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Abstract:  30 

Purpose: The Dynamic Mode Decomposition (DMD) method is used to provide a reliable 

forecasting of tumor ablation treatment simulation in real time, which is quite needed in 

medical practice. To achieve this, an extended Pennes bioheat model must be employed, 

taking into account both the water evaporation phenomenon and the tissue damage during 

tumor ablation.  35 

Methods: A meshless point collocation solver is used for the numerical solution of the 

governing equations. The results obtained are used by the DMD method for forecasting the 

numerical solution faster than the meshless solver. The procedure is first validated against 

analytical and numerical predictions for simple problems. The DMD method is then 

applied to three-dimensional simulations that involve modeling of tumor ablation and 40 

account for metabolic heat generation, blood perfusion, and heat ablation using realistic 

values for the various parameters. 

Results: The present method offers very fast numerical solution to bioheat transfer, which 

is of clinical significance in medical practice. It also sidesteps the mathematical treatment 

of boundaries between tumor and healthy tissue, which is usually a tedious procedure with 45 

some inevitable degree of approximation. The DMD method provides excellent predictions 

of the temperature profile in tumors and in the healthy parts of the tissue, for linear and 

non-linear thermal properties of the tissue. 

Conclusions: The low computational cost renders the use of DMD suitable for in-situ real 

time tumor ablation simulations without sacrificing accuracy. In such a way the tumor 50 

ablation treatment planning is feasible using just a personal computer thanks to the 

simplicity of the numerical procedure that is used. The geometrical data can be provided 

directly by medical image modalities used in everyday practice 

 
Keywords: Bioheat equation, Eulerian, Meshless method, Moving Least Squares, 55 

Thermal Ablation. 
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1. Introduction 
 60 

Image-guided thermal ablation has been gaining popularity as a minimally invasive 

treatment of localized solid tumors. Energy sources for the delivery of thermal energy to 

coagulate and destroy cancerous lesions may include radiofrequency ablation (RFA), 

microwaves (MW), high-intensity focused ultrasound (HIFU) and Light Amplification by 

Stimulated Emission of Radiation (LASER). Exposure to heat may render cancer cells 65 

more sensitive to radiation or even directly attack cancer cells that show reduced sensitivity 

to radiation. As thermal ablation contributes to the damage of cancer cells, usually with 

minimal injury to normal tissues,1 it is a powerful alternative to more conventional 

treatment modalities, such as chemotherapy and radiation therapy.2 Appropriate medical 

imaging is the key element for the effective navigation and actuation of ablation 70 

instruments and for monitoring and control of treatment outcomes. However, results of 

thermal ablation therapies depend on the physics of in situ energy deposition and tissue-

energy interaction and there is still an unmet need for accurate modeling and prediction of 

local thermal lesions. Computational bioheat modeling (Computational Heat Transfer; i.e. 

CHT) prior to thermal ablation of solid tumors holds the promise to project the local 75 

ablation isotherms and provide a virtual roadmap for more optimal treatment planning and 

improved clinical outcomes. In thermal ablation treatment planning simulations, it is 

important to be able to predict ahead of time the effects of the heating on the tumor and on 

the surrounding tissue.  Theoretical models used for numerical simulations are intended to 

be used before and during ablation treatments, together with temperature field images 80 

obtained by magnetic resonance to predict the effect of source placement and heating.3 

  The majority of bioheat models make use of the Pennes bioheat equation,4, 5 which is 

based on the classical Fourier law6 and accounts for blood flow through a temperature-

dependent heat source term. The Pennes equation works well with acceptable accuracy in 

the absence of large blood vessels.7 A method to account for the heat sink effect that is 85 

caused by large blood vessels would be to specify an effective convective heat transfer 

coefficient along the vessel surface8, 9 or to include some complex relationship between 

blood flow dynamics in the vessel and transient temperature.10 However, it is widely 

accepted that despite the development of more complex and rigorous models of heat 

transfer within a tissue,11 the Pennes equation remains a remarkably effective method for 90 

modeling heat transfer in tissue during thermal ablation.  
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Modeling heat conduction in inhomogeneous media with different thermal properties, like 

body tissues with pathological regions, is a computationally demanding problem due to its 

inherent non-linearity. One can assign to it the thermal conductivity of the neighboring 

media or assume a linear profile of temperature change and satisfy energy conservation in 95 

each direction of heat conduction.12 The identification of regions with different 

conductivity and the description of the precise geometry of the boundaries between them 

are known to necessitate tedious mathematical treatments that complicate the solution of 

the heat conduction problem. Specifically, the typically used methodology of continuity of 

heat fluxes at the interface between regions of different conductivity necessitates the 100 

calculation of local normal vectors at the tumor/tissue interface, which, in the majority of 

cases, is a cumbersome procedure. Several theoretical models have appeared in the 

literature concerning the impact of changes in tissue properties on the resulting temperature 

