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Abstract The extent of application of meshfree methods 

based on point collocation (PC) techniques with adaptive 

support domain for strong form Partial Differential Equations 

(PDE) is investigated. The basis functions are constructed 

using the Moving Least Square (MLS) approximation. The 

weak-form description of PDEs is used in most MLS 

methods to circumvent problems related to the increased 

level of resolution necessary near natural (Neumann) 

boundary conditions (BCs), dislocations, or regions of steep 

gradients. Alternatively, one can adopt Radial Basis Function 

(RBF) approximation on the strong-form of PDEs using 

meshless PC methods, due to the delta function behavior 

(exact solution on nodes). The present approach is one of the 

few successful attempts of using MLS approximation [Atluri, 

Liu, and Han (2006), Han, Liu, Rajendran and Atluri (2006), 

Atluri and Liu (2006)] instead of RBF approximation for the 

meshless PC method using strong-form description. To 

increase the accuracy of the MLS interpolation method and 

its robustness in problems with natural BCs, a suitable 

support domain should be chosen in order to ensure an 

optimized area of coverage for interpolation. To this end, the 

basis functions are constructed using two different 

approaches, pertinent to the dimension of the support 

domain. On one hand, a compact form for the support 

domain is retained by keeping its radius constant. On the 

other hand, one can control the number of neighboring nodes 

as the support domain of each point. The results show that 

some inaccuracies are present near the boundaries using the 

first approach, due to the limited number of nodes belonging 

to the support domain, which results in failed matrix 

inversion. Instead, the second approach offers capability for 

fully matrix inversion under many (if not all) circumstances, 

resulting in basis functions of increased accuracy and 

robustness. This PC method, applied along with an intelligent 

adaptive refinement, is demonstrated for elliptic and for 

parabolic PDEs, related to many flow and mass transfer 

problems. 

Keywords:   Meshless Methods; Point Collocation Methods; 

Strong Form description; MLS; Adaptive Support Domain; 

1 Introduction 

In recent years, research on meshless (meshfree) methods has 

made significant progress in science and engineering, 

particularly in the area of computational mechanics. The 

finite element method (FEM), which has been the most 

frequently used numerical method in engineering during the 

past 30 years, has faced inefficiencies in further development 

and optimization. More specifically, the lack of a robust and 

efficient 3D mesh generator makes the calculation of a 

general solution of 3D problems a difficult task. Furthermore, 

mesh-based methods are not suited for problems having large 

deformations [Liu (2002)]. Thus, much attention has been 

focused on the development of meshes methods, such as the 

Smooth Particle Hydrodynamics (SPH) [Gingold and 

Monaghan (1977)], the Diffuse Element Method (DEM) 

[Nayroles, Touzot and Villon (1992)], the Element Free 

Galerkin Method (EFG) [Belytschko, Lu and Gu (1994)], the 

Reproducing Kernel Particle Method (RKPM) [Liu, Chen, 

Jun, Chen Belytschko, Pan, Uras and Chang (1996)], the 

Finite Point Method (FP) [Onate, Idelsohn, Zienkiewicz and 

Taylor (1996)], the hp Clouds Method (HP) [Liszka, Duarte 

and Tworzydlo (1996)], the Meshless Local Petrov-Galerkin 

method (MLPG) [Atluri and Zhu (1998), Atluri (2004), 

Atluri and Shen (2002)], as well as the Local Boundary 

Integral Equation method (LBIE) [Atluri, Sladek, Sladek and 

Zhu (2000)]. 

Two methods of discretization, namely the collocation 

method and the Galerkin method, have been dominant in 

existing meshless methods. Both methods are produced by 

the implementation of the weighted residuals method. The 

latter is one of the most general procedures for solving 

numerically Partial Differential Equations (PDEs). 

Collocation method usually solves the strong form of the 

Partial Differential Equations, while the Galerkin method 
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deals with the weak formulation. At the first case, the 

solution obtained is commonly referred to as the strong 

solution, while the second as the weak. One of the most 

challenging tasks in the solution of partial differential 

equations is the selection of the strong or the weak 

formulation. The strong formulation is usually easy to 

implement, however it suffers from certain inaccuracies 

when singularities exist at the boundaries (Neumann 

boundary conditions). The weak formulation instead, has 

some complications as far as the implementation issues are 

concerned, however it is often stated as to be more stable 

when dealing with natural boundary conditions. 

