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Abstract
We identify the conditions under which a stochastic driving that induces energy
changes into a system coupled with a thermal bath can be treated as a work
source. When these conditions are met, the work statistics satisfy the Crooks
fluctuation theorem traditionally derived for deterministic drivings. We illustrate
this fact by calculating and comparing the work statistics for a two-level system
driven respectively by a stochastic and a deterministic piecewise constant
protocol.

Keywords: fluctuation theorem, random processes, thermodynamics, work
statistics

1. Introduction

Stochastic thermodynamics allows the identification of thermodynamic quantities at the level of
single stochastic trajectories for systems described by Markov processes satisfying local
detailed balance (LDB) [1–5]. This theory is particularly relevant to describe small systems
subjected to significant fluctuations compared with their average behavior. It has been
experimentally validated thanks to remarkable progress in experimental techniques, making it
possible to measure and manipulate systems at the sub-micron level. Among these
achievements are the nonequilibrium versions of the fluctuation-dissipation theorem [6–15],
the connection between thermodynamics and information theory [16–24], and—perhaps most
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important—the formulation and verification of the so-called fluctuation theorem (and its
variants) [25–34]. According to this theorem, stochastic positive entropy production is
exponentially more likely to be observed than the corresponding negative entropy production.
On average, this implies a positive entropy production in agreement with the second law.
Depending on the type of setup, entropy production can be related to different physical
observables [35]. A particularly important setup consists of a system in contact with a single
heat bath and driven by an external work source. The latter is modeled by a deterministic time
dependence of the system energies. Along a system trajectory, the energy changes that occur
while the system remains in a given energy state are treated as work, whereas the energy
changes that occur when the system jumps from one energy state to another due to the bath are
treated as heat. In agreement with traditional thermodynamics, these definitions imply that the
work source itself does not contribute to the dissipation, whereas heat does. In these setups,
entropy production can be expressed as the work W minus the free energy difference ΔF
between the initial and the final equilibrium state. The resulting fluctuation theorem for the
work statistics in these setups has been used to evaluate free energy differences [36, 37].

In this paper, we analyse the thermodynamic implication of considering stochastic rather
than deterministic drivings of system energies. Contrary to deterministic drivings, stochastic
drivings are different along each system trajectory and therefore effectively introduce new
degrees of freedom in the description of a system. The resulting dynamics occurs in the joint
space of the system and of the driving. We emphasize that for the setups we consider, the
stochastically driven system is still in contact with a bath with a well-defined temperature
(introduced via LDB). This should be distinguished from systems where the only source of
noise is a non-thermal stochastic driving (without LDB). In such situations, the source of noise
cannot be decomposed into a non-thermal and a thermal noise, as is necessary to properly
identify the physical heat. The resulting fluctuation theorem for entropy production becomes a
mathematical identity with little connection to thermodynamics. Because the injected power
(energy per unit time injected by the noisy source into the system) does not relate to entropy
production, it is therefore not surprising that its statistics have been shown to deviate from the
fluctuation theorem [38–42].

Our motivation is practical as well as conceptual. From a practical perspective, a
deterministic driving is never perfect and will always be accompanied by uncontrollable small
random fluctuations. It is therefore important to understand how these fluctuations may affect
the work statistics and the fluctuation theorem in the context of thermal systems. From a
conceptual perspective, it is clear that the mathematical entropy production in the joint space of
the driven system and the stochastic driving will always satisfy a fluctuation theorem. This was
recently shown, for example, in [43] by considering Ornstein–Uhlenbeck processes. However,
it is not at all clear whether the statistics of the energy injected into the system by the stochastic
driving can fully capture the dissipation of the system dynamics, as is the case for deterministic
drivings. We show that the conditions for this to occur are rather restrictive because the
stochastic driving must evolve reversibly. In this case, the injected energy can be considered as
work, and its statistics satisfy the Crooks fluctuation theorem [30].

We study two models satisfying this condition: a two-level Markov process coupled with
another independent two-level Markov process and a one-dimensional Ornstein–Uhlenbeck
process coupled with another independent one-dimensional Ornstein–Uhlenbeck process. The
latter model has been used to show that the ‘work’ statistics for the stochastically driven
colloidal system [44, 45] do not display fluctuation theorem symmetry. In these references,
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‘work’ is defined as the time integral of the stochastic force times the velocity and does not
correspond to the Jarzynski work, which (when subtracting the nonequilibrium free energy
change) we show satisfies the fluctuation theorem symmetry.

The outline of the paper is as follows. In section 2, we identify the general conditions
under which a stochastic driving behaves as a work source. In this case, we show that the work
statistics satisfy the Crooks fluctuation theorem. In section 3, we compute and compare the
large deviation properties of the work statistics of a two-level system driven by a piecewise
constant deterministic driving [46] with those of the same system subjected to a stochastic work
source. Conclusions are drawn in section 4. Finally, using the results of [45], we show in
appendix C that a stochastically driven overdamped colloidal particle in a harmonic trap does
satisfy the Crooks fluctuation theorem when the work is properly identified.

