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A B S T R A C T

Formal argumentation is a popular reasoning method in knowledge
representation for intelligent systems. For the past 20 years it has
been based on Dung’s abstract argumentation theory. More recently
several challenges have been made to this standard - for example in
dynamics and aggregation of argumentation frameworks. To support
these new developments in this thesis new foundations are devel-
oped based on distance measures. We introduce postulates for dis-
tance measures and we show their consistency by constructing con-
crete measures. In the process we develop the new notion of issue.
Subsequently we use the distance measures in argumentation using
distance based operators introduced by Miller and Osherson in judg-
ment aggregation. Moreover in this thesis we also improve dialectical
proof procedures for grounded semantics and study postulates of
non-interference and crash resistance for Dung based non-monotonic
inference.
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1
I N T R O D U C T I O N

In everyday life humans use both deductive and defeasible reasoning.
In contrast to deductive reasoning where the truth of a conclusion
is guaranteed upon the truth of premises, defeasible conclusions are
likely but not necessarily true and can be withdrawn upon additional
information. For example ’Party is on Wednesday’ can be concluded
from ’John said that party is on Wednesday’ and retracted upon infor-
mation ’John is joking’. ’It rained’ can be concluded upon observation
’Street is wet’ and retracted upon additional information that ’Street
was washed by public service’. The reader can find more examples of
defeasibe reasoning in the overview by Koons (2014).

Defeasible reasoning is studied in philosophy and artificial intelli-
gence (AI). Today with the omnipresence of computational power it
has become of practical importance to implement this kind of reason-
ing. Examples range from simple plugins asking whether we forgot
to attach a file to an email mentioning an attachment, to complex ex-
pert systems supporting medical diagnosis. While simple cases like
writing assistance can be implemented directly, complex systems re-
quire a systematic approach. One of the ways to implement defea-
sible reasoning is to use non-monotonic logic. Many formal systems
for non-monotonic logic have been developed. For an overview of ap-
proaches and formalisms we refer the reader to Strasser and Antonelli
(2014). In 1995 Dung introduced his theory of abstract argumentation
and demonstrated it can model popular non-monotonic formalisms
like Reiter’s default logic (1980), Pollock’s defeasible logic (1987) and
logic programming Gelfond and Lifschitz (1988, 1991), Dung (1995).
Subsequently his theory was extended in several ways and remains a
popular topic of research in AI.

This thesis consists of three loosely connected parts in which we
study Dung’s abstract argumentation theory:

1. Quantifying disagreement between argument labellings,

2. Developing persuasion dialogue for grounded semantics,

3. Implementing the postulates of Crash-resistance and Non-
interference.

Before providing more details in Section 1.3, there is a need for
some background information.

1



2 introduction

Figure 1: Simple argumentation framework

1.1 dung’s abstract argumentation

Nowadays, much research on the topic of argumentation is based on
the abstract argumentation theory of Dung (1995). The central con-
cept in this theory is that of an argumentation framework (AF), which is
essentially a directed graph in which the arguments are represented
as nodes and the defeat (attack) relation is represented by the arrows.
The theory abstracts away the content of arguments and based solely
on the attack structure between them addresses the question which
arguments to accept. The selection of the argument is non-monotonic,
since adding more arguments to the framework possibly yields fewer
accepted arguments. It has been shown to capture the non-monotonic
part of reasoning modelled by other formalisms. In the rest of this sec-
tion we introduce informally concepts used in the theory.

Consider the following exchange of arguments:

• a: Global warming is mainly caused by volcanic activity, accord-
ing to research by expert X.

• b: Research of expert X is financed by the oil industry which has
financial interest in the results, thus the research is not credible.

After abstracting away the content of arguments the above exam-
ple is modelled by an argumentation framework A1 depicted in the
Figure 1 where argument b attacks argument a.

Given such a graph, the remaining task is to decide which argu-
ments to accept. In the above situation assuming no more arguments
can be created, one can reason as follows: since there are no reasons
to reject the argument b I accept it and I reject the argument a since it
is attacked by b which I accepted. Although in this case the answer is
straightforward there can be more than one reasonable answer. Con-
sider three arguments about global warming, each one grounded in
some scientific evidence, with the following associated conclusions:

• a: Global warming is mainly caused by volcanic activity.

• b: Global warming is mainly caused by natural variation in solar
radiation.

• c: Global warming is a human-induced phenomenon.

This situation is modelled in argumentation framework A2 in Fig-
ure 2. Clearly, it is not possible to subscribe to both arguments a
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Figure 2: An argumentation framework with four complete labellings.

and b, since they attribute global warming to different major causes.
Moreover, both these arguments attack argument c, which attributes
global warming to human activity. In this situation at least four posi-
tions seem possible. One may accept one of the three arguments and
reject the other two or one may abstain from taking any decision and
stay undecided about all arguments.

Answering the question which arguments can be accepted corre-
sponds to defining an argumentation semantics. In this thesis we ex-
press semantics in two ways. Extension-based semantics for each ar-
gumentation framework returns the set of extensions, where an ex-
tension is a set of arguments which can be accepted. Labelling-based
semantics returns for each argumentation framework the set of la-
bellings. A labelling of an argumentation framework is a function
assigning to each argument one of the labels in, out or undec which
correspond to acceptance of an argument, rejection of an argument
or abstaining from taking a position about an argument.

Various argumentation semantics have been formulated in this re-
spect, and in Chapter 2 we describe some of the mainstream ap-
proaches. Here we just state intuitively the main criteria on which the
semantics are based. The first criterion is that of conflict freeness which
says that if there is attack between two arguments, then they cannot
be accepted together. The second criterion is that of defence which
says that accepted arguments should defend themselves, i.e. for each
argument a which attacks an accepted argument, there exists an ac-
cepted argument which attacks a. A conflict-free set of arguments
which defends itself is called admissible. The third criterion is that of
reinstatement which says that accepted arguments should include all
arguments they defend. Those criteria can be expressed in terms of
labellings in the following way:

1. if an argument is labelled in, then all its attackers are labelled
out.

2. if an argument is labelled out, then it has an attacker that is
labelled in.
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3. if an argument is labelled undec, then neither all its attackers
are labelled out and nor does it has an attacker that is labelled
in.

In the last example depicted in Figure 2 we have exactly four la-
bellings L1 − L4 satisfying the above conditions. We depict them by
colouring the nodes labelled in, out, undec with green, red and grey
colour respectively. When the order of arguments is clear we denote a
labelling by a string of labels assigned to consecutive arguments. For
example L1 : ioo denotes labelling L1 = {(a, in), (b, out), (c, out)}.

The semantics using those rules (and possibly some additional
ones) are called complete-based. The complete semantics does not add
any additional rules, the grounded semantics requires additionally
that the set of accepted arguments be minimal while the preferred se-
mantics requires the set of accepted arguments be maximal. In Figure
2 all labellings are complete, labellings L1−L3 are preferred, labelling
L4 is the grounded labelling. Accordingly {a}, {b}, {c}, and ∅ are corre-
sponding preferred and grounded extensions.

To apply the theory we need to instantiate it, i.e. decide what an
argumentation framework represents and how to interpret the mean-
ing of acceptance. Although resemblance to human reasoning is an
advantage of Dung’s theory, it is a metaphor. Argumentation vocab-
ulary and our natural text examples can be misleading here. In his
original paper Dung (1995) gives five examples of instantiation. Three
of them model non-monotonic logic formalisms, where arguments
are generated from a set of logical formulas and accepted arguments
support an inferred formula. We describe this kind of instantiation
in the next section. N-person games model reasoning about coalition
forming, arguments represent the possible coalitions and the attack
relation represents a dominance relation. The stable marriage prob-
lem is addressed in a similar way; accepted arguments correspond to
stably formed couples. Each of those instantiations combined differ-
ent argumentation framework construction, argumentation semantics
and a way to interpret accepted arguments. It is not trivial to connect
these three parts.

Dung’s abstract theory was developed in several ways:

abstract On the abstract level more semantics were developed, ar-
gumentation frameworks were enriched with other types of re-
lations like support, attacks on attacks, arguments were given
more attributes like a supporting value, acceptance was extended
to multiple labels.

instantiation New instantiations were proposed, logical and non-
logical.

