
Dynamic and Partially Connected Ring Topologies for 

Evolutionary Algorithms with Structured Populations 

C. M. Fernandes1,2, J.L.J. Laredo3, J.J. Merelo2, C. Cotta4, and A.C. Rosa1 

1 LaSEEB-ISR-IST, University of Lisbon 
2 Department of Architecture and Computer Technology, Univ. of Granada, Spain 

3 Faculty of Sciences, Technology and Communications, U. of Luxembourg 
4 Departamento de Lenguages y Ciencias de la Computación, U. of Malaga, Spain 
{cfernandes,acrosa}@laseeb.org, juan.jimenez@uni.lu, jjmere-

lo@gmail.com, ccottap@lcc.uma.es 

 

Abstract. This paper investigates dynamic and partially connected ring topolo-

gies for cellular Evolutionary Algorithms (cEA). We hypothesize that these 

structures maintain population diversity at a higher level and reduce the risk of 

premature convergence to local optima on deceptive, multimodal and NP-hard 

fitness landscapes. A general framework for modelling partially connected to-

pologies is proposed and three different schemes are tested. The results show 

that the structures improve the rate of convergence to global optima when com-

pared to cEAs with standard topologies (ring, rectangular and square) on quasi-

deceptive, deceptive and NP-hard problems. Optimal population size tests dem-

onstrate that the proposed topologies require smaller populations when com-

pared to traditional cEAs.  

1   Introduction 

In standard Evolutionary Algorithms (EAs), all individuals are potential partners, i.e., 

there are no mating restrictions in the population preventing the pair-wise recombina-

tion of individuals. In genetics, this behavior is called panmixia, and the respective 

populations are called panmictic. For that reason, standard EAs without mating re-

strictions are also called panmictic EAs. 

In panmictic EAs, genotypic representation, operators, selection schemes and pop-

ulation size are typical working mechanisms that require design choices. However, a 

population structure may be also introduced in the design scheme of EAs. The struc-

ture then specifies a network of acquaintances over which individuals can interact: 

mating or selection is restricted to neighborhoods within the network. The non-

panmictic EAs that use this scheme are known as spatially structured EAs [12]. Spa-

tially structured EAs include fine-grained approaches such as cellular EAs (cEAs) 1 

and coarse-grained approaches such as island models [3]. In cEAs, the population is 

distributed in a grid and the interaction is restricted to the the individuals’ neighbor-

hood. In island EAs, different subpopulations evolve isolated from each other and 

occasionally exchange individuals using a predefined strategy which specifies the rate 

and quantity of information to transfer.  

The main disadvantage of island and cellular EAs is that their base-structures re-

quire extra designing and tuning effort. In addition, the chosen structure affects the 
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connectivity and the performance of the algorithm. In the case of island models, this 

added complexity translates in deciding policies for the migration frequency, selection 

and replacement of migrants and the topology itself. As for traditional cEAs, they use 

static structures that impose a rigid connectivity between the individuals. The investi-

gation in this paper is an attempt to design a simple dynamic topology for cEAs, with 

a varying neighborhood degree and an intrinsic clustering behavior that approaches 

the cEA to an island model. In fact, the resulting structure may be considered a hy-

bridization between a cellular and an island-based EA. This study is restricted to  -

dimensional structures, also known as ring topologies. The case of  -dimensional 

population structures is left for a future investigation.   

In the proposed partially connected ring topology the individuals are distributed in 

a  -dimensional grid with size    , where         and   is the population size. 

Therefore, there are     empty nodes or gaps in the network. Every time-step, each 

individual tries to recombine  with one of its left or right neighbors (decided by tour-

nament). If the individual has only one neighbor, it recombines with that neighbor. If 

there are no neighbors, there is no crossover and only mutation is applied. The struc-

ture is dynamic: in each time-step, every solution is allowed to move to neighboring 

nodes (if there are empty nodes in the individual’s neighborhood). 