2. Stochastic driving as a work source

We consider stationary Markovian dynamics on a bipartite joint system made of a system with
states σ and an independent energy source with states h. The bipartite property means that
transitions involving a simultaneous change in σ and h are not allowed. The rates ωσ σ′ h( ), that
describe system jumps from σ to σ′ satisfy local detailed balance

ω
ω

β σ σ= − ′ −σ σ

σ σ

′

′

h

h
E h E hln

( )

( )
[ ( , ) ( , )] (1)

,

,

whereas the rates describing the energy source ω ′h h, do not depend on σ and do not necessarily
satisfy local detailed balance. We introduced the inverse temperature β = T1/ (kb = 1). Such
dynamics can be viewed as the limit of a global dynamics satisfying local detailed balance when
the energy scale involved during the source transitions is very large compared with the system
energy scale (see appendix A). The energy changes due to transitions between σ states at fixed h
are caused by the bath and are thus treated as heat, whereas the energy changes due to
transitions between h states at fixed σ are caused by the energy source and may be treated as
work, as shown hereafter.

We now turn to energy exchanges described at the level of single trajectories. To set the
notation, we denote the joint system, the system, and the energy source trajectories during a
time interval t[0, ] respectively by σ h[ , ], σ[ ], and h[ ]. Similarly, the time-reversed trajectories
are σ̄ h̄[ , ], σ̄[ ], and h̄[ ]. The trajectory probabilities  σ h[ , ] can naturally be expressed as
  σ σ= |h h h[ , ] [ ] [ ]. Thanks to the independence of the work source with respect to the
system, the probability  h[ ] of a trajectory h[ ] is that of the Markovian dynamics of the source
solely determined by the rates ω ′h h, .  σ|h[ ] is the conditional probability of a system trajectory
σ[ ] subjected to a given trajectory h[ ] of the energy source, and  σ|σ h[ ]

0
is the conditional

probability of a system trajectory σ[ ] given the initial state σ0 and the trajectory h[ ]. Therefore,
 σ σ σ| = | |σh p h h[ ] ( ) [ ]0 0 0

, where σ |p h( )0 0 is the probability of being in the initial state σ0 for a
given initial h0. Using the local detailed balance (1), the heat entering the system from the bath
for a given trajectory h[ ] can be expressed as

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦




σ β

σ
σ

= −
¯ ¯

σ

σ

−

¯

Q h
h

h
[ ] ln (2)1 0

0
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and the entropy production of the system as




Δ σ σ

σ
β σ Δ σ=

¯ ¯ = − +S h
h

h
Q h S h[ ] ln [ ]

[ ]
[ ] [ ] (3)i

where Δ σ σ σ| = | |S h p h p h[ ] ln ( )/ ( )t t0 0 is the change in the Shannon entropy of the system after a
time t. Using energy conservation along a system trajectory, the energy provided by the energy
source to the system reads σ Δ σ σ| = − |W h E h Q h[ ] [ , ] [ ], where
Δ σ σ σ= −E h E h E h[ , ] ( , ) ( , )t t 0 0 . Therefore, the entropy production becomes

Δ σ β σ Δ σ= −[ ] [ ]( )S h W h F h[ ] (4)i

where Δ σ Δ σ β Δ σ| = − |−F h E h S h[ ] [ , ] [ ]1 is the change in the nonequilibrium free energy of
the system. The entropy production in (3) and (4) is identical to that of a system subjected to a
deterministic driving h[ ]made of sudden jumps [2, 47–49]. However, because the energy source
is stochastic and produces a statistical ensemble of drivings h[ ], the entropy production of the
energy source  Δ = ¯S h hln [ ]/ [ ]i sd gives rise to an additional contribution to the joint system
entropy production

⎡⎣ ⎤⎦



Δ σ Δ σ= + ¯S h S h

h

h
[ , ] [ ] ln

[ ]
(5)i i

After ensemble averaging (5), we get

  



∑ ∑ ∑Δ σ σ Δ σ= + ¯ ⩾

σ
S h h h S h h

h

h
[ , ] [ ] [ ] [ ] [ ] ln

[ ]
[ ]

0. (6)
h h

i

[ ] [ ]

i

[ ]

Because a work source is not supposed to give rise to any entropy production, our energy
source is a work source only when this additional term vanishes and thus does not affect the
system entropy balance. This happens either when the driving is deterministic or when the
energy source h evolves reversibly, i.e., when  = ¯h h[ ] [ ]. In the latter case, from a system
perspective, the trajectory h[ ] of the energy source is perceived as a time-dependent stochastic
driving. We note that even in the presence of a dissipative energy source, the non-negative first
term on the right-hand side of (6) still provides a lower bound to the entropy production of the
joint system. The non-negative second term constitutes in turn a lower bound for the dissipation
of the energy source because the trajectories h[ ] may provide only a coarse-grained description
of the energy source dynamics.

