View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Open Repository and Bibliography - Luxembourg

Offline Trace Checking of Quantitative Properties of
Service-Based Applications

Domenico Bianculli
SnT Centre - University of Luxembourg, Luxembourg
Email: domenico.bianculli@uni.lu

Abstract—Service-based applications are often developed as
compositions of partner services. A service integrator needs
precise methods to specify the quality attributes expected by
each partner service, as well as effective techniques to verify
these attributes. In previous work, we identified the most com-
mon specification patterns related to provisioning service-based
applications and developed an expressive specification language
(SOLOIST) that supports them. SOLOIST is an extension of
metric temporal logic with aggregate temporal modalities that
can be used to write quantitative temporal properties.

In this paper we address the problem of performing of-
fline checking of service execution traces against quantitative
requirements specifications written in SOLOIST. We present a
translation of SOLOIST into CLTLB(Z), a variant of linear
temporal logic, and reduce the trace checking of SOLOIST to
bounded satisfiability checking of CLTLB(2), which is supported
by ZOT, an SMT-based verification toolkit. We detail the results
of applying the proposed offline trace checking procedure to
different types of traces, and compare its performance with
previous work.

I. INTRODUCTION

Service-based applications (SBAs) are one of the main
approaches followed nowadays to develop modern enterprise
information systems, adopting the paradigm of service-oriented
computing [1]. SBAs are usually defined as service com-
positions, created by orchestrating several existing services,
possibly provided by third-parties, by means of dedicated
languages such as BPEL. Developing and operating an SBA
involves many stakeholders: service end-users, the developers
and providers of services used in the SBA, as well as the
service integrators that realize the composite services. How-
ever, service integrators have the ultimate responsibility for
maintaining an adequate level of quality attributes (e.g., in
terms of functional correctness and QoS, quality of service)
of the composite services they provide, independently of (but
at the same time, based on) the guarantees and the service-
level agreements offered by the providers of the services they
compose. This can be achieved in a systematic and formal way
by developing a specification language that can capture useful
properties of SBAs and by providing means for verifying SBAs
against properties written in such a specification language.

Several verification techniques have been developed and
tailored [2], [3], [4], [5] for the domain of SBAs, to assist
service integrators in verification activities both at design time
(e.g., testing, model checking) and run time (e.g., monitoring).

This work has been partially supported by the National Research Fund,
Luxembourg (FNR/P10/03).

Carlo Ghezzi

Srdan Krsti¢ Pierluigi San Pietro
DEEP-SE group - DEIB - Politecnico di Milano, Italy

Email: {carlo.ghezzi,srdan krstic,pierluigi.sanpietro } @ polimi.it

In the case of formal approaches, the verification techniques
adopt a temporal logic (such as LTL, CTL) as the specification
language of the properties of interest. In the domain of
composite SBAs, these properties express constraints on the
interactions of the composite service with its partner services.
In a previous work some of the authors developed SOLOIST
(SpecificatiOn Language fOr service compoSitions inTerac-
tions) [6] a metric temporal logic with new, additional temporal
modalities that can express properties of SBAs in terms of
bounds on some aggregated values, calculated over a certain
time window. These modalities have been defined based on an
extensive field study [7] of the requirements specifications in
the context of service-based applications, and they are tailored
to express the most common requirements occurring in prac-
tice. The study — performed in collaboration with an industrial
partner — analyzed more than 900 requirements specifications,
extracted both from research papers and industrial data, and led
to the identification of a new class of specification patterns,
specific to the domain of service provisioning. Examples of
these patterns are those characterizing the average response
time of a service invocation and the count/average/maximum
number of event occurrences in a given time window.

In this paper we focus on the problem of performing
offline checking of execution traces against requirements spec-
ifications written in SOLOIST. Trace checking (also called
trace validation [8] or history checking [9]) is a procedure for
evaluating a formal specification over a log of recorded events
produced by a system, i.e., over a temporal evolution of the
system. We assume that a trace is finite and composed by the
events corresponding to the interactions of a composite service
with its external services (e.g., invoking external service opera-
tions or receiving service requests). Traces can be produced by
a proper monitoring/logging infrastructure, and made available
at the end of the execution to perform offline trace checking.

The main contribution of the paper is an offline trace check-
ing procedure for SOLOIST properties exploiting a translation
into CLTLB(Z2) [10], an extension of PLTLB (Propositional
Linear Temporal Logic with both past and future modalities)
augmented with atomic formulae built over a constraint system
2. We chose CLTLB(2) as the target of our translation since
it supports the definition of arithmetical constraints over a set
of integer variables (also called counters); as we will detail
in Sect. III, these counters allow a compact and easy-to-
verify translation. We express the problem of trace checking
of SOLOIST properties in terms of bounded satisfiability
checking (BSC) of CLTLB(Z) and rely on the BSC procedure
for metric temporal logic [11] implemented in ZOT. We focus

https://core.ac.uk/display/31210589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on requirements containing quantitative properties involving
aggregate operations on events occurring in a given time
window, like the average response time of a certain operation
provided by a partner service.

In the original definition of SOLOIST [6] we showed
how, under certain assumptions, the language can be translated
into LTL, guaranteeing its decidability based on well-known
results in temporal logic. However, this translation was only a
proof of concept and was not meant to guarantee efficiency if
one would use LTL-based verification procedures. In previous
work [12] we introduced a trace checking procedure, based
on another encoding of SOLOIST properties into formulae of
QF-EUFIDL, the theory of quantifier-free integer difference
logic with uninterpreted function and predicate symbols. This
encoding was tailored for sparse traces, i.e., traces in which
the number of time instants when events occur is very low
with respect to the length of the trace. In contrast, the new
encoding proposed in this paper supports a much more efficient
checking of dense traces. In this paper we also compare the
two approaches on traces of different degrees of sparseness.