With this scheme different niches may appear and disappear at run-time as the flow 

of information is interrupted by gaps. However, these gaps change during the run: the 

resulting cEA has certain resemblance with an island model, with dynamic clusters 

(or sub-populations) of individuals with varying size. We hypothesize that with this 

scheme the population diversity decreases at a lower rate (when compared to a stand-

ard ring topology), the optimal populations for a high rate of convergence are smaller, 

and the performance of the cEA on deceptive and hard problems is improved. The 

results of the experiments confirm the assumptions. 

The remaining of the paper is structured as follows: Section 2 gives a background 

review on cEAs and on the effects of the topology on the diversity; Section 3 de-

scribes the proposed partially connected topologies; Section 4 describes the experi-

ments and the results; Section 5 concludes the paper and outlines future lines of work.  

2 Background Review 

The initial objective of spatially structured EAs was to develop a framework for stud-

ying massive parallelization. However, the need to provide traditional EAs with a 

proper balance between exploration and exploitation motivated several lines of re-

search that explore the potentiality of different population structures in maintaining 

genetic diversity 11. The primary focus of the field has been on static regular lattices: 

every individual has a fixed number of potential interaction partners. Additionally, 

complex population structures have been studied (see 8  and 12), many of them using 

recent developments in network theory. 

In standard cEAs, the most typical population structure is a toroidal 2-dimensional 

grid with size    . The grid may be square or rectangular. The neighborhood of an 

individual is then defined according to a radius centered in the individual location. In 

this paper, we restrict the study to von Neumann neighborhood with radius  , i.e., the 



neighborhood of each individual consists of the individual itself and the individuals at 

adjacent North, East, South and West nodes. When the size of the grid is set to   
  (ring), the neighborhood consists of the individual and its left and right neighbors. 

Standard cEAs have some drawbacks: synchronicity (in most cases) and a strong 

dependence on the problem, since the genetic diversity promoted by a prefixed topol-

ogy is uncorrelated to the problem structure. In addition, the rigid connectivity of 

static structures may negatively affect the convergence abilities of the algorithms on 

some kind of problems, in which genetic diversity is crucial for escaping local optima.  

For that reason, dynamic population structures have recently raised the interest of 

cEAs researchers. To the extent of our knowledge, only three works address explicitly 

the issue of dynamic population structures in cellular EAs. In 1, Alba and Dorronsoro 

dynamically change the ratio that defines the neighborhood of interaction. Since the 

ratio may affect selection pressure, the authors analyze the influence of its value on 

the balance between exploration and exploitation. However, the base-structure of the 

cellular EA is maintained throughout the run. In 12, Whitacre et al. focus on two 

important conditions missing in EA populations: a self-organized definition of locali-

ty and interaction epistasis. With that purpose in mind, they propose a dynamic struc-

ture and conclude that the two features, when combined, provide behaviors not pre-

sent in the traditional spatially structured EAs. The most noticeable change is an un-

precedented capacity for sustainable coexistence of genetically distinct individuals 

within a single population. The authors state that the capacity for sustained genetic 

diversity is not imposed on the population; instead, it emerges as a natural conse-

quence of the dynamics of the system. Laredo et al. 7 proposed a framework for EAs 

based on peer-to-peer networks 10. Within a simulated network, they model the dy-

namics of real networks and conclude that their system is able to achieve better per-

formance than traditional EAs on a wide range of problems, while being scalable and 

resilient to the volatility of nodes in the network. 

In this paper we try a different approach. The radius of the neighborhood is fixed, 

and the typical grid structure is maintained. However, the size of the grid, which is 

usually set to      , is increased so that       and some cells remain unoc-

cupied. With empty cells in the grid, the individuals are then allowed to move to adja-

cent cells, according to a specific movement rule. Three different movement strategies 

are tested. The proposed scheme has been inspired by the work on a self-organized 

population of simple particles described in 2. Recently, a similar structure has been 

used for defining the interaction network of the Particle Swarm algorithm 6 with 

promising results 3. The following section describes the original system and its appli-

cation to the particular case of the cEA.  

3 Partially Connected Ring Topologies 

As stated above, traditionally, cEAs are structured on 2-dimensional toroidal grids 

with size    , and the population size   is set to      . The main idea of this 

paper is to use populations structured in grids such that      . For that purpose, 

the dynamic complex system proposed by Fernandes et al. in 2 has been adapted for 

structuring populations. 



