime}}\left(X^{\prime}\right):=\rho_{\lambda}(P) \rho_{\lambda}(Q)^{-1}=\rho_{\lambda}\left(Q^{\prime}\right)^{-1} \rho_{\lambda}\left(P^{\prime}\right) .
$$

A fundamental result in BL07] and HBL07, Proposition 10] is that for each pair of ideal triangulations λ and λ^{\prime}, there exists a rational map

$$
\varphi_{\lambda \lambda^{\prime}}: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}
$$

such that a local representation $\rho_{\lambda^{\prime}}$ of $\mathcal{T}_{q}\left(\lambda^{\prime}\right)$ classified by $x_{i}^{\prime} \in \mathbb{C}^{*}$ associated to λ_{i}^{\prime} and $c^{\prime}=\left(x_{1}^{\prime} \ldots x_{n}^{\prime}\right)^{1 / N}$ is isomorphic to $\rho_{\lambda} \circ \Psi_{\lambda \lambda^{\prime}}$ (whenever it makes sense) for a representation ρ_{λ} of $\mathcal{T}_{q}(\lambda)$ classified by $x_{i} \in \mathbb{C}^{*}$ associated to λ_{i} and $c=\left(x_{1} \ldots x_{n}\right)^{1 / N}$ if and only if $c=c^{\prime}$ and

$$
\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=\varphi_{\lambda \lambda^{\prime}}\left(x_{1}, \ldots, x_{n}\right) .
$$

2 Proof of Theorem 1

2.1 Special case

Here we prove Theorem $\mathbb{1}$ for a local representation $\rho: \mathcal{T}_{q}\left(\lambda_{0}\right) \longrightarrow \operatorname{End}(V)$ where λ_{0} is special triangulation of Σ and ρ is classified by weights $x_{i}=1$ and $c \in \mathcal{U}(N)$. Here, Σ is a genus $g>0$ surface with $s+1$ punctures v_{0}, \ldots, v_{s}. Recall that $m=4 g-4+2(s+1)$ and $n=6 g-6+3(s+1)$ are respectively the number of faces and edges of λ_{0}. Moreover, we denote by $X u$ the action of $X \in \mathcal{T}_{q}\left(\lambda_{0}\right)$ on $u \in V$ defined by ρ.

To decompose ρ into irreducible factors, one has to look at the eigenspaces of $\rho\left(P_{j}\right)$ for each puncture invariant P_{j} associated to the puncture v_{j}. Note that, as $\rho\left(P_{j}\right)^{N}=I d$, the spectrum of P_{j} is contained in $\mathcal{U}(N)$.

The idea of the proof is to look at the action of the P_{j} on each factor of a nice decomposition of V into a tensorial product of vector spaces. It is based on the following remark:

Remark 1. For a decomposition $V=E_{1} \otimes E_{2}$, if $x_{j} \in E_{j}$ satisfies $P x_{j}=$ $h_{j} x_{j}$ for $j=1,2$ where $P \in\left\{P_{0}, \ldots, P_{s}\right\}$ and $h_{j} \in \mathcal{U}(N)$, then $P\left(x_{1} \otimes x_{2}\right)=$ $h_{1} h_{2} x_{1} \otimes x_{2}$. That is, the eigenspace of P in V associated to the eigenvalue $h \in \mathcal{U}(N)$ contains the tensorial product of eigenspaces of P in E_{j} associated to the eigenvalues h_{j}, for $j=1,2$, whenever $h=h_{1} h_{2}$.