 

In general, a strong solution is always a full solution of the 

weak formulation; however a weak solution is not always a 

complete strong one. Numerical methods that are dealing 

with integration, such as finite element method, boundary 

element equation method, Element Free Galerkin (EFG) 

meshless method, and meshless local Petrov-Galerkin 

(MLPG) method, all provide a weak solution. Instead, 

pointwise collocation methods result mainly in strong 

solutions. A crucial point is whenever to use a strong or a 

weak form of the partial differential equation. From 

mathematical point of view, the answer to that question is 

that depends on the boundary conditions and the selection of 

the trial functions. For the first case, when the geometry of a 

domain   has irregularities, such as incoming corners, even 

if the data functions f   and f   are smooth, there may be 

singularity of the approximation function at the boundary. 

Concerning the second case, non-smooth data at certain 

boundary points lead to inaccuracies for the solution in 

contrast to the weak formulation that uses a weighted average 

values for the boundary data. Things are different when 

applications in science and engineering insist on 

distributional data where the weak forms are unavoidable. 

Many of the strong form techniques can be transferred to 

weak forms. The meshless local Petrov-Galerkin (MLPG) 

method is a good example of a weak meshless technique with 

plenty of successful applications in engineering. However, it 

is weak and unsymmetric, and not until recently a solid 

theoretical formation was given [Schaback (2007)]. 

 

In the present work we purposely used the strong form 

meshless collocation method for solving two-dimensional 

partial differential equations of the elliptic and the parabolic 

type, as well. The authors insist on strong form description, 

as it can provide point-wise accurate solutions for time 

dependent problems (parabolic), as the pulsatile flows in 

constrictions (blood flow in aneurisms and stenoses, 

[Kagadis, Skouras, Bourantas, Paraskeva, Katsanos, 

Karnabatidis and Nikiforidis (in press)]), but can be 

particularly useful in multiscale problem when used “in-line” 

with other, “less” continuum, methods. Such multiscale or 

interdimentional, coupled methods include mixed 

Computational Fluid Dynamics (CFD) and Direct Simulation 

Monte Carlo (DSMC) approaches with Dirichlet-Dirichlet 

type boundaries [Garcia, Bell, Crutchfield and Alder (1999)], 

description of particles-liquid-solids interactions, as in 

porous materials [Burganos, Skouras, Paraskeva, and 

Payatakes (2001), Skouras Paraskeva, Burganos, and 

Payatakes (2007)], in gas-liquid interactions (solution-

evaporation) and gas-solid interactions (sorption-catalysis) 

[Navascués, Skouras, Nikolakis, Burganos, Tellez and 

Coronas (in press)]. Meshless methods can be used to obtain 

diffusivities, permeabilities, sorption constants and other 

transport and separation parameters from their microscopic 

origins in compressible and non-continuum flows [Michalis, 

Kalarakis, Skouras and Burganos (2008)], in microfluidic 

filters [Aktas and Aluru (2002)], and in vacuum technology 

[Garcia, Bell, Crutchfield and Alder (1999)]. 

 

The Moving Least Square method for the approximation of 

the field variable is applied. An exponential weight function 

is used for the construction of the approximated function, 

which is applied on a constant number of support nodes, 

instead of a constant node density support domain. An 

automated procedure for node refinement is proposed, based 

on a strong form error finding approach. More specifically, 

nodes on which the error of the calculated field property is 

above a user-defined threshold are extracted and surrounded 

by additional nodes, which are added with a predefined 

formulation; overall, an approach which obtains convergence 

for the solution of the governing equations. The refining 

method reduces the computational cost and time, while 

leading to more accurate and significantly stable results. The 

procedure is fully automated and robust. Finally, a two-

dimensional Stokes fluid flow problem is presented and the 

results are compared with the results obtained with the 

commercial package ANSYS CFX.  

The weighted residual method provides a flexible 

mathematical framework for the construction of a variety of 

numerical solution schemes for the differential equations 

arising in the field of both science and engineering. Its 

application, in conjunction with the Moving Least Square 

(MLS) approximation method, yields powerful solution 

algorithms for the governing equations. 

Considering a problem governed by a differential equation 

  [ ]L u x f       in   , (1) 

with Neumann boundary conditions  

  t[ ]        on   B u x t  , (2) 

and Dirichlet boundary conditions  

0      on   p uu u   , (3) 

studied over the domain , which is a sufficiently smoothed, 

closed, and surrounded by a continuous boundary 

u t    . In equations (1)-(3), L  and B are the 
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corresponding differential operators, ( )u x  is the dependent 

variable of the problem (a function of independent spatial 

variables), 
pu  is the prescribed value of the unknown 

function over the boundary 
u , while f and  t  are the 

forces and the source or sink terms acting over the domain 

  and the boundary 
t  respectively. In the absence of an 

exact analytical solution for equation (1) one may seek to 

represent the field variable ( )u x  approximately as  

 
1

m
h

i i

i

u x a


   (4) 

where ia  are a set of coefficients (constants), whereas 
i  

represents a set of geometrical functions, usually called basis 

functions. 