The rest of the paper is organized as follows'. Sec-

tion II provides background information on SOLOIST and
CLTLB(Z). We present the translation of SOLOIST into
CLTLB(2) in Section III. In section IV we discuss some
implementation details. Section V reports on the evaluation
performed to assess the scalability of our approach, also in
comparison with previous work. Section VI surveys related
work, and Sect. VII concludes the paper, giving some direc-
tions for future work.

II. PRELIMINARIES
A. SOLOIST in a Nutshell

In this section we provide a brief overview of SOLOIST;
a rationale of the language and a detailed explanation of its
semantics are in [6].

The syntax of SOLOIST is defined by the following

grammar:

. K K.h K,h
¢-k:$|_‘)¢‘¢/\¢|¢Ul¢‘¢sl¢|¢mn(¢) | Lo (@) | Mean (9) |

>n 9,
where p € I, with IT being a finite set of atoms; [is a
nonempty interval over N; n,K,h range over N; 1 € {<
,<,>,>,=}. The arguments ¢ of modalities €, 9, D are
restricted to atoms in I1. Moreover, the two arguments in the
® modality are required to be different atoms.

The Uy and S; modalities are, respectively, the metric “Un-
til” and “Since” operators. Additional temporal modalities can
be derived using the usual conventions; for example “Always”
is defined as G;¢ = —(TU;—¢) and “Eventually in the Past” as
P;¢ =TS;¢, where T means “true”. The remaining modalities
are called aggregate modalities. The €X, (¢) modality states a
bound (represented by ><in) on the number of occurrences of
an event ¢ in the previous K time instants; it is used to count
the number of events in a given time window. The uéi,’f@)
(respectively, 93?54’,:‘((1))) modality expresses a bound on the
average (respectively, maximum) number of occurrences of an

I An extended version of the paper, with additional details, can be found at
http://arxiv.org/abs/1409.4653.

p iff peo;

i) =
(wi) |=—¢ i (wi) o
(wi) oAy iff (i) Ay
(w.i) = Sy i for some j <75 —T; €1,(w,j) |y and for all k,j <k <i,(wK) = ¢
(w.i) |= Uy iff - for some j > 7,7; — T €1,(w,) |y and for all ki< k< j,(wK) ¢
(wi) = €K (9) iff (g —K.7;,0)panand ;> K
K.h o5 - LK h5.0)
(w.i) = Uy (9) iff LII(VJ >an and 7; > K
e
ok L e
(w.i) = D () it maxq Uy o {c(b(m),rb(m),¢)} p san and 7 > K

L(s)ed(9,y.5.6) (7~ %)

(wi) = DK, (0, 9) iff PO ban and 7 > K and d(9, ,7;,K) #0
where ¢(ta,7),.0) = |{s| ta < s <7, and (w,s) |= ¢ }|, Ib(m) = max{7; — K, 7; — (m+1)h},
rb(m) = t; —mh, and d(9, ., 7;,K) = {(5,1) | 5 =K < 75 < 7 and (w,s) = ¢, t = min{u | 75 < 7 < 7, (w,u) = y}}

Fig. 1: Formal semantics of SOLOIST

event ¢, aggregated over the set of right-aligned adjacent non-
overlapping subintervals within a time window K; as in “the
average/maximum number of events per hour in the last ten
hours”. A subtle difference in the semantics of the il and 90t
modalities is that 9 considers events in the (possibly empty)
tail interval, i.e., the leftmost observation subinterval whose
length is less than A, while the 4l modality ignores them. The
DK, (¢, w) modality expresses a bound on the average time
elapsed between a pair of specific adjacent events ¢ and y
occurring in the previous K time instants; it is used to express
the concept of average response time (of a service), with ¢
and y representing, respectively the start and end events, of a
(synchronous) service invocation?.

The formal semantics of SOLOIST is trace-based, i.e.,
defined on timed @-words over 2T x N. A timed sequence
T="TpT] ... is an infinite sequence of values 7; € N satisfying
T; < Ti+1, for all i > 0, i.e., the sequence increases strictly
monotonically. A timed ®-word over alphabet 2 is a pair
(0,7) where 6 = 0¢07 ... is an infinite word over 21 and ©
is a timed sequence. A timed language over 2!l is a set of
timed words over the same alphabet. Notice that there is a
distinction between the integer position i in the timed w-word
and the corresponding integer timestamp 7;. Figure 1 defines
the satisfiability relation (w,i) = ¢ for every timed @-word w,
every position i > 0 and for every SOLOIST formula ¢.

We remark that the version of SOLOIST presented here is
a restriction of the original one in [6]. To simplify the presenta-
tion in the next sections, we dropped first-order quantification
on finite domains (which was introduced to support data-
carrying events) and limited the argument of the © modality
to only one pair of events. These restrictions are only syntactic
sugar and we refer to [6] for the details of the transformations
that provide support for them.

SOLOIST can be used to express some of the most com-
mon specifications found in service-level agreements (SLAs)
of SBAs. Based on our previous study [7], below we list
some examples of quantitative specifications found in SLAs,
expressed first in English and then in SOLOIST. We refer
to generic service operations called A, B, C, D, E, which
correspond to a generic service invocation; each of these
operations has a start and an end event, denoted with the
corresponding subscripts. All properties are under the scope

2As detailed in [6], we assume that two subsequent occurrences of the ¢ or
v events may not happen. This models the behavior of synchronous service
invocations.

of an implicit universal temporal quantification as in “In every
process run, ... " ; we assume the time units to be in seconds.