We move to the use of Dung in modelling of formalisms for non-
monotonic reasoning.
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framework
argumentation

knowledge base

of arguments
extensions

extensions
of conclusions

step 1:

step 2:

step 3:

construction of arguments and attacks

identifying sets of accepted arguments

identifying sets of accepted conclusions

(applying argumentation semantics)

Figure 3: Argumentation for inference

1.2 dung for non-monotonic inference

Argumentation as a tool for practical reasoning was already studied
by Aristotle. In modern times the field of defeasible argumentation
can be traced back to the work of Pollock (1992, 1995), Vreeswijk (1993,
1997), and Simari and Loui (1992). The idea is that (non-monotonic)
reasoning can be performed by constructing and evaluating argu-
ments, which are composed of a number of reasons for the validity
of a claim. Arguments distinguish themselves from proofs by the fact
that they are defeasible, that is, the validity of their conclusions can be
disputed by other arguments. Whether a claim can be accepted there-
fore depends not only on the existence of an argument that supports
this claim, but also on the existence of possible counter-arguments,
that can themselves be defeated by counter-arguments, etc.

Dung’s argumentation theory contributes to this line of research. If
one wants to use it for the purpose of (non-monotonic) entailment,
one can distinguish three steps (see Figure 3). First of all, one would
use an underlying knowledge base to generate a set of arguments and
determine in which ways these arguments attack each other (step 1).
The result is an argumentation framework, represented as a directed
graph in which the internal structure of the arguments, as well as
the nature of the defeat relation, has been abstracted away. An argu-
mentation semantics can be used to determine the sets of arguments
that can be accepted (step 2). After the set(s) of accepted arguments
have been identified, one then has to identify the set(s) of accepted
conclusions (step 3), for which various approaches exist.

As illustrated in Figure 3, the argumentation approach provides
a graph based way of performing non-monotonic reasoning. Dung’s
idea is to isolate the evaluation of arguments in step 2, which captures
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the non-monotonic part of the reasoning process, using an argumen-
tation framework as an interface with the rest of the process. This
isolation proved useful for comparison of different systems.

Considering Dung’s argumentation in the context of non-monotonic
reasoning several questions arise. From the point of view of a de-
signer of logical formalisms we can ask: Is instantiating of Dung’s
abstract argumentation frameworks a good methodology to develop
new formalisms? Adding the additional steps potentially restricts us.
There are many formalisms already available. How do formalisms de-
fined as instantiations of Dung’s theory perform compared to others?
Does it make sense to express already existing formalisms equiva-
lently in Dung’s framework? What are the properties that formalism
in Dung’s form highlight? The last question is especially important
from an application point of view. Which of the two equivalent forms
to choose? Answers to those questions are not clear. In this thesis we
make a small step to get closer to them.

1.3 research questions

1.3.1 Quantifying Disagreement

The presence of multiple reasonable positions raises a fundamental
question:

RQ 1: How can we measure a distance between view-
points represented by labellings in argumentation?

This question is relevant to two fundamental problems. The first
problem is argument-based belief revision. Suppose a diplomat receives
instructions to switch his position on one particular argument . To
maintain a consistent viewpoint, the diplomat must revise his evalua-
tion of other related arguments. Faced with multiple possibilities, the
diplomat may wish to choose the one that differs the least from his
initial position (e.g. to maintain credibility).

The issue of distance is also relevant to the problem of judgement
aggregation over how a given set of arguments should be evaluated col-
lectively by a group of agents with different opinions Caminada and
Pigozzi (2011); Caminada et al. (2011); Rahwan and Tohmé (2010). For
instance it is very well possible that the members of a jury in a crim-
inal trial all share the same information on the case (and hence have
the same argumentation framework) but still have different opinions
on what the verdict should be. Hence, these differences of opinion
are consequences not of differences in the knowledge base but of the
nature of non-monotonic reasoning, which allows for various reason-
able positions (extensions). In the context of judgement aggregation
one may examine the extent to which the collective position differs
from the various positions of the individual participants. Ideally, one
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would like to have a collective position that is closest to the collection
of individual positions, for example such that the sum of its distance
to each individual position is minimal.

The success criterion of RQ1 is to define distance measures which
takes into account the argumentation semantics. Since Dung’s argu-
mentation framework can be used with different semantics like ad-
missible, grounded, complete which give a meaning to the particu-
lar labelling we should expect the distance between two complete la-
belling may differ from two admissible labellings. There exist general
distance measures like Hamming distance, but they treat labellings
as a vectors of labels ignoring what these vectors represent.

Our methodology is top-down followed by bottom-up. First we list
different possible ways the semantics can influence a distance mea-
sure as a postulates and study the dependencies between them. This
leads to the first subquestion:

RQ 1.1: What are desirable properties of distance mea-
sures for labellings?

The argumentation semantics assigns a set of labellings to the given
argumentation framework. We would like to capture the influence of
semantics on distance between labellings of one framework and also
across different frameworks.

Then we state the following subquestion:

RQ 1.2: Are those postulates jointly consistent?

To address the above subquestion we use topological constructions
to actually build the distances satisfying the postulates.

1.3.2 Judgement Aggregation in Abstract Argumentation

Individuals presented with the same set of conflicting arguments
might take different rational positions. In such a situation one often
faces the following problem: How to aggregate positions of different
agents over sets of arguments into a collective one? This problem has
been explored in a number of recent papers Booth et al. (2014); Cam-
inada and Pigozzi (2011); Rahwan and Tohmé (2010) which employ
techniques from judgement aggregation (JA) List and Puppe (2009) to
the problem of aggregating 3-valued argument labellings.

RQ 2: How to use distance for aggregation of judgements
represented by labellings?

The success criterion for RQ2 is to define aggregation operators for
abstract argumentation.

The existing works mentioned above have shown that, as with clas-
sical judgement aggregation, it is not possible to define general aggre-
gation operators that satisfy a number of seemingly mild constraints
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while ensuring collective rationality of the outcome. One way of get-
ting around this problem is to first use an initial aggregation operator,
which intuitively can be thought of as a gold standard operator that
satisfies a number of basic postulates, without always yielding collec-
tively rational results and then to repair the result of this operator in
the cases when it does not give a collectively rational outcome. This
leads to the following question.

RQ 2.1: How can we ’repair’ the collective outcome when
it is not rational?

In the argumentation setting, Caminada and Pigozzi suggested one
way to carry out such a repair, using what they called the down-
admissible and up-complete procedures (2011). In the JA setting, an-
other way to carry out such a repair is to use one of the distance-based
solution methods that were studied by Miller and Osherson (hereafter
MO) (2009) within the framework of binary judgement aggregation.
As the name suggests these methods depend on a provided notion of
distance measure between binary judgement sets.

1.3.3 Grounded Persuasion Game

The field of formal argumentation can be seen as consisting of two
main lines of research. One line of research is concerned with the
dialectical process of two or more players who are involved in a dis-
cussion. This kind of argumentation, referred to as dialogue theory in
the ASPIC project ASPIC-consortium (2005), can be traced back to the
work of Hamblin (1970; 1971) and Mackenzie (1979; 1990). A differ-
ent line of research is concerned with arguments as a basis for non-
monotonic inference. The idea is that (non-monotonic) reasoning can
be performed by constructing and evaluating arguments, which are
composed of a number of reasons that collectively support a particu-
lar claim. This line of research can be traced back to the work of Pol-
lock (1992; 1995), Vreeswijk (1993; 1997) and Simari and Loui (1992),
and has culminated with the work of Dung (1995), which serves as
the basis of much of today’s argumentation research.

One particular question one may ask is to what extent it is possi-
ble to create links between these two lines of research. One particular
way of doing so would be to have an argument accepted (under a
particular Dung-style semantics) iff it can be defended in a particular
type of formal dialogue. In previous work, Caminada (2010) observed
that (credulous) preferred semantics can be reinterpreted as a partic-
ular type of Socratic dialogue. That is, an argument is in at least one
preferred extension iff the proponent is able to successfully defend
the argument in the associated Socratic discussion game, against a
maximally sceptical opponent. We follow this line of research by ad-
dressing the following question.
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RQ 3: What type of dialogue can be associated with grounded
semantics?

