
Nonlinear Tracking and Landing Controller for Quadrotor Aerial Robots

Holger Voos, Haitham Bou-Ammar
University of Applied Sciences Ravensburg-Weingarten, Mobile Robotics Lab,

88241 Weingarten, Germany, Email: voos@hs-weingarten.de

Abstract— Quadrotor UAVs are one of the most preferred
type of small unmanned aerial vehicles because of the very
simple mechanical construction and propulsion principle. How-
ever, the nonlinear dynamic behavior requires a more advanced
stabilizing control and guidance of these vehicles. In addition,
the small payload reduces the amount of batteries that can be
carried and thus also limits the operating range of the UAV.
One possible solution for a range extension is the application
of a base station for recharging purpose even during operation.
In order to increase the efficiency of the overall system further,
a mobile base station will be applied here. However, landing
on a moving base station requires autonomous tracking and
landing control of the UAV. In this paper, a novel nonlinear
autopilot for quadrotor UAVs is extended with a tracking and
landing controller to fulfil the required task. First simulation
and experimental results underline the performance of this new
control approach for the current realization.

1. INTRODUCTION
Unmanned aerial vehicles (UAVs) already have a wide

area of possible applications. Recent results in miniatur-
ization, mechatronics and microelectronics also offer an
enormous potential for small and inexpensive UAVs for
commercial use. While many possible types of small UAVs
exist, one very promising vehicle with respect to size, weight
and maneuverability is the so called quadrotor. The quadrotor
is a system with four propellers in a cross configuration, see
Fig. 1 for a sketch of a quadrotor UAV. While the front and
the rear motor rotate clockwise, the left and the right motor
rotate counter-clockwise which nearly cancels gyroscopic
effects and aerodynamic torques in trimmed flight. One addi-
tional advantage of the quadrotor compared to a conventional
helicopter is the simplified rotor mechanics. By varying the
speed of the single motors, the lift force can be changed and
vertical and/or lateral motion can be generated. However, in
spite of the four actuators, the quadrotor is a dynamically
unstable nonlinear system that has to be stabilized by a
suitable control system.

One main drawback of small UAVs in nearly all types
of application is the reduced payload which also limits
the amount of batteries that can be carried. Therefore the
UAV has to return to a base station after a comparatively
short amount of time for recharging purpose. In addition,
in order to fulfill missions where a longer operating range
is required such as pipeline, border or coast surveillance,
returning to a stationary base station is also not useful. In
such applications it would be more suitable to operate with
an autonomous mobile base station that is able to carry
a higher amount of energy for several recharging cycles.
Such a mobile base station could be an autonomous mobile

robot or ship. Coordinated parallel operation of the mobile
base station and the UAV then leads to an overall system
for aerial surveillance with extended range. However, that
concept requires basic stabilizing control of the quadrotor,
tracking of the mobile base station and finally control of the
landing procedure.

In this paper, we first address the problem of a precise and
fast stabilization of the quadrotor UAV since the fulfillment
of this task is a precondition for further implementation
of other functionalities. In spite of the four actuators, the
quadrotor is a dynamically unstable system with nonlinear
dynamics that has to be stabilized by a suitable control
system. Concerning controller design for small quadrotor
UAVs, some solutions are already proposed in the literature,
see e.g. [1], [2], [3], [4] and [5] to mention only a few. Many
of the proposed control systems are based on a linearized
model and conventional PID- or state space control while
other approaches apply sliding-mode, H∞ or SDRE control
[4], [5]. Recently, a new nonlinear control algorithm has been
proposed by the author which is based upon a decomposition
of the overall controller into a nested structure of velocity
and attitude control, see [6]. The controller has the advantage
of an easy implementation and proven stability while taking
the nonlinearities of the dynamics directly into account. Here,
this controller is first shortly explained in order to provide
the basis for the development of the nonlinear tracking and
landing controller. This control strategies are then derived
in details, first simulation and experimental results underline
the obtained performance.