QP1: “The number of invocations of operation A performed
within 10 minutes before operation B is invoked is
less than or equal to 3”. This property is expressed as:
G(Bsmrt — 66303 (Aend))~

QP2: “The average response time of operation C is always less
than 5 seconds within any 15 minute time window”. This
property is expressed as: G(’Dioso (Cstarts Cends))-

QP3: “The maximum number of invocations of operation D is
restricted to at most 2 per minute within 10 minutes be-
fore operation E is invoked”. This property is expressed

as: G(Egar — MY (Dena)).-

B. CLTLB(Z)

CLTLB(2) [10] is an extension of PLTLB (Propositional
Linear Temporal Logic with both past and future modal-
ities) [13] augmented with atomic formulae built over a
constraint system 2. In practice, CLTLB(Z) defines a set
of variables C and arithmetical constraints over a constraint
system Z; in our case, Z is the structure (Z,=,(<g)gez)-
For this particular combination, decidability of CLTLB(Z) has
been proven in [14]. Each <, is a binary relation defined as
x <gy < x <y-+d, hence, for example, the notation x = y-+d is
an abbreviation for y <|_; x Ax <441 y. Variables (henceforth
called counters) receive a separate evaluation at each time
instant. In addition to the standard PLTLB temporal operators
“Since” and “Until”’, CLTLB(Z) introduces the new construct
of arithmetic temporal term, defined as o :=c | x| Y (x) | X(x),
where ¢ € Z is a constant, x € C is a counter and Y and X
are temporal operators applied to counters. These temporal
operators for counters return the value of the counter in the
previous and in the next time instant, respectively. Note that
we use a syntactically sugared version of PLTLB using metric
temporal operators over time intervals, such as U;. Since time
is discrete, they are just a convenient shorthand [15]. The
syntax of CLTLB(2) is the following:
pr=pla~al-¢|oAd|oUid]9S0|Xe|Ye
where p is an atomic proposition, ~€ {=,(<4)4ez}, Sr, Ur,
X, Y are the usual “Since”, “Until”’, “Next”, and “Yesterday”
modalities of PLTLB. Additional temporal modalities (like G,
“Globally”, and W, “Weak Until”) can be defined using the
usual conventions. An example of a CLTLB(Z) formula is
G(¢ — X(y) =y+1), which states that whenever ¢ is true, the
value of counter y in the next time instant must be incremented
of 1 with respect to the value at the current time instant.

CLTLB(2) formulae admit finite, ultimately periodic two-
part models (7,0). Function 7 : N — & (I1) associates a subset
of the propositions with each time instant, while function 9 :
N x C — Z defines the value of counters at each time position.
Hereafter, this two-part model will be graphically represented
as in Fig. 3: the topmost row (above the timeline) represents
function 7 (e.g., m(5) = {y}); the rows of integers below the
timeline represent function 8, i.e., the values of each counter
defined in the model. In the example in the figure there are six
counters, as shown on the left: ¢y, g¢ v, o,y 50y, 0p,y, P9, v
the 6 function is defined so that we have, for example
in correspondence with the sixth time instant (position #5),
5(5,g¢’1,,) = 1, 5(5,]1(1,#,) = 0, 6(57‘9(1”14/) = 3, 5(5,a¢..,,) = 0,
and &(5,b¢,y) = 3.

v x X
X 0) v
= = = = >
3 5 3 3
v X X
X] 0 v
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e e e e e e e e e e e e e e e

Fig. 2: Mapping a timed w-word into an w-word

III. THE TRANSLATION FROM SOLOIST 10 CLTLB(Z)

The key point in defining the translation from SOLOIST
to CLTLB(Z) is to bridge the gap between the semantics
of SOLOIST based on timed ®w-words, where the temporal
information is denoted by an integer time-stamp, and the one
of CLTLB(Z), where the temporal information is implicitly
defined by the integer position in an @-word. The two temporal
models can be transformed into each other. Here we are
interested in pinpointing, in a CLTLB(Z) ®-word, only the
positions that correspond to actual time-stamps in a SOLOIST
timed w-word. These timestamps correspond to instants where
some event actually occurs. To do so, we add to the set
IT a special propositional symbol e, which is true in each
position corresponding to a “valid” time-stamp in the timed
w-word; a “valid” time-stamp is one where at least an event,
represented by a propositional symbol, occurs. An example of
this conversion is shown in Fig. 2, where a timed w-word is
depicted in the timeline at the top and its equivalent w-word
corresponds to the timeline at the bottom; notice the special
symbols —e that hold in positions in the w-word which do
not correspond to a “valid” time-stamp in the timed @-word.
Hereafter, when displaying w-words, we will omit the symbol
e from positions in the timeline, since its presence can be
implied by the presence of other propositional symbols in the
same position in the timeline.

To define the translation from SOLOIST to CLTLB(2)
we consider, without loss of expressiveness, only formulae in
positive normal form, i.e., where negation may only occur on
atoms (see, for example, [15]). First, we extend the syntax of
the language by introducing a dual version for each operator
in the original syntax, except for the ¢X u&t onKh oK
modalities®: the dual of A is V; the dual of U; is “Release” R;:
OR;w = —(=¢U;—~y); the dual of Sy is “Trigger” T;: ¢ Ty =
—(=¢S;~y). A formula is in positive normal form if its
alphabet is {A,V,U;,R;,S;, T, €K gl oqKh oK vumu,
where IT is the set of formulae of the form —p for p € IL.

We can now illustrate the translation p from SOLOIST
formulae to CLTLB(Z). For the propositional (=, A and
V) and temporal part (U;, S;, R; and T;) of SOLOIST the
translation is straightforward:

p(PUry) = (—eVp(9))Ui(enp(w))
P(¢S1y) = (meVp(9))Si(enp(y))

p(p)=p,pell;
p(—p)=-p,pell;

3 A negation in front of one of the e@n,u@;ﬁ’,m{;ﬁ@gn modalities becomes
a negation of the relation denoted by the > symbol, hence no dual version is
needed for them.

