
Rights Management for Role-Based Access Control

Bart Bouwman
Philips Research / Ordina

Eindhoven, The Netherlands
bart.bouwman@ordina.nl

Sjouke Mauw
University of Luxembourg

Luxembourg
sjouke.mauw@uni.lu

Milan Petković
Philips Research Europe

Eindhoven, The Netherlands
milan.petkovic@philips.com

Abstract- Healthcare requires a new approach with respect to
the secure management of information. For this purpose we
extend the Role Based Access Control model with context
awareness, exceptions and delegation. By combining this
extended model with common notions from the field of
Enterprise/Digital Rights Management we obtain a framework
for controlling shared information in a distributed environment.

I. INTRODUCTION

Advances in information and communication technologies
are expected to bring large benefits in the healthcare domain:
the introduction of interoperable Electronic Health Record
(EHR) systems [1] can reduce the cost of the healthcare
system and enhance the overall quality of treatments, whereas
Remote Patient Management services [2] will limit the time a
patient stays in hospital. However, the application of
information technology in a very complex healthcare
environment has led to new security requirements, such as
privacy concerns related to access of patient records outside
the controlled environment of a hospital. These requirements
are also recognized by security and privacy regulations (such
as EU Directive 95/46 [3] or HIPAA [4] in the US) to which
healthcare solutions have to comply.

Modern healthcare architectures tend to be open,
interconnected environments. Therefore, sensitive patient
records no longer reside on mainframes physically isolated
within a healthcare provider, where physical security measures
can be taken to defend the data and the system. Patient files
are rather kept in an environment where data is outsourced to
or processed on partially untrusted servers in order to allow
de-centralized access for family doctors, medical specialists,
pharmacists, and even non-medical care providers. The
currently employed server-centric protection model, which
locks the data in a database server and uses a traditional access
control model to permit access to data, cannot efficiently deal
with the requirements of the new healthcare infrastructures in
which patient data may reside outside the control of the central
server.

In order to allow sharing of records among different
healthcare providers or with external parties, end-to-end
security techniques facilitating data-centric protection have
been suggested [5,6]: data is cryptographically protected and
allowed to be outsourced or even freely float on the network.
Rather than relying on different networks to provide
confidentiality, integrity and authenticity, data is protected at

the end points of the communication. However, this is not
straightforward to achieve in the healthcare domain. One of
the most important challenges in this domain is the
implementation of an advanced role-based access control
system (RBAC) which fulfills healthcare requirements. In
particular, the introduction of exceptions and context
awareness makes it hard to use an existing enterprise or digital
rights management system for this purpose.

A particular example requirement to access control
mechanisms is that, according to HIPAA, patients have the
right to request restrictions (exceptions) with respect to access
to their health records. A patient could request restrictions on
the disclosure of their records to certain individuals involved
in his care that otherwise are permitted (with respect to role-
based access control governed by care institutions).
Furthermore patients have the right to completely hide certain
records in their EHRs from healthcare providers. Similar
requirements can also be found in the specifications of
national EHR systems that are under development (see for
example the UK Spine system [7]). Obviously, this poses
additional requirements on confidentiality and access control
with respect to health records. Namely, in some cases access is
based on roles, in other cases, it is not only based on roles but
also on individual’s restrictions. Therefore, there is a clear
need for a combination of role-based access control and
patient-managed access control. Furthermore, complementing
access control with context awareness and delegation are of
utmost importance in the healthcare domain.

In this work we address the aforementioned problems by
extending the traditional role-based access control model to
fulfill the new requirements. Then we implement this model in
the DRM context allowing its application in new distributed
and off-line scenarios of future healthcare. Finally we describe
a DRM architecture that encapsulates our solution and discuss
several improvements related to license management and
permission evaluation.