One of the aims of our work is to contribute to a conceptual basis
for (abstract) argumentation theory. Whereas, for instance, classical
logic is based on the notion of truth, it is not immediately obvious
where a notion like truth would fit in when it comes to (abstact) ar-
gumentation research. Still, one would like to determine what the
various argumentation semantics actually constitute to. An answer
like “preferred semantics is about the maximal conflict-free fixpoints,
whereas grounded semantics is about the minimal conflict-free fix-
point” might be technically correct, but is still conceptually somewhat
unsatisfying. We believe that formal dialogue can serve as a concep-
tual basis for (abstract) argumentation theory. The idea is that one
infers not so much what is true, as is the case in classical logic, but
what can be defended in rational discussion. In particular, our aim is to
show that different argumentation semantics correspond with differ-
ent types of rational discussion.

1.3.4 Implementing Crash Resistance

The ASPIC+ Prakken (2010); Modgil and Prakken (2013) is a state-
of-the-art framework for specifying argumentation based systems for
rule-based defeasible reasoning. The specification includes a set of
strict and defeasible rules over some language closed under nega-
tion. If we consider Dung’s style argumentation as a methodology
to develop a non-monotonic logic formalism it is reasonable to ask
how this formalism performs compared to others and whether it
is easy to implement new features. Caminada and Amgoud (2007)
provided some answers to this question introducing three postulates
for argument-based entailment: Direct Consistency, Indirect Consistency
and Closure, and noticing that they should not be taken for granted.
Unrestricted instantiation of ASPIC+ fails them unless the set of
strict rules needs to be closed under contraposition or transposition
as shown by Caminada and Amgoud (2007); Modgil and Prakken
(2013); Prakken (2010). Classical logic is closed by negation and its
entailment is closed under contraposition or transposition. Moreover,
entailment in classical logic models deductive reasoning which is sim-
ilar to the reasoning represented by strict rules. The question arises:

RQ 4: What are the consequences of generating strict rules
by the entailment of classical logic?

The main concern here is to satisfy postulates of Crash-resistance
and Non-interference Caminada et al. (2012) which deals with the prin-
ciple of explosion - the common problem in classical logic entailment
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which entails any formula from contradiction. We follow the method-
ology sketched by Caminada (2005), i.e. we remove inconsistent argu-
ments. This leads to the subquestion:

RQ 4.1: Is it feasible to implement Crash-resistance and
Non-interference in Argumentation-based logical formalism
by removing inconsistent arguments?

The success criteria is to demonstrate the implementation or give
an example showing that it is impossible. By feasible we mean imple-
mentation which extends the previously obtained results.

1.4 relevance

This thesis is about formal argumentation, a domain relevant to Arti-
ficial Intelligence (AI) which is part of Computer Science (CS). Argu-
mentation play several roles in AI and wider in CS.

non-monotonic reasoning (nmr) NMR is an area of AI which
aims at modelling natural reasoning. In his seminal work Dung
(1995) showed that reasoning as modelled by several of non-
monotonic formalisms like Reiter’s default logic (1980), Pollock’s
defeasible logic (1987), and logic programming (1988) can be
formulated as a three step process of constructing arguments,
evaluating them and taking their conclusion. A recent exam-
ples in this line of research include Modgil and Prakken (2013);
Prakken (2010) (ASPIC+ framework) and Besnard and Hunter
(2001).

knowledge representation (kr) This is a wide area studying
how to represent knowledge. In particular, study of arguments
which are a natural means to exchange information between
humans. In the above-mentioned systems arguments are built
from the knowledge-base expressed in artificial language which
are potentially easier to understand by humans. Another source
of arguments is the growing body of tools to analyse text Bex
et al. (2013) which enables application of computer tools.

multiagent-systems (mas) MAS is a field studying systems of
intelligent autonomous agents (human and artificial) which in-
teract within an environment. On the one hand, problems in
this context are often similar to the one encountered by groups
of people. Endriss (2014) argues that resource allocation, voting
and judgement aggregation, problems originally studied in So-
cial Choice Theory form a foundation of MAS. On the other
hand, the internet provides an environment to build variety
of systems for human agents. An example where argumenta-
tion plays a role are systems supporting humans in performing
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large-scale online debates. See the Arguing Web 2.01 workshop
for some current work in that direction.

human-computer interaction (hci) With the increase of com-
plexity of computer systems, the communication and interac-
tion with humans become an important issue. It is studied by
a recent interdisciplinary field of Human-computer Interaction.
One of the assets of argumentation-based systems important in
that context is their resemblance to human reasoning. An ex-
ample of the research in that domain is the SAsSy project con-
ducted at University of Aberdeen, Tintarev et al. (2013).

For a detailed look at the influence of argumentation we refer the
reader to Modgil et al. (2013).

Work in this thesis contributes to several points of the map sketched
above. Distances developed in Chapter 3 and 4 are subsequently ap-
plied to judgement aggregation in Chapter 5 thus contributing to
MAS. Distances are used in many domains of computer science. Our
work could be potentially applied to clustering which can be used
for visualisation which is part of HCI. We also uncover an interesting
new problem in graph theory, namely the one how to measure the
distance between two graph colourings. The Grounded Persuasion
Game developed in Chapter 6 contributes to HCI in two ways. First,
linking grounded semantics with persuasion dialogue contributes to
better understanding what makes argumentation "human-friendly".
Second, it can serve as a basis for a development of dialogue-based
interface for expert system. In Chapter 7 we contribute to NMR by in-
vestigating postulates desirable for the reasoning process in the con-
text of argumentation. We demonstrate that those postulates are often
violated and we propose the ASPICLite formalism satisfying them.

1.5 thesis overview

This thesis will be divided into chapters as follows:

• Chapter 2: Preliminaries

We recall basic definitions of Dung’s Abstract Argumentation
Dung (1995) and extension-based and labelling-based seman-
tics.

• Chapter 3: Quantifying Disagreement between Labellings: Pos-
tulates

We identify different properties, which the labelling distance method
should satisfy. We divide them into four groups: metric pos-
tulates, betweenness and qualitative distance, compositionality

1http://www.sintelnet.eu/content/arguing-web-20-0

http://www.sintelnet.eu/content/arguing-web-20-0
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and equivalence postulates. We investigate the relation between
them.

• Chapter 4: Quantifying Disagreement between Labellings: Prod-
uct Distance

We define the family of distance methods which we call product
distance methods. These are parametrised by selection function
selecting a set of ’important’ arguments and a distance mea-
sure between the set of labels. The distance between labellings
is a sum of the distances between the labels over the selected
arguments. We identify several subfamilies of product distance
methods, starting with the Full Sum method which selects the
set of all arguments and building towards Issue-based distance
methods, which satisfy different postulates. We propose a dis-
tance method from each subfamily.

• Chapter 5: Using Distances for Aggregation in Abstract Argu-
mentation

Miller and Osherson (2009) proposed a framework for aggre-
gation using distances in Judgement Aggregation. We adapt it
to abstract argumentation setting and show how the distance
methods defined in the previous chapter can be plugged in to
define families of labelling aggregation operators. We thus il-
lustrate the usefulness of these distance measures. We discuss
agenda manipulation and link it to the Indifference to Peripheral
Issues (IPI) postulate for distance method that we introduced
earlier. Finally, we show that the existing aggregation operators
due to Caminada and Pigozzi (2011) fit into this distance-based
framework.

• Chapter 6: A Persuasion Dialogue for Grounded Semantics

We define a dialogue game for grounded semantics which im-
proves the standard grounded game Prakken and Sartor (1997);
Caminada (2004); Modgil and Caminada (2009). We define ac-
ceptance of an argument in terms of the existence of the win-
ning game while the standard game defines acceptance of an
argument in terms of existence of winning strategy.