profiles, along with the impact of microvascular13 and macrovascular perfusion. In fact, 

microvascular perfusion occurs within the capillary system and affects both the size and the 105 

shape of the ablation zone. On the other hand, macrovascular perfusion reflects the heat 

sink effect of large blood vessels at the site of the ablation zone. Both types of tissue 

perfusion play a crucial role in the tumor ablation procedure and influence significantly the 

dimensions of the ablation area. As mentioned above, athough the Pennes bioheat equation 

does not account for heat loss due to blood flow through large, discrete vessels (heat sink 110 

effect), it has been shown to describe the effect of blood perfusion on the temperature 

distribution with acceptable accuracy.7  

In the present study, a Dynamic Mode Decomposition (DMD) method in conjunction with 

the meshless point collocation method has been used in order to numerically solve the 

transient bioheat transfer equation with temperature dependent properties. The classical 115 

Pennes bioheat equation has been extended to incorporate water evaporation and tissue 

damage during ablation, accounting for temperature-dependent thermal properties of the 

tissue. This approach treats three-dimensional heat conduction problems within 

pathological tissues of locally varying conductivity and locally varying blood perfusion 

rate, viewing them as continuous domains, and solving the corresponding bioheat 120 

differential equation with variable coefficients. With the present scheme, the time needed 

for running a simulation in a standard PC amounts to just a few seconds for high-resolution 

images. In general, 3D models or MR-aided thermal ablation require remarkable 

computational resources for the solution of large systems of nonlinear algebraic equations. 

In particular, for a spatial domain that can be represented by a uniform nodal distribution 125 
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(the arrangement of the pixels in a stack of images) the use of a meshless point collocation 

method can be very efficient.   

In this work the fully non-linear extended Pennes bioheat equation in three dimensions is 

solved numerically using the DMD method for checking the convergence and the stability 

of the linearized solver and, finally, for forecasting. The proposed scheme is validated and 130 

shown that can be used potentially with both numerical and experimental data. The 

accuracy is crucial for its later use in real raw data. In this way, the DMD scheme can be 

directly used in feedback control systems, namely DDDAS (Dynamic Data Driven 

Application Systems) that integrate computer models with field measurement systems to 

allow real-time simulation.14 The method is validated against a well-established meshless 135 

solver of the non-linear Poisson type, extended bioheat equation for applications that 

incorporate physical phenomena such as water evaporation and tissue damage. The 

applicability of the method can then be used for medical imaging modalities, such as 

magnetic resonance thermal imaging (MRTI) that are widely used for tumor ablation 

monitoring and control. The data will be the output of a thermal MRI and the simulation 140 

conducted will be data driven. The numerical scheme is straightforward and easy to 

implement. It is shown here that the meshless collocation method, which provides both 

accuracy and convergence for the harmonic operator, produces numerical results for the 

temperature distribution that are in very good agreement with analytical predictions or with 

the results of the flux continuity method for different benchmark problems. In addition, it is 145 

shown that arbitrary and random conductivity maps can be treated in a straightforward 

manner with this method, at contrast with the flux continuity technique that is not 

applicable in the case of vaguely defined boundaries.  

The paper is organized as follows. In Section 2, the governing equation of the physical 

phenomenon under consideration is presented. A brief review of Dynamic Mode 150 

Decomposition (DMD) method used is presented in Section 3, along with the algorithmic 

description of the method. In Section 4, both the computational efficiency and the accuracy 

of the meshless point collocation method are presented. Further numerical examples that 

involve heating of three-dimensional tumor geometries within an otherwise healthy tissue 

are solved in Section 5. Finally, conclusions and discussion complete the paper. 155 

   
 

2. Bioheat equation model 
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2.1 Pennes equation 160 
 
 The most widely used bioheat equation for numerical simulations of thermal therapies is 

the Pennes bioheat equation, which incorporates the effects of blood perfusion and 

metabolic heat generation:6 

 165 
( ) ( )( ) ( ) ( )b b b a m r

T ,t
c k T T c T T Q Q ,t

t
ρ ω ρ

∂
= + − + +

∂

x
x∇ ∇                                     (1) 

 
where ρ [kg/m3] is the mass density, c [J/kg K] is the specific heat capacity, k [W/ K] is the 

thermal conductivity of the tissue, and ωb [kg/m3s], ρb [kg/m3] and cb [J/kg K]  represent 

blood perfusion, density, and specific heat of blood, respectively. Ta [K] is the arterial 170 

temperature, which is here treated as constant, and T(x,t) is the local tissue temperature. Qm 

[W/m3] is the metabolic heat generation and Qr(x,t) [W/m3] is the spatial heating rate that is 

provided by an external heat source. From the physical side of view, the first term on the 

right hand side of the Pennes equation represents heat conduction in the tissue, caused by 

the temperature gradient and the second term describes the heat transfer between the tissue 175 

matrix and local microcirculation. The rest of the terms represent the internal heat 

generation due to metabolism (Qm) and the spatial heating caused by external heat sources 

(Qr).  

