
Cryptanalysis of the Loiss Stream Cipher

Alex Biryukov1, Aleksandar Kircanski2, and Amr M. Youssef2

1 University of Luxembourg
Laboratory of Algorithmics, Cryptology and Security (LACS)
Rue Richard Coudenhove-Kalergi 6, Luxembourg, Luxembourg

2 Concordia University
Concordia Institute for Information Systems Engineering (CIISE)

Montreal, Quebec, H3G 1M8, Canada

Abstract. Loiss is a byte-oriented stream cipher designed by Dengguo
Feng et al. Its design builds upon the design of the SNOW family of ci-
phers. The algorithm consists of a linear feedback shift register (LFSR)
and a non-linear finite state machine (FSM). Loiss utilizes a structure
called Byte-Oriented Mixer with Memory (BOMM) in its filter gener-
ator, which aims to improve resistance against algebraic attacks, linear
distinguishing attacks and fast correlation attacks. In this paper, by ex-
ploiting some differential properties of the BOMM structure during the
cipher initialization phase, we provide an attack of a practical complex-
ity on Loiss in the related-key model. As confirmed by our experimental
results, our attack recovers 92 bits of the 128-bit key in less than one
hour on a PC with 3 GHz Intel Pentium 4 processor. The possibility of
extending the attack to a resynchronization attack in a single-key model
is discussed. We also show that Loiss is not resistant to slide attacks.

1 Introduction

Several word-oriented LFSR-based stream ciphers have been recently proposed
and standardized. Examples include ZUC [1], proposed for use in the 4G mobile
networks and also SNOW 3G [3], which is deployed in the 3GPP networks.
The usual word-oriented LFSR-based design consists of a linear part, which
produces sequences with good statistical properties and a finite state machine
which provides non-linearity for the state transition function.

In 2011, the Loiss stream cipher [4] was proposed by a team from the State Key
Laboratory of Information Security in China. The cipher follows the above men-
tioned design approach: it includes a byte-orientedLFSR and anFSM.The novelty
in the design of Loiss is that its FSM includes a structure called a Byte Oriented-
Mixer withMemory (BOMM)which is a 16 byte array adopted from the idea of the
RC4 inner state. The BOMM structure is updated in a pseudorandommanner.

The Loiss key scheduling algorithm utilizes a usual approach to provide non-
linearity over all the inner state bits. During the initialization phase, the FSM
output is connected to the LFSR update function. This ensures that after the
initialization process, the LFSR content depends non-linearly on the key and

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 119–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31204428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

120 A. Biryukov, A. Kircanski, and A.M. Youssef

the IV. Such an approach has been previously used in several LFSR-based word-
oriented constructions such as the SNOW family of ciphers [3]. In Loiss, however,
the FSM contains the BOMM element which is updated slowly in a pseudo-
random manner. The feedback to the LFSR, used in the initialization phase,
passes through this BOMM which turns out to be exploitable in a differential-
style attack since the BOMM does not properly diffuse differences.

In this paper, we provide a related-key attack of a practical complexity against
the Loiss stream cipher by exploiting this weakness in its key scheduling algo-
rithm (see also [7] for a work that was done independently of our results). The
attack requires two related keys differing in one byte, a computational work of
around 226 Loiss initializations, 225.8 chosen-IVs for both of the related keys,
offline precomputation of around 226 Loiss initializations and a storage space of
232 words. This shows that the additional design complication, i.e., the addition
of the BOMM mechanism, weakens the cipher instead of strengthening it. We
also discuss the possibility of extending such a related-key attack into a resyn-
chronization single-key attack. Finally, we show that Loiss does not properly
resist to slide attacks.

The rest of the paper is organized as follows. In section 2, we briefly review
relevant specifications of the Loiss stream cipher. Our related-key attack is de-
tailed in section 3 where we also discuss the possibility of extending the attack
to the single-key scenario. In section 4, we show that Loiss is not resistant to
slide attacks. Finally, our conclusion is given in section 5.

2 Specifications of Loiss

Figure 1 shows a schematic description of the Loiss stream cipher. In here, we
briefly review relevant components of the cipher. Let F28 denote the quotient
field F2[x]/(π(x)), where the corresponding primitive polynomial π(x) = x8 +
x7 + x5 + x3 + 1. If α is a root of the polynomial π(x) in F28 , then the LFSR of
Loiss is defined over F28 using the characteristic polynomial

f(x) = x32 + x29 + αx24 + α−1x17 + x15 + x11 + αx5 + x2 + α−1.

��� ������ ��� ��� ��	 ��
 ��� �	 �
 �� ��
�� ����

��
 ��� ��� ���

��� ��� �� ��

�	 �� �
 ��

�� �� �� ��

� �

�

��

��

��

� ����

�

�

Fig. 1. Loiss stream cipher

Cryptanalysis of the Loiss Stream Cipher 121

The usual bijection between the elements of F28 and 8-bit binary values is used.
The LFSR consists of 32 byte registers denoted by si, 0 ≤ i ≤ 31. Restating
the above equation, if st0, . . . , s

t
31 denote the LFSR registers after t LFSR clocks,

then the LFSR update function is defined by

st+1
31 = st29 ⊕ αst24 ⊕ α−1st17 ⊕ st15 ⊕ st11 ⊕ αst5 ⊕ st2 ⊕ α−1st0 (1)

and st+1
i = sti+1 for 0 ≤ i ≤ 30.