• Chapter 7: Implementing Crash-resistance and Non-interference
in Logic-based Argumentation

We discuss the abstract argumentation as used in the proccess
on non-monotonic reasoning. We describe the postulates of Non-
interference and Crash-resistance and show how these are vio-
lated by formalisms like ASPICLite, oscar Pollock (1995) and
ASPIC Prakken (2010). Then we provide a general solution to
satisfy both the postulates introduced in Caminada and Am-
goud (2005, 2007) (Direct Consistency, Indirect Consistency and
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Closure) and the additional postulates examined in the current
work (Non-interference and Crash-resistance Caminada et al.
(2012)).

• Chapter 8: Conclusions

We summarize the results and list some ideas we would like to
develop in the future.

The work presented in Chapter 3 and 4 is based in part on joint
work with Richard Booth, Martin Caminada and Iyad Rhawan (2012).
The work in Chapter 5 is based on joint work with Richard Booth
(2014). The work in Chapter 6 is based on joint work with Martin
Caminada (2012a; 2012b). The work in Chapter 7 is based on joint
work with Yining Wu (2014).





2
P R E L I M I N A R I E S

2.1 argumentation framework

We use the familiar setting of abstract argumentation Dung (1995). We
start by assuming a countably infinite set U of argument names, from
which all possible argumentation frameworks are built.

Definition 1. An argumentation framework (AF for short) A = (Args,⇀)

is a pair consisting of a finite set Args ⊆ U of arguments and an attack rela-
tion ⇀⊆ Args×Args. We also use ArgsA and ⇀A to denote the arguments
and attack relation of a given AF A.

We say that argument a attacks argument b iff (a,b) ∈ ⇀ and we
write it as a⇀ b. An AF is a directed graph in which the arguments
are represented as nodes and the attack relation is represented as
arrows.

Sometimes we are interested in an argumentation framework re-
stricted to the set of arguments.

Definition 2. Let A = (Args,⇀) be an AF and Ar ⊂ Args. The restriction
of A to Ar is a framework A�Ar = (Args∩Ar,⇀ ∩Ar2).

2.2 semantics

The major question in abstract argumentation is which arguments to
accept given an AF encoding all the conflicts between them. It can be
defined in several ways including extensions, labellings and dialogue
games. We describe the first two here. The last one will be given in
Chapter 6.

2.2.1 Extension-based Semantics

In essence, extension-based semantics is a function which for each AF
returns a set of extensions. An extension is a set of arguments which
can be accepted at the same time.

Definition 3. An extension-based semantics is a function Sem assigning
to each AF A a set of extensions Sem(A) ⊆ 2Args.

The most common criteria for defining semantics are conflict-freeness
and defence.

Definition 4 (conflict-free / defence).

15
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Let A = (Args,⇀) be an argumentation framework, a ∈ Args and
Ar ⊆ Args. We define

a+
def
= {b ∈ Args | a ⇀ b},

a−
def
= {b ∈ Args | b ⇀ a}.

We extend this definitions to the set of arguments Ar

Ar+ def
= {b ∈ Args | a ⇀ b for some a ∈ Ar},

Ar− def
= {b ∈ Args | b ⇀ a for some a ∈ Ar}.

Ar is conflict-free iff Ar ∩ Ar+ = ∅. Ar defends an argument a iff
a− ⊆ Ar+. We define function FA : 2Args → 2Args as

FA(Ar) = {a ∈ Args | a is defended by Ar}.

When only one argumentation framework is concerned, F is used
as the shortening of FA.

Definition 5 (acceptability semantics). Let (Args,⇀) be an argumenta-
tion framework. A conflict-free set Ar ⊆ Args is called

- an admissible set iff Ar ⊆ F(Ar).

- a complete extension iff Ar = F(Ar).

- a grounded extension iff Ar is a minimal complete extension.

- a preferred extension iff Ar is a maximal complete extension.

- a stable extension iff Ar is a complete extension that defeats every
argument in Args\Ar.

- a semi-stable extension iff Ar is a complete extension such that
Ar∪Ar+ is maximal.

2.2.2 Labelling-based Semantics

In the current work, we focus on the approach of Caminada (2006a);
Caminada and Gabbay (2009) in which the semantics of abstract argu-
mentation is expressed in terms of argument labellings. The idea is to
distinguish between the arguments that one accepts (that are labelled
in), the arguments that one rejects (that are labelled out) and the ar-
guments which one abstains from having an opinion about (that are
labelled undec for “undecided”).

Definition 6. Let A = (Args,⇀) be an AF. An A-labelling is a func-
tion L : Args → {in, out, undec}. The set of all A-labellings is denoted by
Labs(A). Given Ar ⊆ Args we denote by L[Ar] the restriction of L to Ar.
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For notational purposes it is useful to define a unary “negation”
operator on the set of labels by ¬in = out, ¬out = in and ¬undec =

undec.
Since a labelling is a function, it can be represented as a set of

pairs, each consisting of an argument and a label (in, out, or undec).
In addition, if L is a (partial) labelling, then we write in(L) for {a |

L(a) = in}, out(L) for {a | L(a) = out} and undec(L) for {a | L(a) =

undec}. Since a labelling can be seen as a partition of the set of ar-
guments in the AF, we will sometimes write a labelling L as a triple
(in(L), out(L), undec(L)).

Of course a rational labelling should somehow respect the attack
relation.

Definition 7. A labelling based semantics is a function Sem assigning
to each AF A a set of labellings Sem(A) ⊆ Labs(A).

The most common example is the complete semantics.

Definition 8. Let A be an AF and L ∈ Labs(A). For all arguments
a ∈ ArgsA we say:

• a is legally in if L(a) = in and L(b) = out for all b ∈ ArgsA such
that b⇀A a,

• a is legally out if L(a) = out and L(b) = in for some b ∈ ArgsA
such that b⇀A a,

• a is legally undec if L(a) = undec and there is no b ∈ ArgsA such
that b⇀A a and L(b) = in, and there exists c ∈ ArgsA s.t. c⇀A a

and L(c) = undec.

Arguments which are labelled in, out, undec but are not legally in, out, undec
we call illegally in, out, undec respectively.

Definition 9. Let A be an AF and L ∈ Labs(A). L is

- an admissible labelling iff it has no illegally in and no illegally out

arguments.

- a complete labelling iff it has no illegally in and no illegally out

and no illegally undec arguments. We denote the set of complete A-
labellings by Comp(A).

- a grounded labelling iff L is a complete labelling with minimal
in(L).

- a preferred labelling iff L is a complete labelling with maximal in(L).

- a stable labelling iff L is a complete labelling with undec(L) = ∅.

- a semi-stable labelling iff L is a complete labelling such that in(L)∪
out(L) is maximal.
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Note that complete semantics is used as a basic criterion for other
semantics. We call a semantics complete-based if its labellings are com-
plete. The grounded, preferred, stable and semi-stable semantics as
well as the complete semantics itself are complete-based.

As stated in Caminada (2006a); Caminada and Gabbay (2009), com-
plete labellings coincide with complete extensions in the sense of
Dung (1995). Moreover, the relationship between them is one-to-one.
In essence, a complete extension is simply the in-labelled part of a
complete labelling Caminada (2006a); Caminada and Gabbay (2009).
Based on that, the correspondence between grounded, preferred, sta-
ble and semi-stable labellings and extensions is straightforward.

The set of complete A-labellings is non-empty and usually contains
more then one labelling.

In the rest of this work we identify rational A-labellings with com-
plete A-labellings. This is because they form the basis for other se-
mantics such as preferred, stable, semi-stable, etc (see Caminada and
Gabbay (2009)). This choice is also in line with other works on aggre-
gation in argumentation Booth et al. (2014); Caminada and Pigozzi
(2011); Rahwan and Tohmé (2010). However, the results which do not
depend on any particular semantics will assume some fixed Sem.

abcde abcde abcde

L1 : oioio L4 : uuoio N1 : uuouu

L2 : oiooi L5 : uuuoi N2 : iouoi

L3 : oiouu L6 : uuuuu N3 : uuioi

Figure 4: An argumentation framework with all its complete labellings
(L1-L6), and three other labellings (N1-N3).