Accuracy and convergence of the defined approximation will 

depend on the selected basis functions and (as a rule of 

thumb) these functions should be chosen in a way that the 

approximation gradually becomes more accurate as m 

increases. Substitution of equation (4) into equation (1) gives 

 hL u x f R
       (5)  

where R
 is the residual that appears through the insertion of 

an approximation instead of an exact solution for the 

unknown function  u x . 

 

The residual R is a function of position inside  . The 

weighted residual method is based on the minimization of 

this residual over the entire domain. For this minimization 

procedure to be achieved the residual is weighted by an 

appropriate number of position-dependent functions and a 

summation is carried out. The latter is written 

0jW R d



       j=1, 2, 3, . . . m (6) 

where Wj  are the independent weight functions and d  is 

an appropriate integration interval. Applying the weighted 

residual method to the above equations one gets 

   

 

   +

 0

t

u

h h

i i

h

i p

W Lu b d W Bu t d

W u u d

 



    

   

 


  (7) 

with the weighted functions , , ii iW W W  defined in appropriate 

ways. Theoretically, the above equation should provide a 

system  

u f   (8) 

of m linear equations to be solved, in order to calculate the 

coefficients ia  in equation (4).  

In cases where  i iW   , 
i  being the Dirac delta function, 

equation (7) can be written: 

 h

iLu b ;        i , 

h

jBu t ;         
tj , (9) 

h

k pu u ;         
uk , 

leading to a linear system as the one in equation (8).  

 

2 Moving Least Squares 

2.1 Moving Least Square Approximation 

Let  u x  be the unknown function of the field variable 

defined in the domain  . The function  hu x  is the 

approximation of function  u x  at point x . The field 

function is defined using the Moving Least Square (MLS) 

approximation as 

         
0

p a
m

h T

i i

i

u x p x a x x x


   (10) 

where m is the number of terms of monomials (polynomial 

basis), and  a x  is a vector of coefficients given by  

        0 1a  ...T

mx a x a x a x  (11) 

 

which are functions of x . 

 

Given a set of n nodal values, of a field function 1 2, ,..., nu u u , 

at n nodes 1 2, ,..., nx x x  inside the support domain, equation 

(10) can be used for the calculation of the approximated 

values of the field function at these nodes: 

 

   ( , ) ah T

i iu x x p x x  i=1, 2, 3, …, n (12) 

 

The coefficients  ia x  are calculated by the minimization of 

the quadratic functional  J x  given by 

       
2

1 1

a
n m

i j i j i

i j

J x w x x p x x u
 

 
   

 
   (13) 

The minimization conditions requires  
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0
J

a





 (14) 

which results in the following linear equation system: 

     a sA x x B x U  (15a) 

where A is the (weighted) moment matrix, expressed by 

       T

1

p p
n

i i

i

A x W x x x


   (15b) 

where  

   i iW x W x x   (16) 

In equation (15a), matrix B has the form 

   1 2, ,..., nB x B B B  (17) 

where  

   pii iB W x x  (18) 

and sU  is the vector that collects the nodal parameters of the 

field variables for all the nodes in the support domain 

 1 2, ,...,
T

s nU u u u  (19) 

After solving   equation (15a)  for  a x , one gets 

     1a sx A x B x U  (20) 

Substitution of equation (11) at the above equation leads to 

        1

1 1

p
n m

h

j iji
i j

u x x A x B x u

 

  (21) 

or  

   
1

n
h

i i

i

u x x u


   (22) 

where the Moving Least Square function  i x  is defined 

by 

        1 1

1

p p
m

T

i j iji
j

x x A x B x A B 



    (23) 

We have to note that m is the number of the monomial terms 

of the polynomial basis p(x), and n is the number of nodes in 

the support domain, which is used for constructing the shape 

function. The requirement that n m  must be fulfilled for 

the moment matrix A  to be invertible. 

In order to obtain the spatial derivatives of the approximation 

function  hu x , it is necessary to obtain the derivatives of 

the MLS shape functions  x . 