The FSM consists of the function F and the BOMM. The function F com-
presses 32-bit words into 8-bit values. It utilizes a 32-bit memory unit R and
takes LFSR registers s31, s26, s20 and s7 as input. In particular, in each step,
the output of F is taken to be the 8 leftmost bits of the register R, after which
the R value is updated by

X = st31|st26|st20|st7
Rt+1 = θ(γ(X ⊕Rt))

where γ is the S-box layer which uses 8× 8 S-box S1 and is defined by

γ(x1|x2|x3|x4) = S1(x1)|S1(x2)|S1(x3)|S1(x4)

and θ is a linear transformation layer defined by

θ(x) = x⊕ (x <<< 2)⊕ (x <<< 10)⊕ (x <<< 18)⊕ (x <<< 24)

Since the attack technique provided in this paper does not depend on the par-
ticular choice of the used S-boxes, we refer the reader to [4] for the specifications
of S1 and S2.

As for the BOMM structure, it utilizes 16 memory units, i.e., bytes y0, . . . , y15.
The BOMM function maps 8-bit values to 8-bit values. Let w and v denote the
input and output of the BOMM function. Denote the nibbles of its input w as
h = w >> 4 and l = w mod 16. Then, the BOMM function returns v = yth ⊕ w,
after which the update of its memory units takes place as follows:

yt+1
l = ytl ⊕ S2(w)
If h �= l, then

yt+1
h = yth ⊕ S2(y

t+1
l)

else
yt+1
h = yt+1

l ⊕ S2(y
t+1
l)

yt+1
i = yti , for 0 ≤ i ≤ 15 and i /∈ {h, l}

where S2 is an 8 × 8 S-box. In the FSM update step, the input to the BOMM
function, i.e., the w value, is taken to be leftmost byte of the output of the F
function.

The initialization procedure of Loiss proceeds as follows. The register R is set
to zero, i.e., R0 = 0. If the key K and the initialization vector IV are represented
byte-wise as

122 A. Biryukov, A. Kircanski, and A.M. Youssef

K = K15|K14| · · · |K0

IV = IV15|IV14| · · · |IV0,
(2)

then the starting inner state (s031, . . . , s
0
0, R

0, y015, . . . , y
0
0) is loaded with the K

and IV as follows:

s0i = Ki, s0i+16 = Ki ⊕ IVi, y0i = IVi (3)

for 0 ≤ i ≤ 15. Then, Loiss runs for 64 steps and the output of the BOMM
takes part in the LFSR update step. In other words, instead of (1), the following
LFSR update function is used:

st+1
31 = st29 ⊕ αst24 ⊕ α−1st17 ⊕ st15 ⊕ st11 ⊕ αst5 ⊕ st2 ⊕ α−1st0 ⊕ vt (4)

Then, the keystream generation stage starts. Loiss generator produces one byte
of keystream per step:

zt = st0 ⊕ vt.

In general, except for the new BOMM component, the whole Loiss design is very
similar to the design of the SNOW 3G cipher. It is also interesting to note that
the same θ linear layer has been used in the SMS4 block cipher [2] and also in
ZUC [1].

3 Proposed Attack

In this section, a differential-style attack against the Loiss key scheduling algo-
rithm is presented. The attack requires two related keys that differ in one byte.
It also requires the ability to resynchronize the cipher under the two keys with
chosen IV values.

The attack starts by having the pair of inner states right after the key load-
ing step differ only in one LFSR byte and one BOMM byte. Then, the idea is to
have the LFSR difference fully cancelled. We use the fact that the BOMM output
participates in the LFSR update step during the initialization and the BOMM
difference helps us to cancel out the LFSR difference through the feedback. Once
the difference in the LFSR is fully cancelled, only the BOMM component is active
and moreover, with a single byte difference. Then, since the BOMM does not have
proper diffusion properties, the single-byte difference stays localized in the BOMM
until the end of the initialization, which can be detected from the keystream.

The probability of the event that a given BOMM byte is not used during the
initialization is (1516)

128 ≈ 2−12, since a BOMM element is consulted 128 times
during the 64 initialization steps. If the active byte has not been used until
the end of the initialization, the two instances of the cipher generate several
equal keystream bytes with high probability. Namely, the difference at the point
where the keystream is to be produced will be of low-weight and localized in the
BOMM. Therefore, spotting large number of zero bytes in the starting keystream
byte difference indicates that the LFSR difference cancellations described above

Cryptanalysis of the Loiss Stream Cipher 123

took place. These cancellations happen only when certain equations in the start-
ing LFSR bytes are satisfied and consequently, since the starting LFSR bits are
related to the key bits, information about the key bits leaks.

Let K and K ′ differ only in the byte K3. The steps of the attack can be
summarized as follows:

- Construct a list of (IV, IV ′) pairs for which the LFSR state difference can-
cellation happens. The cancellation event is described in section 3.1, the
distinguisher used to detect this event is given in section 3.2 and a proce-
dure for collecting the (IV, IV ′) pairs is provided in section 3.3.

- Use this collection of IVs as input to the filtering procedure to filter the
wrong key candidates, as described in section 3.4.

The attack recovers 92 bits of the key and the remaining 128− 92 = 36 bits can
be obtained by brute force. In another variant of the attack, 112 bits of the key
are recovered and the rest are found by brute-force.