2. DYNAMIC MODEL OF THE QUADROTOR

The general dynamic model of a quadrotor UAV has been
presented in a number of papers, see e.g. [1], [3], [4], [5]
or [6], and therefore will not be discussed here in all details
again. We consider an inertial frame and a body fixed frame
whose origin is in the center of mass of the quadrotor, see
Fig. 1. The attitude of the quadrotor is given by the roll,
pitch and yaw angle, forming the vector ΩΩΩT = (φ, θ, ψ),
while the position of the vehicle in the inertial frame is given
by the position vector rrrT = (x, y, z). The dynamic model
of the quadrotor can be derived by applying the laws of
conservation of momentum and angular momentum, taking
the applied forces and torques into account (see [6]). The
thrust force generated by rotor i, i = 1, 2, 3, 4 is Fi = b · ω2

i

whith the thrust factor b and the rotor speed ωi, and the law
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Fig. 1. Configuration, inertial and body fixed frame of the quadrotor.

of conservation of momentum yields

r̈rr = g ·



0
0
1


−RRR(ΩΩΩ) · b/m

4∑

i=1

ω2
i ·




0
0
1


 (1)

Herein, RRR(ΩΩΩ) is a suitable rotation matrix. With the inertia
matrix III (a pure diagonal matrix with the inertias Ix, Iy and
Iz on the main diagonal), the rotor inertia JR, the vector MMM
of the torque applied to the vehicle’s body and the vector
MMMG of the gyroscopic torques of the rotors, the law of
conservation of angular momentum yields:

IIIΩ̈ΩΩ = −
(
Ω̇ΩΩ× IIIΩ̇ΩΩ

)
−MMMG + MMM (2)

The vector MMM is defined as (see Fig. 1)

MMM =




Lb(ω2
2 − ω2

4)
Lb(ω2

1 − ω2
3)

d(ω2
1 + ω2

3 − ω2
2 − ω2

4)


 (3)

with the drag factor d and the length L of the lever. The
gyroscopic torques caused by rotations of the vehicle with
rotating rotors are

MMMG = IR(Ω̇ΩΩ×



0
0
1


) · (ω1 − ω2 + ω3 − ω4) (4)

The four rotational velocities ωi of the rotors are the real
input variables of the vehicle, but for a simplification of the
model, the following substitute input variables are defined:

u1 = b(ω2
1 + ω2

2 + ω2
3 + ω2

4)
u2 = b(ω2

2 − ω2
4)

u3 = b(ω2
1 − ω2

3)
u4 = d(ω2

1 + ω2
3 − ω2

2 − ω2
4) (5)

Defining uuuT = (u1, u2, u3, u4) and (ω1 − ω2 + ω3 − ω4) =
g(uuu) and introducing the vector of state variables xxxT =
(ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇), evaluation of (1) until (5) yields the

following state variable model:

ẋxx =




−(cosx4 sin x5 cos x6 + sin x4 sin x6) · u1/m
−(cosx4 sin x5 sin x6 − sinx4 cos x6) · u1/m
g − (cos x4 cosx5) · u1/m
x7

x8

x9

x8x9I1 − IR

Ix
x8g(uuu) + L

Ix
u2

x7x9I2 + IR

Iy
x7g(uuu) + L

Iy
u3

x7x8I3 + 1
Iz

u4




(6)
Herein, we use the abbreviations I1 = (Iy − Iz)/Ix, I2 =
(Iz−Ix)/Iy and I3 = (Ix−Iy)/Iz . It becomes obvious that
the state variable model can be decomposed into one subset
of differential equations (DEQs) that describe the dynamics
of the attitude using the last six equations of (6), and one
subset that describes the translation of the UAV using the
first three equations of (6).

3. VEHICLE CONTROLLER DESIGN

The task of the vehicle controller is the stabilization of
a desired velocity vector which is calculated by the higher-
level mission controller. The decomposed structure of the
state variable model (6) already suggests a nested structure
for vehicle control. In order to achieve and maintain a desired
velocity vector, first the necessary attitude of the UAV has
to be stabilized. Therefore, we propose a decomposition of
the vehicle control system in an outer-loop velocity control
and an inner-loop attitude control system. In this structure,
the inner attitude control loop has to be much faster than
the outer loop and stabilizes the desired angles ΩT

d =
(φd, θd, ψd) = (x4,d, x5,d, x6,d) that are commanded by the
outer loop. First we consider the inner attitude control loop,
then we derive the outer-loop controller to stabilize a desired
velocity vector.