For $\mathbf{h}=\left(h_{1}, \ldots, h_{s}\right) \in \mathcal{U}(N)^{s}$, set

$$
V_{\mathbf{h}}:=\left\{u \in V, P_{i} u=h_{i} u, i=1, \ldots, s\right\} .
$$

Proposition 2. For each $\boldsymbol{h} \in \mathcal{U}(N)^{s}, \operatorname{dim} V_{\boldsymbol{h}}=N^{m-s}$.
Proof. Take an ideal triangulation $\widetilde{\lambda}$ of $\Sigma \backslash\left\{v_{1}, \ldots, v_{s}\right\}$ (which is a one punctured surface), and for a triangle T of $\widetilde{\lambda}$, consider the triangulation of $T \cup\left\{v_{1}, \ldots, v_{s}\right\}$ as in Picture 2,

The union of these two triangulations gives an ideal triangulation λ_{0} of Σ. Denote by \widetilde{V} the tensorial product of all the vector spaces associated to the triangles of $\widetilde{\lambda} \backslash T$. As the triangulation $\widetilde{\lambda}$ contains $3 g-1$ triangles, $\operatorname{dim}(\widetilde{V})=$ $N^{3 g-2}$ (because we do not consider the vector space associated to T). Denote by V^{j} and $V^{\prime k}$ the $j^{\text {th }}$ (resp. $k^{t h}$) vector space associated to the triangle T_{j} (resp. T_{k}^{\prime}) as in Figure 2 (here, $j \in\{0, \ldots, s\}$ and $k \in\{1, \ldots, s\}$).

For $\mathbf{h}=\left(h_{1}, \ldots, h_{s}\right) \in \mathcal{U}(N)^{s}$ and $j \in\{1, \ldots, s\}$, define:

Figure 2: Triangulation of $T \cup\left\{v_{1}, \ldots, v_{s}\right\}$

$$
\begin{aligned}
& \mathcal{V}_{\mathbf{h}}^{j}=\left\{x \in V^{j} \otimes V^{\prime j}, P_{k} x=h_{k} x, k=1, \ldots, s\right\} . \\
& \mathcal{V}_{\mathbf{h}}^{0}=\left\{x \in V^{0}, P_{k} x=h_{k} x, k=1, \ldots, s\right\} .
\end{aligned}
$$

We have the following lemma:

Lemma 2.

i. $\operatorname{dim} \mathcal{V}_{h}^{0}= \begin{cases}1 & \text { if } h_{k}=1 \forall k \neq 1 \\ 0 & \text { otherwise } .\end{cases}$
ii. $\forall j \in\{1, \ldots, s-1\} \operatorname{dim} \mathcal{V}_{h}^{j}= \begin{cases}1 & \text { if } h_{k}=1 \forall k \notin\{j, j+1\} \\ 0 & \text { otherwise. }\end{cases}$
iii. $\operatorname{dim} \mathcal{V}_{h}^{s}= \begin{cases}N & \text { if } h_{k}=1 \forall k \neq s \\ 0 & \text { otherwise. }\end{cases}$

Proof. $\quad i$. If $k \neq 1, v_{k}$ is not a vertex of T_{0}. It follows that P_{k} acts on V^{0} by the identity; so if $h_{k} \neq 1, \mathcal{V}_{\mathbf{h}}^{0}=\{0\}$.
Now, if $h_{k}=1$ for all $k \neq 1$, then $\mathcal{V}_{\mathbf{h}}^{0}=V_{h_{1}}^{0}\left(P_{1}\right)$ (as defined in Lemma (1) which is one dimensional.
ii. Fix $j \in\{1, \ldots, s-1\}$. For $k \notin\{j, j+1\}, v_{k}$ is neither a vertex of T_{j} nor of T_{j}^{\prime}. So P_{j} acts on $V^{j} \otimes V^{\prime j}$ as the identity. Hence, if $h_{k} \neq 1$, then $\mathcal{V}_{\mathrm{h}}^{j}=\{0\}$.
Take $h_{k}=1$ for all $k \notin\{j, j+1\}$ and denote by $\mathcal{T}_{j}=\mathbb{C}\left[X^{ \pm 1}, Y^{ \pm 1}, Z^{ \pm 1}\right]_{q}$, $\mathcal{T}_{j}^{\prime}=\mathbb{C}\left[X^{\prime \pm 1}, Y^{\prime \pm 1}, Z^{\prime \pm 1}\right]_{q}$ the triangle algebras associated to the triangles T_{j} and T_{j}^{\prime} respectively (as in Figure 3).