     
1 1

n n
h

i i i i

i ii i i

u x x u x u
x x x 

   
    

   
  , ,ix x y z

 (24) 

The derivative of the shape function is given as 

 
   

   

T 1

, ,

T 1 T 1 1

,x ,,

p

=p p p

i x i x

T

i i i xx

x A B

A B A B A B



  

  

 
 (25) 

, ,ix x y z  

where        1 1 1

,x
A A x A x A x    (26) 

 

2.2 Weight Function Description 

The weight function is non-zero over a small neighborhood 

of ix , called the support domain of node i . The choice of the 

weight function  iw x x  affects the resulting approxi-

mation  h

iu x  significantly. In the present paper a Gaussian 

weight function is used [Liu (2002)], yet the support domain 

does not have a standard point density value. Instead, a 

constant number of nodes are used for the approximation of 

the field function. 

   

2

  

0

Id

a

i
eW x x W d

 
  
 

 
 

    
 
 

 (27) 

where  I=1, 2, 3, …, q  are the nodes that produce the support 

domain of node ix , and 

 
2

0

ix x
d

a


   with 

0a  a prescribed  constant (often 
0 0.3a  ) 

[Error! Bookmark not defined.]. 

 

3 Numerical Examples 

3.1 Elliptic type: Poisson equation  

In order to investigate the behavior of the constant nodal 

density support domain versus the constant nodal number 

support domain, we first examined a classical elliptic type 

PDE problem, Poisson equation with Dirichlet boundary 

conditions: 

       

 

2 2, ,            0,1 0,1

, ,                             

xy

xy

u x y x y e

u x y e

     

 
              (27) 

The exact solution of this problem is the function xye . The 

above type form is known as the continuous problem (CP). A 
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unique solution exists if the criteria of the Theorem 6.13 in 

[Gilbarg and Trudinger (1983)] are fulfilled, i.e. if   is a 

bounded domain satisfying an exterior sphere condition at 

every boundary point and  2,s af C    for 3,4s   and 

 pu C  . Then, the solution of the continuous problem is 

   0 ,s au C C    , where  0C   is the vector space of 

all bounded and uniformly continuous functions on  , and 

 ,s aC   represents the Holder space of exponent 0 1a   

equipped with the norm 

 
 

   

,
0

0 , ,

max sup

max sup

s ac s x

as x y x y

u D u x

D u x D u y

x y





 



   

   

 





                     (28) 

In the present work, we solved the aforementioned Poisson 

equation numerically, using the strong form meshless point 

collocation method. Thus, the continuous problem had to be 

discretized. The field variable  ,u x y  was approximated 

with the MLS method described above, and the polynomial 

basis was of the second order, since Poisson equation is also 

a second order partial differential equation. Using the 

procedure described in [Kim and Liu (2006), Armentano and 

Durán (2001)] we formulated the discrete Poisson problem 

(DP) 

 

 
  

  0

|  for all 

,     on  

b

h g J K K K

p h

u V u u g x x
DP

u i f

      
 

    

 (29) 

with p  being an operator called the strong meshfree 

Laplacian operator, 0 b     are sets of well distributed 

interior and boundary nodes, respectively, and gV  is the finite 

dimensional space, subspace of  C  , of functions defined 

on  . The aforementioned procedure leads to a linear 

system of the unknown field variable. The system was solved 

with a direct method, providing the results for regular 

distributed 121 (Fig.1) and 441 (Fig.2) nodes given in the 

next section. 

 

  
     Fig.1. Grid of 121 regular            Fig.2. Grid of 441 regular                                    

               distributed nodes                         distributed nodes                 

 

A crucial point concerning the meshfree methods is the 

domain representation. The latter is represented using sets of 

nodes distributed either regularly or irregularly, in its interior 

region and boundaries. The nodal distribution is usually not 

uniform and a denser distribution of nodes is often used in 

areas with high gradients or at discontinuities. Nevertheless, 

the discrete form of the above problem must converge in 

order to obtain a stable solution. Thus, the moment matrix 

       T

1

p p
n

i i

i

A x W x x x


  for the given set  of nodes 

must be invertible. To calculate the moment matrix and its 

inverse, one needs to focus on some class of node 

distributions. In the present work, we used the so-called Type 

I point distribution (i.e. staggered locally (p,4)-layered 

(p=2,3)) at each interior node, which is implemented on an 

open square domain. The second one used is of the Type II 

(i.e. locally (p,6)-layered (p=1,2)) at each interior node on a 

hexagonal domain (Fig.3).  

          

 
Fig.3. Possible layered node distributions [Error! Bookmark not defined.] 

(a) Type I   (b) Type II 

 

Each of these two distributions provides convergence and 

accuracy, since an error estimation analysis is obtained for 

the Poisson problem on the two specific domains [Kim and 

Liu (2006), Armentano and Durán (2001)].  