=p(@)AP(¥); p(9R1y) = (eAp(9))Ri(—eVp(y))
p(O)VP(W); p(dTiy)=(enp(9))Ti(—eVp(w))

°

<

>

S
Il

In the rest of this section we focus on the translation of
the ¢X, and DX, modalities. We omit the translation of the
#1 and 90T modalities since they can be expressed in terms of

the € modality. Specifically, for the L[modality we exploit the
K.
equivalence 8157 (9) = glnl” (¢). As for the 9t modality,

pan-| K |
the equivalence depends on the ©< operator; for example,

K|_
formula Smli,f’((p) is equivalent to (/\,Efjo lY’”'h(Q’Ln(])) A

(YLE (el g)).

A. Translation of the € modality

The € modality expresses a bound on the number of
occurrences of a certain event in a given time window; it comes
natural to use the counters available in CLTLB(Z) for the
translation. Indeed, for each sub-formula of the form ¢X, (x),
we introduce a counter c,, constrained by a set of CLTLB(Z)
axioms, detailed below. Informally, these axioms define the
value of ¢y, such that at each time position it captures the
number of occurrences of event y seen in the past:

Al) ¢y =0
A2) G((eNy) = X(cy) =cy+1)
A3) G((meV—yx) = X(cy) =cy)

Axiom Al initializes the counter to zero. Axiom A2 states
that if there is an occurrence of a valid event ¥, (denoted by
e A\ x) the value of the counter ¢y in the next time instant is
increased by one with respect to the value at the current time
instant. Axiom A3 refers to the opposite situation, when either
there is no occurrence of the event } or the time instant is not
valid (i.e., ¢ does not hold in that time instant). In this case,
the value of the counter in the next time instant must have the
same value as in the current time instant. Both axioms A2 and
A3 have to hold at every time instant, so they are in the scope
of a globally temporal operator.

We can calculate the exact number of occurrences by
subtracting the values of the counter at the appropriate time
instants; we explain this through the example in Fig. 3, which
depicts a short trace of length 21 and the values assumed by the
counter ¢, (in the first row) at each time instant, as determined
by the axioms. In the example, to evaluate the formula (‘:’>(1 (x)
with K =11 at time instant ¢t = 16, we subtract from the value
of the counter ¢, at time instant £ +1 = 17 (since we want to
consider a possible occurrence of) at time instant ¢) the value
of the counter at time instant 6 (i.e.,t —(K—1)=16—(11-1),
which is 11 time instants in the past with respect to time instant
t + 1); these values are enclosed in the figure with diamond
markers. The value resulting from the subtraction 6 —1 =15
is then compared to the specified bound (5 > 1). In symbols,
this can be written as X(cy) —Y!'%(c;) > 1 evaluated at time
instant 7. This intuition is captured by the following CLTLB(Z)
formula, which generalizes the translation of a SOLOIST sub-

formula of the form ¢X, (y) :

p (€5,(20)) = X(ey) =YK (cy) pan

Notice that the axioms are conjuncted with the resulting trans-
lation of the SOLOIST formula, thus effectively constraining
the behavior of all the counters of type cy.

B. Translation of the ® modality

The ® modality expresses a bound on the average dis-
tance between the occurrences of pairs of events in a given
time window. As anticipated in Sect. II-A, we consider only
(sub)formulae of the © modality that refer to one pair, like

25, (¢,w).

Events, corresponding to atomic propositions in SOLOIST,
can occur multiple times in a trace; when we refer to a specific
occurrence of an event ¢ at a time instant 7, we denote this
as ¢j;. Clearly, a pair of events (¢, y) may also have multiple
instances in a trace. We call a pair of the form (¢};, y|;) an
instance if there is an occurrence of event ¢ at time instant i
and an occurrence of event Y at time instant j, with i < j. We
call such instance open at time instant 7 if i < 7 < j. Otherwise,
the instance is closed at time instant 7. The distance of a closed
(pair) instance is j —i; for an open pair at time instant 7, the
distance is T —i. A time window of length K defined for a ®
modality (sub-)formula evaluated at time instant 7 is bounded
by the time instants T+ 1 and 7— K + 1. For a certain trace, we
say that a © modality (sub-)formula for a pair of events (¢,)
has a left-open pair in the trace if there is an open instance of
(¢, y) at time instant T— K + 1 in the trace; similarly, we say
that the (sub-)formula has a right-open pair in the trace if there
is an open instance of (¢, y) at time instant T+ 1 in the trace.
The translation has then to take into account four distinct cases,
depending on whether a ® modality (sub-)formula contains
either (left- and/ or right-) open pairs or none.

As done in the case of the € modality, the translation is
based on CLTLB(Z) counters. For each sub-formula of the
form DX, (¢, y), we introduce five counters, namely:

- 8¢,y this binary counter assumes value 1 in the time instants
following an occurrence of ¢ and it is reset to O after an
occurrence of . It acts as a flag denoting the time instants
during which the event pair instance is open;

- hy y: in each time instant, this counter contains the number
of previously-seen closed pair instances. It is increased after
every occurrence of y;

- S¢,y: at each time instant, the value of this counter corre-
sponds to the sum of distances of all previously occurred pair
instances. It is increased at every time instant when either
8¢,y = 1 holds or ¢ occurs;

- ay,y: this counter keeps track of the sum of the distances of
all previously occurred closed pair instances;

- by y: this counter has the values that will be assumed by
counter sy at the next occurrence of y (more details
below).