When the long time limit is considered and for systems with a finite state space, the
contribution Δ σ|F h[ ] to the entropy production is not extensive in time and thus vanishes in the
large deviation sense. The steady state fluctuation theorem for the entropy production therefore
reads

Σ Σ Σ+ − − − = − −( ) ( )I w I w w (7)sd sd sd

where w = W/t is the energy per unit of time provided by the energy source to the system,
Σ Δ= S t/sd i sd is the rate of entropy production due to the energy source, and

Σ Δ Σ+ = − = +→∞I w t P S tw t( ) lim ( 1/ ) ln ( )tsd i sd is the large deviation function for the
total entropy production. It is only when Σ = 0sd (e.g. when the driving is deterministic or when
the energy source h evolves reversibly) that the energy source behaves as a work source, and
that the Crooks fluctuation theorem is recovered.
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The stochastic drivings used for the models presented hereafter all satisfy this condition
and qualify as work sources.

3. Modulated two-level system

In this section, we compare the work statistics of a two-level system driven by a stochastic
(reversible) work source with those of the same system driven by a deterministic work source.

3.1. Stochastic work source

We consider a two-level system σ = ± 1 coupled with a heat bath at temperature T and
interacting with a stochastic energy source with two states ε = ± 1. The Poisson rate to leave
the source state ε is denoted εk and does not depend on σ . This immediately implies that the
stationary dynamics of the energy source is reversible and can thus be considered as a work
source. We denote by ε= +h t h t a( ) ( )0 the driving produced by the work source whose state
at time t is given by ε t( ). This driving is illustrated in figure 1. The energy of the joint system is

σ σ= −E h h( , ) in a unit of k TB (β = 1 from now on). This corresponds to the four energy
levels σ ε σ ε+ = − +E h a h a( , ) ( )0 0 depicted in figure 2. For a given source state ε, the rate
describing a transition from system state σ to σ− is given by ω ω ε= +σ

ε σ ε− +h a( )e h a
0

( )0 . This
rate satisfies the local detailed balance condition and includes as special cases

Figure 1. Representation of the work source stochastic dynamics.

Figure 2. Representation of the energy levels of the two-level system: on the left
(respectively right) the work source state is ε = − 1 (respectively ε = + 1). The upper
(respectively lower) part of the figure corresponds to σ = − 1 (respectively σ = 1). For
σ = − 1, a decrease in h will decrease the energy of the system, resulting in a negative
work contribution = −w a2 , whereas an increase in h will increase the energy of the
system and result in a positive work contribution =w a2 .
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• Arrhenius rates, ω Γ=h( )

• Fermi rates, ω Γ=h h( ) /(2 cosh ( ))

• Bose rates, ω Γ= | |h h( ) /(2 sinh ( ) )

where Γ is a positive constant that sets the time scale (Γ = 1 in all figures).
The dynamics of the joint system is described by a stationary four-state model. Each state

is specified by the pair σ ε θ=( , ) . The work-generating function is defined as
δ= 〈 〉θ μ

μ
θ θG t( ) e W t

t,
( )

, ( ) , where δ is the Kronecker delta and 〈 〉.. denotes an average over all
possible values of the work ∫ σ= − ′ ˙ ′ ′W t t h t t( ) d ( ) ( )

t

0
and of the states θ t( ) at time t. Its

evolution is ruled by

∑∂ = θ θ
μ

′θ μ
θ

θ μ
′

′G M G (8),t , ,

where

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ω ω
ω ω

ω ω
ω ω

=

− −
− −

− −
− −

+
+

−
+

+
+

−
+

+
−

−
−

+
−

−
−

μ

μ

μ

μ

μ

+ − −

+ −

+ −

+ − −

M

k k

k k

k k

k k

e 0

0 e

e 0

0 e

. (9)

a

a

a

a

2

2

2

2

We note that whereas the joint system is ruled by autonomous steady state dynamics in the long
time limit, the two-level system continuously undergoes random energy switches from the work
source and tries to relax toward the new corresponding equilibrium state. The work statistics in
the long time limit are characterized by ϕμ, the largest eigenvalue of μM . This function ϕμ is
called the asymptotic cumulant generating function for the work

⎡⎣ ⎤⎦∑ ϕ= ≍μ
θ

θ μ μG t G t t( ) ( ) exp (10),

Its analytical expression can be obtained by using the Ferrari method to solve the following
characteristic equation

ϕ ϕ ϕ ϕ ϕ μ− = + + + + =μ( )M 1 c c c cdet ( ) 0 (11)4
3

3
2

2
1

1
0

where 1 is the identity matrix and

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ω ω
Ω ω ω

ω ω Ω
μ Ω μ

= + + + >
= + + + + + + + >

= + + + + >
= − + − ⩽

+ − + −

+ − + − + − + −

− + − + + −

+ −

}

( )
( ) ( ) ( )

( ) {
( )

( )

c k k

c h a k k k k k k

c k k k k h a

c k k a a

2 0

cosh 2 cosh (2 ) 2 2 0

cosh 2 cosh (2 ) 0

( ) [cosh (2 (1 2 )) cosh (2 )] 0 (12)

3

2 0
2

1 0

0

with Ω ω ω= + − >h a h a2 ( ) ( ) 00 0 and ω ω ω= ++
±

−
±± . Note that the last inequality in (12)

holds for any real μ. The characteristic polynomial can always be factorized into a product of
two second-degree polynomials with real coefficients. The cumulant-generating function is then
the largest solution among the solutions of the two second-degree polynomials, with the choice
between the two polynomials depending on the parameters. We do not explicitly provide the
lengthy analytical solution to equation (11). Simpler expressions can be obtained in the fast and
slow modulation limit or for low and high amplitudes of the field by pertubatively expanding

6

New J. Phys. 16 (2014) 095001 G Verley et al



the function ϕ and the coefficients c to various orders. The characteristic polynomial obtained in
this way decomposes into several equations for each order. The lowest-order solutions are
summarized in table 1.