 
 180 
2.2 Extended bioheat equation 
 
The Pennes bioheat model assumes uniform perfusion rate without accounting for blood 

flow direction. As a result, it neglects the counter-current arrangement of the circulatory 

system, taking into consideration only the venous blood stream as the fluid stream 185 

equilibrated with the tissue. Additionally, it neglects certain physical phenomena that take 

place during thermal ablation, namely, water evaporation and thermal tissue damage.  

 
Water evaporation and tissue damage 
 190 

At the relatively high temperatures that are reached during ablation, the following 

phenomena must be taken into account in the bioheat equation: water transport due to 

temperature changes, changes in local water content due to heating, and water evaporation 

at high temperatures along with its possible recondensation.15 Specifically, water vapor that 
is generated upon heating the tissue increases the gas pressure locally and, then, escapes to 195 
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lower pressure and lower temperature regions. It also condenses to water liquid and 
releases its latent heat to the adjacent tissue regions, increasing the temperature locally. 
Due to the temperature increase, this region gains water content eventually during the 
condensation process. As experimental observations showed16 thermal ablation has several 
effects on tissue water properties including dependence on temperature and on water 200 

content of the tissue. Because of the dearth of valid experimental data, an approach to 

tackle such a complex problem is to attempt to incrementally improve the model as our 

understanding of the physical system improves and more information on material 

properties becomes available.  

The power density that is used for evaporation is related to the change in water content of 205 

the tissue as follows:15  

 

E
WQ
t

β
∂

= −
∂

                                                                                                                        (2) 

 
where β is the water latent heat constant, equal to 2260 [kJ/kg], and W is the tissue water 210 

density [kg/m3], which is assumed to be a function of temperature. Using the chain rule, the 

derivative of W with respect to time is given by 

 
W dW T
t dT t

∂ ∂
=

∂ ∂
                                                                                                                      (3) 

 215 
Substituting this into Eq. (2), yields 

 

E
dW TQ
dT t

β
∂

= −
∂

.                                                                                                                 (4) 

   
 220 
Tissue damage 
 
Tissue damage due to heating is a complex function of the amount of temperature elevation 

and temperature ramp. A crucial matter in this problem is to determine the precise amount 

of tissue damage during ablation. Several theoretical models have been suggested over the 225 

last few years.17 However, experimental measurements have shown that blood perfusion in 

response to elevated temperature is a complex function of both temperature and time18, 19 

Tissue thermal damage due to temperature elevations in the tissue over a threshold value 

for a period of time can be described by an Arrhenius-type equation:20  
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0

RT ( , )P e d
ΔΕτ

τΩ τ
−

= ∫ x                                                                                                                (5) 230 

 
where Ω is a measure of the extent of thermal damage to the tissue, P is a proportionality 

constant, ΔE is the activation energy, and R is the universal gas constant. More specifically, 

the undamaged fraction of the tissue is fu=e-Ω, whereas the damaged fraction is fd=1- fu. 

Taking into account the above analysis, the extended bioheat equation becomes 235 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( )b b b a r m

dc d dW dTT T c T T T c T k T T
dT dT dT dt

                                                                               T , c T T Q Q

ρ
ρ ρ β

ω Ω ρ

⎛ ⎞+ + − = +⎜ ⎟
⎝ ⎠

− + +

∇ ∇
               (6) 

 
incorporating water evaporation, tissue damage during heating, and temperature dependent 

thermal properties of the tissue. 240 

 

 
3. Dynamic Mode Decomposition 

 
3.1 Historical Background 245 
 
In recent decades there have been great advances in the extraction of coherent structures 

from experiments and numerical simulations. Several techniques, such as balanced 

truncation, proper orthogonal decompositions (POD) and dynamic mode decomposition 

(DMD), have been efficiently used for global model reduction, most of which involve 250 

projection of the original governing equations onto a set of modes. Proper orthogonal 

decomposition constitutes a powerful mode decomposition technique for extracting the 

most energetic structures from a linear or nonlinear dynamical process.21 Dynamic mode 

decomposition (DMD) method has been recently introduced22 to accurately extract coherent 

and dynamically relevant structures. This method enables the computation, from empirical 255 

data, of the eigenvalues and eigenvectors of a linear model that best represents the 

underlying dynamics, even if those dynamics are produced by a nonlinear process. This 

technique has been successfully applied for the analysis of experimental,23, 24 and 

numerical25 flow field data and has shown a great capability to capture the relevant 

associated dynamics. Additionally, one could use the method of snapshots26 which allows 260 

for a significant reduction of the large data sets. In this method, sets of instantaneous 

solutions (or snapshots) of the flow parameters obtained from a well-established solver are 
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generated and stored in an M×N matrix, where M and N denote, respectively, the number of 

grid points and snapshots. The DMD method is based on postprocessing a sequence of 

snapshots to extract the dynamic information.27, 28 In such a way, the DMD method can 265 

also be used for forecasting. By analyzing and recognizing the dynamical modes of the 

physical system under investigation, the modes can be used to predict the final output.  