Counters ag.y, bg,y, and hy y are directly used in the trans-
lation of the © modality (sub-)formulae, while counters gg v
and s¢ y are helper counters, used to determine the values of
the other counters. These five counters are constrained by the
following axioms:

Ad) goy=0ANhyy=0ANagy=0ANspy=0
AS) (X(bg,y) = by y)W(eAy)

A6) G ((eNdA—Y) = (X(gp,w) =1 AX(sp,y) =gy +1 A

(ho,y) =hoy AX(apy) =as,y))

AT) G ((eAW A=) = (X(ggy) =0 AX(hg,y) = hgy +
LA X(ag,y) = oy ANX(sgy) = o,y Aoy = 5.y N

(X(bg,y) = by y)W(eAY))))

AB) G ((meV (=9 A—y)) — (X(go,w) = 8oy N X(hgy) =

o.u\ X(ag,y) =ag,y N (goy =1 = X(sg,y) =5,y +

) A 8oy =0 = X(sg.y) =S¢y

A9) G ((endAY) = (X(ggw) = 8o,y AN X(hg,y) = hgy +
LA X(ag,y) = agy AX(spy) = sp.y N X((X(bg,y) =
by y)W(eAy))

Axiom A4 initializes all counters except counter by y,
which will assume values determined by counter sy y. Ax-
iom A5 states that the value of counter by y will stay the same
in all the time instants until the first occurrence of y. Notice
that we use the W modality (“weak until”), to deal with traces
without occurrences of Y. Axiom A6 determines the next
time instant value of the following counters, upon occurrence
of a ¢ and absence of a y event (denoted by e A ¢ A —y):
counter gy y is set to 1; counter sy y is incremented by 1;
counters hy y and ay y are constrained not to change in the
next time instant. Axiom A7 determines how the counters
are updated when a y event occurs and a ¢ event does not:
counter gy y is set to 0; counters by y, Xag vy, and Xsy y are
set to be equal to sy . Moreover, a formula equivalent to
axiom A5 holds in the next time instant, forcing the value
of by y to stay the same in all the following time instants
until the next occurrence of y. Axiom A8 covers the cases
either when there are no valid events or when neither ¢ nor
Vv occur. In these cases the values of counters 8¢,y Ny, and
ay.y are constrained to stay the same, while counter by y is
unconstrained. As for counter s , we need to distinguish two
separate cases: when the pair instance is open (denoted by
8¢,y = 1), counter sy y is incremented by 1, otherwise it stays
the same. Axiom A9 handles the case when both events ¢ and
v hold, by incrementing counter /sy y by 1 and constraining
the value of counter by y in the same way like axiom A7. The
values of the other counters are constrained to stay the same.

P

P

- =

As said above, the by y counter keeps the values that will
be assumed by counter sy y at the next occurrence of y. The
value assumed by both counters ag v and by y originates from
counter sy, as enforced by axiom A7. Axioms A6 and A8
make sure the value of sy is propagated in the future via
counter ay y, while axiom A7 enables the propagation of this
value in the past via counter by . We elaborate this through
an example: Fig. 3 represents a short trace with event Wy
occurring at time instants 5, 14, and 19. Axiom A5 enforces
equality between successive values of counter by y at adjacent

=
RS
=
-
<

=%
—_
-
—_
S
w

00 W) I = D
00N — — N
OO\ — —
O A — —
00 W 00 = — N

oo O W

—_
(=]

Fig. 3: Sample trace showing the counters used for the trans-
lation of the € and ® modalities

W
—
=)}
3
—_
oo
—_
=]
NS}
(=]

time instants until the first occurrence of y (time instants 0—
5). Additional equalities (of the same type) on the values of
counter by y are enforced by axiom A7 (time instants 614 and
15-19). The same axiom also determines equality between the
values of the sy y and by y counters upon an occurrence of y
(time instants 5, 14 and 19).

The translation p (DX, (¢,y)) is defined as:

X(agy)—YE by y)
X(h¢‘w)—YK:l (h¢’v)—1

ift (YK’I(g¢_’V,) =1) then (

The condition YX(gy) = 1 checks whether the time
window contains an open pair instance on its left bound. Since
the semantics of the ® modality considers only closed pairs
within the time window to compute the average distance, open
pairs must be ignored both on the left and on the right bound
of the time window. There is no need to differentiate between
the cases when there is a right-open pair, since counter ay y
only considers distances between closed pair instances. The
numerator of the fraction in both the then and else branches
denotes the total distance, while the denominator corresponds
to the number of pair instances considered for computing
the total distance. Propositions Z; and Z, are respectively
X(hg,y)—YE N (hg) # 1 and X(hg y) =YX (hg) # 0; due
to these disjuncts the ® modality evaluates to true when there
are no closed pairs in the time window K. Axioms A4, AS,
A6, A7, A8, A9 are conjuncted with the resulting translation
and added as constraints that hold at the initial time instant of
the trace.

An example of the use of counters to evaluate a formula
with the ® modality is shown in Fig. 3, which depicts a simple
trace and the values assumed by the counters gy v, hp. v S¢.y>
ag,y, and by y at each time instant, as determined by the
axioms. We notice that there are three instances of the (¢, y)
pair. If we evaluate the formula D4, (¢, w) at time instant 15,
the two pair instances (@), Yjs) and (@9, W|14), considered to
compute the average distance, are closed. The left-hand side
(Ihs) of the comparison operator (<) is evaluated using the
values of counters agy and hy, at time instants 16 and 2
(enclosed in a circle in the figure), resulting in % =4. When
the same formula is evaluated at time instant 18, the portion
of the trace considered contains both a left-open (¢}, y|s) pair
and a right-open (¢|;7, ¥|19) one. The lhs of the comparison
operator is evaluated using the values of counters ag .y, bey,
and hy y at time instants 19 and 5 (enclosed in a triangle in
the figure); its value is % = 5. Now consider the formula
D2 (¢, y). When evaluated at time instant 15, it has a left-
open pair (@2, Ys). The values of the counters ag v, by, and
hy.y considered to compute the lhs of the comparison operator
are those at time instants 16 and 4 (enclosed in a square in
the figure); the lhs evaluates to % = 5. If the same formula is
evaluated at time instant 18, we find only a right-open pair
(@117, W)19)- The lhs of the comparison operator is evaluated
using the value of counters ay,y and hy y considered at time
instants 19 and 7 (enclosed in a hexagon in the figure); its
value is % =5.