1. Randomly place   particles in a grid of node with size     
2. Randomly attribute a fitness value to each particle 
3. For each particle do 

4. check neighborhood for marks and other particles 
5. if no marks in the neighborhood 

6. move to a free node in the neighborhood (if any) 
7. if there are marks in the neighborhood 

8. move to the site of the nearest mark 
9. leave a mark in the previous site 
10. erase the mark in the new site 

11. if stop criteria not met return to 3 

Figure 1. Pseudo-code of the original complex system 2. 

The algorithm in 2 is a discrete complex adaptive system described by a set of local 

rules. These rules define the actions of a population of   simple particles that move on 

a 2-dimensional toroidal grid of nodes with size    . In each time-step, every parti-

cle tries to move to an adjacent node. The rules that control the particles’ 

movements and the detailed description of the system are given below (please see also 

the pseudo-code in Figure 1). 

At      , the particles are assigned a random fitness value in the range       and 

randomly distributed in a     grid of nodes. Then, at each time-step, each particle 

moves to an adjacent free node (if any), leaving a mark with information on its cur-

rent status in the previous node.  

The particles decide where to go by inspecting their neighborhood. If there are no 

free nodes in the neighborhood (i.e., all the cells are occupied by particles), the parti-

cle stays in that same node until the next iteration. If it finds free nodes, the particle 

checks for marks. If it finds no marks, it just randomly chooses a destination node 

between the free neighboring nodes. If marks are found, the particle moves to the 

node with the most similar mark. Whenever a particle changes its position, it leaves a 

mark in its previous location. Furthermore, the marks only remain in the habitat for 

one iteration. Communicating, by depositing and following information, is the base-

rule of the system. 

This simple set of rules leads to a dynamic global behavior that displays signs of 

self-organization. A structure of particles, formed by clusters and paths, emerges on 

the habitat. However, these clusters are far from being static and, in a few genera-

tions, the distribution of the whole population may change dramatically (while main-

taining a typical configuration of clusters and paths). The population’s behavior is not 

ordered (nor chaotic). 

The translation of this system to a population structure for cEAs can be straight-

forwardly done. For instance, the particles can be the individuals of the algorithm and 

the marks can be the fitness of the individuals. Moreover, other rules may be easily 

implemented and tested. In order to investigate the potentiality of partially connected 

grid topologies, three different movement rules have been used.  

1) Fitness-based movement rule ( ): as in the original model, the marks are the 

fitness of the individuals.  

2) Similarity-based movement rule ( ): the marks are the genotype of the individual 

that visited the node in the previous iteration; when deciding the destination node, 



the individual computes the Hamming distance between its own genotype and the 

mark. Then, it moves to the node that minimizes the Hamming distance. (As in 

the original model, if there are no marks in the neighbourhood the individual 

chooses randomly an empty adjacent node).  

3) Random movement rule ( ): there are no marks and the individuals move to adja-

cent cells, select randomly amongst the empty ones.  

Since the proposed population structure generates islands of individuals, we hy-

pothesize that the genetic diversity of the population is maintained at a higher level 

(when compared to the standard ring topology). Therefore, exploration is increased 

and exploitation is performed at the local level by several subpopulations. Such char-

acteristics could benefit the cEA when optimizing deceptive and multimodal hard 

problems. The results in the following section confirm these hypotheses. 

The proposed structure and the three update schemes can be applied to the general 

case of  -dimensional grid with size    . However, in this paper we restrict the 

study to the  -dimensional case and compare the proposed structure to standard ring 

topologies. The  -dimensional base-model display interesting properties, which are 

described in [2]. The system shows a mixture of order and randomness which is typi-

cal, for instance, of class   cellular automata 5. Some clusters of particles move up or 

down, while free particles randomly move through the grid until they are “captured” 

by a cluster. Meanwhile, clusters disaggregate, freeing more “wandering” particles. 

The main goal and the motivation behind this work are to explore these emergent 

properties of the model, adding a self-organized dynamics to cEAs that may help 

them to escape more often from local optima traps. 