II. RELATED WORK

Sandhu is often seen as the originator of role-based access
control. In one of his papers [8] several role-based access
control models are introduced. The four models described in
his paper are the base model, the role hierarchies, the
constraints model, and the consolidated model. The basic
model defines only the smallest set of relations to allow a role-
based access control setting. This model contains four entities:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31205783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Users, Roles, Permissions, and Sessions. In the consecutive
model, role hierarchies are introduced. This extension to the
base model defines a relation, which is a partial order, on roles
that defines permissions that are inherited from another role.
Hierarchies introduce a natural way of reflecting an actual
organization’s line of responsibility.

Another extension to the basic model introduces constraints
on all relations of the model. This allows defining conditions
that determine the acceptability of various components in the
basic model. Constraints (such as mutually exclusive roles,
cardinality, etc.) are a very important part of an RBAC model.
The consolidated model of Sandhu combines constraints and
role hierarchy. This model is further extended in the next
section to fulfill the aforementioned requirements in the
healthcare domain.

As already mentioned, context information is very
important in the healthcare domain. It can be used to
characterize the situation of an entity (e.g. patient records
should be accessible to all staff in an emergency room,
irrespective of their normal permissions). In the literature,
context is very often taken into account as part of the RBAC
model. In the papers of Covington [9, 10], environment roles
are introduced. These are actually part of the formal model
defining the role-based access control system. His architecture
is based on an extension of the role-based access control
model [11]. A negative aspect about this approach is that one
has to model the context in a way that it fits into roles.
Another practical issue is that this method increases the
administrative complexity in managing access control policies.

While Covington extends the general RBAC model to
create context-awareness mainly on the permissions to roles
assignment, Wullems [12] defines context-awareness on the
users to roles assignment and authentication of users to the
system. This approach is designed to augment existing
security protocols and therefore he focuses on the
implementation of the architecture. In this paper, we will
define constraints and context over the complete model and
make the instantiation of the formal model more transparent.

III. EXTENDED RBAC MODEL

This chapter describes the evolution of Sandhu’s standard
RBAC model [8] into the context-aware RBAC model with
exceptions (CARBAC-E) that is suitable for the healthcare
domain. We take the consolidated model of Sandhu, as the
basis and extend it, first to allow exceptions on permission
policies (the DAC-like user and role exceptions) and secondly
to allow object categorization.

With the extended model, it is possible to define
personalization of default policies. Patients can define
exceptions and therefore overrule permissions that are
indirectly assigned to users via the membership relation. In the
same way as user-based exceptions, role-based exceptions can
be defined. They overrule permissions that are directly
assigned to roles. Next to that, the model is extended with
categories that contain objects. This creates flexibility in

policy management, as one can directly use default policies
instead of using templates to generate custom policies.

Figure 1 depicts the extended model that combines the
above-mentioned features.

Figure 1. The extended model.

A. Formalization
Figure 1 provides an intuitive understanding of the model,

but it does not unambiguously define it. To address this point
as well as to allow for verification and unambiguous
implementation, we provide its formal definition below.

Definition 1: Actions (A). Let A be the set of all actions that
can be used in the definition of permissions: A = {aB1 B..aBnB},
where a single action is represented by the tuple aBiB: (action:
String). A few examples of actions are view, write, print, etc.

Definition 2: Permission Types (T). Let T be the set of all
types that can be used in the definition of permissions: T = {+,
-, ?}. A permission can be of type allow (+), deny (-), or not-
known (?). Every permission that is not specified is interpreted
as a permission with type ‘?’. The ordering on types is - ≥ +
≥ ?. This means that negative permissions overrule positive
permissions. The max function, which will be used later in the
evaluation phase, is defined on pairs and sets of types (V):

max(tB1B, tB2 B) = tB1 B if tB1B ≥ tB2

 tB2 B if tB2B > tB1B

max(V) = ? if |V| = 0

 head(V) if |V| = 1
 max(head(V), max(tail(V))) if |V| ≥ 2

Definition 3: Users (U). Let U be the set containing all users
that take part in the model: U = {uB1B..uBn B}, where a single user is
represented by the tuple u BiB: (userName: String). In practice, a
user has more attributes than his name.