 

3.2 Mathematical background  

 270 
To reduce the computational complexity associated with nonlinear dynamical systems, two 

common mode decomposition methods have been successfully used, namely, dynamic 

mode decomposition (DMD) and proper orthogonal decomposition (POD). Both of them 

are based on processing information from a sequence of snapshots (or instantaneous 

solutions) to identify a low-dimensional set of basis functions. These functions are then 275 

used to derive a low-dimensional dynamical system that is typically obtained by Galerkin 

projection.29-31 DMD enables the computation, from simulation and empirical data, of the 

eigenvalues and eigenvectors of a linear model that best represents the underlying 

dynamics, even if this dynamics is produced by a nonlinear process. One important feature 

of this method is its ability to extract dynamic information from flow fields without 280 

depending on the availability of a model, but rather is based on a sequence of snapshots.22, 

25 The application of this mode decomposition technique is suggested here in order to speed 

up significantly the numerical simulation of the bioheat equation while predicting the 

temperature field with good accuracy.  

  The DMD-based approach involves the following steps:22, 25  285 

 
1. Collect and store the snapshots, instantaneous solutions separated by a constant 

time step , in two consecutive snapshot sequences as follows: 
 

    and                   (7) 290 

Here,  is the vector collecting the temperature values at the grid points at 

time instant  where  denotes the number of grid points and   is the 

number of snapshots. In the present study, we assume that . The objective 

is to evaluate only the first few instantaneous temperature fields to compute the 

dynamically-relevant structures that enable the forecast of the temperature field 295 

with good accuracy while saving significant computational cost.    
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2. Perform the singular value decomposition (SVD) of the first snapshot matrix 

; that is,  

 300 
3. Evaluate the matrix  as  

 
4. Compute the eigenvalues and eigenvectors of the matrix ; that is, solve the 

following eigenvalue problem, 

    or    where  is a diagonal matrix 305 

 
5. Compute the dynamic mode spectrum   

 
6. Compute the unscaled dynamic modes as   where  and 

 310 
 

7. Compute the vector  from  
 

8. Evaluate the scaled dynamic modes as  
 315 

9. Approximate the temperature field as                (8) 
 

Unlike the POD-based reduced-order model that requires the Galerkin projection of the 

original governing equations οnto an optimal subspace, the DMD-based approximation, as 

given by Eq. (8), does not require a priori knowledge of the governing equations, but rather 320 

only involves the analysis of a set of snapshots.    

For the subsequent analysis, to check the capability of the dynamic modes to properly 

predict the temperature variation, we compute the relative error as the L2-norm of the 

difference between the reference and approximate solutions over the reference one; i.e., 

 325 

                                                                                         (9) 

 

 
4. Meshless point collocation 

 330 
4.1 Computational Efficiency 

 
  Meshless methods were developed to overcome the drawbacks of the traditional mesh 

based methods, namely, the meshing itself and the local refinement procedure. Thus, there 
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is no predefined interconnectivity between the spatial domain nodes in meshless methods, 335 

rendering the local refinement procedure easy and straightforward.  

  The approximation/interpolation method that is used in the context of meshless methods 

uses a limited number of nodes for the construction of the shape functions and derivatives 

of the unknown field functions. These nodes are generally referred to as nearest 

neighboring nodes, while the process of finding the near nearest nodes is commonly 340 

referred to as nearest neighboring nodes searching. These approaches can be categorized 

into all-pair search, cell-list search, and tree search algorithms.32 Herein, we used a cell-list 

search algorithm mainly due to uniform nodal distribution given by the voxel of the stack 

of the images. Long-range interactions, where in every node the support domain includes 

the entire spatial domain, incur a computational cost of O(N2), rendering their direct 345 

computation infeasible for practical simulations. At the expense of computing an 

approximate solution, this computational cost can be reduced to O(NlogN) or even O(N) 

using fast N-body solvers such as the Barnes-Hut algorithm33 or Fast Multipole Methods,34 

respectively. Additionally, interactions that only involve a local neighborhood can 

efficiently be computed in O(N) time using fast neighbor lists, such as cell lists35 or Verlet 350 

lists.36 Additionally, thanks to their regular computational structure and fine granularity, 

meshless methods are suitable for parallelism on streaming multiprocessors, such as 

Graphics Processing Units (GPU).  

 

4.2 Meshless code validation 355 
 
For validating the meshless numerical solver used, we considered a benchmark example of 

a rectangular domain subjected to temperature impact.37 As it can be seen in Fig. 1,  the 

width of the rectangle along the x direction is 0.03 m and along the y direction is 0.08 m. 