Example 10. Figure 4 depicts argumentation framework A and its labellings.
We represent labellings by a string of letters i, u and o corresponding to
in, undec and out respectively. AF A has 6 complete labellings L1-L6. Be-
tween them labelling L6 is a grounded labelling and ∅ is a corresponding
grounded extension. The labellings L1 and L2 are stable, preferred and semi-
stable. The sets {b,d} and {b, e} are the corresponding extensions.

The labellings N1-N3 are not complete because the argument c is respec-
tively illegally out, illegally undec and illegally in.
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Q U A N T I F Y I N G D I S A G R E E M E N T B E T W E E N
L A B E L L I N G S : P O S T U L AT E S

3.1 introduction

Given a conflicting logical theory, an agent is faced with the problem
of deciding what it could reasonably believe. The presence of multi-
ple reasonable positions raises a fundamental question: how different
are two given evaluations of a conflicting logical theory? We attempt to
answer this question in the context of abstract argumentation theory.

This question is relevant to two fundamental problems. The first
problem is argument-based belief revision. Suppose a diplomat receives
instructions to switch his position on one particular argument. To
maintain a consistent viewpoint, the diplomat must revise his evalua-
tion of other related arguments. Faced with multiple possibilities, the
diplomat may wish to choose the one that differs the least from his
initial position (e.g. to maintain credibility).

The issue of distance is also relevant to the problem of judgement
aggregation over how a given set of arguments should be evaluated col-
lectively by a group of agents with different opinions, Caminada and
Pigozzi (2011); Caminada et al. (2011); Rahwan and Tohmé (2010). For
instance it is very well possible that the members of a jury in a crim-
inal trial all share the same information on the case (and hence have
the same argumentation framework) but still have different opinions
on what the verdict should be. Hence, these differences of opinion
are consequences not of differences in the knowledge base but of the
nature of nonmonotonic reasoning, which allows for various reason-
able positions (extensions). In the context of judgement aggregation
one may examine the extent to which the collective position differs
from the various positions of the individual participants. Ideally, one
would like to have a collective position that is closest to the collection
of individual positions, for example such that the sum of its distance
to each individual position is minimal.

In this chapter, we examine a number of possible candidates for
measuring the distance between different labellings (evaluations) of
an argumentation graph. Our work advances the state-of-the-art in
argument-based reasoning in three ways: firstly we provide the first
systematic investigation of quantifying the distance between two eval-
uations of an argument graph; secondly We examine a number of
intuitive measures and show that they fail to satisfy basic desirable
postulates; finally we come up with a measure that satisfies them all.
In addition to providing many answers, our work also raises many

19
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interesting questions to the community at the intersection between
argumentation and social choice.

3.2 distance between labellings

The problem we are addressing is the following:

Given an AF A, and given two Sem-labellings S (the source
labelling) and T (the target labelling) over A, how can we
quantify the distance from S to T , denoted d(S, T)?

Of course we do not just want a method which applies to only one
AF, we want a method to be able to do this for any given A.

Definition 11. Let A be an AF and Sem some fixed semantics. A Sem-
labelling distance measure (for AF A) is a function dA : Sem(A) ×
Sem(A) → R. A Sem-labelling distance method d is a function that
associates a distance measure dA to each AF A.

Sometimes we will leave out Sem from Sem-labelling distance method
and write simply labelling distance method instead but we always as-
sume for each AF, a designated set of labellings, which represent
agents’ reasonable positions, returned by some semantics Sem. In
Chapter 5 we consider the case which requires us to extend our dis-
tances to the set of all labellings, therefore we define it as such already
here. It is possible that such extension can be different for different
semantics. In fact we deem it desirable to include the information
contained in the semantics into definition of the distance methods.

In the rest of this chapter we identify different properties, which
should be satisfied by labelling distance methods solving the problem
stated above. In the next chapter we analyse the family of product dis-
tance methods and identify the criteria under which proposed prop-
erties hold. Finally, in Chapter 5 we apply such constructed distances
to the problem of judgement aggregation.

3.3 postulates for distance methods

We split the proposed postulates in four different groups. Group I
and II contain postulates for distance measure rather than distance
method. We assume universal quantification i.e. distance method d
satisfy (x) if and only if distance measure dA assigned by d satisfy (x)
for all AFs A. Since A is fixed in these groups we will skip index and
write d instead of dA. Group III and IV contain postulates of distance
methods relating distance measures assigned to different AFs (and
properly indexed).
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3.3.1 Group I - Metric Postulates

In mathematics, when formalising the notion of distance it is common
to require that d be a metric.

Definition 12. A metric on a set X is a function d : X× X → R+ such
that for all x,y, z ∈ X:

(REF) d(x, x) = 0 (Reflexivity)

(DD) if d(x,y) > 0 then x 6= y, (Dissimilarity of the Diverse)

(SYM) d(x,y) = d(y, x), (Symmetry)

(TRI) d(x, z) 6 d(x,y) + d(y, z). (Triangle inequality)

If d satisfies all the above except, possibly, (DD), then it is called a
pseudo-metric. If it satisfies all except, possibly, (TRI) then it is a semi-
metric.

It can be discussed if distance between agents’ positions should
be a metric. Especially symmetry and triangle inequality can be ques-
tioned. For example, regarding symmetry convincing a sceptical agent
to accept or reject an argument can be much harder than raising his
doubts. It is not clear how to interpret triangle inequality, which is
a spacial property, in case of labelling. Nevertheless we investigate
those properties as an important reference without claiming that they
should be satisfied.

On the other hand, the above conditions can be easily satisfied. One
could possibly take discrete metric

DM(x,y) =

0 x = y,

1 x 6= y

which works for any set of elements. Obviously we are interested in
something more specific to the set of labellings, structure of AF and
used semantics.

3.3.2 Group II - Intuition-based Postulates

Someone who agrees that discrete metric is not enough should be able
to answer the following question. For which labellings S, T1, T2 we
would like to have d(S, T1) < d(S, T2)? In this subsection we formalise
two intuitions such an answer can be based on. Let us start with an
example.

Imagine a problem described by the AF A in Figure 5 with Sem =

Comp and an agent switching its position represented by labelling
L1 to the position represented by labelling L3. Now consider the la-
belling L2. In this situation it may seem reasonable to have d(L1,L2) <
d(L1,L3) for two reasons:
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abcd abcd

L1 : ioio L4 : iouu

L2 : iooi L5 : uuuu

L3 : oioi L6 : uuoi

Figure 5: An argumentation framework with all its six complete labellings.

change Agent updates evaluation of all the four arguments. The
position represented by L2 looks like a middle step in which
agent has already changed his opinion about arguments c,d but
still has not revised arguments a,b. Since L2 is between L1 and
L3 changing from L1 to L3 requires two steps when changing
from L1 to L2 requires just the first one. Although steps can be
of a different sizes we concentrate here on the process. Agent
changes its position as a whole and what matters are the po-
sitions it needs to pass ’on the way’ which depend on the set
of feasible labellings. This set in turn may differ for different
semantics and/or AFs.

disagreement The disagreement between L1 and L2 consist of two
arguments c,d while the disagreement between L1 and L3 con-
sists of four arguments a,b, c,d. The second one strictly con-
tains the first one therefore is bigger. We define here what is
the disagreement between two labellings and try to quantify its
size. The disagreement depends solely on the labellings.

We investigate both intuitions, which are slightly different and con-
nect with different expectations, and later on give our proposal for
some concrete definitions.

For now, assume one can distinguish some labellings as being be-
tween the others and define it as a ternary relation. Let us denote the
fact that labelling L2 is between labellings L1 and L3 by L1 . L2 / L3.
If moreover L2 6= L1 and L2 6= L3 we will write L1 . .L2 / L3 and
L1 . L2 / /L3 respectively. Regardless of the particular choice of be-
tweenness relation ., the following might seem to be a reasonable
requirement on a distance function d:

(BTM.) If L1 . L2 / /L3 then d(L1,L2) < d(L1,L3)

(Betweenness monotonicity)

The above postulate is saying that if the labelling L2 is strictly be-
tween labellings L1 and L3, then the distance between labellings L1
and L3 should be strictly bigger than the distance between labellings
L1 and L2.