The following Tables 1(a-b) and 2(a-b) show the accuracy of 

the numerical solution for the constant density and constant 

number support domain formulation using 121 and 441 

regular distributed nodes. 

 

 

Table 1a. Constant Density Support Domain for 121 total nodes 

Support 

domain 

Average number 

of nodes in SD 

max(|uh-ui|) max(|uexact-uh|) 

2.0 121 4.033 10
+4

 5.94 

1.0 113 19 0.02 

0.5 52 1.99 10
-3

 3 10
-3

 

0.25 17 1.274 10
-4

 2.06 10
-4

 

0.2 10 2.065 10
-5

 1.53 10
-4

 

0.15 8 2.084 2.084 

0.1 4 7.73 10
+6

 7.73 10
+6
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Table 1b. Constant Number Support Domain for 121 total nodes 

Support 

domain 

Average number 
of nodes in SD 

max(|uh-ui|) max(|uexact-uh|) 

121 121 72 0.09 

113 113 3.49 0.04 

52 52 7.19 10
-3

 5.09 10
-3

 

17 17 4.31 10
-4

 4.31 10
-4

 

10 10 5.60 10
-5

 1.55 10
-4

 

8 8 2.29 10
-5

 4.79 10
-4

 

4 4 7.73 10
+6

 7.73 10
+6

 
 

Table 2a. Constant Density Support Domain for 441 total nodes 

SD Average number  

of nodes in SD 

max(|uh-ui|) max(|uexact-uh|) 

2.0 441 5.47 10
+7

 5.94 

1.0 422 3.21 10
+2

 9 10
+2

 

0.5 200 0.25 4 10
-3

 

0.25 63 3.02 10
-4

 5.40 10
-4

 

0.2 40 1.46 10
-4

 2.57 10
-4

 

0.15 24 4.97 10
-5

 8.80 10
-5

 

0.12 20 1.39 10
-5

 6.02 10
-5

 

0.10 10 5.89 10
-6

 1.32 10
-4

 

0.08 8 15.48 15.48 
 

Table 2b. Constant Number Support Domain for 441 total nodes 

number of 
nodes in SD 

Average number of 
nodes in SD 

max(|uh-ui|) max(|uexact-uh|) 

441 441 2.73 10
+10

 1.66 10
+6

 

422 422 1.86 10
+11

 6.8 10
+3

 

200 200 15.22 42 10
-3

 

63 63 27.00 10
-4

 13.45 10
-4

 

40 40 4.44 10
-4

 4.45 10
-4

 

10 10 9.11 10
-6

 1.40 10
-4

 

8 8 6.34 10
-4

 0.23 

Clear trends in the local and global accuracies are evident in 

Tables 1 and 2, in view of the total number of nodes and the 

effect of the type of the support domain on the behavior of 

the solution. A lower cut-off in the magnitude of the support 

domain can be seen in the Tables, both for the 121 and the 

441 total number of nodes cases, as proved by Kim and Liu 

(2006) and Armentano and Duran (2001) seems to be the 

optimum (minimum) number of nodes for the given node 

distribution type, Type I [Kim and Liu (2006)]. 

The improved behavior of the constant number of nodes 

formulation at low-numbered support domain cases can be 

noticed in the comparison of the accuracies in the results 

displayed at Tables 1 and 2. At average number of nodes 8, 

the constant number support domain formulation for 121 

nodes, Table 1b, furnishes better results, that is, offers 

convergence i.e. stability. At the same conditions, the widely 

used constant density support domain formulation, shown in 

Table 1b, fails. The very same can be stated by direct 

comparison of Tables 2a and 2b (441 nodes) at average 

number of nodes 10, and at 8. Both the results shown at 

Tables 1(a-b) and the corresponding ones at Tables 2(a-b) 

can be used to claim the convergence to the Kronecker 

property for each nodal value in the present methodology by 

increasing the number of nodes in the domain  . 

 

3.2 Parabolic type: Convection-Diffusion equation 

Convection-diffusion problems are of great significance and 

very challenging in computational mechanics. However, only 

a handful of numerical methods are used to solve these kinds 

of problems. Examples are the widely used finite element 

method (FEM) and the closely related finite volume method 

(FVM). Nevertheless, significant problems had arisen using 

the aforementioned methods, which could be overcome by 

the so-called meshless methods. In particular, the Meshless 

Local Petrov-Galerkin (MLPG) method was used quite often 

to solve steady state convection-diffusion problems [Lin and 

Atluri (2000)]. The MLPG method is based on a weak form 

computed over a local sub-domain. As in FEM, the trial and 

test functions spaces can be different or the same, with 

Galerkin and Petrov-Galerkin upwinding, respectively. As far 

as the strong form of the convection-diffusion problems is 

used, very few works were reported [Gu and Liu (2006)]. 