Note that the only coefficient of the characteristic polynomial containing a μ dependence is
the one of zero degree in ϕ. This implies that the lowest-order solutions will always contain the
variable μ as expected. We also remark that if the ith order solution is independent of μ, it must
vanish because ϕμ=0 is zero by definition. This is helpful for simplifying the calculations leading
to table 1. We also note that the results in table 1 rely on the hypothesis that μ is chosen inside
an interval that depends on the expansion parameter. They are valid for any types of rates
except in the large field expansion ( ≫h 10 ) where the function ω h( ) has, at large h, a leading
role to determine the order of the various coefficients.

3.2. Periodic work source

We consider now the same two-level system as before but driven by the deterministic and
periodic (of period τ) work source depicted in figure 3. The period fraction during which the
work source is in the lower (respectively higher) state is denoted by α (respectively α−1 ). The
large deviation function and the cumulant-generating function of the work statistics are derived
in [46]. We briefly summarize the derivation. The work-generating function

δ= 〈 〉σ μ
μ

σ σG t( ) e W t
t,

( )
, ( ) evolves according to

∑∂ = σ σ
μ

′σ μ
σ

σ μ
′=±

′G L h t G( ( )) (13),t ,

1

,

where σσ ω μσδ= − ′ − ˙σ σ
μ

′
σ

σ σ
− ′

′L h h h( ) ( )e,
h

, . The asymptotic work cumulant generating
function is given by the logarithm of the highest eigenvalue λμ of the following propagator:

Figure 3. Representation of the periodic work source dynamics.

Table 1. Cumulant-generating function τϕμ of the work (stochastic work source) during a time
interval τ in the limits of fast (Γτ ≪ 1) and slow modulation (Γτ ≫ 1), for low amplitudes of
modulation ( ≪a 1) or for large energy gaps ( ≫h 10 ). We use (19) to evaluate ±k which
allows comparison with the deterministic work source (see table 2).

Γτ ≪ 1 αω α ω α α ω ω+ − + −τ μ− + + − + −
+[ ](1 ) 4 (1 ) a a

a h2

2 cosh 2 (2 1) cosh 2

cosh 2 cosh 2 0

αω α ω− − −τ τ− +(1 )
2 2

Γτ ≫ 1 + +α α α α
μ

α α
−

− −
+ −

− + .a a

a h

1

2 (1 )

1

2

1

(1 )

4 [cosh 2 (2 1) cosh 2 ]
(1 )(cosh 2 cosh 2 )2 2 0

≪a 1 μ μ+ 〈 〉 = μ μ
α α ω τ

+
+ + − −w(1 )

[ ]
a

h h h

8 (1 )

1 cosh 2 (1 ) ( ) cosh

2

0 0
1

0

Arrhenius rates Fermi and Bose rates
≫h a0

μ + −a a

h

cosh 2 (2 1) cosh 2

cosh 2 0

μ
α α Γτ

+ −
+ − −{ }

a a

h

cosh 2 (2 1) cosh 2

1 [ (1 ) ] cosh 21
0
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∫= ⎯ →⎯⎯⎯ τ
μQ L h t texp ( ( ))d (14)

0

where →exp stands for the time-ordered exponential. If σ μg , denotes the components of the
eigenvector associated with the eigenvalue λμ and ∑=μ σ σ μg g , denotes the sum of its
components, after n periods we get

∑τ λ= =μ
σ σ

σ σ σ μ μ μ
′

′ ′ ( )( )QG n g g( ) (15)n n

,
, ,

which leads to the asymptotic cumulant generating function

ϕ τ λ˜ = =μ μ μ
→∞n

G nlim
1
ln ( ) ln . (16)

n

The propagator over one period Q can be decomposed into the norm-conserving
evolutions over ατ and α τ−(1 ) interspersed with the propagation over the two time steps
coinciding with the change of the work source state h. In the end, the work cumulant generating
function is found to be

⎜

⎟

⎛
⎝

⎞
⎠

ϕ μ

μ

˜ = + +

+ + + −

μ

α τω ατω− − −+ −

A
a

B

A a B

ln
2
cosh 2 (2 1)

2
1
2

[ cosh 2 (2 1) ] 4e (17)2 (1 )

where

=
− −

+

=
+

+
+

+
+

α τω ατω

α τω ατω α τω ατω

− − −

− − − − − −

+ −

+ − + −

( )

( ) ( )

( )
A

a h

B
h

a h

a

a h

1 e 1 e

cosh 2 cosh 2

1 e cosh 2

cosh 2 cosh 2

e e cosh 2

cosh 2 cosh 2
(18)

(1 )

0

(1 )
0

0

(1 )

0

We defined ω ω= ± ±± h a h a2 ( ) cosh ( )0 0 as in the stochastic work source case. The
expansion of ϕ̃μ in the limit of fast and slow modulation and in the limit of low amplitude a and
large h0 is given in table 2.