Definition 4: Roles (R). Let R be the set containing all roles
that are part of the model; R = {r B1B..rBn B}, where a single role is

User

Role

Permission

user/role context/
constr.

right/role context/
constr.

role hierarchy
context/constr.

exception
context/constr.

exception
context/constr.

Objectcategory

Object

UR

RH

ER
PO

RPC

EU
PO

OCcategory context/
constr.

represented by the tuple rBiB: (roleName: String). Some
examples of roles are nurse, doctor, radiologist, etc.

Definition 5: Permissions (P). Let P be the set containing all
permissions that can be executed on objects by users assigned
to roles: P = {pB1 B..pBnB}, where a single permission is represented
by the tuple pBiB: (action: A, type: T [, delegate: Int]). The action
attribute describes the actual permission, like view, print, etc.
The second attribute is type, which specifies whether the
action is allowed or denied. The last attribute is optional and
indicates the number of times the permission can be delegated
to other roles. It is only allowed on permissions of type +. If
this value is not provided, it will be interpreted as a permission
that cannot be delegated.

Definition 6: Objects (O). Let O be the set containing all
objects that are part of the model: O = {oB1B..oBnB}, where a single
object is represented by the tuple oBiB: (objectReference: URI).
The uniform resource identifier (URI) is a reference to the
object’s resource.

Definition 7: Categories (C). Let C be the set containing all
objects categories that are part of the model: C = {cB1B..cBnB},
where a single category is represented by the tuple cBiB:
(categoryName: String). An example of a category is the set of
all radiology images for a patient.

Definition 8: Membership (UR). Let UR be the set
containing all membership assignments that are part of the
model: UR ⊆ U x R. UR is a many-to-many relation defining
users’ membership in roles. This relation is responsible for the
dynamic nature of this model. Using the membership relation
a user is easily assigned to permissions that correspond to the
specific role.

Definition 9: Role Hierarchy (RH). Let RH be the set
defining inheritance on roles that are part of the model: RH ⊆
R x R. A role can inherit permissions from another role. RH is
a partial order defining the inheritance of roles. This means
that the RH relation must be reflexive, asymmetric and
transitive. Therefore we will also use ≥ to define this order.

The meaning of r ≥ r’ is that role r inherits all permissions
of role r’ and maybe contains additional permission
assignments. As we also want to use the notion of direct
children, we introduce →, which is defined as follows:
r → r’ ⇔ r ≥ r’ ∧ r ≠ r’ ∧ ¬(∃r’’: r ≠ r’’ ∧ r’ ≠ r’’: r ≥ r’’ ≥ r’)

Definition 10: Policy (RPC). Let RPC be the set containing
all permissions on object categories that roles in the model
have: RPC ⊆ R x P x C. The default permissions that roles
have on certain object categories, called RPC, is a many-to-
many-to-many relation that binds permissions to categories
and roles. The RPC relation is better known as the default
policy (in the original RBAC model defined as the role-
permission-object relation). This relation is rather static,
because the default policy is the same for every document of
the same type. Because categories are used, policies are not
defined on objects but on categories. All policies remain fairly
static for each category. There is no need to create new
relations for each new object and therefore no need for
templates. Another advantage of this construction is that

changes to a default policy immediately hold for all objects
because they hold for categories that contain objects.

Definition 11: User-based Policy Exceptions (EUPO). Let
EUPO be the set containing all permission exceptions on
objects based on users that are part of the model: EUPO ⊆ U x
P x O. The permission exceptions that users have on certain
objects called EUPO, is a many-to-many-to-many relation that
binds exceptional permissions directly to users. This relation
is used to specify individual exceptions on a default policy.

Definition 12: Role-based Policy Exceptions (ERPO). Let
ERPO be the set containing all permission exceptions on
objects based on roles that are part of the model: ERPO ⊆ R x
P x O. The permission exceptions that roles have on certain
objects called ERPO, is a many-to-many-to-many relation that
binds exceptional permissions related to an object to all users
that are assigned to a particular role.