3.1 Cancelling the LFSR Difference

In this section, a necessary and sufficient condition for the starting inner state
difference to be fully cancelled in the LFSR after 4 steps is provided. The condi-
tion is specified in terms of the leftmost byte of the R register in the first 4 steps.
Then, the conditions on the R register as provided by Observation 1 below leak
information on the early LFSR bytes and thus about the secret key.

The key-loading mechanism (3) allows having a chosen difference only at bytes
s3 and y3 at time t = 0. Namely, it suffices to have

K3 ⊕K ′
3 = IV3 ⊕ IV ′

3 = δ (5)

and the rest of the K,K ′ and also IV, IV ′ bytes to have a zero-difference. More-
over, the key-loading mechanism trivially allows choosing the starting values of
the y3 register. This is done by choosing the IV3 byte, since the IV is simply
copied into the BOMM. This shows that the assumptions required by Obser-
vation 1 (i.e., the particular difference value 0x02 in s3 and y3 and also the
y3 = 0x9d constant) can be satisfied. Recall that wt denotes the leftmost byte
of the R register at time t ≥ 0.

Observation 1. Let a pair of Loiss inner states have only s3 and y3 bytes active,
both with difference 0x02. Also, let y3 = 0x9d. Then, after 4 steps, the LFSR
does not contain any active byte if and only if

(w0, w1, w2, w3) = (0x00, 0x33, 0xK?, 0x3?) (6)

where K is any hexadecimal digit different from 0x3 and the symbol ‘?” denotes
any hexadecimal digit.

The proof of the observation above is given in Appendix B. Here, a descriptive
overview of the cancellation specified by Observation 1 is provided. In Figure 2,

124 A. Biryukov, A. Kircanski, and A.M. Youssef

the BOMM and the LFSR bytes s3, s2, s1, s0 are shown during the first four steps.
In the second and the fourth states in the figure, the cancellation of the LFSR
difference by the feedback byte to the LFSR update is denoted. In the first step,
the difference does not enter neither the LFSR update function nor the feedback
value (since w0 = 0x00). In the second step, it is required that w1 = 0x33 for the
difference to be cancelled and also to be updated to the next necessary BOMM
difference value, 2α−1. In the third step, the difference is neither passed to the
LFSR nor changed in the BOMM. Finally, in the fourth step, the difference in the
LFSR byte s0 is cancelled and the LFSR becomes fully inactive.

It should be noted that Observation 1 holds for other difference values apart
from δ = 0x02. The set Δ of such differences is given in Appendix A. In particu-
lar, Observation 1 is true for any δ ∈ F 8

2 such that the input differences α−1 × δ
and δ cannot be mapped to the output differences α−1 × δ by the S2 S-box (see
the (⇒) part of the proof in Appendix B). For each difference from the set Δ,
the initial constant for y30 is calculated from (14).

The overall probability that there will be only one BOMM byte, y3, active
after all of the 64 steps of the key scheduling procedure is estimated next. For
this event to happen, it suffices to have (6) satisfied in addition to ensuring
that the y3 difference does not propagate to other bytes during the initialization
procedure. The event (6) happens with probability pw = 2−8× 15

16×2−4 ≈ 2−12.1.
The event by which the y3 difference does not propagate to any other byte is
equivalent to the event of wt mod 16 �= 0x3 and wt >> 4 �= 0x3 for 4 ≤ t ≤ 63,
and w2 mod 16 �= 3. The latter condition is included since Observation 1 does
not rule out the possibility of the spreading of the y3 difference to another byte
during step 3. Thus, the probability that y3 does not spread to any other byte
is ps = (1516)

2×60+1 ≈ 2−11.3. Thus, a randomly chosen key-IV pair satisfying (5)
such that the assumptions of Observation 1 are satisfied produces a pair of inner
states with only one active byte with probability

p = ps × pw = 2−12.1 × 2−11.3 = 2−23.4 (7)

under the usual independence assumption.

�

�

�

� � ��

� � �

� � �

� � � �

�

�

� � ��

� � �

� � �

� � � �

�

�

� � �

� � �

� � �

� � � �

�

�

� � �

� � �

� � �

� � �

��
��

��
��

� �����
	

� ���

�

� ����
�

� ���

�

�
��

�

�
��

�

�
��

�

�
��

�

������������

�� ������ �� ������ �� ������ �� ������

������� ������� ������� �������

������������

Fig. 2. Illustration of the differences in the BOMM structure at times t = 0, 1, 2, 3

Cryptanalysis of the Loiss Stream Cipher 125

3.2 Distinguishing Loiss Pairs

In the previous subsection, we showed that it is possible to have a pair of Loiss
inner states with only one active byte (located in the BOMM) after the ini-
tialization. Here, a distinguisher for the keystreams generated by a pair of such
states is provided. The goal is to minimize the probability of false positives and
false negatives.

Let the time at which the two instances of the cipher differ by only one BOMM
byte be t = 0. Since at this time most of the words are inactive, it is natural to
attempt distinguishing Loiss key stream pairs from random keystream pairs by
simply counting the number of equal bytes in the two outputs. Such a distin-
guisher depends on parameters n and m, where n is the number of keystream
generation steps that will be considered and m is the number of equal corre-
sponding words in steps 0, . . . , n− 1. The distinguisher can be formulated as:

- Count the number of indices 0 ≤ i < n such that zi = z′i
- If this count is ≥ m return Loiss keystreams, otherwise return Random.