A. Attitude Control System

For the design of the attitude control system we consider
the last six DEQs of (6) as the relevant submodel. Herein,
the last three DEQs describing x7, x8, x9 are nonlinear and
depend on the input variables u2, u3, u4, while x4, x5, x6 are
obtained from the former state variables by pure integration
leading to three simple linear DEQs in (6). The control strat-
egy now is as follows: we first apply a nonlinear feedback
linearization to the last three DEQs in order to transfer them
into linear and decoupled DEQs. Together with the set of the
remaining linear DEQs we finally obtain three independent
linear systems which can be stabilized via linear feedback.

If we first neglect the gyroscopic terms (since the rotor
inertias are comparatively small) we obtain the simplified
DEQs for x7, x8, x9 as




ẋ7

ẋ8

ẋ9


 =




x8x9I1 + L
Ix

u2

x7x9I2 + L
Iy

u3

x7x8I3 + 1
Iz

u4


 (7)



Now we apply a feedback linearization in order to obtain a
linear system:

u2 = f2(x7, x8, x9) + u∗2
u3 = f3(x7, x8, x9) + u∗3
u4 = f4(x7, x8, x9) + u∗4 (8)

with the new input variables u∗2, u
∗
3, u

∗
4. It can be shown that

f2(x7, x8, x9) =
Ix

L
(K2x7 − x8x9I1)

f3(x7, x8, x9) =
Iy

L
(K3x8 − x7x9I2)

f4(x7, x8, x9) = Iz (K4x9 − x7x8I3) (9)

with the so far undetermined constant parameters
K2,K3,K4 transfer (7) into a set of linear and decoupled
DEQs. It has been proven in [6] using a suitable Lyapunov
function that this feedback is stable for K2,K3,K4 < 0
even if the gyroscopic terms from (6) are considered again.
Since ẋ4 = x7, ẋ5 = x8, ẋ6 = x9 we finally obtain linear
decoupled DEQs for x4, x5, x6, respectively, see e.g. x4:

ẍ4 = K2ẋ4 + L/Ixu∗2 (10)

If x4d is the desired angle, application of a linear controller
u∗2 = w2 · (x4d − x4) with constant parameter w2 leads to a
closed-loop system of second order

F (s) =
X4(s)
X4d(s)

=
w2

Ix/L · s2 −K2Ix/L · s + w2
(11)

The same considerations hold for the other angles with linear
controllers u∗3 = w3 · (x5d − x5) and u∗4 = w4 · (x6d −
x6), respectively. The dynamics of these closed-loop systems
now can be easily adjusted by a choice of a suitable set of
parameters (K2, w2), (K3, w3), (K4, w4), respectively, with
the only limitation that K2,K3,K4 < 0, see [6].

B. Velocity Control System

We now assume that the previously defined inner attitude
control loops are adjusted in a way that their dynamic behav-
ior is very fast compared to the outer velocity control loops.
Therefore we approximate the inner closed control loops as
static blocks with transfer function Fi(s) = Xi(s)/Xid(s) ≈
1, i = 4, 5, 6. Inserting this in (6), the velocities of the
quadrotor UAV then can be approximated by

ẋ1 = −(cos x4d sin x5d cosx6d + sin x4d sin x6d) · u1/m

ẋ2 = −(cos x4d sin x5d sin x6d − sin x4d cos x6d) · u1/m

ẋ3 = g − cos x4d cos x5d · u1/m (12)

where all x4d, x5d, x6d and u1 can be considered as input
variables. Equation (12) can be interpreted in a way that all
differential equations are of the form




ẋ1

ẋ2

ẋ3


 = fff(x4d, x5d, x6d, u1) =




ũ1

ũ2

ũ3


 (13)

with the new input variables ũ1, ũ2, ũ3 that depend on the
other four input variables in a nonlinear form described

by the vector function fff . However, regarding these new
input variables, the control task comprises the control of
three independent first-order systems which is solved by pure
proportional controllers, respectively:

ũ1 = k1 · (x1d − x1)
ũ2 = k2 · (x2d − x2)
ũ3 = k3 · (x3d − x3) (14)

Herein the controller parameters k1, k2 and k3 could be
chosen in a way that the outer loop is sufficiently fast but not
too fast with respect to the inner loop attitude control. In a
next step, these transformed input variables ũ1, ũ2, ũ3 must
be used to obtain the real input variables x4d, x5d, x6d and
u1 by using (13). First it becomes obvious that any desired
velocity vector can be achieved without any yaw rotation and
therefore we can set x6d = ψd = 0. Under this assumption
it is shown in [6] that (13) can be solved analytically by
calculating the inverse function of fff :


x4d

x5d

u1


 = fff−1




ũ1

ũ2

ũ3


 (15)