Definition 13: Categorization (OC). Let OC be the set
containing all object categorizations that are part of the model:
OC ⊆ O x C. The object categorization is a many-to-many
relation that classifies objects into categories.

Definition 14: Complete RBAC Model (CARBAC-E). The
extended model is now defined as the following tuple:
CARBAC-E = (U, R, P, O, C, UR, RH, OC, RPC, EUPO,
ERPO).

B. Permission Evaluation
Due to exceptions and a role hierarchy, the extended model

requires different permission evaluation than a traditional
RBAC model. When the system, based on a user request,
determines if the user should have access to a requested record,
in our case, the following checks have to be made:
• (step 1) first if there is an exception for the user in

question (EUPO), then
• (step 2) exceptions for the role to which the user

belongs (ERPO) and
• (step 3) finally the default policy RPC.
The role hierarchy (the RH relation in our model)

introduces additional changes in the process of evaluating
permissions. If the evaluation process is not clearly resolved at
the level of the role that is in question (resulting in a positive
or negative permission), then step 2 and after that step 3 from
the procedure defined above have to be recursively performed
at the levels, which are higher in the hierarchy (recursively
through all parent roles). Appendix A provides a detailed
description of such an algorithm.

The introduction of the role hierarchy influences also role-
based exceptions (ERPOs), which should also be inherited to
allow easy administrationTPF

1
FPT. If a patient wants to deny access

to a specific document for everyone, it is enough to create an
ERPO at the root (public) role from which all roles inherit
permissions. However, inheritance of ERPOs could also cause

TP

1
PT One can choose not to inherit ERPOs, which means that ERPOs

have to be specified for all relevant nodes in the hierarchy (which is
definitely much more complex and not in accordance with the idea of
role hierarchy and inheritance).

some problems. For example, consider a case where a patient
wants to exclude a specific role while keeping the other roles
that inherit permission from that role in the access list (an
example is given in Figure 2 where a patient excludes role 2
while having role 3, 4 and 6 still be able to access the data).
Then a negative permission in an ERPO has to be assigned to
role 2, while to avoid that the other roles inherit this
permission, positive ERPOs have to be assigned to the roles
on the next (lower) level in hierarchy (here roles 3, and 4).
This is denoted in Figure 2a. To make this more efficient we
suggest to divide ERPOs into local and global ERPOs, where
local ERPOs will be valid only for the role for which they are
specified (and will not be inherited). On the other hand global
ERPOs will be inherited. Then the above-mentioned example
can be solved with only one local negative ERPO as shown in
Figure 2.

Figure 2. Example local and global ERPO.

IV. EXTENDED RBAC IN DRM CONTEXT

To enable controlled sharing of information in a distributed
system as well as the offline use, we implement this model in
a DRM setting (architecture is shown in Figure 3).
Consequently, we have to transfer the relevant part of the
model to the client and evaluate the permissions client-side.
Another quite important reason why we need to evaluate
permissions client-side is that they could require context
which can only be evaluated in the client-side environment.

A. Certificates
To support client-based evaluation of the model, every

relation in that model has to be represented by a certificate.
The relations UR, RH, OC, RPC, EUPO, and ERPO are
defined below using certificates.
UR = {User, Role, (context/constraints)*}Bsignature
RH = {Role, ChildRole, (context/constraints)*}BsignatureB

OC = {Object, Category, (context/constraints)*}Bsignature
RPC = {Role, Category, Permission, (context/constraints)*}Bsig.
EUPO = {Object, User, Permission, (context/constraints)*}Bsig.
ERPO = {Object, Role, Permission, (context/constraints)*}Bsig.

The EUPO certificate states which permissions are granted
or denied to specific users, when zero or more context rules or
constraints hold. Each permission that is specified in this type
of certificate overrules permissions that are specified in other

certificates with lower priorities. Similar considerations hold
for the ERPO certificate. The only difference is that the
exceptions are not user-based but they are role-based. This
means that the exception is applied to every user that is
assigned to a certain role.