The boundary conditions considered are  360 

 
( ), , 45oT x y t C= , ( ),  Ax y∈  

( ), , 0T x y t∂
=

∂n
, ( ) ( ), ,x y B D∈  

( ), , 37oT x y t C= , ( ),x y C∈                                                                                             (10) 

 365 
while the initial condition is ( ), ,0 33oT x y C= , ,x y Ω∈ . A convergence study took place, 

obtaining a grid independent numerical solution that was compared with the analytical 
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solution. The steady state analytical solution, in the absence of a metabolic heat source is 

given by [ref] 

 370 

( )
( ) ( ) ( ) ( )

( )
sinh sinh

sinh
s a c a

a

T T L x T T x
T x T

L
µ µ

µ

− − + −⎡ ⎤⎣ ⎦= +                                    (11) 

 

with b b bc
k

ω ρ
µ = . 

  

The convergent result is achieved at t=7500 s (with time step set to δt=1 s). The numerical 375 

results of the proposed method are compared against the analytical predictions in Fig. 2, 

where the temperature profile at y=0 is plotted at different time instants. There is an 

excellent agreement between numerical and analytical predictions for all time instants 

considered here and for sufficiently long time that, essentially, corresponds to the steady 

case solution. 380 

As a second example (Fig.3), we considered the bioheat equation in the case where the 

boundaries between regions of different blood perfusion rates, where is expected to raise 

numerical difficulties, due to the appearance of the first term on the right hand side of Eq. 

(1). This is the price for circumventing the definition of boundaries between the two 

regions, the determination of the normal vector at any position on the boundaries, and the 385 

application of the flux continuity condition on the boundaries. The boundary conditions are 

 

( ) 0q x,y,t = ,   x,y in A,C,D 

( ) 37T x,y,t C= o ,   x,y in B                                            (12) 

with 390 
3

3

0 0005
0 002b

.  kg / s / m x, y outside R
.  kg / s / m x, y in R

ω
⎧

= ⎨
⎩

 

3

3

420
4200m

 W / m x, y outside R
Q

 W / m x, y in R
⎧

= ⎨
⎩

                                             (13) 

 

for tissue with a tumor, where R is the tumor domain. Figure 4 shows the temperature 

distribution using the proposed method. 395 
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Figure 1: Geometry of 2D tissue with tumor and boundary conditions for the validation 

study. 

 400 
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Figure 2: Steady-state temperature distribution along y=0 for different blood perfusion rate 
values. 
 

 405 

 
Figure 3: Geometry configuration of the 2D bioheat transfer problem for the validation 
study. 
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Figure 4: Steady state temperature profile in the tumor region. 
 

 

 415 

Finally, in order to further validate the meshless point collocation scheme, the Pennes 

equation (Eq. 1) is first solved in the region that is shown in Fig. 5, which is a rectangular 

region with dimensions 2L×L (L=0.05m) with the tumor located at the center with size 

L/4×L/4. The physical properties are assigned typical values, namely, thermal conductivity 

k=0.5 W m−1 K−1, density of both tumor and healthy tissue ρ=1052 kg m−3, cp =3800 J kg−1 420 

K−1, ηb=1×10−3 s−1, Qm=4000 W m−3, and a heating source Qr=100t W m−3 that covers the 

entire region. At the boundaries, h=20 W m−2 K−1 , Tf = 20 ◦C, and Ta = 37 ◦C. The time 

step is set to δt=20s, and the initial temperature distribution is obtained from the steady 

state example, as given in the literature.38 Fig. 6 gives the transient temperature profiles, 

which are compared with the results obtained using the Lattice-Boltzmann (LB) method.38 425 

As it can be seen, an excellent agreement between the two methods is obtained. The results 

of this example show that the MPC method predicts the temperature distribution with very 

good accuracy and is efficient in dealing with space and time dependent heat sources.  

As far as the real time needed for the numerical simulations, the results are listed in Table I. 

For the DMD analysis we took as a snapshot matrix the entire data given by the solver. The 430 

forecasting was based on this analysis and so was the time listed. The computational time 

can be drastically reduced when the snapshot matrix accounts only for a number of steps 

starting from the initial solution.  

 
 435 
Table I: Computational times for MPC and DMD 

# of nodes MPC (sec) DMD (sec) 
7,381 
13,041 
20,301 
29,161 
39,621 
51,681 

53.9 
206.3 
346.2 
427.3 
520. 8 
1,171.1 

4.1 
7.1 
11.7 
19.6 
23.7 
31.9 
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 440 
Figure 5: Geometry of 2D tissue with tumor and boundary conditions for the third 
validation study. 
 
 

 445 
Figure 6: Transient temperature profiles for the case of Fig. 1 along the line x=0. 
Comparison of MPC results (solid lines) with LBM results (symbols, from Zhang, 2008). 
 