4if A then B else C” can be written as (AAB)V (-AAC)

C. Complexity of the translation

The translation function p, for the atomic propositions,
the temporal modalities and all the aggregate ones, introduces
a fixed-length formula; notice that subformulae occurring in
aggregate modalities are restricted to be atomic. In the worst
case, our translation is linear in the size of the input formula.
We remark that we use a direct encoding of the exponent K in
formulae of the form YX or XX, both in the case of arithmetical
temporal terms and of boolean formulae. The direct encoding
of the exponent allows us to avoid expanding it into nested Y
or X formulae.

IV. IMPLEMENTATION

The translation described in the previous section has been
implemented in a tool [16]; this tool acts as a front-end
for translating SOLOIST formulae into the input format of
the ZOT verification toolset [11]. ZOT supports satisfiability
checking of CLTLB(Z) formulae by means of SMT solvers.
A plugin-based architecture makes it easy to extend ZOT to
support more expressive languages using CLTLB(2) as a core,
and to output code for the different dialects of various SMT
solvers. We implemented the support for SOLOIST as a ZOT
plugin written in Common Lisp.

We now give a rundown of the translation steps applied
to an example, to provide a glimpse of the implementation of
our SMT-based trace checking algorithm. These steps and the
example are also sketched in Fig. 4 where: the top row shows
(a fragment of) the example input trace and the SOLOIST
formula to verify on the trace; the middle row shows how
the input trace is transformed from timed w-word to @-word,
the translation of the input formula and the definition of
the counter constraints as described in Sect. III; the bottom
row shows how the trace, the input formula, and the counter
constraints are translated into the input language of the SMT
solver.

Let us consider the problem of performing trace checking
of the formula ¢ = €>,(p) over the trace H of length 7
depicted in Fig. 4; the formula is evaluated at time instant 5.
As described in Sect. III-A, our plugin translates the SOLOIST
formula ¢ into CLTLB(Z) as p(¢) = X(c,) — Y*(cp) < 3,
where ¢, is a counter. The behavior of this counter is con-
strained by the conjunction of axioms Al, A2, and A3, defined

Trace Formula Counter constraints
p P
SOLOIST | ———=——=— €230 "
p P X(ep) =Y (cp) <3 (ep=0) @n
0123456 a b %
CLILB(2) Cep{ Gllenp) = X(ep)=cp+1) (A2)
—e e e —e—e e —e C A
—_— ((.
d G((zev-p) = Xlep) =cp) (43)
(and
(aﬂd(“m o (=(ai)(cp (+i 1) (and
(not (e 1)) li=0...5] (iff (Cep)
i A (=(b ,') (cp id)) (and (A1 i) (A2) (A3 1)))
input (not (¢ 3) cepCado (=0
language (not (e 4)) B
(e 5)(p5) i=0...
(not (¢ 6)) (iff (d i) (< (c i) 3)))
[i=0...6]

Fig. 4: Example of the translation from SOLOIST to
CLTLB(Z) and then to the input language of the SMT solver

as b, = (cp = 0) ANG((e Ap) = X(cp) = ¢p +1) AG((me V
—p) = X(cp) =cp). The next step is to invoke ZOT to translate
the input formula and the counter constraints into the input
language of the SMT solver. First, ZOT parses the formula and
assigns a special proposition to each sub-formula in the input
formula; similarly, it also assigns an arithmetic proposition
to each arithmetical temporal term in the input formula. For
example, as shown in Fig. 4, the arithmetic propositions a and
b correspond, respectively, to the arithmetical temporal terms
X(cp) and Y#(c,); ¢ is an arithmetical proposition holding
the value of the X(c,) — Y*(c,) arithmetic temporal term;
proposition d corresponds to the entire input formula. The
values of these auxiliary propositions are defined in each time
instant i = 0...6, according to their semantics. The trace H
is also encoded in the input language of the SMT solver and
provided to it as an assumption. The SMT solver is then fed
with the translation, performed by ZOT, of the CLTLB(Z) for-
mula =(X3(p(9))) A€, Notice that the formula ¢ is negated;
hence, it is satisfied by trace H if the SMT solver returns unsat.
The exponent 5 in the term X>(p(¢)) is determined by the
evaluation of the formula fixed at time instant 5. The details
of the translation from CLTLB(Z) to the input language of the
SMT solver (as sketched in the bottom row of Fig. 4) have been
omitted since they are out of the scope of this work; for them,
we refer the reader to [11].

V. EVALUATION

We evaluated the effectiveness of our approach by investi-
gating the following research questions:

o RQ1: How does the proposed approach scale with respect
to the various parameters (e.g., the length of the trace,
the length of the time window K) involved in SOLOIST
trace checking? (Sect. V-A)

e RQ2: How does the proposed trace checking procedure
for SOLOIST based on CLTLB(Z) compare with the
procedure based on QF-EUFIDL [12]? (Sect. V-B)

Since there is no consolidated benchmark for service-
based applications (for which SOLOIST was tailored), we
decided to evaluate our approach using synthesized traces.
All traces were synthesized with the Process Log Generator
(PLG) tool [17], starting from a model of a realistic service
composition (the “Order Booking” business process distributed
with the Oracle SOA Suite), comprising 37 activities. This
model was defined by specifying the workflow structure, the
duration of each activity invoking an external service’, the
branching probabilities (to simulate loops), and the error rates.
For each run of the trace checker, we recorded the memory
usage and the SMT verification time. The evaluation was
performed on a PC equipped with a 2.0GHz Intel Core i7-
2630QM processor, running GNU/Linux Ubuntu 12.10 64bit,
with 2GB RAM allocated for the verification tool. We used
the Z3 [18] SMT solver v. 4.3.1.

A. RQI: Scalability of the approach

To investigate RQ1, we considered the following parame-
ters:

SOther activities were given 0 as duration.

Trace length. It represents the length of the synthesized trace
and the bound given to the SMT solver. The length of each
synthesized trace depends on the duration of the activities
invoking an external service as well as on the branching
probabilities of the loop(s) in the process.

Length of the time window. It is used in the aggregate
modalities; it corresponds to the K parameter.