However these techniques have faced several problems 

concerning the stability and the accuracy of the solution. The 

Reproducing Kernel Point Met (RKPM) Method, combined 

with the Streamline Upwind Petrov-Galerkin (SUPG) form 

of variational formulation was used in order to obtain more 

accurate results [Onate, Idelsohn, Zienkiewicz, and Taylor 

(1996)]. The stability problem is discussed in the analysis of 

the convection dominated problems using meshfree methods 

in [Gu and Liu (2006)]. Several techniques are proposed, 

including the enlargement of the support domain, the 

upwinding support domain, the adaptive upwinding support 

domain and the nodal refinement. The meshless point 

collocation method is used for discretization, and radial basis 

functions are used to approximate the unknown field variable 

[Sarler (2005), Mai-Cao and Tran-Cong (2005), Mai-Duy 

(2004)]. All the above techniques are developed in order to 

overcome the stability and accuracy problems, and the final 

goal is the enhancement of the accuracy for high gradient 

problems. Particularly for problems dominated by high 

regularities at the boundaries, such as high gradients, the 

weak form is usually preferred instead of the strong form. In 

this paper we try to solve the 1D and 2D convection-

diffusion problem using meshless point collocation method 

with Moving Least Square (MLS) approximation. We use a 

constant number support domain for the weight function, and 
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we propose a fully automated nodal refining procedure based 

on theorems proved in Kim and Liu (2006) and Armentano 

and Duran (2001). The upwind method provides stable and 

accurate results with a very clear physical meaning. 

Nevertheless, to the authors’ attention, the upwind method 

lacks of a pure mathematical convergence and stability 

analysis, as far as the meshless methods are concerned. Thus, 

we used a strong mathematical proof for defining the concept 

of well distributed nodes, and implemented it for nodal 

refinement at nodes where the absolute value of  the strong 

form error  ,hR Lu x y f   is larger than a user defined 

threshold (e.g. R<10
-2

).  

 

3.3 1D Convection-Diffusion 

In this section a one-dimensional (1-D), steady-state, 

convection-diffusion problem is considered. The governing 

equation is: 

 0,           0,1m

du d du
V D q x

dx dx dx

 
    

 
 (30a) 

where u is the field scalar variable, V , ,  mD q  are all given 

constants, having different physical meaning for each 

engineering problem.  

The following Dirichlet boundary conditions are considered: 

0

1

| 0

| 1

x

x

u

u








 (30b) 

The exact solution for this problem can be easily obtained by 

solving this second order ordinary differential equation 

(ODE), with essential boundary conditions, analytically. It is 

well known that the stability of the numerical solution of the 

above problem is defined by a number, called the Peclet (Pe) 

number: 

2

s

m

Vd
Pe

D
  (31) 

with sd  being the nodal spacing for two neighbor nodes. It 

has been shown [Gu and Liu (2006)] that, when Pe is very 

large  s mVd D , Eq. (30a-b) becomes convection-

dominated, and the accuracy of the standard numerical results 

becomes oscillatory. The second term in the equation 

becomes negligible, resulting in that the boundary condition 

1| 1xu    affects only a very narrow region of the domain. 

Thus, a thin boundary layer is formed causing stability 

problems to the obtained numerical solution. These stability 

problems make the thin boundary layer difficult to be 

reproduced (resulting in an oscillatory unstable solution) by 

the standard numerical methods if no special care is 

considered. This kind of instability can occur in many 

numerical methods, such as FEM, FVM, FDM and meshfree 

methods. In order to overcome this problem, the upstream 

information of the field variable approximation has to be 

prescribed with great accuracy. Several strategies for 

meshless methods were developed, such as nodal refinement, 

enlargement of the local support domain, fully upwind 

support domain, and adaptive upwind support domain [Gu 

and Liu (2006)]. All the aforementioned methods have 

several advantages and disadvantages. For nodal refinement, 

the increase at the number of nodes decreases the nodal 

spacing 
sd and the Peclet number, although there is an 

increase in computational time. By enlarging the local 

support domain one captures the upstream information but 

reduces the accuracy of the solution [Liu (2002)]. This can be 

more evident when regions with high gradients are present. 

By using an upwind support domain, the accuracy and 

stability is improved for problems with high Peclet number, 

still it gives very poor results for smaller Peclet numbers. 

Using constant number support domain obtained a solution 

with inaccuracies for 40 regular distributed nodes, as it is 

clear at (Fig.4). 