5. Results and Discussion 
 450 
 
Mesh-based methods are widely used in order to solve heat transfer problems in tissues. In 

that approach subdomains (healthy tissue and tumor) with different thermal conductivities, 

tumor
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have to be segmented and a different mesh configuration has to be constructed for each of 

the subdomains. The difficulty in this approach is the segmentation procedure itself, which 455 

in the majority of the cases is not fully automated and requires the application of the 

continuity of fluxes along the interfaces of the subdomains. In the present study we adopt 

an Eulerian type of formulation. In this way there is no need for different mesh 

configurations between the tumor and the surrounding healthy tissue or adjacent organs. 

We simulated rectangular geometries with the tumor given also as a rectangular domain, 460 

assigning thermal conductivity values directly to grid points. As a result, the proposed 

scheme can be easily applied to cases where the grid is dictated directly by the raw data 

provided a mapping between the intensity values and the thermal conductivities is 

available. In more details the data sites needed for the numerical solution of the governing 

equations using meshless methods are directly extracted from image data. The meshless 465 

method is based only on a set of nodes with no predefined inter-connectivity. These are 

exactly the voxels defined by the raw data. In mesh-based methods, a mesh has to be 

constructed and the different regions defined have to be segmented. Additionally, the 

appropriate selection of modes is an important step in extracting the relevant dynamics 

when applying both the DMD for model reduction.  470 

 

 
 
5.1 2D and 3D linear case 
 475 

The case of a two-dimensional tumor ablation test is considered next, using the geometry of 

Fig. 1 and the boundary conditions described in the code validation section, namely, fixed 

temperature at the lower border, convection at the upper border, and adiabatic side surfaces. 

A scenario that simulates a real life medical practice is investigated. Specifically, tumor 

ablation takes place using a heat source of finite volume located in the middle of the tumor, 480 

with a radius of 0.002 m and Qr=800t Wm-3. A single heat source is located at the middle 

(0.0, 0.025 m) of the spatial domain with radius of 0.0025 m, whereas considering a  more 

realistic medical scenario two more heating sources  (Qr=800t Wm-3) were added during the 

simulation study, located near two corners of the tumor, the first one at (-0.0055 m, 0.022 

m) and the second one at (0.0055 m, 0.022 m) having a common radius of 0.0025 m. The 485 

sources were activated with a time lag of 400 s and 900 s from the central source, 

respectively. As a more realistic case, we considered the temperature dependence of all 

major physical and thermal properties of the tissue. In this case, the bioheat problem 
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becomes non-linear and the numerical solution of the bioheat equation becomes more 

complicated. Although no complete data for temperature-dependent and damage-dependent 490 

thermal properties have been reported, the thermal properties of the tissue can be expressed 

in the following way:39  

( ) ( ) ( )34.19 0.37 0.63 *10 /cc T w J kg Kλ= +  

( ) ( ) ( )14.19 0.133 1.36 *10 /kk T w W m Kλ −= +  

 ( ) ( ) ( )3 31.3 0.3 *10T w kg mρρ λ −= +                                     (14)  495 

where w is the percentage of the mass of water in the tissue, approximately 69% for liver 

tissue, T(oC) is the tissue temperature, and λc, λk, λρ are temperature dependent factors for 

the specific heat, thermal conductivity, and density of water in the range of 20-100 oC:39 

( )41.016*10 20c T Cλ −= − o  

( )31 1.78*10 20k T Cλ −= + − o  500 

( )41 4.98*10 20T Cρλ
−= − − o                                          (15) 

Initially, the temperature was set to Tinit=37oC for the entire spatial domain, while the 

boundary conditions remain the same as in the previous case. A lagging of coefficients 

procedure is used in order to linearize the non-linear bioheat equation. The total simulation 

time is set equal to 30 min and the time step δt is set equal to 1 sec, ensuring the stability of 505 

the numerical method considered in the present study. We note that the same time step has 

been used for both meshless point collocation and DMD-based methods. The above 

problem is also integrated numerically using the meshless point collocation method. As for 

the reduced-order model obtained following the DMD-based approach, we use the first four 

modes computed from the first 40 snapshots as detailed in Section 3.2. We note that 510 

increasing the number of snapshots would decrease even more the error but the aim of this 

study is to show the potentiality of the DMD technique to detect the dominant modes that 

govern long-term dynamics from a small set of snapshots and to forecast the evolution of 

the temperature field with an acceptable accuracy. Furthermore, the appropriate selection of 

modes is an important step in extracting the relevant dynamics when applying both the 515 

DMD for model reduction. Increasing the number of modes is expected to improve the 

accuracy of the DMD-based approximation however this is at the price of increasing the 

corresponding computational cost. As such, in the present study, we picked only few 



19 
 

modes so that the reduced-order model is quite fast while maintaining a good predictive 

capability of the temperature field.  520 

The contour plots of the temperature at different times are shown in Fig. 7. The numerical 

results obtained from the two methods, DMD and meshless point collocation, were 

compared to each other, revealing a good agreement. In fact, for the non-linear case, the 

relative error ||E||2 is equal to 1.08 10-3. The total CPU time taken to obtain the approximate 

temperature field shown in Figure 4(b) is 1.13 s; that is, ~ 5 % of the total time taken to 525 

obtain the fully-resolved solution. These observations show the capability of DMD modes 

to capture the main characteristics of the temperature evolution and forecast the 

temperature field with good accuracy for long time periods while reducing significantly the 

associated computational cost. 