C. Overall Vehicle Control System
The overall control system consist of the derived inner

attitude and the outer velocity control loop. The command to
the vehicle control system is a desired velocity vector given
by vxd = x1d, vyd = x2d, vzd = x3d. Then, (14) is used
to calculate the respective values of the variables ũ1, ũ2, ũ3

which are transferred by static inversion (15) into the values
of the desired angles x4d and x5d as well as the input
variable u1. As discussed, the third desired angle is set to
x6d = 0. The desired angles are used to calculate u∗2, u

∗
3, u

∗
4

and evaluation of (8) with the measured values of the angular
rates x7, x8, x9 and the nonlinear feedback yields the input
variables u2, u3, u4. Finally, (5) allows the calculation of the
required angular rates of the rotors, namely ω1, ω2, ω3 and
ω4. The main advantage of the overall control system is the
fact that the feedback linearization and the controllers are
comparatively easy to be implemented, while taking the full
nonlinear behavior of the vehicle into account. That leads
to a fast computation even on standard embedded micro-
controller systems. Further details and simulation results are
also given in [6], while experimental results will be presented
here. The next step of designing a tracking and landing con-
troller however requires a dynamic model of the controlled
quadrotor, i.e. a dynamic model of the two nested control
loops of attitude and velocity control loop. If we assume that
the inner attitude control loops are sufficiently fast and could
be approximated by a static system as discussed before, the
overall vehicle control system consists of three independent
velocity control loops which can be approximated by linear
first-order system, respectively,

Vx(s)
Vxd(s)

=
X1(s)
X1d(s)

≈ 1
T1 · s + 1

(16)

with Ti = 1/ki, i = 1, 2, 3, see (14). A simulation of the step
response also supports this approximation, see Fig. 2 for the



example of the step response with regard to the velocity vx in
x-direction. Similar results are obtained for the step response
of the other two velocities. These first-order approximations
of the controlled quadrotor UAV is now used for the design
of the tracking and landing controllers.
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Fig. 2. Step response with regard to vx of the controlled quadrotor.

4. AUTOMATIC LANDING ON A MOBILE PLATFORM

In the following we consider the problem that a quadrotor
UAV stabilized via the previously described vehicle control
system should land on a moving platform. The platform
is moving on the surface of the underlying terrain at an
altitude of zs(t) with regard to the inertial frame. The overall
tracking and landing procedure can be decomposed into two
independent control tasks: a tracking procedure in a pure x-y-
plane and an altitude control problem in pure z-direction. In
the pure x-y-plane, only the planar mappings of the center of
mass of the quadrotor and the platform and their respective
motions are considered. The 2D-tracking controller has the
task to reduce the planar distance between the quadrotor and
the platform in this two-dimensional plane to zero and to
maintain the zero distance even if disturbances occur. In
parallel, an altitude controller has the task to achieve and
stabilize required setpoints of the quadrotor’s altitude over
ground. During a first approaching phase where the planar
distance between the quadrotor and the platform is above a
threshold, the setpoint of the altitude over ground is set to a
safety value, e.g. 5 m. If the planar distance decreases below
the defined threshold, e.g. 0.5 m, the final landing procedure
starts and the required setpoint of the altitude over ground
is set to zero.

The result of the altitude controller is a desired velocity
component in z-direction, i.e. żd = x3d for the underlying ve-
hicle controller while the result of the 2D-tracking controller
are the two components of the desired velocity vector in x-
and y-direction, i.e. ẋd = x1d, ẏd = x2d. Finally, the results
of these two controllers form the overall desired velocity
vector which is commanded to the vehicle controller. In the
following, first the altitude controller is derived, then we
discuss the developed 2D-tracking controller.

A. Altitude Control

The general task of the altitude control system is to achieve
and maintain a desired altitude reference which can be either
the constant altitude over ground during the approaching

phase or a zero altitude over ground during the final landing
phase. If z is the altitude of the quadrotor UAV and zs is
the current altitude of the surface (i.e. the platform) in the
inertial frame, the difference ∆z = z − zs is the relative
altitude of the UAV over ground. The current desired altitude
over ground commanded by the overall landing control is the
value ∆zd. Now we assume that the dynamic behavior of the
controlled quadrotor UAV in z-direction can be approximated
by a first-order system as discussed in section 3, i.e.