Figure 3: The generators of \mathcal{T}_{j} and \mathcal{T}_{j}^{\prime}

For $c_{j}, c_{j}^{\prime} \in \mathcal{U}(N)$ the central charges of the restriction of the representation to \mathcal{T}_{j} and \mathcal{T}_{j}^{\prime} respectively, P_{j} acts on $V^{j}:=\operatorname{span}\left\{e_{0}, \ldots, e_{N-1}\right\}$ like $c_{j} Z^{-1}$, on $V^{\prime j}=\operatorname{span}\left\{e_{0}^{\prime}, \ldots, e_{N-1}^{\prime}\right\}$ like $c_{j}^{\prime} Z^{\prime-1}$ and P_{j+1} acts on V_{j} like $c_{j} Y^{-1}$, on V_{j}^{\prime} like $c_{j}^{\prime} Y^{\prime-1}$. Set $c_{j}=q^{p}$ and $c_{j}^{\prime}=q^{p^{\prime}}$, we get the following:

$$
\begin{aligned}
P_{j} e_{k} & =q^{2 k-1+p} \\
P_{j} e_{l}^{\prime} & =q^{1-2 l+p^{\prime}} e_{l+1}
\end{aligned}
$$

It follows that the action of P_{j} on $V^{j} \otimes V^{\prime j}$ is given by:

$$
P_{j} \epsilon_{k, l}=q^{2(k-l)+p+p^{\prime}} \epsilon_{k+1, l+1} \text { where } \epsilon_{k, l}:=e_{k} \otimes e_{l}^{\prime} .
$$

In the same way, one sees that the action of P_{j+1} on $V^{j} \otimes V^{\prime j}$ is given by:

$$
P_{j+1} \epsilon_{k, l}=q^{p+p^{\prime}} \epsilon_{k-1, l-1} .
$$

Now, for $m, n \in \mathbb{N}$, set $\alpha_{m, n}:=\sum_{k=0}^{N-1} q^{2 k m} \epsilon_{k, k+n}$, an easy calculation shows that:

$$
\left\{\begin{array}{l}
P_{j} \alpha_{m, n}=q^{-2(m+n)+p+p^{\prime}} \alpha_{m, n} \\
P_{j+1} \alpha_{m, n}=q^{2 m+p+p^{\prime}} \alpha_{m, n} .
\end{array}\right.
$$

It follows that $\left\{\alpha_{n, m}, n, m \in \mathbb{N}\right\}$ is a base of $V^{j} \otimes V^{\prime j}$ and, for all $h_{j}, h_{j+1} \in$ $\mathcal{U}(N)$, there exists a unique couple $(m, n) \in \mathbb{N}_{N}^{2}$ with $h_{j}=q^{-2(m+n)+p+p^{\prime}}$ and $h_{j+1}=q^{2 m+p+p^{\prime}}$. So $\operatorname{dim} \mathcal{V}_{\mathbf{h}}^{j}=1$ if and only if $h_{k}=1$ for all $k \notin$ $\{j, j+1\}$.
iii．If $k \neq s, v_{k}$ is neither a vertex of T_{s} nor T_{s}^{\prime} ，so if $h_{k} \neq 1, \mathcal{V}_{\mathbf{h}}^{s}=\{0\}$ ．
Suppose that $h_{k}=1$ for all $k \in\{1, \ldots, s-1\}$ ，then

$$
\mathcal{V}_{\mathbf{h}}^{s} \supset \bigoplus_{h_{a} h_{b}=h_{s}} V_{h_{a}}^{s}\left(P_{s}\right) \otimes V_{h_{b}}^{\prime s}\left(P_{s}\right),
$$

（where $V_{h_{a}}^{s}\left(P_{s}\right)$ and $\mathcal{V}_{h_{b}}^{s}$ are defined as in Lemma（1）．The direct sum contains N terms of dimension one，hence $\operatorname{dim} \mathcal{V}_{\mathbf{h}}^{s} \geq N$ ．But，we have

$$
\operatorname{dim}\left(V^{s} \otimes V^{\prime s}\right)=N^{2}=\sum_{\mathbf{h} \in \mathcal{U}(N)^{s}} \operatorname{dim}\left(\mathcal{V}_{\mathbf{h}}^{s}\right) \geq N \times N .
$$