Figure 3. DRM Architecture

B. Model Instantiation

As already mentioned, we choose to define constraints and
context on top of the access control model, so that the
instantiation of the formal model is more transparent. Figure 4
shows how an instantiation is made of the formal model, what
happens if one instantiates (part of) the model in
certificates/licenses and validates these certificates in a certain
context. In this figure, one can clearly see that the definition of
the model does not change when the constraints are added.
This implies that the formal model of the access control
system remains the same throughout the entire usage in a real-
life system. Therefore the same formal representation is used
at the client side (i.e., the actual access control model for a
given user, role, context, etcetera), as well as at the server side.

Figure 4. Usage of context in instantiation of CARBAC-E model

C. Translation into DRM licenses and permission evaluation
A straightforward solution for translating the extended

RBAC model to DRM licenses is to use certificates for every
instance of the relations in the RBAC model (as defined in
Section IVA). A license can be used as a container holding all

M

Instantiation of
the formal model

defining the
complete access
control model M

Constraints/
Context

M’

Constraints/
Context

Certificate C
defines model M’
which is part of
the complete

model M

M’’

M’’ is part of the
model M’ that

really holds in a
given context and
some constraints

Certificate C Context

Hospital Admin

Patient (owner)

User

Server sideClient side

Hospital database

Categories

Permissions

Roles

Users

Auditing

Logs

Hospital certificates

Role Hierarchy Default policies

Membership Categorization

Key server

Key Service

Key
databaseClient device

Authentication

Permission
Evaluation

Cache

Licenses

Context

License server

License manager

Licenses

Context interpreter

S1 S2 S3

W1 W2 W3

EHR database

Auditing

Logs

Patient certificates

Exceptions

EHRs

Role
3

Role
6

Role
2

Role
4

Role
1

Role
5

- ERPO

+ ERPO + ERPO
Role

3

Role
6

Role
2

Role
4

Role
1

Role
5

- LocalERPO

(a) (b)

relevant certificates for a particular permission evaluation.
Because certificates can specify negative as well as positive
permissions, one must be certain that all relevant permissions
i.e. certificates are used in the permission evaluation algorithm
(in a response to a request from a user to access a data object).
To solve this problem a license can be created on-line to make
sure that it contains all relevant certificates (or references to
certificates) for a specific user and specific data object. Note
that certificates can have different origins like some
certificates are signed by the government and stored in a
global database while others are signed by a hospital and
stored in local databases. Exceptions, which are often defined
by patients, can come from a different source. A license that
contains all relevant certificates can be created in a centralized
way, i.e. a central authority can contact all relevant authorities
and include their certificates in the license.

Definition 15: License. First, we define a certificate list,
where all certificates are signed by trusted authorities or users:
ClistBx B ∈ 2P

S
P, where the set containing all relevant certificates S

signed by one of the parties in x, is defined as:
S = {UR, RH, OC, RPC, EUPO, ERPO}
Now let a license L be defined as:
L = (ClistBxB, ObjectKey)B signature Bor L = (ClistBxB, L)B signature

A license is an element of the power set containing all
certificates and the key that can be used to decrypt the object.
The license only contains relevant certificates defining the
relations of the model that could apply to a certain user,
requesting certain permission on certain objects. Note that a
license can also have license specific attributes like the period
in which the license is valid or the number of certificates a
license contains. The object key is encrypted in a way that
only the recipient can decrypt it and therefore use the policy to
enforce the permissions on the object. A key management
solution for our approach is described in our previous work
[13, 14]. The second definition of a license is used for the
delegation of permissions. When a user X delegates a
permission, he takes his use-license, which states that he can
delegate the permission, and adds the delegated permission
including all relevant certificates. Using this formalism,
delegations can be made without interference of the
certification authority.

D. Decentralized license management
However, instead of creating a license for each request, it is

much more flexible to allow a client to reuse certificates that
are already available, combining certificates from different
parties and evaluating permissions off-line. Then, "certificate
chains" must be used to dynamically produce a valid license.
But then it is indispensable to make sure to verify the
completeness of data instead of using licenses to enforce this.