3.3. Thermodynamics and average behavior

We now turn to the analysis and comparison of the work statistics generated by the stochastic
and periodic work sources. In both cases, we compare the work accumulated during a time τ.
Because ϕ̃ describes the statistics of work per period τ for the periodic work source and because
ϕ describes the statistics of work per unit time for the stochastic work source, to compare the
two, ϕ̃ and τϕ have to be considered. Furthermore, the parameters setting the time scale of the
two work sources have to be related via

α τ ατ
=

−
=+ −k k

1
(1 )

and
1

(19)

in order to spend, on average, the same amount of time at the high and low value of h. We keep
this convention throughout this paper. We also count time in units of a period τ, i.e., τ=t n .
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For large n, in the sense of large deviation the work =w W n/ becomes, minus the heat,
q = Q/n because the system internal energy is bounded and thus its change between 0 and t is
not extensive in time. Similarly, the entropy production per period becomes equal to the heat
flow −q because the system entropy change is not extensive in time. This implies that the work
fluctuations fully characterize the large deviation properties of the entropy production and of the
heat fluctuations.

For the periodic work source, the first derivative of ϕ̃μ at μ = 0 is the average work per
period

⎡⎣ ⎤⎦
˜ =

− −

+ −

α τω ατω

ατω α τω

− − −

− − −

+ −

− +

( )
( )

( )
( )

w
a a

h a

4 sinh (2 ) 1 e 1 e

cosh 2 cosh (2 ) 1 e
. (20)

(1 )

0
(1 )

For the stochastic work source, we show in appendix B that the work received by the two-level
system during time τ is

τ ω ω ω ω= −+
−

−
+

+
+

−
−+ − ( )w a k k Z4 (21)

with Z a normalization constant in the state probability. Note that, in (20) and (21), the average
work is positive as required by the second law. For both types of work source, the average work
vanishes for →a 0 (no work source) and for τ → 0 or α → 0 or 1 (the two-level system has no
time to switch state between two work source transitions). For Γτ → ∞, the two-level system
typically relaxes to equilibrium before the next transition in the work source happens and for
both types of work source:

∑ εσω
ω ω˜ = =

+
=

+
σ

ε

ε ε
−

+ −σ ε ( )
w w

a a a

h a

2 4 sinh (2 )
cosh 2 cosh (2 )

(22)
, 0

εσa2 is the work given to the two-level system when the joint system state is σ ε( , ) and a
transition ε ε→ − of the work source occurs. We notice that this average work is independent
of any dynamical parameters; see figure 4. This limit is not reversible because the driving
contains discontinuities. Indeed, the average work is different from the free energy difference.
In figure 4, we present the average work for τ = 1 and τ = 100 as a function of the amplitude of
the jump a. We notice that the dynamics with Fermi rates always produce less work than the
other rates because the Fermi rates are the smallest. Indeed, an energy exchange between the
work source and the two-level system requires a change of system state between two work

Table 2. Cumulant-generating function ϕ̃μ of the work (periodic work source) per period in
the same limits as in table 1. In the low-amplitude limit, we have
defined ω ω= h h2 ( ) cosh0

0 0.

Γτ ≪ 1 αω α ω α α ω ω+ − + −τ μ− + + − + −
+[ ](1 ) 4 (1 ) a a

a h2

2 cosh 2 (2 1) cosh 2

cosh 2 cosh 2 0
αω α ω− − −τ τ− +(1 )

2 2

Γτ ≫ 1 +α τω ατω μ
μ

− − − − +
+ +

+ −( )e e a a

h a
(1 ) cosh 2 cosh 2 (2 1)

cosh 2 cosh 2 (2 1)0
+ μ+ +

+ln h a

a h

cosh 2 cosh 2 (2 1)

cosh 2 cosh 2
0

0

≪a 1 μ μ μ μ+ 〈 ˜〉 = + − −
− +

α τω ατω

τω

− − −

−
w a(1 ) 8 (1 )

h

2 (1 e )(1 e )

(1 e )(1 cosh 2 )

(1 ) 0 0

0
0

Arrhenius rates Fermi and Bose rates
≫h a0 μ + −a a

h

cosh 2 (2 1) cosh 2

cosh 2 0

− −

−

α Γτ αΓτ

Γτ

− − −

−
( ) ( )1 e 1 e

1 e

(1 )
μ + −a a

h

cosh 2 (2 1) cosh 2

cosh 2 0
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source transitions. Therefore, the smaller Fermi rates lead to a smaller number of system
transitions and thus to a smaller average work contribution. We also see that the average work
contribution is always higher for the periodic protocol than for the stochastic one. This is due to
the fact that for a Poisson process, the most likely time intervals between work source
transitions are the small ones during which the system has less time to change its state and
absorb work, on average.