Good values for (n,m) can be chosen by consulting Table 1 Appendix C. In this
table, the probability of false positives and false negatives for some representative
(n,m) points has been tabulated. Details on how the values in the table have
been calculated are provided below.

The false positive probability signifies the probability that in two random
sequences of n bytes, more than m corresponding bytes will be equal. On the
other hand, the false negative probability signifies the probability that two Loiss
instances with only one active byte located in the BOMM, will produce strictly
less than m equal bytes. For the purpose of the attack above, it is necessary to
keep the probability of false positives low, since a false positive would lead to
generating equations that have incorrect key values as solutions.

As for the false positive probability, it has been calculated by using the formula
describing the probability that in n randomly generated bytes, at leastm of them
are equal to zero. Namely, if l denotes the number of zeros in the sample, then

P [false positive] = P [l ≥ m] =
∑

l=m,...,n

(
n
l

) (
1

256

)l (255
256

)n−l
.

The false negative probability has been calculated experimentally by ran-
domly generating a pair of equal Loiss inner states and then inducing a random
difference at a random BOMM byte. After running the cipher for n steps, the
number of equal bytes is counted. If such number is strictly smaller than m, a
counter is incremented. After repeating the previous procedure for 228 times and
dividing the resulting counter by 228, an approximation of the probability of a
false negatives is obtained.

For the purpose of the distinguisher used in the next subsection, taking
(n,m) = (32, 10) makes the probability of the attack failure marginally small,
i.e., equal to around 225.8 × 2−54.2, since the distinguisher is applied for around
225.8 times and a false positive answer would lead to wrong conclusions about
the value of key bytes.

126 A. Biryukov, A. Kircanski, and A.M. Youssef

3.3 Finding the Correct IVs

According to the cancellation probability (7), for around one in 223.4 randomly
chosen IVs, if the key-IV pair satisfies (5), the inner state right after the ini-
tialization will have only the y3 BOMM byte active. Given the choices for the
distinguisher given in Table 1, such event can be reliably detected. Hereafter,
such IVs will be called correct IVs. In this section, it is shown that the correct
IVs can be found with probability better than 2−23.4, which helps us reduce the
final number of chosen-IVs required for the attack.

In particular, once one correct IV is obtained, more such correct IVs can be
found with better probability. Namely, changing certain IV bytes in a correct
IV does not influence all w1, w2 and w3 bytes. For instance, perturbing byte
IV11 in a correct IV does not change w1 = 0x33 value and the the probability
(7) that the new IV will also be a correct one increases by a factor of 28. More
precisely, let T1 denote a collection of IV bytes such that any change in bytes
from T1 leaves R1 unchanged, but changes Rt, t ≥ 2. It is easy to verify that
T1 = {IV1, IV5, IV8, IV11, IV13}.

Thus, after finding one correct IV, varying only the bytes from T1 can serve
to find more correct IVs with better probability. Such a set of IVs would result
in the IVs for which the R1 word is constant. However, the attack step provided
in subsection 3.4, which takes the correct IV set as its input, requires that the
IVs produce about 5 different R1 values. Similarly, there have to be around
360 different R2 values. These two numbers of required different R1 and R2

values are necessary to minimize the number of key byte candidates that will
be recovered, as will be explained in the next subsection. Therefore, the search
procedure that produces the input to the procedure in the next subsection can
proceed as follows:

- Let sets L0 = L1 = L2 = L3 = L4 = ∅.
- Generate 5 correct IVs randomly and place them in sets Li, 0 ≤ i ≤ 4,
respectively. In more detail, for each randomly generated IV , compute IV ′

according to (5) and apply the distinguisher from subsection 3.2. If the dis-
tinguisher returns a positive answer, a correct IV has been found.

- For 0 ≤ i ≤ 4
- Using the IV from each Li, generate more corrects IVs such that the Li

sets contain 72 IVs each. In particular, the new correct IVs are generated
by randomizing the starting IV bytes specified by T1 and applying the
distinguisher.

The output of the above procedure are sets Li, 0 ≤ i ≤ 3, each containing
72 IVs for which the R1 is constant. This procedure takes around 5 × 223.4 +
5 × 72 × 223.4−8 ≈ 226 chosen-IV queries on both Loiss instances. If instead
of applying the previous procedure, all of the 5 × 72 = 360 correct IVs were
generated randomly, the number of chosen IV queries would be 360 × 223.4 ≈
231.9.

Cryptanalysis of the Loiss Stream Cipher 127

3.4 Filtering the Key Bytes

In each Loiss step, the function F updates the register R by a transformation
similar to one round of a block cipher, where the R value plays the role of the
plaintext and the four LFSR registers play the role of the round key. The goal
hereafter is to recover the LFSR registers fed to F in the first three initialization
steps, i.e., s7+i, s20+i, s26+i, s31+i for 0 ≤ i ≤ 2. In particular, since the LFSR
bytes in question can be represented as a sum of the key and the IV, the goal is
to recover the key part in these bytes. First, the application of the F function
in the first three steps is represented in the form of

� �

��
�

��� ��
� �

��	 �	
� �

��
 �

� �

��
�

� �

��
�

��� ��
� �

��	 �	
� �

��
 �

� �

��
�

� �

��
�

��� ��
	 	

��	 �	
	 	

��
 �

	 	