-  

               Fig.4 Exact solution (blue line) and numerical solution 

By defining the nodes with a strong error value greater than a 

defined threshold (Fig.5), a local refined is implemented 

providing the solution at (Fig.6)  

 
     Fig.5 Red spots: Nodes for               Fig.6 Exact and numerical  

              refinement                                       solution (green spots) 

 

 with max 0.02num exactu u   

  

 

3.4 2D Convection-Diffusion 

We next consider the two-dimensional convection-diffusion 

equation 

 

2u w u f      (32) 
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where 0  . The above equations arise in numerous models 

of flows and other physical phenomena. The unknown field 

function u  may represent the concentration of a polymer 

being transported (or ‘convected’) along a stream moving at 

velocity w  and subject to diffusive effects. It also may 

represent the temperature of a fluid moving along a heated 

wall, or the concentration of electrons in models of 

semiconductor devices. Typically, diffusion has less 

significant physical effect, compared to convection. Thus, for 

most practical problems, w . As it is well known, a 

boundary layer is formed when the convection term is 

dominated. The crucial point for a numerical method is to 

describe the very boundary layer with accuracy. In this work, 

we solve a convection-diffusion problem on a square domain  

   1,1 1,1      with source term 0f  and
1

1
200

  . 

Since the Peclet number is inversely proportional to  , the 

problem is convection dominated. The velocity w  is constant 

with  0,1w   and the Dirichlet boundary conditions are: 

 

   

   

, 1 ,   ,1 0

1, 1,  1, 1

u x x u x

u y u y

  

   
                                             (33) 

where the latter two approximations hold everywhere in the 

domain except near 1y  . On the boundaries 1x    the 

boundary values vary dramatically near 1y  , changing from 

(essentially) -1 to 0 on the left and from +1 to 0 to the right. 

For small  , the solution u  is very close to that of the 

reduced problem hu x  except near the outflow boundary 

1y  , where it is zero. This dramatic change constitutes a 

boundary layer. The exact solution of the problem is  

 

1

2

1
,

1

y

e
u x y x

e









 
 


 
  

                                                   (34) 

A solution is obtained for a regular grid 11x11 (Fig.7). 

 
                          Fig.7 Numerical solution for 121 nodes  

 

 By calculating the absolute value of the strong form error 

Lu f  we point out the nodes with values greater than a 

user defined threshold value 0.01   (Fig.8).  

 
                                   Fig. 8 Nodes for local refinement 

 

It follows the refinement of the nodes by using a rectangular 

orientation of the added nodes surrounding the prescribed 

nodes (Fig.9).  

 
                       Fig.9 Node distribution after refinement 

 

Finally, the new solution is calculated and the errors are 

estimated (Fig.10). 

          
       Fig10 Solution of the refined nodes      Fig.11 Exact solution 

 

The strong form errors are presented. First in (Fig.12) the 

errors before the refinement are plotted and then those after 

the refinement (Fig.13), showing the error decreasing and the 

greater accuracy for the numerical solution. The prescribed 

procedure is fully automated, giving the opportunity for 

following refinements until the desirable accuracy (e.g 

R<0.0001) is obtained. 

       
 Fig.12  Strong Error before                    Fig.13  Strong Error after               

             refinement                                         refinement 
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3.5 2D Steady State Stokes Equations 

 

The Stokes equation system 

 

2.

            0

v u p f

u

   

 
                                                          (35)   

is a fundamental model of viscous incompressible flow. The 

variable u  is a vector-valued function representing the 

velocity of the fluid, and the scalar function p represents the 

pressure. The first equation represents the conservation of the 

momentum of the fluid (momentum equation), whereas the 

second one enforces conservation of mass. The crucial 

modelling assumption made is that the flow is “low-speed”, 

so that convection effects can be neglected. Such flows arise 

in cases where the fluid is very viscous or where it is tightly 

confined. An example is the flow of blood in parts of the 

human body. For the purpose of our study we choose to solve 

the 2D flow of a fluid passing a stenosed region (Fig.14) with 

Dirichlet boundary conditions. The length at the inlet and 

outlet region is 0.6 mm and the point of the stenosis the 

length is 0.2 mm. The distance L of the central axis is 1 mm. 

The dynamic viscosity µ is 1 cP and the density  is 1 kg/m
3
 

(Stokes conditions).  The pressure difference is the driving 

force for the fluid flow, with pressure set to 1 kPa at the left 

entrance, and 0 kPa at the right one. The gravity is neglected, 

thus 0f  . 