3.4. Fluctuations and statistics of work

When comparing the work probability distributions corresponding to the two types of work
source as in figure 5 the most striking feature is the difference in the range of the fluctuations.
The stochastically driven system always has a small but finite probability of exchanging a very
large amount of work with the work source, and as a result, the support of the large deviation
function μ τϕ= −μ μI w w( ) max { } is infinite. However, the periodically driven system displays
finite support because the work exchanged during a work source transition is ± a2 , thus leading
to three possible values for the work per period, ± a4 and 0, and to the inequality | | ⩽w a4 . The
large deviation function of work μ ϕ˜ = − ˜μ μI w w( ) max { } is therefore infinite (vanishing work
probability) outside that range. At the level of the cumulant-generating function, this implies
that ϕ̃μ, the Legendre transform of Ĩ w( ), has an absolute slope that cannot exceed a4 .

Both types of work probability distributions satisfy the fluctuation theorem. In fact, any
stochastic energy source made of two states is reversible and will thus qualify as a work source.
The fluctuation theorem for the periodic work source should in principle relate the work
statistics for a forward periodic driving with those of the time-reversed periodic driving.
However, here also a periodic driving that jumps once back and forth between two states over a
period is invariant under time reversal (up to a time shift that plays no role in the long time limit
[46]). We explicitly prove the work fluctuation theorem for the stochastic as well as for the
periodic work source by showing that the work cumulant generating function satisfies the
relation ϕ ϕ=μ μ− −1 [28]. This follows directly from (17) and indirectly from (12) by observing
that μ appears in the characteristic polynomial only through the function μ+acosh [2 (1 2 )].

Figure 4. Mean work value versus amplitude parameter a for the periodic (orange solid
lines) or for the stochastic (blue dashed lines) work sources. Symbols encode the types
of rates: Arrhenius (squares), Bose (triangles), and Fermi (circle). Other parameters are
α = 0.3, =h 10 , and τ = 1 (inset: τ = 100) with rates ±k set from (19).
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This function is invariant in the exchange of μ to μ− −1 , and this also holds true for the roots of
the polynomial. This symmetry is also explicitly seen in figure 6.

We now turn to the quantitative analysis of the large deviation function for work I(w)
obtained by the numerical Legendre transform of the cumulant-generating function
corresponding to the two types of work sources.

Figure 5(a) and tables 1 and 2 show that both types of work sources give rise to identical
work fluctuations in the limit of fast modulation (Γτ ≪ 1). The choice of the rates nevertheless
influences the shape of the work distribution, and the work variance decreases as the
modulation speeds up. In the opposite limit of slow modulation (Γτ ≫ 1), the large deviation
function becomes rate independent as seen in figure 5(c). However, the type of work source
(stochastic or periodic) still influences the work fluctuations, in particular the large fluctuations
away from the common minimum (same expectation value).

In the limit of low field amplitudes (i.e., close to equilibrium), the cumulant-generating
function becomes quadratic in μ: τϕ μ μ= + 〈 〉μ w(1 ) and ϕ μ μ˜ = + 〈 ˜〉μ w(1 ) , where the mean
work values are obtained from (20) and (21) by second-order expansion in a. The average work

Figure 5. Large deviation functions for the work w produced by the periodic (orange
solid lines) and the stochastic (blue dashed lines) work source for (a) fast τ = 0.01, (b)
intermediate τ = 1, and (c) slow τ = 100 switching rates compared with the system time
scale. Symbols encode different types of rates: Arrhenius (squares), Bose (triangles),
and Fermi (circle). Other parameters are =h 10 , a = 0.5, α = 0.3.
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differs for stochastic and periodic work sources and for the different rates. The same
observation remains true at the level of work fluctuations.

4. Conclusion

We identified the condition under which a system subjected to a stochastic driving can be seen
thermodynamically as a system subjected to a work source; namely, the stochastic driving
protocol has to be statistically reversible or, in other words, its entropy production has to vanish.
Under this assumption, the statistics of dissipated work and entropy production in the system
are identical and a work fluctuation theorem is satisfied. We then compared the exact work
statistics of a two-level system driven by a stochastic two-state work source with those of a
periodic two-state work source, the two sources spending the same fraction of time in their
upper and lower states. We found that the work fluctuations are unbounded in the former case
and bounded in the latter. For fast as well as for slow switching rates in the work source, the
work fluctuations are quite similar. For low switching amplitudes, the system remains close to
equilibrium, where work fluctuations are Gaussian. Finally, for a given amplitude of the jumps
in the work source, important values for the work average and variance are obtained when the
time scales of the system and of the work source are comparable.
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Figure 6. Cumulant-generating function of the work statistics as a function of μ for the
periodic (orange solid) and stochastic (blue dashed) work source for fast τ = 0.1 (plus
symbol), intermediate τ = 1 (crosses), and slow τ = 100 (stars) switching rates
compared with the system time scale. Fermi rates are considered, and =h 10 , α = 0.3.
The black dashed line corresponds to Γτ → ∞ whereas the black dotted line
corresponds to Γτ → 0.
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Appendix A. Limit of the energy source

In this appendix, we start from autonomous (no-time-dependent-driving) Markovian dynamics
of a bipartite system with rates satisfying local detailed balance and thus described by standard
stochastic thermodynamics. We discuss the procedure required to make contact with the
description in section 2 where one part of the system becomes a Markovian dynamics that is
independent of the second part, while the latter sees the former as an independent stochastic
driving (i.e., an energy source).