So $\mathcal{V}_{\mathrm{h}}^{s}$ is N－dimensional．

Now，the proof of Proposition［2is straightforward：from Remark［1，we have

$$
\bigoplus_{\mathbf{h}^{0} \mathbf{h}^{1} \ldots \mathbf{h}^{s}=\mathbf{h}} \mathcal{V}_{\mathbf{h}^{0}}^{0} \otimes \ldots \otimes \mathcal{V}_{\mathbf{h}^{s}}^{s} \otimes \tilde{V} \subset V_{\mathbf{h}} .
$$

Writing $\mathbf{h}^{j}=\left(h_{1}^{j}, \ldots, h_{s}^{j}\right)$ and $\mathbf{h}=\left(h_{1}, \ldots, h_{s}\right)$ ，one notes that the only non－zero terms in the direct sum are those who satisfy：

$$
\left\{\begin{array}{l}
h_{1}^{0} h_{1}^{1}=h_{1} \\
h_{2}^{1} h_{2}^{2}=h_{2} \\
\vdots \\
h_{s}^{s-1} h_{s}^{s}=h_{s}
\end{array}\right.
$$

There exists exactly N^{s} different choices for $\mathbf{h}^{0}, \ldots, \mathbf{h}^{s} \in \mathcal{U}(N)^{s}$ satisfying the above relations，and each non－zero vector space of the direct sum has dimension $N^{m-2 s}$ ．So $\operatorname{dim} V_{h} \geq N^{m-s}$ ．Now，we have

$$
\operatorname{dim} V=N^{m}=\sum_{\mathbf{h} \in \mathcal{U}(N)^{s}} \operatorname{dim} V_{\mathbf{h}} \geq N^{s} \times N^{m-s},
$$

and so $\operatorname{dim} V_{\mathbf{h}}=N^{m-s}$ for each $\mathbf{h} \in \mathcal{U}(N)$ ．
In particular，it proves the decomposition of Theorem $⿴ 囗 十$ for ρ ．In fact，let $\rho^{(i)}: \mathcal{T}_{q}\left(\lambda_{0}\right) \longrightarrow \operatorname{End}\left(V^{(i)}\right)$ be an irreducible representation in the decomposition of ρ ．It must satisfies $\rho^{(i)}\left(X_{i}\right)^{N}=\mathrm{Id}_{V^{(i)}}$ and $\rho^{(i)}(H)=c \mathrm{Id}_{V^{(i)}}$ ，in other word， $\rho^{(i)}$ must be associated to the same weights $x_{i}=1$ and global charge $c \in \mathcal{U}(N)$ than ρ ．

Set $h_{j}^{(i)} \in \mathcal{U}(N)$ the weight of $\rho^{(i)}$ associated to the each puncture v_{j} ， that is，$\rho^{(i)}\left(P_{j}\right)=h_{j}^{(i)} I d_{V^{(i)}}$ ．Note that，as $\rho^{(i)}\left(\left[P_{0} \ldots P_{s}\right]\right)=\rho^{(i)}\left(\left[H^{2}\right]\right)=$ $h_{0}^{(i)} h_{1}^{(i)} \ldots h_{s}^{(i)} \operatorname{Id}_{V^{(i)}}=c^{2} \operatorname{Id}_{V^{(i)}}$ ，a necessary condition for $\rho^{(i)}$ to be in the decom－ position of ρ is to satisfy $h_{0}^{(i)} \ldots h_{s}^{(i)}=c^{2}$ ．Hence，if $\rho^{(i)}$ is in the decomposition of ρ ，knowing $h_{j}^{(i)}$ for each $j=1, \ldots, s$ uniquely determine $h_{0}^{(i)}$ and so fully determine $\rho^{(i)}$ ．

Now, as for each $\mathbf{h}=\left(h_{1}, \ldots, h_{s}\right) \in \mathcal{U}(N)^{s}, V_{\mathbf{h}}$ has dimension $N^{m-s}=$ $N^{4 g-3+(s+1)}$ and as an irreducible representation of $\mathcal{T}_{q}\left(\lambda_{0}\right)$ has dimension $N^{3 g-3+(s+1)}$, then each space V_{h} contains exactly N^{g} times the representation $\rho^{(i)}$, classified by $p_{0}=c^{2} h_{1}^{-1} \ldots h_{s}^{-1}, p_{1}=h_{1}, \ldots, p_{s}=h_{s}$.