Bound of the comparison operator. It is used in the aggre-
gate modalities; it corresponds to the n parameter.

We present only the results of the evaluation done for
the € and ® modalities, since they are the keystones of the
translation. We synthesized 20000 different traces, of variable
length between 100 and 2000. We checked the following
properties on them: €¢!%(p), and D% (p.q), with proposi-
tions p and g corresponding to the start and end events of a
service invocation of the process. The results of executing trace
checking for each of these two properties on the synthesized
traces are shown in the top plot in Fig. 5; the plot shows the
time taken by the trace checking procedure for checking both
the ¢ properties (shown in black) and the ® one (shown in
gray). Each point in the plot represents an average value of 10
trace check runs on traces of the same length. The plots provide
an intuition of the growth rate of the resources usage with
respect to the length of the input trace. The memory usage for
the respective properties yields a very similar plot; we omitted
it for space reasons. The memory dedicated for the evaluation
of properties with the € modality was exhausted at 2200 time
instances, requiring 2.1GB of memory and 40 seconds to solve.
For the evaluation of the properties with the ® modality,
the maximum number of time instances manageable before
exhausting the preset memory limit was 2000. The lower value
with respect to the € modality is due to the linear multivariate
constraints introduced in the translation of the ® modality;
these constraints are harder to solve than the univariate one
used for the € modality.

As for the scalability with respect to the other parameters,
namely the length of the time window K and the bound of
the comparison operator n, we notice that they do not affect
the resource usage, and only introduce some non-deterministic
noise in the SMT solver time. We evaluated the time and
memory usage with respect to the variation of each of these
two parameters when checking properties over a synthesized
trace of length fixed to 1000. We omit the corresponding plots,
since they show a constant value of time/memory with respect
to any value of K and n in the properties..

B. RQ2: Comparison with the QF-EUFIDL-based encoding

To investigate RQ2, we compared our approach with
previous work for trace checking of SOLOIST [12], based
on an encoding of SOLOIST properties into formulae of
QF-EUFIDL, the theory of quantifier-free integer difference
logic with uninterpreted function and predicate symbols. This
encoding was tailored for sparse traces, i.e., traces in which
the number of time instants when events occur is very low
with respect to the length of the trace.

The comparison focuses on how the two approaches deal
with traces of various sparseness degrees, where sparseness is
defined as the ratio between the number of time instants in
the trace where events occur and the total time the trace spans

over. We compared the performance of the two approaches
by classifying the generated traces into seven groups with
100%, 50%, 33%, 25%, 20%, 16.6%, and 14.3% of sparseness,
respectively. We reevaluated the approach from [12] on traces
from each group and compared time and memory requirements
of both approaches. As shown in the bottom plot in Fig. 5, the
approach presented in this paper is more efficient when the
degree of sparseness of input traces is 25% or higher. The black
line in the plot shows the performance of our approach, while
the seven gray lines show our reevaluation of the approach
based on QF-EUFIDL, applied to traces from the seven groups
aforementioned.

VI. RELATED WORK

This work lies in the wider area of research on verification
of SBAs; we refer the reader to various surveys [2], [3], [4],
[5], illustrating approaches both for design-time and for run-
time verification of functional and QoS properties. In the rest
of this section we focus on existing work on trace checking and
verification of quantitative properties specified in languages
similar to SOLOIST. For a detailed discussion on SOLOIST
and related specification languages see [6].

Finkbeiner et al. [19] describe an approach to collect statis-
tics over run-time executions. They extend LTL to return values
from a trace and use them to compute aggregate properties
of the trace. However, the specification language they use to
describe the statistics to collect provides only limited support
for timing information. For example, compared to SOLOIST,
it cannot express properties on a certain subset of an execution
trace. Furthermore, their evaluation algorithm relies on the
formalism of algebraic alternating automata. These automata
are manually built from the specification; thus making frequent
changes to the property error-prone.

60 T T T
—m— ¢ modality
© modality

of et 8
1 1 1 1 1 1 1 1 1 1

Il
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Trace length

Time (s)

T T
QF-EUFIDL
—e— CLTLB(2) 33%
100% 50% 25%

2 - -
20%

Ir 16.6%-

Time (s)

14.3%

| | | | | |
0 100 200 300 400 500 600
Trace length

Fig. 5: Scalability with respect to the trace length (top)
and comparison between QF-EUFIDL- and CLTLB(Z)-based
encodings (bottom)

In reference [20] authors define an extension of metric first-
order temporal logic (MFOTL) which supports aggregation.
This language is very similar to SOLOIST with a general
definition that supports any aggregate operator that can be
defined as a mapping from multisets to QU {L}. The lan-
guage can express aggregate properties over the values of the
parameters of relations, while SOLOIST expresses aggregate
properties on the occurrences of relations in the temporal first-
order structure.

The trace checking approach presented in [21] exploits
a Map-Reduce framework to validate properties of traces
written in LTL. This work mainly focuses on recasting the
trace checking problem into a Map-Reduce framework, by
distributing (sub)trace validation tasks over many parallel sites.

In reference [22], authors introduce a specification lan-
guage PTLTLFO (past time linear temporal logic with first-
order (guarded) quantifiers) with a counting quantifier. It is
used for expressing policies that can categorize the behavioral
patterns of a user based on its transaction history. The counting
quantifier counts the occurrences of an event from the begin-
ning of the trace until the position of evaluation. The difference
with the ¢ modality of SOLOIST is that there is no timing
information: this means one cannot specify the exact part of
the trace the modality should consider.

In reference [23], de Alfaro proposes pTL and pTL*
as probabilistic extensions of CTL and CTL*. These new
languages include a new modality © that expresses the bound
on the average time between events. This is achieved by using
an instrumentation clock that keeps track of the elapsed time
from the beginning of the computation until the first occurrence
of a specified event. To this end, the extended pTL formulae
are evaluated on an instrumented timed probabilistic Markov
decision process. Notice that the ® modality used in [23]
differs from the one we introduced here, since it computes the
time passed before the first occurrence of an event, averaged
over the different computations of the underlying Markov
decision process.