��
	

� �

��

��� ��

��	 �	

��
 �

��

�
�

�
�

����
�

Fig. 3. The R register in times 0 ≤ t ≤ 3

Ri+1 = F (Ri, ki3 ⊕ ivi3|ki2 ⊕ ivi2|ki1 ⊕ ivi1|ki0) (8)

for 0 ≤ i ≤ 2, where ki3, k
i
2, k

i
1 and ki0 depend only on the original key bytes and

ivi3, iv
i
2 and ivi1 depend only on the IV bytes. More precisely, in the first step

k03 = K15, k
0
2 = K10, k

0
1 = K4, k

0
0 = K7

iv03 = IV15, iv
0
2 = IV10, iv

0
1 = IV4

(9)

In the second step, we have

k13 = K13 ⊕ αK8 ⊕ α−1K1 ⊕K15 ⊕K11 ⊕ αK5 ⊕K2 ⊕ α−1K0

k12 = K11, k
1
1 = K5, k

1
0 = K8

iv13 = IV13 ⊕ αIV8 ⊕ α−1IV1 ⊕ IV15 ⊕ IV11 ⊕ αIV5 ⊕ (10)

IV2 ⊕ α−1IV0 ⊕ f1

iv12 = IV11, iv
1
1 = IV5

and in the third step

128 A. Biryukov, A. Kircanski, and A.M. Youssef

k23 = K14 ⊕ αK9 ⊕ α−1K2 ⊕K0 ⊕K12 ⊕ αK6 ⊕K3 ⊕ α−1K1

k22 = K12, k
2
1 = K6, k

2
0 = K9

iv23 = IV14 ⊕ αIV9 ⊕ α−1IV2 ⊕ IV0 ⊕ IV12 ⊕ αIV6 ⊕ IV3 ⊕ (11)

α−1IV1 ⊕ f2

iv22 = IV12, iv
2
1 = IV6

where f1, f2 represent the feedback bytes. If the IV bytes in the right-hand side
of (9), (10) and (11) are taken from a correct IV, then (6) will hold. In that case,
also, the feedback bytes will be f1 = IV0 and f2 = IV3 ⊕ 0x33. The first three
steps of the F function when a correct IV is used are represented schematically
in Figure 3.

Then, the filtering procedure for recovering kij , 0 ≤ i ≤ 2, 0 ≤ j ≤ 3 amounts
to substituting the F function key guesses into (8) along with the iv bytes derived
from a correct IV and then verifying whether (6) holds. In particular, the filtering
procedure is done round by round. As for the first F round, (6) amounts to
R1 >> 24 = 0x33 and thus a candidate for k0 = k03 |k02 |k01 |k00 passes the criterion
with probability 2−8, which implies that 5 correct IVs are sufficient to uniquely
determine k0 with a good probability. We have verified experimentally that there
is enough diffusion in one F -round to find the key uniquely with just 5 correct
IVs.

As for the second step of the initialization phase, where (8) is executed for
i = 1, first it should be noted that R1 is known for each IV since k03 |k02 |k01 |k00 is
known. According to (6), the second F round criterion amounts to R2 >> 28 �= 3.
Thus, a guess for k1 = k13 |k12 |k11 |k10 passes the criterion with probability 15

16 .
Assuming that all the wrong key bits can be eliminated, around 332 correct IV
values will be required, since 232 × (1516)

332 ≈ 1. In the previous section, 360
correct IVs has been generated, which ensures the unique recovery of k1 with
good probability. Throughout all our experiments, the number of candidates
for k1 that pass the test was consistently equal to 16. Without going into why
16 candidates always pass the test, it is noted that these candidates can be
eliminated during the third F round filtering. The third F round criterion is
R3 >> 28 = 3 and one can expect that the candidate for k2 = k23 |k22 |k21 |k20 passes
with probability 2−4, meaning that around 8 correct IV values will be required.
The filtering is done for each of the 16 candidates for k1. Again, experimentally,
it was found that 16 candidates for k2 always pass the test and therefore there
will be 16 candidates at the end of the filtering procedure.

It remains to state how the correct IVs are drawn from Li, 0 ≤ i ≤ 4 to derive
the ivi values specified by (9), (10) and (11). For the first F round filtering,
the 5 IVs are chosen from L0, L1, L2, L3 and L4, respectively, which ensures
that different 5 iv0 values will be derived and that the filtering procedure will
properly work. The second and third round choice of the IVs is arbitrary.

Attack Complexity: After the filtering procedure described above, there will
remain 16 candidates for kij , 0 ≤ i ≤ 2, 0 ≤ j ≤ 3 (96 bits). Each of the 16
candidates yields a linear system in the cipher key bytes determined by (9), (10)
and (11). Since the linear equations in the system are independent, it follows

Cryptanalysis of the Loiss Stream Cipher 129

that a 96 − 4 = 92-bit constraint on the key K is specified. At this point, the
attacker can either brute-force the remaining 128− 92 = 36 key bits or continue
with the filtering process described above to deduce more key bits. In case of
brute-forcing the 36 bits, the total complexity of the attack is dominated by
around 236 Loiss initialization procedures.