Similarly, assume one can define disagreement between labellings
	 and partially order it. Let us denote the fact that the disagreement
between labellings L1 and L2 is smaller than or equal to the dis-
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agreement between labellings L3 and L4 by (L1 	 L2) ⊆ (L3 	 L4).
For instance in the above example the qualitative distance is sim-
ply the set of differently labelled arguments ordered by set inclusion
({c,d} ⊆ {a,b, c,d}). Again, regardless of the particular choice of qual-
itative distance 	, it might seem to be a reasonable requirement on a
distance function d to respect this partial order.

(QDA	) If (L1 	 L2) ⊆ (L3 	 L4) then d(L1,L2) 6 d(L3,L4)

(Qualitative Distance Alignment)

(SQDA	) If (L1 	 L2) ⊂ (L3 	 L4) then d(L1,L2) < d(L3,L4)

(Strict Qualitative Distance Alignment)

(QDA) implies that the distance between the labellings with the
same qualitative distance needs to be the same.

(EQDA	) If (L1 	 L2) = (L3 	 L4) then d(L1,L2) = d(L3,L4)

(SQDA) postulates strict increase in qualitative distance should en-
tail strict increase in quantitative distance.

In the rest of the subsection we will propose two concrete between-
ness relation and two qualitative distances, and study the link be-
tween them.

Examples of Betweenness

Definition 13 (Simple Betweenness). Let A be an AF. We define simple
betweenness relation for any L1,L2,L3 ∈ Labs(A) as follows

L1 . L2 / L3 iff ∀a ∈ ArgsA (L2(a) = L1(a)∨ L2(a) = L3(a)) .

L1 . L2 / L3 means that L2 labels every argument either the same
as L1 or the same as L3. In other words if agent switches from the
labelling L1 into L3 every argument that L2 labels differently from L1,
is labelled equally differently by L3. Thus L3 differs from L1 at least
as much as L2 does.

We can check that for AF A from Figure 5 we have L1 . L2 / L3.
We can also check that we do not have L1 . L4 / L2. Is this latter one
natural? It may seem unnatural because one may see undec label as a
value between in and out. If we commit to this special status of undec
label we shall refine the previous betweenness relation as follows.

Definition 14 (Refined Betweenness). Let A be an AF. We define refined
betweenness relation for any L1,L2,L3 ∈ Labs(A) as follows

L1 I L2 J L3 iff ∀a ∈ ArgsA

(
L2(a) = L1(a)∨ L2(a) = L3(a)

∨[L2(a) = undec∧ L1(a) 6= L3(a)]

)
.

L1 I L2 J L3 is merely expressing that, for all a ∈ Args, L2(a) lies
on a path between L1(a) and L3(a), assuming the natural neighbour-
hood graph in− undec− out over the labels.
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The above betweenness relations lead to the two versions of be-
tweenness monotonicity postulate - (BTM.) and (BTMI). In our pre-
vious work we studied them as two separate postulates Disagreement
monotonicity and Betweenness monotonicity respectively, Booth et al.
(2012).

We finish by an observation.

Observation 15. Since any labellings which are between as defined by sim-
ple betweenness are also between as defined by refined betweenness, it holds
that (BTMI) implies (BTM.).

Examples of Qualitative Distances

To define notion of qualitative distance it is useful to define types of
conflicts.

Definition 16 (Types of conflict). Let A be an AF. For any L1,L2 ∈ Labs(A)

we define the following sets:

conflicts C(L1,L2) = {a ∈ ArgsA | L1(a) 6= L2(a)},

hard conflicts H(L1,L2) = {a ∈ ArgsA | L1(a) = ¬L2(a) 6= undec},

soft conflicts S(L1,L2) = C(L1,L2) \H(L1,L2).

We call members of those sets conflicts, hard conflicts and soft conflicts
between labellings L1 and L2. For a ∈ C(L1,L2) (respectively H(L1,L2)
and S(L1,L2)) we say also there is a conflict (respectively hard conflict and
soft conflict) on argument a (between labellings L1 and L2).

Note that by definition the set of conflicts C(L1,L2) is partitioned
into soft and hard conflicts.

We define two types of qualitative distance.

Definition 17 (Hamming set, Refined Hamming pair). Let L1,L2 be
two labellings. We define two qualitative distances:

hamming set (L1	HSL2) = C(L1,L2),

refined hamming pair (L1	RHPL2) = (C(L1,L2),H(L1,L2)),

with the natural order given by set inclusion with the bottom element ∅
(Hamming Set) and set inclusion extended to pairs in the following way
(A,B) ⊆ (X, Y) iff A ⊆ X and B ⊆ Y and (A,B) ( (X, Y) iff (A,B) ⊆
(X, Y) and A ( X or B ( Y, with the bottom element (∅, ∅) (Refined Ham-
ming Pair).

The Hamming Set defines disagreement between two labellings as
a set of arguments which are labelled differently. The Refined Ham-
ming pair additionally distinguishes hard and soft conflicts and im-
poses that hard conflict is stronger than soft conflict.
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a

b

c

d

Figure 6: Two pairs of mutually attacking arguments

The two qualitative distances leads to the postulates (QDA	) and
(SQDA	) in two variants. What is the relation between those vari-
ants? Let us investigate the partial orderings between Labs(A)2 in-
duced by partial ordering between qualitative distances. The partial
order induced by Hamming set extends the one induced by Refined
Hamming Pair, i.e., (L1	RHPL2) ⊆ (L3	RHPL4) implies (L1	HSL2) ⊆
(L3	HSL4). It is because Hamming set compares just the sets of con-
flicting arguments while Refined Hamming Pair compares addition-
ally sets of hard conflicts. It means that the scope of (QDA	HS

) is big-
ger than (QDA	RHP

) and therefore (QDA	HS
) implies (QDA	RHP

).

Proposition 18. Any distance method d which satisfies (QDA	HS
), satis-

fies (QDA	RHP
).

Proof. It follows from the fact that (L1	RHPL2) ⊆ (L3	RHPL4) im-
plies (L1	HSL2) ⊆ (L3	HSL4) for all labellings L1, ...,L4.

The following example shows that neither (SQDA	HS
) implies

(SQDA	RHP
) nor the reverse. Moreover (SQDA	RHP

) is incompatible
with (QDA	HS

).

Example 19. Let A = ({a,b, c,d}, {(a,b), (b,a), (c,d), (d, c)}) containing
two pairs of mutually attacking arguments depicted in Figure 6. Consider
complete labellings L1 : ioio, L2 : oiio, L3 : uuuu, L4 : oiuu.

First notice that (L1	HSL2) = {a,b} ( {a,b, c,d} = (L1	HSL3) but
(L1	RHPL2) = ({a,b}, {a,b}) * ({a,b, c,d}, ∅) = (L1	HPL3). In this
case the set of conflicting arguments increased but ’strength’ of the conflict
decreased which makes it incomparable when Refined Hamming Pair is used
but it is comparable when Hamming set, which ignores the ’strength’ of the
conflict, is used. Hence, in this case, satisfaction of (SQDA	HS

) forces any
distance method d to increase but satisfaction of (SQDA	RHP

) does not pose
this restriction.

Second notice that (L1	RHPL3) = ({a,b, c,d}, ∅) ( ({a,b, c,d}, {a,b}) =
(L1	RHPL4) but (L1	HSL3) = {a,b, c,d} = (L1	HSL4). In this case a
set of conflicting arguments stays the same but ’strength’ of the conflict in-
creases. In this case satisfaction of (SQDA	RHP

) forces any distance method
d to increase, but satisfaction of (SQDA	HS

) allows also to stay the same.
Moreover satisfaction of (QDA	HS

) forces d to stay the same which cannot
be at the same time.
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We switch now to the question what is the relation between dif-
ferent variants of Betweenness monotonicity and Strict Qualitative
Distance Alignment.

Lemma 20. Any distance method d which satisfies (SQDA	HS
) satisfies

(BTM.). Any distance method d which satisfies (SQDA	RHP
) satisfies

(BTMI) (and hence (BTM.) Observation 15).