 
(a) 

 

(b) 
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(c) 

 
(d) 

 530 

Figure 7: Temperature contour plots at (a) 200s (b) 600s (c) 1200s and (d) 1800s for the 

case of multiple heat sources and temperature-dependent thermal properties obtained by the 

DMD-based approximation. 

 

Next, we consider the 3D case of the aforementioned heat problem that is, evidently, more 535 

computationally-demanding. Again, the goal is to speed up the numerical simulations while 

keeping a satisfactory level of accuracy. Following a similar approach as shown above, we 

compute the first 40 modes and use these modes to approximate the temperature field, as 

given by Eq. 7. A larger number of modes (in comparison with the 2D case) was required 

to capture the relevant dynamics and achieve good approximation. In Figure 8, we plot the 540 

numerical solution at different time steps, as this is reproduced using the DMD method, 

based on (snapshot matrix) the solution obtained using the meshless point collocation 

method. The two solutions compare very well. The relative error is equal to 4.8 10-4. 

As for the reduction in the computational cost, the total CPU time taken to obtain the 

approximate temperature field shown in Fig. 5(b) is 1.37 s; that is, ~ 0.76 % of the total 545 

time taken to obtain the fully-resolved solution shown in Fig. 5. Clearly, the ability of 

DMD to extract the relevant dynamic information through analyzing the first few 

instantaneous solutions makes it an efficient model reduction tool that enables significant 

savings of computational cost. This level of execution times allows the realization of real-

time tumor ablation simulations and the performance of fast and reasonably accurate 550 

sweeping over different configurations, thus paving the way to improved treatment 

planning. 
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(a) 

 
(b) 

 
(c) 

 

Figure 8: Temperature iso-contour value (T=38oC) plots at (a) 600s (b) 1200s and (c 

1800s for the case of multiple heat sources and temperature-dependent thermal properties 555 

obtained by the DMD-based approximation. 
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5.2. 3D non-linear case  

 
Utilizing the DMD method we managed to solve the extended bioheat equation in 3D, 560 

taking into account water evaporation, tissue damage, and temperature dependence of all 

major physical and thermal properties of the tissue and the tumor. In this case, the bioheat 

problem becomes non-linear and the numerical solution becomes more complicated. The 

governing equation can be simplified to: 

 565 

( ) ( ) ( )( ) ( ) ( )b b b a r m
dw dTT c T k T T T , c T T Q Q
dT dt

ρ β ω Ω ρ⎛ ⎞− = + − + +⎜ ⎟
⎝ ⎠

∇ ∇            (16) 

 
Note that the thermal properties of both the tissue and the tumor are functions of 

temperature (T) and the water content (w). Using an empirical function for the dependence 

of the tissue water content on temperature to fit experimental data,15 one gets 570 

 

( )

2

2

123.2862
16.634

30.173
28.012

0.728 8.487 ,  T 103
4.5310.024 ,        T>103

1

e
w T

e

Τ−⎛ ⎞− ⎜ ⎟
⎝ ⎠

Τ−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧
⎪ + ≤
⎪

= ⎨
+⎪

⎪ +⎩

                       (17) 

 

Dynamic changes in blood perfusion rate with temperature and damage can be formulated 

as 575 

 
( ) 0,b b T uT f fω ωΩ =                                                                       (18) 

 
where ωb0 is the constitutive perfusion rate and fu=1-fT,  with fT a dimensionless function 

that accounts for vessel dilation at slightly elevated temperatures, which can be 580 

approximated as:40 

 
( )o o o

o

4 0.6 42 37 42
    

424
T

C C C
f

C
Τ

Τ

⎧ + Τ− ≤ <⎪
= ⎨

≥⎪⎩
                                       (19) 

 