The resulting cEA is described in Figure 2. Please note that the main differences to 

a standard cEA are that the grid size is larger than   and that when computing the 

neighborhood the algorithm may find two, one or zero potential partners, while in the 

 

1. For each individual      to  : 

1.1. Initialize individual   
1.2. Evaluate individual i:            

2. Set grid size:     :       

3. Place the individuals randomly on the grid 

4. For each individual      to  : 

4.1. Compute neighborhood 

4.2. Parent 1 is individual   
4.3. Parent 2 is the best of the neighbors 

4.3 Crossover (parent 1, parent 2) 

4.4. Select randomly one of the offspring: offspring   
4.5. Mutation (offspring  ) 

4.6. Evaluate offspring  :     
 

        

4.6. Insert offspring   in temporary population    

5. For each individual      to  : 

     5.1. Replace individual i by offspring I if      
 

                   (maximization problems) 

  5.1. Compute empty adjacent nodes. 

       5.2. If at least one empty node, select destination node using movement rule. 

6. If the stop criterion is not met, go to 4 

Figure 2. cEA on a partially connected grid. 



standard ring topology an individual has always two potential partners for recombina-

tion. The following section tests the structures on a set of problems with deceptive 

landscapes and other characteristics that make them hard for standard EAs to solve.   

4 Test Set and Results 

In order to investigate their performance, the proposed partially connected ring to-

pologies have been tested on trap functions with increasing degree of difficulty. The 

results were then compared to the standard square, rectangular and ring structures. 

A trap function is a piecewise-linear function defined on unitation (the number of 

ones in a binary string) that has two distinct regions in the search space, one leading 

to the global optimum and the other leading to a local optimum. Depending on its 

parameters, trap functions may be deceptive or not. The trap functions in these exper-

iments are defined by: 

       
             

                   
  (1) 

where u(  ) is the unitation function and   is the problem size (and also the fitness of 

the global optimum). With these definitions, order-  traps are in the region between 

deceptive and non-deceptive, while order-  are non-deceptive and order-4 are fully 

deceptive. Under these settings, it is possible to investigate not only how the algo-

rithms scale on order-k trap functions but also to observe how that performance varies 

when moving from non-deceptive to deceptive search spaces. For that purpose,  -bit 

decomposable functions are constructed by juxtaposing m trap functions and sum-

ming the fitness of each sub-function to obtain the total fitness, obtaining the so-

called  −  trap problems. Then, by increasing m it is possible to investigate how an 

algorithm scales. 

In the first experiments, order-2, -3 and -4 trap functions were constructed by jux-

taposing, respectively,    ,     and    subproblems, generating 500- ( -trap), 375- 

( -trap) and 300-bit ( -trap) problems.  

All the cEAs used in the experiments are synchronous (i.e., the offspring are placed 

in a temporal population and replacement is done after every individual generates one 

child). Parameterization was done after [1]: population size was set to    ; the re-

combination operator is the double point crossover with       ; mutation is bit-flip 

with       , where   is the chromosome length. Only one offspring is placed in the 

temporal population (randomly chosen from the set of two children). In the replace-

ment stage, the offspring replaces its parent if it’s better.  

The stop criteria are: to find the global optimum or to achieve a maximum of 

3,000,000 function evaluations. The number of iterations required to meet the best 

solution is recorded and averaged over    runs. A success measure (successful runs) 

is defined as the number of runs in which an algorithm attains the global optimum.  

Please note that the tests are not intended to show that the proposed structure is 

better than the standard ring topologies in a wide range of problems. We are first 

interested in understanding the behaviour of the partially connected rings, in general, 

and their performance on quasi-deceptive and deceptive problems, in particular. 



In the proposed topologies, the empty nodes are obstacles for the flow of informa-

tion through the population, which means that the search is performed by several 

subpopulations, although highly dynamic. It is expected therefore that the increase in 

exploration slows down the convergence speed of the algorithms. However, we ex-

pect the payoff to be to an increasing robustness, with the partially connected topolo-

gies being able to find the global optimum more often. 