VII. CONCLUSION AND FUTURE WORK

The interactions among the various services participating
in a composite SBA and the provisioning of such services
can be characterized by precise specification patterns [7]. The
SOLOIST language was developed [6] to express these pat-
terns, which involve aggregate operations on events occurring
in a given time window. In this paper, we propose an SMT-
based offline trace checking procedure for SOLOIST. This
approach exploits a translation of SOLOIST into CLTLB(Z), a
variant of linear temporal logic that supports counter variables.
We assess the scalability of the approach with respect to the
various parameters involved in SOLOIST trace checking, and
we also compare it with previous work.

The use of SOLOIST in the context of practical verification
activities is the goal of further on-going research and we intend
to validate our proposal in realistic scenarios, in collaboration
with industrial partners. After further improvements to the
translation, we also plan to move from offline trace checking
to run-time verification, integrating ZOT and the SOLOIST
plugin into a run-time monitoring framework for SBAs.

(1]

(2]

(31

(4]

(31

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

N. Josuttis, SOA in Practice: The Art of Distributed System Design.
O’Reilly Media, Inc., 2007.

M. Bozkurt, M. Harman, and Y. Hassoun, “Testing & verification in
service-oriented architecture: A survey,” Softw. Test. Verif. Reliab., 2012.

G. Salaiin, “Analysis and verification of service interaction protocols -
a brief survey,” in Proc. of TAV-WEB 2010, ser. EPTCS, vol. 35, 2010,
pp. 75-86.

G. Canfora and M. Di Penta, “Service oriented architectures testing: a
survey,” in ISSSE 2006-2008, ser. LNCS. Springer, 2009, vol. 5413,
pp. 78-105.

L. Baresi and E. Di Nitto, Eds., Test and Analysis of Web Services.
Springer, 2007.

D. Bianculli, C. Ghezzi, and P. San Pietro, “The tale of SOLOIST:
a specification language for service compositions interactions,” in
Proceedings of FACS 2012, vol. 7684. Springer, September 2012,
pp- 55-72.

D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti, “Specification
patterns from research to industry: a case study in service-based
applications,” in Proceedings of ICSE 2012. 1EEE, June 2012, pp.
968-976.

A. Mrad, S. Ahmed, S. Hallé, and E. Beaudet, “Babeltrace: A collection
of transducers for trace validation,” in Proc. of RV 2012, ser. LNCS,
vol. 7687. Springer, 2013, pp. 126-130.

M. Felder and A. Morzenti, “Validating real-time systems by history-
checking TRIO specifications,” ACM Trans. Softw. Eng. Methodol.,
vol. 3, no. 4, pp. 308-339, Oct. 1994.

M. M. Bersani, A. Frigeri, A. Morzenti, M. Pradella, M. Rossi, and
P. San Pietro, “Constraint 1tl satisfiability checking without automata,”
CoRR, vol. abs/1205.0946, 2012.

M. Pradella, A. Morzenti, and P. San Pietro, “Bounded satisfiability
checking of metric temporal logic specifications,” ACM Trans. Softw.
Eng. Methodol., vol. 22, no. 3, pp. 20:1-20:54, Jul. 2013.

M. M. Bersani, D. Bianculli, C. Ghezzi, S. Krsti¢, and P. San Pietro,
“SMT-based checking of SOLOIST over sparse traces,” in Proceedings
of FASE 2014, vol. 8411. Springer, April 2014, pp. 276-290.

O. Lichtenstein, A. Pnueli, and L. Zuck, “The glory of the past,” in
Proc. of Logics of Programs, ser. LNCS, vol. 193. Springer, 1985, pp.
196-218.

S. Demri and D. D’Souza, “An automata-theoretic approach to con-
straint LTL,” Inf. Comput., vol. 205, no. 3, pp. 380415, 2007.

M. Pradella, A. Morzenti, and P. San Pietro, “The symmetry of the
past and of the future: bi-infinite time in the verification of temporal
properties,” in Proc. of ESEC-FSE ’07. ACM, 2007, pp. 312-320.
S. Krsti¢, “SOLOIST https://bitbucket.org/krle/
soloist-translator, 2013.

Translator,”

A. Burattin and A. Sperduti, “PLG: A framework for the generation of
business process models and their execution logs,” in Business Process
Management Workshops, ser. LNBIP, vol. 66. Springer, 2011, pp.
214-219.

L. M. de Moura and N. Bjgrner, “Z3: An Efficient SMT Solver,” in
Proc. of TACAS 2008, ser. LNCS, vol. 4963. Springer, 2008, pp.
337-340.

B. Finkbeiner, S. Sankaranarayanan, and H. Sipma, “Collecting statistics
over runtime executions,” Formal Methods in System Design, vol. 27,
pp. 253-274, 2005.

D. Basin, F. Klaedtke, S. Marinovic, and E. Zilinescu, “Monitoring of
temporal first-order properties with aggregations,” in Proc. of RV’13,
ser. LNCS, vol. 8174. Springer, 2013, pp. 40-58.

B. Barre, M. Klein, M. Soucy-Boivin, P-A. Ollivier, and S. Hallé,
“MapReduce for Parallel Trace Validation of LTL Properties,” in Proc.
of RV 2012, ser. LNCS, vol. 7687. Springer, 2013, pp. 184-198.

A. Bauer, R. Goré, and A. Tiu, “A first-order policy language for
history-based transaction monitoring,” in Proc. of ICTAC ’09, ser.
LNCS, vol. 5684. Springer, 2009, pp. 96-111.

L. de Alfaro, “Temporal logics for the specification of performance
and reliability,” in Proc. of STACS’97, ser. LNCS, vol. 1200. Springer,
1997, pp. 165-176.