For example, it is possible to optimize the RH certificate so
that it does not need the license to verify the completeness of
data for the permission evaluation algorithm. The previous RH
certificate makes a relation between a role and one of its
parent roles. Without a license that binds all relationships of a

node in a hierarchy one cannot be sure of a completeness of a
set of individual certificates. This could be misused by
providing a set of certificates which exclude parent nodes
where exceptions are defined. In that way the permission
evaluation will not be correct. However, if each certificate
lists all the direct parents of a node (see RH below) a client
device can independently and unambiguously create the role
hierarchy from different individual certificates. If no parent
role is listed in the certificate, it means that the end of the role
hierarchy is reached i.e. that this role has no parent roles.

RH = {Role, ParentRoles}BsignatureB.
We also have to make sure that EUPO and ERPO

certificates are somehow embedded in the other certificates
that are necessary to evaluate in order to get the required
permission. Otherwise, someone could delete, or simply make
these certificates that define exceptions not available. In that
way correct evaluation of permission is not guaranteed. If
these certificates contain negative authorizations (exceptions)
then not presenting these certificates to the permission
evaluation algorithm will result in wrong permission
evaluation (e.g. granting instead of refusing access).

To solve this problem we propose to include both EUPO
and ERPO in an OC certificate. OC certificates describe
mapping from objects to categories. This certificate will be
bound to the object and stored together with the object. It is
necessary to have an OC certificate in permission evaluation,
therefore exceptions (or reference to appropriate EUPO and
ERPO certificates), which are now stored in this certificate,
cannot be avoided.
OC = {Object, Category, (Role, Exception)*, (User,
Exception)*}Bsignature.B

In this way we ensured that the relevant exceptions will be
taken into account when permissions are evaluated off-line
without creating a license for each access request. Obviously,
revocation of certificates must be ensured to enable timely
update of policies (e.g. new exceptions).

V. CONCLUSIONS

Information systems in healthcare have domain specific
security and privacy requirements. If one would like to apply
RBAC in these information systems to reduce the
administrative tasks and develop a universal solution, several
extensions including context-awareness, personalization of
access control policies and delegation must be introduced.
Therefore, we have proposed the CARBAC-E model that
satisfies these specific requirements. Another aspect that is
addressed by this paper is controlled data sharing in an open
distributed environment and off-line scenarios. We have
designed a DRM architecture and shown how to apply and
enforce the proposed model in such environment. The
proposed approach increases the data availability which is the
most important requirement in healthcare. Furthermore, we
have developed an algorithm that handles permission
evaluation when conflicting permissions are present. Finally, a

flexible method for client enforcement of the proposed model
has been discussed.

APPENDIX

This appendix includes a detailed description of a
permission evaluation algorithm. It uses three functions each
taking care of one step of the algorithm. All these steps use the
max function over permissions which is defined in Section
IIIA. Below, we will provide the definition of each of the
three steps of the algorithm. PermEval defines the permission
evaluation for a user u trying to execute action a on object o.

*** Step 1 ***
PermEval(u, a, o): U x A x O → T

If (∃t: t ∈ T: (u, (a, t), o) ∈ eupo):
PermEval(u, a, o) = max({t|(u, (a, t), o) ∈ eupo})

Otherwise (u has no direct permission assignments):
PermEval(u, a, o) = max({PermEvalB(erpo)B(r, a, o)|(u, r) ∈ UR})

*** Step 2 ***
PermEvalB(erpo)B(r, a, o): R x A x O → T

If (∃t: t ∈ T: (r, (a, t), o) ∈ erpo):
PermEvalB(erpo)B(r, a, o) = max({t|(r, (a, t), o) ∈ erpo})

Otherwise (r has no direct permission assignments):
PermEvalB(erpo)B(r, a, o) = PermEval B(rpc) B(r, a, o)