The results of the experiments on trap functions are shown in Table 1. The first 

relevant result is that the standard ring topology (     ) outperforms the other 

static structures, not only on deceptive and quasi-deceptive functions, but also on the 

non-deceptive 2-trap function, finding the global optimum in every run. In this func-

tion, the partially connected topologies — random (r), fitness-based (f) and similarity-

based (s) — also find the optimum in every run. However, they converge more 

slowly, probably due to their own balance between exploration and exploitation, 

which favours exploration (when compared to the standard ring). In  -trap and  -trap 

functions the partially connected rings are also slower (in general, they require about 

    more evaluations to reach the optimum), but in this case they converge more 

often to the global optimum. As expected, the empty nodes in the ring slow down the 

convergence speed but increase the convergence probability.  

In the previous tests, the grid size of the partially connected topologies was set to 

     . It is expected that the size affects the speed and the convergence rate of the 

algorithm. A sparser structure increases exploration (at the expenses of convergence 

speed); with higher exploration the algorithm converges more often to the optimum. 

 Table 1 shows the performance of the partially connected rings with different ra-

tios between population size and grid size. The population is set to     and the grid 

size is varied from     to    . As in the previous experiments, the stop criteria are 

reaching the global optimum or 3,000,000 function evaluations. As expected, conver-

gence speed decreases when the grid size is larger. But the number of successful runs 

also increases with the size of the structure. Increasing exploration slows down the 

search process but improves the success in reaching the optimum. By adjusting the 

size, it is possible to balance global and local search. 

Table 1. Averaged function evaluations to a solution (AES), successful runs (SR) and 

averaged best fitness (FIT). 

                                                

 -trap 

      

AES 
1084612.8 

±380406.03 

892547.4 

±513403.61 

567944.0 

±40322.30 

620104.0 

±42747.69 

608922.4 

±44761.51 

622936.0 

±56503.71 

SR (47) (38) (50) (50) (50) (50) 

FIT 0.08±0.34 0.24±0.43 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

 -trap 

      

AES - 
161066.7 

±21289.96 

697671.8 

±108269.7 

752178.7 

±81058.45 

752853.3 

±83956.6 

738248.9 

±146850.3 

SR (0) (3) (39) (49) (50) (47) 

FIT 5.86±2,53 3.60±1.94 0.04±0.47 0.02±0.14 0.00±0.00 0.06±0.24 

 -trap 

      

AES - - 
773238.7 

±93423.95 

842491.0 

±121666.5 

845810.5 

±91364.75 

869936.8 

±126965.1 

SR (0) (0) (31) (35) (38) (43) 

FIT 6.56±2.09 5.06±2.10 0.42±0.57 0.38±0.66 0.30±0.57 0.16±0.42 

 



 

Table 2. Order-4 trap functions. Varying the size of the grid.        

       

      
835837.8 

±146794.4 

774148.6 

±112251.3 

868514.3 

±214231.8 

(37) (35) (35) 

      

842491.0 

±121666.5 

845810.5 

±139281.9 

869936.8 

±154717.9 

(35) (38) (38) 

      

978195.1 

±108800.1 

984120.0 

±183584.7 

959930.0 

±110843.9 

(41) (40) (40) 

      

1122688.4 

±132330.9 

1126234.2 

±147857.3 

1160488.9 

±176815.8 

(43) (41) (45) 

      
1327351.1 

±118173.3 

1343266.7 

±144683.4 

1301502.2 

±127471.9 

(45) (42) (45) 

 

Finding the optimal population size for a given problem is a fundamental step 

when optimizing the performance of a given EA. In order to investigate the optimal 

population sizes for the different structures, we have used a selecto-recombinative 

version of the cEAs (i.e., without mutation) and the bisection method 9 (please note 

the bi-section method requires EAs without mutation). 

The bisection method, described in Figure 3, is a simple but effective technique 

used to determine the optimal population size of selectorecombinative EAs. For this 

particular case the threshold   was set to     and initial population size was set to   . 

Every configuration was run for    times before updating and the convergence crite-

ria is met if    of those    runs converge towards the global optimum. The algo-

rithms were tested with         . Mutation probability was set to  . After determin-

ing the optimal population size, the configuration with that n value was executed for 

   times and the number of evaluations necessary to reach the optimum was averaged 

over the successful runs. The results (optimal population size and averaged evalua-

tions to a solution with that particular size) are given in Table 3.  