Proof. It follows from the fact that L1 . L2 / /L3 and L1 I L2 JJ L3
implies (L1	HSL2) ⊂ (L1	HSL3) and (L1	RHPL2) ⊂ (L1	RHPL3)

respectively.
Indeed, consider a ∈ (L1	HSL2) then L1(a) 6= L2(a) and by def-

inition of . we have L2(a) = L3(a) so L1(a) 6= L3(a) and so a ∈
(L1	HSL3). It cannot be the case (L1	HSL2) = (L1	HSL3) since
L2 6= L3.

Similarly, consider a ∈ H(L1,L2), then L1(a) 6= L2(a) and L2(a) 6=
undec. By definition of I we have L2(a) = L3(a) so a ∈ H(L1,L3).
Now, consider a ∈ S(L1,L2), then L1(a) 6= L2(a) and one of the two
cases holds:

case 1 : L1(a) = undec, L2(a) 6= undec

Then L2(a) = L3(a) and a ∈ S(L1 , L3).

case 2 : L1(a) 6= undec, L2(a) = undec

Then L1(a) 6= L3(a) so a ∈ S(L1 , L3) (and possibly also a ∈
H(L1 , L3)).

It cannot be the case (L1	RHPL2) = (L1	RHPL3) since L2 6= L3 .

We should note that (BTMI) is not implied by (SQDA	HS
). Con-

sider a 2-loop. we have io I uu JJ oi so (BTMI) requires
d(io, uu) < d(io, oi) which is not required by (SQDA	HS

) since
(io	HSuu) = (io	HSoi).

The above Lemma 20 shows that (SQDA) is at least as strong as
the corresponding (BTM). In fact it is strictly stronger because of two
important differences.

First, Betweenness Monotonicity talks about the distance of two
target labellings from a common source labelling, while Qualitative
Distance Alignment constrains distances between pairs of different
labellings. This difference will be exploited in Example 64 in the next
chapter.

Second, for any three labellings L1 , L2 , L3 we have that
L1 . L2 / /L3 (respectively L1 I L2 JJ L3) implies (L1	HPL2) (
(L1	HPL3) (respectively (L1	RHPL2) ( (L1	RHPL3)) (the proof
of the Lemma 20 is based on that fact) but the reverse is not true
which is illustrated in the following example.

Example 21. Let us recall the framework from Example 19 consisting of
two pairs of mutually attacking arguments depicted in Figure 6.



3.3 postulates for distance methods 27

a

b c d

y

x

Figure 7: AF with two independent parts.

Consider complete labellings L1 : uuoi, L2 : oioi, L3 : ioio. We have
(L1 	 L2) ( (L1 	 L3) for 	 ∈ {	HS , 	RHP }. Therefore, both versions
of (SQDA) require d(L1 , L2) < d(L1 , L3) which is not required by either
of (BTM) postulates because it is not the case that L1 I L2 JJ L3 and
hence also not L1 . L2 / /L3 .

We finish this subsection with an observation linking the postulates
from this subsection with the metric postulates from the previous
subsection.

Observation 22. Any variant of (SQDA), (BTM) considered in this sub-
section together with (REF) implies (DD).

This is because for any labellings L1,L2,L3, L1 6= L2 it holds that
L1 . L1 / /L2 and (L1 	 L1) ( (L2 	 L3).

3.3.3 Group III - Compositionality Postulates

In the previous subsection we proposed the postulates of distance
measure expressing some possible intuitions that particular distances
should be bigger than other. They rule out some simple metrics like
discrete metric. Another motivation for using more sophisticated mea-
sures is provided by postulates of distance method formulated in this
subsection. The idea is that for AFs composed from two independent
parts, the distance between the labellings of the whole should be de-
termined by the distances between corresponding labellings of the
parts. We will consider here taking sum of the distances (although
max or weighted sum is another possibility) and restriction of the
labelling to the part. What we need is to specify the independence
relations. Let us start with an example explaining that idea.

Example 23. Consider argumentation framework A depicted in Figure 7
(A =

{
{a,b, c,d, x,y}, {(a,b)(b,a)(a, c)(a,d), (x,y), (y, x)}

}
). It can be

divided into two independent parts A2 =
{
{x,y}, {(x,y), (y, x)}

}
and A1 ={

{a,b, c,d}, {(a,b)(b,a)(a, c)(a,d)}
}

. We consider them independent for
two reasons. One, considering AF structure, A1 and A2 are two discon-
nected components of A. Two, taking the complete labellings as the set of fea-
sible labellings, any labelling L ∈ Comp(A) can be decomposed into union
of L1 ∪ L2 where L1 ∈ Comp(A1),L2 ∈ Comp(A2).Furthermore any union
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L1 ∪ L2 forms a labelling of A. Therefore we can expect dA(L1 ∪ L2,L3 ∪
L4) = dA1

(L1,L3) + dA2
(L2,L4).

First, we define a partition into independent sets of arguments.

Definition 24 (Independent partition). Let A = (Args,⇀) be an AF and
A1,A2 a partition of its arguments, i.e. A1 ∪A2 = Args,A1 ∩A2 = ∅. The
partition A1,A2 is:

syntactically independent iff A+
1 ∩A2 = A1 ∩A+

2 = ∅,

semantically independent under semantics Sem iff
Sem(A) = Sem(A�A1

)⊗ Sem(A�A2
),

where ⊗ is defined for any two sets of labellings Labs1,Labs2 with disjoint
domains as follows

Labs1 ⊗ Labs2 = {L1 ∪ L2 | L1 ∈ Labs1,L2 ∈ Labs2}.

The syntactic independence is defined purely by graph topology
while the semantics independence is defined for a specific semantics.
In general the following principle holds for the semantics we consider
in this thesis:

Definition 25 (Independence principle). The labelling based semantics
Sem satisfies the independence principle if and only if syntactic indepen-
dence implies semantics independence under semantics Sem.

Draft. We check the implication for the main semantics. (admissi-
ble / complete) From syntactic independence follows that arguments
neighbourhoods are preserved. It means that conflict free arguments
stay conflict free and legally labelled arguments stay legal. (stable)
Additionally, if there are no undec labelled arguments in the whole
then there are no undec labelled arguments in the parts and vice versa.
(preferred / semi-stable and other set minimisation / maximisation
semantics) Proof by contradiction, assume the set is not maximal
and show it leads to the labelling that is not maximal in the part /
whole.

Note that Independence principle is independent from Directional-
ity principle, Baroni et al. (2011). Independence is not stronger since
we have just shown that stable semantics satisfy it, while it does
not satisfy Directionality. It is also not weaker what can be seen
in the following ’synthetic’ example. Let A1,A2 syntactically inde-
pendent partition of A and semantic Sem such that Sem(A�A1

) =

{L11,L12}, Sem(A�A2
) = {L21,L22}, Sem(A) = {L11 ∪ L21,L12 ∪ L21,L12 ∪ L22}. We

have Sem(A�A1
) = Sem(A)[A1] and Sem(A�A2

) = Sem(A)[A2], there-
fore Sem satisfy Directionality principle, but doesn’t satisfy Indepen-
dence.

Semantics independence under semantics Sem usually doesn’t im-
ply syntactic independence as seen in the Example 26.
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Figure 8: AF with semantically but not syntactically independent partition

Example 26. Consider argumentation framework A depicted in Figure 8
(A = ({a,b, x,y}, {(a,b), (b,a), (b,b), (b, x), (x, x), (x,y), (y, x)})). For the
partition of arguments into A = {a,b} and B = {x,y} we have CompA =

CompA�A ⊗ CompA�B but A�A and A�B are not the disconnected com-
ponents of A therefore A,B are semantically independent under complete
semantics (and more generally under complete based semantics) but are not
syntactically independent.

The two types of independence lead to the following two postulates.

(COM) if A,B is a syntactically independent partition of A then

dA(L1,L2) = dA�A(L1[A],L2[A]) + dA�B(L1[B],L2[B]).