FQ(s) =
Vz(s)
Vzd(s)

=
X3(s)
X3d(s)

≈ 1
T3 · s + 1

(17)

If a linear altitude controller with transfer function FR,z(s) is
chosen, the structure of the resulting closed altitude control
loop can be depicted as shown in Fig. 3. Herein the altitude of

Fig. 3. Altitude control loop.

the surface zs is considered as a non-measurable disturbance,
however the quadrotor is able to measure the current altitude
over ground ∆z with a suitable sensor system. In the
literature some solutions based on ultrasonic, optical or laser
sensors have already been proposed for this measurement
problem, see e.g. [7] and [8]. It becomes obvious from the
structure of the altitude control loop shown in Fig. 3 that a
PD-controller can be applied in order to solve the control
task:

FR,z(s) = K · (1 + TC · s) (18)

The parameters of the controller are adjusted in a way that
closed loop has zero overshoot (in order to avoid collisions
with the platform during landing) and is sufficiently fast. The
reference altitude ∆zd is set to the desired safety altitude in
the approach phase and set to zero in the landing phase.

B. Nonlinear 2D-Tracking Controller

The main goal of the guidance controller is to minimize
the distance to a moving platform and to track this platform
in the pure x-y-plane. For that purpose we consider a
platform that is moving with the two velocity components
vPx and vPy in x- and y-direction, respectively. The quadro-
tor is moving with the two velocity components vQx and
vQy , where the dynamics between the desired velocities
vQxd, vQyd and the actual velocities is given by a first-
order system according to (16). The engagement geometry is
depicted in Fig. 4, where σ is the line-of-sight angle and R is
the distance or range between the quadrotor and the moving
platform. It can be derived from classical missile guidance
problems, see e.g. also [9], that the relative kinematics can



Fig. 4. Engagement geometry of quadrotor and mobile platform.

be described by the two differential equations:

Ṙ = vPx cosσ + vPy sin σ − vQx cosσ − vQy sin σ

σ̇ =
1
R

(vPy cos σ − vPx sin σ − vQy cos σ + vQx sin σ)

(19)

If we now again define a state variable model with the four
state variables x1 = R, x2 = σ, x3 = vQx, x4 = vQy ,
the input variables u1 = vQxd, u2 = vQyd and the two
measurable disturbance variables d1 = vPx, d2 = vPy , we
finally obtain from (16), (17):

ẋ1 = −x3 cosx2 − x4 sinx2 + d1 cosx2 + d2 sin x2

ẋ2 =
1
x1

(x3 sin x2 − x4 cosx2 − d1 sin x2 + d2 cos x2)

ẋ3 = −(1/T1) · x3 + (1/T1) · u1

ẋ4 = −(1/T2) · x4 + (1/T2) · u2 (20)

For the design of a suitable controller we first consider a
suitable operating point. This is the state where the range and
line-of-sight angle are zero and the quadrotor moves in accor-
dance with the platform, i.e. x1 = 0, x2 = 0, x3 = d1, x4 =
d2. We define the Lyapunov function V (x1, x2, x3, x4) which
is C1 and positive definite around the operating point:

V (x1, x2, x3, x4) = 0.5 · (x2
1 +x2

2 +(x3−d1)2 +(x4−d2)2)
(21)

Now we calculate the first derivative of V using (18) and
assuming that the platform moves with a constant velocity:

V̇ = x1ẋ1 + x2ẋ2 + (x3 − d1)ẋ3 + (x4 − d2)ẋ4

= −x2
3

T1
− x2

4

T2
+ x3f1 + x4f2 + d1f3 + d2f4 (22)

with

f1 = −x1 cos x2 +
x2

x1
sin x2 +

1
T1

u1 +
1
T1

d1

f2 = −x1 sin x2 − x2

x1
cos x2 +

1
T2

u2 +
1
T2

d2

f3 = x1 cos x2 − x2

x1
sin x2 − 1

T1
u1

f4 = x1 sin x2 +
x2

x1
cosx2 − 1

T2
u2 (23)

This derivative must be negative definite in order to guarantee
that the operating point is asymptotically stable. Using (22)
and (23), we first set f3 = −(1/T1)·d1 and f4 = −(1/T2)·d2

which yields

u1 = d1 + T1x1 cosx2 − T1
x2

x1
sin x2 (24)

u2 = d2 + T2x1 sinx2 + T2
x2

x1
cosx2 (25)

Inserting this in f1, f2 using (23) leads to f1 = (2/T1) · d1

and f2 = (2/T2) · d2 which finally results in

V̇ = − 1
T1

(x3 − d1)2 − 1
T2

(x4 − d2)2 (26)

This proofs that the derivative of V is negative definite and
the operating point is asymptotically stable if the tracking
control law (24), (25) is applied. However, in order to obtain
a limited control input, we set u1 = d1, u2 = d2 if the range
x1 becomes smaller than a defined very small threshold.