The meshless point collocation method is used in order to simulate tumor ablation and, 585 

providing data for the snapshot matrix used in the DMD method. The extended bioheat 

equation is used to model the thermal distribution in the kidney, using a cubic geometry of 
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length 0.02 m ranging from -0.01m≤x,y,z≤0.01m  and assuming adiabatic boundaries at all 

six faces. A scenario of tumor ablation takes place using a heat source of finite volume 

located at the middle of the tumor with tumor radius 0.002 m. The symmetric geometry 590 

setup has been used in order to better impose the thermal boundary conditions. For the 

latter the physical choices are two; the first is the Dirichlet boundary conditions, where the 

temperature far away from the source has a constant temperature, that of the surrounding 

tissues (in most of the cases the temperature chosen is T=37 oC), and the second one is zero 

fluxes (meaning zero temperature gradients) at the boundaries, ensuring a dynamic 595 

equilibrium.  In both cases, the length of the surrounding box has to be large enough, 

compared with the dimensions of the tumor and, also, quite far from the source. The 

physical choice for this is to use a square box (symmetrical one) instead of a rectangular 

one. This won’t affect the DMD method, since it relies only on the number of nodes used to 

define the snapshot matrix. In fact, the latter is only affected on the physical problem itself 600 

and not on the numerical method used. The computation time is based on the number of 

nodes and the convergence on the eigenvalues, meaning the physical problem and the 

governing equations of the physical phenomenon in consideration. The heat source has a 

direct action area of radius 0.00025 m and operates for a time period of 1800 s with 

Qr=750/8 MWm-3. Initially, the temperature was set to T0=37oC for the entire spatial 605 

domain, while the boundary conditions remain the same as in the previous case. A total 

time was set at 1800 s. The test case was solved using the DMD method using the first few 

instantaneous solutions to compute the first four modes (i.e., r=40) as shown above. The 

numerical results obtained using the meshless point collocation were compared with those 

obtained from the DMD-based approximation. Fig. 9 shows the iso-contour value of 610 

T=65oC, obtained using the DMD method, at different time steps of the ablation treatment, 

For the DMD calculations only four modes were used. The relative error ||E||2 is equal to 

2.23 10-3 and the total CPU time is 2.34 s; that is, ~ 5 % of the total time taken to obtain 

the fully-resolved solution. In this fully non-linear case the DMD modes managed to 

capture the main characteristics of the temperature evolution and to forecast the 615 

temperature field with good accuracy for long time periods while reducing significantly the 

associated computational cost. 
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(a)  

 620 
(b)  

 
(c) 
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Figure 9: Temperature iso-contour value (T=38oC) plots at (a) 600s (b) 1200s and (c) 625 

1800s using the DMD-based approximation. 

 
6. Conclusions 
 
A Dynamic Mode Decomposition algorithm was employed to solve transient bioheat 630 

transfer problems using an Eulerian-type approximation. Both the classical and the 

extended bioheat equation were solved numerically for several representative cases using 

the thermal conductivity distribution throughout the spatial domain. To illustrate the 

applicability and the efficiency of the proposed method in medical practice, several typical 

examples that appear in therapeutic treatments are considered, which include ablation of a 635 

tumor that is surrounded by the healthy part of the tissue, in two and three dimensions. It 

was found that the method provides excellent predictions of the temperature profile in 

tumors and in the healthy parts of the tissue, for linear and non-linear thermal properties of 

the tissue. The very low computational demands and, in particular the very short 

computational time, renders the DMD method suitable for in-situ real time tumor ablation 640 

simulations. In such a way the tumor ablation treatment planning is feasible using just a 

personal computer thanks to the simplicity of the numerical procedure used. The 

geometrical data can be provided directly by medical image modalities used in everyday 

practice, such as CT, MRI, US. Semi-empirical formulas of the tissue thermal properties 

were used in the present simulations. The results show that the proposed method is an 645 

efficient numerical method, easy to follow, with a simple solution procedure, with high 

accuracy and stability, capable of predicting the steady state and the transient thermal 

behavior of inhomogeneous materials at greatly reduced computational time. 

 
 650 
 
 
 
 
 655 
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Captions to figures 
 
 
Figure 1: Geometry configuration of the 2D bioheat transfer problem for the validation 660 

study. 

 
Figure 2: Steady-state temperature distribution along y=0 for different blood perfusion rate 
values. 
 665 
Figure 3: Geometry of 2D tissue with tumor and boundary conditions for the validation 

study. 

 
Figure 4: Steady state temperature profile in the tumor region. 
 670 
Figure 5: Geometry of 2D tissue with tumor and boundary conditions for the third 

validation study. 

 

Figure 6: Transient temperature profiles for the case of Fig. 1 along the line x=0. 

Comparison of MPC results (solid lines) with LBM results (symbols, from Zhang, 2008). 675 

 

Figure 7: Temperature contour plots at (a) 200s (b) 600s (c) 1200s and (d) 1800s for the 

case of multiple heat sources and temperature-dependent thermal properties obtained by the 

DMD-based approximation. 

 680 
 
Figure 8: Temperature iso-contour value (T=38oC) plots at (a) 600s (b) 1200s and (c 

1800s for the case of multiple heat sources and temperature-dependent thermal properties 

obtained by the DMD-based approximation. 

 685 
 
Figure 9: Temperature iso-contour value (T=38oC) plots at (a) 600s (b) 1200s and (c) 

1800s using the DMD-based approximation. 
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