 
                             Fig.14 Stenosed 2D region geometry 

 The unknown field approximation was implemented with the 

MLS method and the discretization scheme is the meshless 

point collocation method. For each node the degrees of 

freedom are three, the two velocity components 
xu  and yu , 

and the pressure value p . The differential operator 

2L    is an elliptical type operator and thus, the 

maximum principle method implies that this operator should 

converge when used with meshless point collocation method 

and well-distributed nodes [Kim and Liu (2006)]. The nodal 

distribution used is a regular one (Fig.15) of Type I, as 

already pointed out, so that the moment matrix A  is 

invertible. 

 
  Fig.15 Regular node distribution at a bounding box of the geometry 

 
       Fig.16  Final node distribution. Blue nodes are the interior nodes 

 

A comparison took place between the solution obtained and 

the solution provided by the finite element method. The latter 

implemented with the commercial software package ANSYS 

CFX 5.1. Results are shown in Figs.17-19. 

 

 

Fig.17a ANSYS pressure plot        Fig.17b Meshless pressure plot 

 

Fig.17c ANSYS-Meshless pressure plot 
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Fig.18a ANSYS [u] velocity plot     Fig.18b Meshless [u] velocity plot 

 

 

Fig.18c ANSYS-Meshless [u] velocity plot 

 

 

Fig.19a ANSYS [v] velocity plot      Fig.19b Meshless [v] velocity plot 

 

 
Fig.19c ANSYS-Meshless [v] velocity plot 

 

4 Discussion 

In the present work we restrict our study to numerical 

methods that can solve partial differential equations problems 

without integration. This implies that we ignore boundary 

integral equation methods and finite elements, and insist on 

truly meshless methods. Thus, the MLS approximation was 

used herein of the construction of the trial functions during a 

strong-form description of several physical problems. To the 

authors’ attention, this is one of the few attempts for 

unknown function approximation with the meshless 

collocation technique. We examined the behavior of the 

solution with regular and irregular node distribution, 

combined with either constant density or constant number 

support domain, by the implementation of the collocation 

method at elliptic type (Poisson equation) partial differential 

equations. As it has been proved with the maximum principle 

method [Kim and Liu (2006)], the Laplacian operator of the 

elliptic problem converges. The accuracy is increased using 

greater number of nodes, and using constant number of nodes 

for the support domain.  It has also pointed out [Armentano 

and Durán (2001)] that a well-distributed set of nodes should 

be used, in order to obtain a stable solution.  

The constant number technique for convection-diffusion 

problems was used for parabolic type of partial differential 

equations, during the evaluation of the support domain for 

the construction of the approximation function. The 

improved behavior of the constant number of nodes 

formulation, proposed in the present work, furnishes more 

stable results at the low-numbered (optimum) support 

domain cases, where the widely used constant density 

support domain formulation occasionally fails. 

A fully automated procedure was developed, based on the 

error of the strong form description evaluation for the nodal 

refinement while keeping the well-distribution of nodes, 

provided a solution with great stability and accuracy, 

reducing the overall computational cost of a global 

refinement. Finally, it is has been shown [Ciarlet and Raviart 

(1973)] that the existence of a maximum principle for the 

discrete problem implies the possibility of obtaining uniform 

convergence of the approximates solutions to the exact 

solutions, for three of the most popular approximation 

schemes for solving second order Dirichlet problems, i.e., 

classical finite differences, variational finite differences, and 

finite element methods. A mathematical background has been 

developed recently for the convergence [Kim and Liu (2006)] 

and for the error bounds [Armentano and Durán (2001)] of 

meshless collocation methods. One can use this method for 

elliptic and parabolic type of problems, in conjunction with 

smart refinement techniques, as the one proposed in this 

paper. Proof of the above hypothesis has been shown for (at 

least) elliptic type of operators (Laplacian) and for MLS trial 

functions. 

Future work involves the mathematical treatment and the 

implementation of the Neumann type boundary conditions. 

Also, the convergence analysis for nodal distribution has to 

be extended to irregular geometries for 2D and 3D space 

dimensions. As far as problems with Stokes flow are 

concerned, comparison of the results of the meshless PC 

method using MLS approximation with the results obtained 

by ordinary FE methods indicates that the two methods are 
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directly comparable both in accuracy, and in computational 

time. However, a strict mathematical proof of the PCM 

performance in Stokes flow problems has still to be 

examined. Strong form of PDEs provides the “complete” 

solution of the problem, a solution that is both unique and 

stable. For elliptic type of problems, MLS discrete strong 

form point collocation methods can nowadays be used with 

sufficient accuracy and stability, in order to be applied in 

coupled, multiphase and/or multiscale problems.  
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