*** Step 3 ***
PermEvalB(rpc) B(r, a, o): R x A x O → T

If node r is a leaf or (∃c: (o, c) ∈ OC: (∃t: t ∈ T: (r, (a, t), c) ∈ rpc)):
PermEvalB(rpc) B(r, a, o) = max({t|(r, (a, t), c) ∈ rpc ∧ (o,c) ∈ OC})

Otherwise (r has no direct permission assignments):
PermEvalB(rpc) B(r, a, o) = max({PermEvalB(erpo)B(r’, a, o)|r → r’})

If the algorithm does not return a positive or negative

permission (i.e. yields "?"), this will be interpreted as a
negative permission.

REFERENCES
[1] R. Charette, “Dying for Data”, IEEE Spectrum, October 2006, pp. 16-21.
[2] D. Simons, T. Egami, J. Perry, “Remote Patient Monitoring Solutions”,

in G. Spekowius and T. Wendler (Eds.), Advances in Healthcare
Technology, Springer, 2006, pp. 505-516.

[3] European Directive 95/46. “Directive 95/46/EC on the protection of
individuals with regard to the processing of personal data and on the free
movement of such data”, European Commission, 1996, Retrieved from
http://ec.europa.eu/justice_home/fsj/privacy/

[4] U.S. Department of Health & Human Services, “The Health Insurance
Portability and Accountability Act of 1996 (HIPAA)”, 1996; Retrieved
from http://www.cms.hhs.gov/HIPAAGenInfo/

[5] M. Petković, S. Katzenbeisser, K. Kursawe, “Rights Management
Technologies: A Good Choice for Securing Electronic Health
Records?”, In the Proceedings of the Information Security Solutions
Europe Conference, ISSE 2007.

[6] Milan Petković, Malik Hammouténe, Claudine Conrado and Willem
Jonker, "Securing Electronic Health Records using Digital Rights
Management", In Proceedings of the 10P

th
P International Symposium for

Health Information Management Research (iSHIMIR), ISBN 960-
87869-5-9, Thessalonica, Greece 2005.

[7] NHS electronic medical records "data spine" privacy and security
worries, 2006, Retrieved from http://www.spy.org.uk/spyblog/2006/0/
nhs_electronic_medical_records_1.html

[8] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman, “Role-Based Access Control Models”, IEEE Computer, vol.29,
no.2, Feb 1996, pp. 38-47.

[9] Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K.
Dey, Mustaque Ahahmed, Gregory D. Abowd, “Securing Context-
Aware Applications Using Environments Roles”, in proceedings of the
sixth ACM symposium on Access control models and technologies,
United States, May 2001, pp. 10-20.

[10] Michael J. Covington, P Fogla, Zhan Zhiyuan, Ahamad, Mustaque
Ahahmed, “A context-aware security architecture for emerging
applications”, in Computer Security Applications Conference,
December 2002, pp. 249-258.

[11] Michael J. Covington, Matthew J. Moyer, Mustaque Ahamed,
“Generalized role-based access control for securing future applications”,
in Proceedings of the 23 P

rd
P national information systems security

conference (NISSC), USA, October 2000, pp. 40-51.
[12] Chris Wullems, Mark Looi, Andrew Clark, “Towards context-aware

security: an authorization architecture for intranet environments”, in
proceedings of the 2nd IEEE Annual Conference on pervasive
Computing and Communications Workshops, 2004, pp. 132–137.

[13] M. Petković, C. Conrado, M. Hammouténe, “Cryptographically
Enforced Personalized Role-Based Access Control”, In S. Fisher-
Hubner, K. Rannenberg, L. Yngstrom, S. Lindskog (Eds), Security and
Privacy in Dynamic Environments, Springer, USA, 2006, pp. 364-376.

[14] Anna Zych, Milan Petković, Willem Jonker, “A Key Management
Method for Cryptographically Enforced Access Control”, the 5th
International Workshop on Security in Information Systems (WOSIS),
Portugal, 2007.