The energy of the joint system can be expressed as the sum of the bare energy of system σ
and h plus an interaction energy, namely σ σ σ= + +E h E E h E h( , ) ( ) ( ) ( , )sys

0
src
0

joint int . System
σ is assumed to be in contact with a single thermal bath at temperature β −

1
1, whereas system h is

in contact with −N 1 baths at temperature βν
−1, with ν = ⋯ N2, , ; see figure A1.

The rates describing transitions between states σ at fixed h satisfy local detailed balance

⎡⎣ ⎤⎦
ω
ω

β σ σ σ σ= − ′ − + ′ −σ σ

σ σ

′

′

h

h
E h E h E Eln

( )

( )
( , ) ( , ) ( ) ( ) (A.1)

,
(1)

,
(1) sys

0
sys
0

1 int int

as do the rates describing transitions between states h at fixed σ

⎡⎣ ⎤⎦
ω σ
ω σ

β σ σ= − ′ − + ′ −
ν

ν
′

′
ν E h E h E h E hln

( )

( )
( , ) ( , ) ( ) ( ) . (A.2)

h h

h h

,
( )

,
( ) src

0
src
0

int int

We now assume that the energy scales involved during transitions in h are much larger than any
other energy scale involved in the σ dynamics. As a result, the rates ω σν

′ ( )h h,
( ) can be assumed to

be independent in σ , and equation (A.2) becomes

⎡⎣ ⎤⎦
ω
ω

β= ′ −
ν

ν
′

′
ν E h E hln ( ) ( ) . (A.3)

h h

h h

,
( )

,
( ) src

0
src
0

In this limit, the system h follows a dynamics that is independent of the dynamics of σ .
However, the converse is not true, and the dynamics of σ still depends on h. The energies of σ
read σ σ σ= +E h E E h( , ) ( ) ( , )sys

0
sys int , and the energy balance for σ reads

˙ = ˙ + ˙E Q E (A.4)int
h

sys 1

Figure A1. The joint system σ h( , ) in contact with several thermal baths. In the limit
where h is independent of σ , the evolution of h can be considered as a time-dependent
driving for the system σ .
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where the heat flow entering system σ from bath ν = 1 is given by

⎤⎦

∑ ω σ σ

σ σ σ

˙ = ′

− + ′ −

σ σ′
σ σ′

[Q h p h E h

E h E E

( ) ( , ) ( , )

( , ) ( ) ( ) (A.5)

,
(1)

sys
0

sys
0

h

1

, ,

int

int

whereas the energy received by system σ from system h reads

∑ ω σ σ σ σ˙ = ′ −ν
′

σ ν′
[ ]E p h E h E h( ) ( , ) ( , ) ( , ) . (A.6)h hint

h
,

( )

h h, , ,

int int

We emphasize that the level of description in section 2, i.e., of system σ driven by a stochastic
driving force h, disregards the true dissipation that is required to fuel h and that would be
expressed in terms of the detailed rates (A.3). It captures only the coarse-grained dissipation
expressed in terms of the global rates (i.e., rates summed over all the reservoirs ν = ⋯ N2, , )
that describe transitions between states h.

Appendix B. Steady state probability with stochastic driving

We derive the average work done by the stochastic work source of figure 1 in our two-level
system. To do so, we calculate the steady probability current for the transitions leading to work
exchanges. The steady state probability σ

εp of finding the joint system in a state σ ε( , ) can be
obtained from the spanning tree formula [50] and reads

ω ω ω ω ω ω
ω ω ω ω ω ω

ω ω ω ω ω ω
ω ω ω ω ω ω

= + + +
= + + +
= + + +
= + + +

−
+

+
+

+
−

+
+

+
−

−
−

+
+

−
−

+
−

+
+

+
−

−
+

+
−

+
+

+
+

−
+

−
−

−
+

+
−

−
+

−
−

+
−

−
+

−
−

−
−

−
+

+
+

−
−

− − + − − −

+ + + + − +

− − − − + −

+ + + − + +

( )
( )
( )
( )

p k k k k k k Z

p k k k k k k Z

p k k k k k k Z

p k k k k k k Z

Z is a normalization constant such that + + + =+
+

−
−

−
+

+
−p p p p 1. The average work

accumulated during τ is then

τ τ= − + −+
+

+
−

−
−

−
++ − − +( ) ( )w a p k p k a p k p k2 2 (B.1)

Appendix C. Stochastically driven colloidal particle: the Gaussian driving case

We consider an overdamped colloidal particle in contact with a bath at temperature T and
evolving in a one-dimensional harmonic trap whose position follows an Ornstein–Uhlenbeck
process. Because this process plays the role of a reversible work source acting on the colloidal
particle, our results from section 2 indicate that a work fluctuation theorem should hold.
However, this model has been studied experimentally in [44] and theoretically in [45, 51], and
the authors found that the work fluctuation theorem is satisfied only in a certain range of
parameters. The reason for these violations is that work is defined in these references as the time
integral of the velocity times the stochastic force, and this work definition differs from the
Jarzynski work by a boundary term. We now use the results of [45] (trying to keep their
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notation) to show that, as we predicted, the Crooks work fluctuation theorem is always valid
when the Jarzynski work is considered.