In the case where the filtering process is continued, the criterion R4 >> 28 �= 3
can be used to filter out more key bits. Namely, expanding the corresponding
iv3 and k3 values in a way analogous to (9)-(11), while taking into account the
feedback byte in the LFSR update, reveals that altogether 20 more key bits can
be recovered. In that case, the total complexity is dominated by the complexity
of the above filtering procedures. The most expensive step is the filtering based
on the second F round. We recall that in this filtering step, for each of the 360
correct IVs, each 32-bit key value is tested and eliminated if R2 >> 28 �= 3 does
not hold. Instead of applying the F function 232 × 360 ≈ 240.5 times, one can
go through all key candidates for a particular IV, eliminate around 15

16 of them
and then, for the next IV, only go through the remaining candidates. In such a
case, the number of applications of F is

∑360
i=0(

15
16)

i232 ≈ 236. To have further
optimization, a table containing 232 entries and representing F function can be
prepared in advance. To measure the computational complexity of the attack
in terms of Loiss initializations, a conservative estimate that one table lookup
costs around 2−4 of a reasonable implementation of one Loiss initialization step
could be accepted. Then, since there are 64 = 26 steps in the initialization, the
final complexity amounts to around 226 Loiss initializations, 225.8 chosen-IVs for
both keys, storage space of 232 32-bit words and offline precomputation of 232

applications of F , which is less than 226 Loiss initializations, since each Loiss
initialization includes 26 F computations.

Our attack was implemented and tested on a PC with 3 GHz Intel Pentium 4
processor with one core. Our implementation takes less than one hour to recover
92 bits of the key information and the attack procedure was successful on all the
tested 32 randomly generated keys.

3.5 Towards a Resynchronization Attack

Here, some preliminary observations on the possibility of adapting the above
attack to the single-key model are provided. In the single-key resynchronization
attack, only the IV can have active bytes, which means that only the left-hand
half of the LFSR, i.e., registers s16, . . . , s31 as well as the BOMM will contain
active bytes. As in the related-key attack above, the strategy is to have the
difference cancelled out in the LFSR and localized only in the BOMM early
during the initialization. One of the obstacles is that the R register will neces-
sarily be activated when the difference reaches byte s7, since the left-hand half
of the LFSR contains active bytes. We note that this obstacle can be bypassed
by cancelling the introduced R difference by having more than one LFSR byte
active. Let LFSR bytes s9, s8 and s7 be active with differences δ2, δ1, δ0 at
some time t during the initialization procedure. Also, assume that the word R
and the BOMM bytes to be used in the next three steps are inactive. Below, we

130 A. Biryukov, A. Kircanski, and A.M. Youssef

determine how many of the (δ2, δ1, δ0) values can leave R inactive after 3 steps
(after having passed through s7) and also the probability of occurrence of such
an event. For this purpose, note that the R cancellation event occurs if

γ(F (xt)⊕ ut+1)⊕ γ(F (xt ⊕ δ0)⊕ ut+1 ⊕ δ1) = θ−1δ2 (12)

where xt = Rt ⊕ ut and ut denotes the 32-bit words fed to the F function
from the LFSR in t-th step. By using a precomputed table for the S-box S1

that, for each input and output difference, contains the information whether it
is possible to achieve the input-output difference pair or not, we exhaustively
checked for which values of (δ2, δ1, δ0) equation (12) has solutions in xt and
ut+1. The result of the finding is that only 2−12.861 of (δ2, δ1, δ0) values cannot
yield an R difference cancellation event. For the remaining (δ2, δ1, δ0), for which
(12) does have a solution, the probability of the R difference cancellation is
2−4 × 2−28 = 2−32.

The analysis above indicates that attackers can choose almost any (δ2, δ1, δ0)
starting difference at three consecutive LFSR bytes and then bypass an R ac-
tivation with a probability of 2−32. A possible favorable position to introduce
such (δ2, δ1, δ0) difference can be in registers s18, s17, s16, since the R register will
only be activated through byte s7. This can be done by activating IV2, IV1, IV0

bytes. The 3-byte difference that arises in the BOMM then needs to be used for
cancellations whenever some of the active LFSR bytes pass through the taps.
Due to the relatively high number of cancellations that need to happen as the
difference moves towards the right, we have not been able to bring the cancella-
tion probability sufficiently high enough to have a practical attack. Controlling
the difference propagation as done in [6] may be useful for that purpose. It is
left for future research to verify whether a practical resynchronization single-key
attack can be mounted against Loiss.

4 Sliding Properties of Loiss

In [5], a slide attack on SNOW 3G and SNOW 2.0 was provided. This attack is
a related-key attack and involves a key-IV pair (K, IV) and (K ′, IV ′). The idea
is to have the inner state of the (K, IV) instance after n ≥ 1 steps be a starting
inner state. Then, the corresponding (K ′, IV ′) initializes to this starting state
and the equality of the inner states is preserved until the end of the procedure.
The similarity between the two keystreams is detected and this provides a ba-
sis for the key-recovery attack. Since LFSR-based word-oriented stream ciphers
usually do not use counters which are the usual countermeasure against this kind
of slide attacks, one way to protect against sliding is to have the initial inner
state populated by the key, IV and constants so that it disallows the next several
states to be starting states. For example, in ZUC [1], constants are loaded in a
way that makes it difficult to mount a slide attack.

In the following, we point out that Loiss, similar to SNOW 2.0 and SNOW
3G, does not properly defend against sliding. If C0 = S−1

1 (0) and C1 = S2(0), a
slide by one step can be achieved as follows.