 

   1. Start with small n 

   2. Double n until GA convergence criteria is met 

   3. (min,max)=(n/2,n) 

   4. repeat until (max-min)/min < T  

        n =(min+max)/2 

        if n leads to convergence criteria 

           then max = n 

        else min = n 

   5. Compute the statistics for this problem size using population size = max 

Figure 3. The bisection method for determining the optimal population size of a GA. 



Table 3. Optimal population size and averaged evaluations to a solution. 

                                               

 -trap 

     

  200 175 175 175 

AES 
29376.0 

±6235.7 

30183.7 

±5422.3 
29207.2 

±6796.6 

29830.1 

±6973.7 

 -trap 

      

  350 300 275 300 

AES 
111271.4 

±15166.4 

100383.2 

±12045.6 
93848.3 

±13075.7 

100306.6 

±11337.6 

 -trap 

      

  600 500 500 500 

AES 
401706.1 

±44220.1 
357428.4 

±29096.9 

369945.3 

±45849.2 

367833.3 

±39049.3 

 

The main conclusions are that, as expected, the partially connected topologies re-

quire smaller populations than the fully connected ring. In the case of the quasi-

deceptive and deceptive functions, smaller populations lead to faster algorithms. 

Therefore, and according to the results in Tables 2 and 3, we conclude that the pro-

posed topologies are more robust, although slower, when the population size is set to 

the same value, and faster when the population size is set to a size that assures a con-

vergence rate close to 100%.  

A final set of experiments aims at comparing the standard ring cEA with the ran-

dom movement version of the proposed ring topology on a wider set of problems. For 

that purpose, MMDP and Trident problems have been added to the test set. Trident 

functions are needle in the haystack problems that exploit the ability of EAs to mix 

good but significantly different solutions. The fitness function of the Trident used in 

this work has two components, base and contribution:                
                . The base depends on unitation and is described by: 

                     (4) 

where   is the chromosome length. The contribution rewards certain configurations of 

strings that an equal number of  ’s and  ’s. 

Table 4. MMDP. Contribution of each subproblem configuration to the fitness value.  

                    

      1.000000 0.000000 0.360384 0.640576 0.360384 0.000000 1.000000 

 

Let   be the first half of the binary string   of length   and   the second half. The 

contribution is described by Equation 5: 

                  
         

           
  (5) 

where    is the bitwise negation of R. The Trident accepts strings of length   , where 

   . For this paper,   -bit strings were used.  

The MMDP is an NP-hard problem that has been designed to be difficult for EAs. 

Like the trap functions with order   , MMDP is deceptive, but it is also multimodal. 

It consists of    -bits subproblems with two global optima and a deceptive attractor in  



Table 5. Selecto-recombinative standard ring topology cEA and partially connected 

ring cEA with random movement. Optimal population size, average evaluations to a 

solution and Kolmogorov-Smirnov statistical tests with      level of significance. 

 
2-trap  

(     ) 

3-trap  

(     ) 

4-trap  

(     ) 

MMDP 

(     ) 

Trident 

(    ) 

    

                              

455620.7 

±45848.64 

524524.1 

±80506.1 

372881.0 

±53921.9 

520551.7 

±47646.71 

91374.14 

±36194.35 

         

                              

444171.8 

±32089.3 
(+ ~) 

427207.6 

±34671.3 
(+ +) 

350769.8 

±36278.0 
(+ +) 

466453.1 

±56597.55 
(+ +) 

78352.55 

±19654.27 
(+ ~) 

 

the middle of the fitness landscape. Each subproblem fitness values depend on the 

unitiation function. Table 4 shows the contribution of each subproblem to the fitness 

value of a string. For the experiments,    -bit strings were used. 

The first test determines the optimal population size of each algorithm for each 

problem using the bi-section method. The standard ring is compared to the partially 

connected version with random selection of destination nodes. The results are in Ta-

ble 5. Statistical tests (Kolmogorov-Smirnov statistical tests with      level of signif-

icance) that compare the AES of each algorithm in each function are also given: (+~) 

means that the partially connected ring is faster than the standard ring but the differ-

ences in the AES values are not statistically significant; (+ +) means that the partially 

connected ring is better and the differences are statistically significant. 