We denote by =x x t( ) the position of the particle (i.e., the system) and by =y y t( ) the
position of the trap (i.e., the work source). The stochastic differential equations of motion are

τ
ξ˙ = − − +

γ
x

x y
(C.1)

τ
ζ˙ = − +y

y
(C.2)

0

where ξ ξ= t( ) and ζ ζ= t( ) are two uncorrelated Gaussian white noises averaging to zero and
with correlation ξ ξ δ〈 〉 = −t s D t s( ) ( ) 2 ( ) and ζ ζ δ〈 〉 = −t s A t s( ) ( ) 2 ( ). Two time scales are
introduced in (C.1) and (C.2): the relaxation time in the harmonic trap τ γ=γ k/ with γ the
friction coefficient and k the stiffness of the trap, and the relaxation time of the y correlation, i.e.,

τ τ〈 〉 = − | − |y t y s A t s( ) ( ) exp ( / )0 0 . We note that the Einstein relation γ=D T / (which plays
the role of the local detailed balance condition in equation (1) when considering continuous
models) is verified for the motion of x. The motion of the trap reaches an equilibrium (Gaussian)
state that can be characterized by an effective temperature proportional to Aτ0. We define
δ τ τ= γ/0 , the ratio of the two time scales in the model; and θ = A D/ , the ratio of the diffusion
coefficients.

The entropy production in the time interval t[0, ] contains three contributions. The first is
the variation of the system entropy

Δ = − ( )
( )

S x y
p x t y t

p x y
[ ] ln

( ) ( )

(0) (0)
(C.3)

st

st

where |p x y( )st is the stationary probability of x given y. The second is the entropy production in
the bath Δ− | = | −Q x y T W x y T E x y T[ ]/ [ ]/ [ , ]/ , which can be expressed as the difference
between the Jarzynski work divided by T

∫= ′ ˙ ′ ∘ ′ − ′W x y T
k

T
t y t

y
x t y t[ ]

2
d ( )

d
d

[ ( ) ( )] (C.4)
t

0

2

where ∘ denotes the Stratonovich product, and the variation of system internal energy divided
by T

Δ
τ

= − − −
γ
{ }E x y T

D
x t y t x y[ , ]

1
2

[ ( ) ( )] [ (0) (0)] . (C.5)2 2

We remark here that the Jarzynski work could be infinite for some rare events because the
amplitude of change of the position x is in principle infinite. The third part in the entropy
production is the work source entropy production

⎡⎣ ⎤⎦Δ
τ

= − − − =S y
A

y t y
p y t

p y
[ ]

1
2

( ) (0) ln
( ( ))

( (0))
0 (C.6)i sd

0

2 2 st

st

which vanishes because the driving is a Gaussian process always relaxing to an effective
equilibrium. Introducing the final state vector =U x t y t( ( ), ( ))T , the initial state vector

=U x y( (0), (0))T0 and the stationary probability distribution
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⎡
⎣⎢

⎤
⎦⎥π

= −
H

Hp U U U( )
1

2 det
exp

1
2

(C.7)1
1T

st
1

with

⎛
⎝⎜

⎞
⎠⎟

τ
δ δ

δ θδ θδ
θδ θδ θδ

=
+

+ +
+

H
D

(1 )
1 (C.8)1

0
2 2

2 2

the entropy production becomes

∫Δ = ′ ′ ∘ ˙ ′ − − + − −− −( ) ( )H R H RS x y
k

T
t y t x t U U U U[ , ] d ( ) ( )

1
2

1
2

. (C.9)
t

T

0
1
1

0 1
1T

i 0

We defined the matrix

θτ
δθ= ( )R

D

1 0
0 1

. (C.10)
0

In [45], the generating function of the first term on the right-hand side of (C.9) was obtained for
a given initial and final state. The entropy production modifies this quantity by a boundary term
that depends only on U0 and U. Using the result of [45], we obtain the following expression for
the generating function of the entropy production (which is equal to the dissipated work) at
large time t:

=μΔ
μ

ϕμge e (C.11)S ti

with

ϕ δ
τ

ν μ= + −μ
1
2

[1 ( )] (C.12)
0

ν θδ μ μ
δ

= − +
+μ 1

4 (1 )
(1 )

. (C.13)
2

2

The exponential pre-factor μg is important if the generating function has non-analyticities in the
region where the saddle approximation is performed to find the large deviation function. Using
again the results of [45], we find the following exponential pre-factor

ν
ν

=
+μ

μ

μ( )
g

4

1
. (C.14)

2

The work fluctuation theorem follows from (C.12) because =μ μ− −g g1 and ϕ ϕ=μ μ− −1 . As for
the two-level system, this theorem is satisfied because the stochastic driving is reversible;
see (C.6).
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