2.2 Proof in the global case

Now, to complete the proof of Theorem 1, one remarks that the decomposition of ρ into irreducible factors only depends on the decomposition of $\rho\left(P_{j}\right)$ into eigenspaces (for each puncture v_{j}), that is on the possible choices of N-th root of $x_{1}^{k_{k_{1}}} \ldots x_{n}^{k_{j_{n}}}$ (where P_{j} is associated to the multi-index $\mathbf{k}_{j}=\left(k_{j_{1}}, \ldots, k_{j_{n}}\right)$). But this choice is discrete and depends continuously on the weights x_{i} associated to the edge λ_{i}, hence does not depend on the choice of $x_{i} \in \mathbb{C}^{*}$. It proves Theorem 1 for the triangulation λ_{0} and every weight $x_{i} \in \mathbb{C}^{*}$.

Note that the map $\varphi_{\lambda_{0} \lambda}$ defined in Subsection 1.5 is rational, hence defined on a Zariski dense open set of \mathbb{C}^{n}. As we extended the decomposition for all weights x_{i} associated to each edge of the triangulation λ_{0}, there exists a local representation $\left\{\rho_{\lambda}: \mathcal{T}_{q}(\lambda) \longrightarrow \operatorname{End}\left(V_{\lambda}\right)\right\}_{\lambda \in \Lambda(\Sigma)}$ of $\mathcal{T}_{q}(\Sigma)$ as defined in Subsection 1.5. So, for each $\lambda \in \Lambda(\Sigma), \rho_{\lambda_{0}} \circ \Psi_{\lambda_{0} \lambda}^{q}: \mathcal{T}_{q}(\lambda) \longrightarrow \operatorname{End}\left(V_{\lambda_{0}}\right)$ makes sense and is isomorphic to $\rho_{\lambda}: \mathcal{T}_{q}(\lambda) \longrightarrow \operatorname{End}\left(V_{\lambda}\right)$. That is, there exists a vector space isomorphism $L_{\lambda_{0} \lambda}: V_{\lambda} \longrightarrow V_{\lambda_{0}}$ such that, for each $X \in \mathcal{T}_{q}(\lambda)$,

$$
\rho_{\lambda_{0}}\left(\Psi_{\lambda_{0} \lambda}^{q}(X)\right)=L_{\lambda_{0} \lambda} \circ \rho_{\lambda}(X) \circ L_{\lambda_{0} \lambda}^{-1}
$$

However, $\rho_{\lambda_{0}}$ is a local representation of $\mathcal{T}_{q}\left(\lambda_{0}\right)$, hence there exists an irreducible decomposition of $\rho_{\lambda_{0}}$ given by the decomposition $V_{\lambda_{0}}=\bigoplus_{i \in \mathcal{I}} V_{\lambda_{0}}^{i}$ as in Theorem 11. That is, for each $i \in \mathcal{I}, V_{\lambda_{0}}^{i}$ is stable by $\rho_{\lambda_{0}}$ and has dimension $N^{3 g-3+s+1}$ 。