In order to apply this 2D-tracking controller, the range
x1 = R, the line-of-sight angle x2 = σ as well as the
velocity components d1 = vPx, d2 = vPy of the platform
must be measured. Both R and σ can be easily calculated if
the positions of the quadrotor and the platform in the inertial
frame are measured. In addition it is assumed that the plat-
form also measures its velocity components. Both position
and velocity components of the platform are transmitted via
communication to the quadrotor, resulting in a cooperative
approach. Regarding the measurements, a DGPS is applied
for the determination of the positions, respectively, during
the approach phase. However, more accurate measurements
are necessary during the landing phase. There are some
possible solutions for this problem such as a vision based
or ultrasonic based sensor system, see e.g. [7] and [8]. The
velocity components of the platform could be measured with
a suitable inertial measurement unit onboard. Since the main
focus of this work is on the development of the control
system, we do not go into further details of the measurements
but describe some first simulation and experimental results
in the next chapter.

5. SIMULATION AND EXPERIMENTAL RESULTS

In order to evaluate the derived vehicle and landing control
system, an experimental prototype of the quadrotor has been
designed and the dynamic model (6) of this quadrotor has
been derived by identification of the system parameters like
inertias, dimensions etc., see also [6] for a more detailed
description. This dynamic model then has been implemented



in MATLAB/SIMULINK for the simulative evaluation of
the overall control system. The simulation results of the
underlying vehicle control system are already shown in
[6], therefore we first present some results of the vehicle
controller obtained from experimental test flights with the
quadrotor prototype. In the experiment the control goal was
the stabilization of a hovering state, i.e. vvvd = 000 and Ωd = 000,
starting from any initial deviations and compensating for any
external disturbances. The obtained control result is shown
in Fig. 5 as a time plot of all angles of the quadrotor.
After a very short transition phase the hovering state is
reached and maintained. The small constant deviation of
the yaw angle results from a slight misalignment of the
inertial measurement unit. It becomes obvious from Fig. 5
that external disturbances at 35 seconds of the roll angle, at
45 seconds of the pitch angle and at 50 seconds at the yaw
angle are completely compensated.

Fig. 5. Experimental results of the vehicle control system.

The overall landing control system is not yet implemented
in the experimental quadrotor prototype and is therefore
evaluated in simulations. In the simulation, the platform is
initially assumed to be located at (xP0 = 100 m , yP0 = 100
m and moving with a constant speed of VPx = -0.5 m/sec in
the x-y-plane. The quadrotor is initially located at (xQ0 = 50
m , yQ0 = 50 m in the inertial frame at an altitude of ∆z0 = 5
m. The obtained control result of the overall landing control
system is depicted in Fig. 6. Diagram (a) shows a top view
of the 2D-engagement in which the quadrotor starts from the
initial position, tracks the path of the moving platform and
finally lands on the platform. Diagram (b) shows the altitude
of the quadrotor which descends from the initial altitude over
ground until the final landing.

6. CONCLUSION AND FUTURE WORKS

This paper presents an overall control system for the
automatic landing of a quadrotor UAV on a moving platform.
Herein, the vehicle control system comprises a nonlinear
inner loop attitude control and an outer loop velocity control
system based on static inversion. The landing controller
consists of a linear altitude controller and a nonlinear 2D-
tracking controller. The dynamic model of the quadrotor
and the proposed landing control system are implemented
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Fig. 6. Simulation of the overall landing control system.

in a MATLAB/SIMULINK simulation which proofs the
efficiency of the overall control result. The vehicle control
system is finally realized in an experimental prototype and
first test flights underline the performance of this novel
nonlinear approach. In our ongoing work we are currently
also implementing the landing control system as well as the
necessary sensors in the UAV prototype.
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