Cryptanalysis of the Loiss Stream Cipher 131

Observation 2. Let K = (K15, . . . ,K0) and IV = (A, . . . , A,B), where

A = (α⊕α−1⊕1)−1(K0⊕α−1K0⊕α−1K1⊕K2⊕αK5⊕αK8⊕K11⊕K13⊕C0)

and B is determined by B ⊕ C1 ⊕ S2(B ⊕ C1) = A. Also, assume that K7 = C0

and K4 = K10 = K15 = C0 ⊕ A. Then, for K ′ = (K0 ⊕ B,K15, . . . ,K1) and
IV ′ = (A, . . . , A), we have

z′0 = z1 (13)

The proof of the observation is given in Appendix B.
Due to the requirement on bytes K7, K4, K10 and K15 from the formulation

of the observation above, a Loiss key K has a related key pair specified by the
observation above with probability 2−32. For the related keysK andK ′ satisfying
the conditions above, the attack can be performed by going through all A ∈ F 8

2

and verifying whether the relation (13) is satisfied for IV = (A, . . . , A,B), and
IV ′ = (A, . . . , A). If yes, then such an A byte is a candidate for the right-hand
side of the equation above specifying A, which depends only on K bytes. Each
false candidate out of 28 candidates for A will pass the test (13) with probability
2−8. That way, around one byte of the key information leaks. Slides by more
than one step may also be possible.

5 Conclusion

We presented a practical-complexity related-key attack on the Loiss stream ci-
pher. The fact that a slowly changing array (the BOMM) has been added as
a part of the FSM in Loiss allowed the difference to be contained (i.e., do not
propagate) during a large number of inner state update steps with a relatively
high probability. The attack was implemented and our implementation takes less
than one hour on a PC with 3GHz Intel Pentium 4 processor to recover 92 bits
of the 128-bit key. The possibility of extending the attack to a resynchronization
attack in a single-key model was discussed. We also showed that a slide attack
is possible for the Loiss stream cipher.

References

1. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 and
128-EIA3. Document 2: ZUC Specification (2010), http://www.dacas.cn

2. Specification of SMS4, Block Cipher for WLAN Products - SMS4, Declassified
(September 2006), (in Chinese)
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

3. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2&UIA2 Document 2: SNOW 3G Specification (version 1.1) (September 2006),
http://www.3gpp.org/ftp

4. Feng,D., Feng,X., Zhang,W., Fan,X.,Wu,C.: Loiss: AByte-OrientedStreamCipher.
In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC
2011. LNCS, vol. 6639, pp. 109–125. Springer, Heidelberg (2011)

http://www.dacas.cn
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf
http://www.3gpp.org/ftp

132 A. Biryukov, A. Kircanski, and A.M. Youssef

5. Kircanski, A., Youssef, A.: On the Sliding Property of SNOW 3G and SNOW 3.0.
IET Information Security 4(5), 199–206 (2011)

6. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanal-
ysis of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS,
vol. 7118, pp. 200–212. Springer, Heidelberg (2012)

7. Lin, D.,Jie, G.: Cryptanalysis of Loiss Stream Cipher. To appear in: The
Computer Journal (2012), http://comjnl.oxfordjournals.org/content/early/

2012/05/21/comjnl.bxs047.short?rss=1

A The Set of Possible Differences

Observation 1 is true for the following values (shown in hexadecimal):

Δ = {2, 5, 7, 9, d, 10, 11, 13, 15, 16, 18, 19, 1a, 1c, 1d, 1f, 20, 21, 25, 27, 2a, 2b, 2c, 2e, 2f, 31,
32, 37, 38, 39, 3d, 3e, 45, 48, 4a, 4b, 4d, 4f, 50, 54, 56, 57, 5b, 5c, 5d, 60, 61, 63, 64, 65, 66, 69, 6a,

6b, 6c, 6f, 70, 72, 74, 75, 77, 79, 7a, 7b, 7d, 7f, 80, 81, 82, 87, 89, 8b, 8d, 8e, 92, 94, 96, 97, 98, 99,

9a, 9c, 9d, 9e, a0, a1, a9, aa, ac, ae, af, b0, b2, b5, b8, ba, bc, bd, bf, c0, c1, c3, c4, c5, c7, ca, cd,

d1, d2, d3, d4, d6, d7, d8, da, dc, de, df, e1, e2, e8, eb, ed, f0, f1, f2, f3, f4, f7, f9, fb, fc, ff}

B Proof of Observations 1 and 2

In this appendix, we provide proofs for the two observations listed in the paper.
Proof of Observation 1:

From the cipher specification, w0 = 0x00 is true regardless of the condition
on the left-hand side. The two directions of the proof are provided as follows.
(⇐): The change of the difference in the BOMM is described in Figure 2. In
the first step, since w0 = 0x00, both the value and the difference of y03 remain
unchanged and the LFSR difference is moved from s3 to s2. Since w1 = 0x33
and both s2 and y13 are active with the same difference, they cancel out and the
corresponding LFSR byte becomes inactive. As for the LFSR difference, it is just
moved to s1. Another effect of the second step is the change of the difference
in y3 byte from 0x02 to α−1 × 2. Namely, expanding the difference in the y3
byte and substituting the initial choice of y03 = 0x9d and also the choice of the
starting difference δ = 0x02 gives

y23 ⊕ y
′2
3 = δ ⊕ S2(y

0
3 ⊕ S2(0x33))⊕ S2(y

0
3 ⊕ δ ⊕ S2(0x33)) = α−1 × 0x02 (14)

The third step moves the s1 active byte to s0, since w2 >> 4 �= 3 and leaves
the y3 difference unchanged. Finally, since w3 >> 4 = 0x3, the difference in y3
cancels out the difference in the LFSR update function (4) in the fourth step
and this direction of the proof follows.