Using the isomorphism $\Psi_{\lambda \lambda_{0}}$, one gets that for each $X \in \mathcal{T}_{q}(\lambda), \rho_{\lambda_{0}}\left(\Psi_{\lambda_{0} \lambda}(X)\right) V_{\lambda_{0}}^{i}=$ $V_{\lambda_{0}}^{i}$. Set $V_{\lambda}^{i}:=L_{\lambda_{0} \lambda}^{-1}\left(V_{\lambda_{0}}^{i}\right)$, we have $\operatorname{dim} V_{\lambda}^{i}=\operatorname{dim} V_{\lambda_{0}}^{i}=3 g-3+s+1$ (because $L_{\lambda_{0} \lambda}$ is an isomorphism) so for each $X \in \mathcal{T}_{q}(\lambda), \rho_{\lambda}(X) V_{\lambda}^{i}=V_{\lambda}^{i}$. In other words, we have a decomposition

$$
\rho_{\lambda}=\bigoplus_{i \in \mathcal{I}} \rho_{\lambda}^{(i)}
$$

where $\rho_{\lambda}^{(i)}: \mathcal{T}_{q}(\lambda) \longrightarrow \operatorname{End}\left(V_{\lambda}^{i}\right)$. As each V_{λ}^{i} as the dimension of an irreducible representation, we get an irreducible decomposition of ρ_{λ}. One easily checks that it satisfies the conditions of Theorem 1. Now we extend this decomposition by continuity for all weight $x_{i} \in \mathbb{C}^{*}$ associated to the edge λ_{i} of λ.

References

[BB04] S. Baseilhac and R. Benedetti. Quantum hyperbolic invariants of 3-manifolds with PSL $(2, \mathbb{C})$-characters. Topology, 43(6):1373-1423, 2004.
[BB05] S. Baseilhac and R. Benedetti. Classical and quantum dilogarithmic invariants of flat PSL($2, \mathbb{C}$)-bundles over 3-manifolds. Geom. Topol., 9:493-569 (electronic), 2005.
[BB07] S. Baseilhac and R. Benedetti. Quantum hyperbolic geometry. Algebr. Geom. Topol., 7:845-917, 2007.
[BL07] F. Bonahon and X. Liu. Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms. Geom. Topol., 11:889-937, 2007.
[BW11] F. Bonahon and H. Wong. Quantum traces for representations of surface groups in $\mathrm{SL}_{2}(\mathbb{C})$. Geom. Topol., 15(3):1569-1615, 2011.
[BW12a] F. Bonahon and H. Wong. Representations of the kauffman skein algebra I: invariants and miraculous cancellations. arXiv preprint arXiv:1206.1638, 2012.
[BW12b] F. Bonahon and H. Wong. Representations of the kauffman skein algebra II: punctured surfaces. arXiv preprint arXiv:1206.1639, 2012.
[BW14] F. Bonahon and H. Wong. Representations of the kauffman bracket skein algebra III: closed surfaces and canonicity. In preparation, 2014.
[FC99] V. V. Fock and L. O. Chekhov. A quantum Teichmüller space. Theoretical and Mathematical Physics, 120(3):1245-1259, 1999.
[HBL07] F. Bonahon H. Bai and X. Liu. Local representations of the quantum Teichmüller space. arXiv preprint arXiv:0707.2151, 2007.
[Kas95] R. M. Kashaev. A link invariant from quantum dilogarithm. Modern Phys. Lett. A, 10(19):1409-1418, 1995.
[Kas98] R. M. Kashaev. Quantization of Teichmüller spaces and the quantum dilogarithm. Letters in Mathematical Physics, 43(2):105-115, 1998.
[Kas99] R. M. Kashaev. Quantum hyperbolic invariants of knots. In Discrete integrable geometry and physics (Vienna, 1996), volume 16 of Oxford Lecture Ser. Math. Appl., pages 343-359. Oxford Univ. Press, New York, 1999.
[Liu09] X. Liu. The quantum Teichmüller space as a noncommutative algebraic object. J. Knot Theory Ramifications, 18(5):705-726, 2009.
[Thu98] W. P. Thurston. Minimal stretch maps between hyperbolic surfaces. arXiv preprint math/9801039, 1998.
[Tur91] V. G. Turaev. Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. École Norm. Sup. (4), 24(6):635-704, 1991.

Jérémy Toulisse
University of Luxembourg, Campus Kirchberg
Mathematics Research Unit, BLG
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
Grand Duchy of Luxembourg
jeremy.toulisse@uni.lu