The proposed topology outperforms the AES of the standard cEA in every func-

tion. The differences are statistically significant in order-  and -  traps and in the 

MMDP. The algorithm seems to be particularly suited for deceptive problems.  

In the second experiment, the cEAs are provided with mutation: mutation probability 

was set to     for every test. The population size of both strategies is set to half of the 

optimal population size of the standard cEA, in order to investigate how the cEAs 

behave when the supply of raw building blocks is reduced and part of the genetic 

diversity is assured by mutation. (The bisection method determines the optimal popu-

lation size for the selecto-recombinative version of the algorithm. When using muta-

tion, that minimal population, which guarantees a high rate of convergence, may be 

reduced.) Results are in Table 6. 

Table 6. Standard ring topology cEA and partially connected ring cEA with random 

movement. Evaluations to a solution, successful runs and best fitness. 

   -trap   -trap   -trap  MMDP Trident 

    

AES 
306562.5 

±56485.3 

424021.6 

±77027.02 

351001.9 

±67053.15 

610437.5 

±408323.2 

24027.5 

±5782.976 

SR (48) (37) (27) (36) (50) 

FIT 0.40±0.20 0.260±0.44 0.60±0.75 0.11±0.18 0.0±0.0 

         

AES 
352105.0 

±37759.4 

530622 

±87469.522 

446441.1 

±89766.2 

638250.0 

±243028.4 

27895.0 

±6424.288 

SR (50) (50) (45) (45) (50) 

FIT 0.0±0.0 0.0±0.0 0.12±0.38 0.04±0.12 0.0±0.0 



With these settings, the success rates of the standard ring are significantly reduced 

in the deceptive problems, while the partially connected structure attains success rates 

above 90% in every problem. In the  -trap and Trident functions the results are simi-

lar: there are no statistical differences between the AES values.   

A final note on the implementation of the proposed algorithm: Although uniproc-

essor implementations are common, cEAs have been initially conceived for parallel 

computing frameworks, in which several processors are structured in a static grid or 

ring topology. The proposed schemes could model some properties of networks of 

processors (such as fail or delays in the communication, represented here by empty 

cells), but they may be hard to implement in a multiprocessor framework. It is neces-

sary to devise a probability-based partially connected ring topology, where the size of 

the ring is maintained and links between the nodes are connected and disconnected 

according to probability values, adjacency rules or even self-organized properties. 

The results described in this section, which show that the proposed partially con-

nected rings for cEAs are able to improve standard structures in hard problems with 

deceptive landscapes, are promising and motivate future research on alternative mod-

els of the proposed scheme that do not requires empty nodes in the network.  

5 Conclusions and Future Work 

This paper describes a partially connected  -dimensional cellular Evolutionary Algo-

rithm (cEA). The structure consists of a population of   individuals randomly distrib-

uted in a grid with size    , where    . In every time-step, the individuals try to 

move to adjacent nodes, according to specific rules. The resulting structure displays 

an island-model behaviour that promotes genetic diversity and reduces the minimum 

population size that assures a high rate of convergence to a global optimum. 

Three movement rules have been tested: random, fitness based and similarity based 

rules. The results of the different schemes are similar and further investigation is 

required in order to understand the potential of each one. The most important outcome 

here is that the partially connected structure significantly improves the success rates 

of the standard structure on quasi-deceptive and deceptive problems. Optimal popula-

tion size tests with selecto-recombinative cEAs show that the proposed algorithm 

requires smaller populations for attaining the optimum, which means that it has a 

better ability to recombine the raw building-blocks provided by the initial population 

and maintain genetic diversity. 

Two main lines of research are planned for the future. First, we will investigate the 

behaviour of general  -dimensional partially connected grids and compare it to square 

and rectangular static topologies. The second line of research is dedicated to model-

ling the partially connected rings in a probability-based model, without empty nodes 

between the individuals. This way, a multiprocessor approach may be implemented. 
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