(⇒): Clearly, w1 >> 4 = 0x3 since otherwise s131 would be active and the LFSR
after 4 steps would necessarily have at least one active byte. Moreover, K =
w2 >> 4 �= 0x3 holds since y23 is necessarily active and otherwise there would be
a difference introduced to the LFSR on byte s231.

To show that w1 mod 4 = 0x3, assume the contrary. In that case, the full
LFSR cancellation in the fourth step cannot happen. Namely, in the second

http://comjnl.oxfordjournals.org/content/early/2012/05/21/comjnl.bxs047.short?rss=1
http://comjnl.oxfordjournals.org/content/early/2012/05/21/comjnl.bxs047.short?rss=1

Cryptanalysis of the Loiss Stream Cipher 133

step, the difference in register y13 remains unchanged, i.e., it remains equal to
0x02. Therefore, during the third step, the existing one byte difference in the
BOMM has to evolve to α−1 × 2 in order for the LFSR cancellation to happen
in the fourth step. However, according to the S2 specification, the input S2

difference 0x02 cannot be transformed to the output difference α−1×2 and thus
w1 mod 4 = 0x3.

Now, according to the (⇐) direction of the proof, (14) holds. To show that
w3 >> 4 = 0x3, suppose the contrary. Since the LFSR byte s0 is active at the
fourth step (with the difference 0x2), for this difference to be cancelled out, the
BOMM output byte at step four has to be active with the same difference. Thus,
the difference in y23 which is equal to α−1× 0x02 has to remain α−1× 0x02 after
passing through the S2 S-box. This difference will necessarily be induced on
some other BOMM byte since K �= 3. However, such a possibility is ruled out
by the S2 specification: the S2 S-box cannot map the input difference α−1 × 2
to α−1 × 2 output difference. It should be noted that this was possible in (14),
since the same byte was updated twice in step 1. Therefore, w3 >> 4 = 0x3 has
to hold. �
Proof of Observation 2

We will show that

IS1 = (s131, . . . , s
1
0, R

1, y116, . . . , y
1
0)

= (s
′0
31, . . . , s

′0
0 , R

′0, y
′0
16, . . . , y

′0
0) = IS

′0 (15)

As for the BOMM bytes yi, 15 ≤ i ≤ 0, in the (K, IV) instance of the cipher, only
y0 will be updated since R0 = 0. In other words, y1i = A for 15 ≤ i ≤ 1. Moreover,
from the specification of B, it follows that y10 = A. Since IV ′ = (A, . . . , A),
y

′0
i = A for 15 ≤ i ≤ 0 as well, i.e., (15) holds for the BOMM bytes. As for the

equality between R1 and R
′0, by the initialization procedure, R

′0 = 0. To have
R1 = 0 as well, it suffices to have each of the four LFSR registers s031, s

0
26, s

0
20, s

0
7

equal to C0 = S−1(0), which is exactly the case due to the values to which
bytes K15, K8, K4 and K7 are set. Finally, to establish the equality of the LFSR
values in (15), the expression defining A are substituted into the way the LFSR
is updated during the initialization procedure with the feed-forward, verifying
that s131 = s

′0
31 = K15 ⊕A. As for the other LFSR values, s1i = s

′0
i holds directly

due to the specification of K, IV,K ′, IV ′.
Thus, the initialization procedures of the two cipher instances are slided, i.e.,

ISt = IS
′t−1 for 1 ≤ t ≤ 64. At time t = 64, in the (K, IV) instance of

the cipher, a regular keystream step is applied, whereas in the (K ′, IV ′) in-
stance, an initialization step is applied which destroys the slide property by
introducing a difference between s6531 and s

′64
31 . However, it can be verified that

this difference does not affect the two corresponding first keystream words, which
proves (13). �
It should be noted that, as we verified by solving B ⊕C1 ⊕ S2(B ⊕C1) = A for
each A ∈ F 8

2 , there always exists a byte B specified by this observation.

134 A. Biryukov, A. Kircanski, and A.M. Youssef

C Distinguisher Performance for Different (n,m)

The following table shows the numerical values for false positive and false neg-
ative probabilities for the distinguisher presented in section 3.2.

Table 1. Effectiveness of the distinguisher for different (n,m) parameters

(n,m) P[false positive] ≈ P[false negative] ≈
(16, 6) 2−35.1 2−22.41

(16, 8) 2−50.4 2−16.00

(24, 8) 2−44.6 2−24.01

(24, 10) 2−59.2 2−19.91

(32, 10) 2−54.2 2−27.6

(32, 12) 2−68.3 2−20.68

	Cryptanalysis of the Loiss Stream Cipher
	Introduction
	Specifications of Loiss
	Proposed Attack
	Cancelling the LFSR Difference
	Distinguishing Loiss Pairs
	Finding the Correct IVs
	Filtering the Key Bytes
	Towards a Resynchronization Attack

	Sliding Properties of Loiss
	Conclusion
	References