(Syntactic Compositionality)

(COMSem) if A, B is semantically independent partition of A

under semantics Sem then

dA(L1,L2) = dA�A(L1[A],L2[A]) + dA�B(L1[B],L2[B]).

(Semantic Compositionality)

The first postulate, although it doesn’t mention any particular se-
mantics, requires that Sem(A)[A] ⊆ Sem(A�A). This is a weaker con-
dition than the non-interference, Baroni et al. (2011) which requires
that Sem(A)[A] = Sem(A�A). Our condition holds even for the stable
semantics, the only semantics among popular semantics considered
by Baroni et al. which fails non-interference.

Since all semantics we are interested in satisfy independence, the
second postulate implies the first one. In the next subsection we intro-
duce (LABSem) postulate and prove (Lemma 33) that for all distance
methods satisfying (LABSem) both postulates are equivalent.
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3.3.4 Group IV - Equivalence Postulates

The postulates in the two previous subsections describes the cases
when distance between labellings should differ. The postulates in this
subsection set some limits to that. As in the previous subsection the
postulates in this subsection relate distance between labellings over
different argumentation frameworks, so are again a properties of the
distance method, i.e., the mapping A 7→ dA (Definition 11).

The next distance properties we propose come from symmetry con-
siderations. The idea is that applying the distance measure over AFs
which are in some sense equivalent should yield equivalent results.
In the context of argumentation semantics, such a property has been
referred to as the language independence principle by Baroni and Gi-
acomin (2007). We are interested in describing a similar property in
the context of distance measures.

We begin with the common idea of graph-isomorphism, applied to
argumentation frameworks.

Definition 27. Let A1 = (Args1,⇀1) and A2 = (Args2,⇀2) be two AFs.
An isomorphism from A1 to A2 is any bijection g : Args1 → Args2 such
that, for all a,b ∈ Args1, a ⇀1 b iff g(a) ⇀2 g(b). In the special case
when A1 = A2 we call g an automorphism.

So basically an isomorphism just changes the names of arguments
– or in the case of automorphism permutes them – while preserving
the attack structure. Of course if g is an isomorphism from A1 to A2

then g−1 is an isomorphism from A2 to A1.
Any function (not just isomorphism) between arguments corresponds

to a function between labellings.

Definition 28 (Pullback labelling). Let A1 = (Args1,⇀1) and A2 =

(Args2,⇀2) be two AFs. For any mapping between the arguments
f : Args1 → Args2 we define pullback mapping between labellings
f : Labs(A2)→ Labs(A1) given by formula [f(L)](a) = L(f(a)).

If g is an isomorphism from A1 to A2 then we will abuse the nota-
tion extending g to the set of labellings writing g instead of g−1.

The following property says that the distance should be the same
for isomorphic AFs. This is in line with the intuition that an argu-
ment is characterised completely by its interactions with the other
arguments.

(ISO) If g is an isomorphism from A1 to A2 then

dA1
(S, T) = dA2

(g(S),g(T))

In the case of automorphism we get the special case:

(AUTO) If g is an automorphism on A then

dA(S, T) = dA(g(S),g(T))
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All known semantics satisfy the language independence principle
Baroni et al. (2011) which can be reformulated as follows:

Definition 29 (Language Independence). Let g be an isomorphism from
A1 to A2. The semantics Sem satisfies language independence iff
g(Sem(A1)) = Sem(A2).

The other way to define equivalence is in terms of labellings.

Definition 30. Two AFs A1,A2 are labelling equivalent (under seman-
tics Sem) via bijection g : ArgsA1

→ ArgsA2
if g extended to the set of

labellings is a bijection between Sem(A1) and Sem(A2).

A1 and A2 are labelling equivalent under Sem means essentially
that they have the same set of Sem-labellings (up to possibly some
renaming of the arguments).

Example 31. Consider A1 = ({a,b, c}, {(a,b), (b, c), (b,a)}) and A2 =

({a,b, c}, {(a,b), (b, c), (c,b), (b,a)}). Complete semantics prescribes to them
the same set of labellings Comp(A1) = {ioi, uuu, oio} = Comp(A2) there-
fore they are labelling equivalent under Comp (via identity) but they are not
isomorphic.

The following property says that the distance should be the same
for AFs with the same set of labellings.

(LABSem) If AFs Args1, Args2 are labelling equivalent via g

(under semantics Sem) then

dA1
(S, T) = dA2

(g(S),g(T)) (Labelling Equivalence)

Example 32. Consider labelling equivalent under Comp A1 and A2 from
the previous example. Any distance method d satisfying (LABComp) needs to
put dA1

= dA2
, e. g., we need dA1

(ioi, uuu) = dA2
(id(ioi), id(uuu)) =

dA2
(ioi, uuu).

Note that for any semantics Sem which satisfies language inde-
pendence, isomorphic AFs are also labelling equivalent, therefore for
such semantics (LabSem) implies (ISO).

This postulate requires distance method to compute distance mea-
sure for a particular AF based only on the set of feasible labellings. In
particular a distance method satisfying (LabSem) ignores information
about the structure of AF which was not extracted by a semantics.
Under this condition the two compositionality postulates from the
previous subsection are equivalent.

Proposition 33. Let d be a distance method satisfying (LABSem) under the
semantics Sem which satisfies independence. Then d satisfies (COM) iff d
satisfies (COMSem).
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Figure 9: 2-loop A1 and its extension A2 with peripheral issues c,d, e

Proof. Since (COMSem) is stronger for semantics Sem which satisfies
independence, we only need to show that (COM) implies (COMSem).
Let A be such that there exists semantically independent partition
A,B of ArgsA, i.e., Sem(A) = Sem(A�A)⊗ Sem(A�B). Since our seman-
tics satisfies independence, Sem(A�A)⊗ Sem(A�B) = Sem(A�A ∪A�B).
Since d satisfies (LABSem), dA = dA�A∪A�B and because d satisfies
(COM), dA�A∪A�B = dA�A + dA�B .

We finish this subsection, by one postulate that will play an impor-
tant role in Chapter 5 where we show that judgement aggregation
based on a distance methods which fail that postulate is prone to
agenda manipulation.

It is specific for the complete-based semantics only, i.e. semantics
Sem which for all AFs A return complete labellings (Sem(A) ⊆ Comp(A)),
e.g. preferred, stable, semi-stable semantics.

Let A = (Args,⇀) be an arbitrary AF and let A+ be any frame-
work obtained from A by adding a single new argument b 6∈ Args
along with a single attack a ⇀ b from some a ∈ Args. Then for any
two complete labellings S, T over the expanded AF A+ the following
should hold for any distance method:

(IPI) dA+(S, T) = dA(S[Args], T [Args]).

(Indifference to peripheral issues)

Here, in the right-hand side, S[Args] denotes S restricted to the argu-
ments in Args, i.e., ignoring b (and similarly for T [Args]). It is easy
to check that S[Args], T [Args] ∈ Sem(A). The property essentially says
that adding a ⇀ b to A should not make any difference to the dis-
tance, intuitively because the label of b is in any case determined by
that of a, and so the introduction of b does not change the situation.

Example 34. Consider AF A1 = ({a,b}, {(a,b), (b,a)}) and A2 =

({a,b, c,d, e}, {(a,b), (b,a), (b, c), (c,d), (d, e)}), which is a result of three
expansions of A1, depicted in Figure 9. We have the following complete la-
bellings Comp(A1) = {L1 : io,L2 : uu,L3 : oi} and Comp(A2) =

{L ′1 : ioioi,L ′2 : uuuuu,L ′3 : oioio}. Despite the fact that A2 has three more
arguments than A1 ’behaviour’ of both boils down to a,b loop. Any dis-
tance methods satisfying (IPI) (used 3 times) needs to put dA1

(Li,Lj) =

dA2
(L ′i,L

′
j) for i, j = 1..3.

(IPI) can be considered as equivalence-based postulate stating that
since any AF A and its extension A+ are in a sense Sem-equivalent
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Metric Postulates

(REF) Reflexivity

(DD) Dissimilarity of the Diverse

(SYM) Symmetry

(TRI) Triangle inequality

Intuition-based Postulates

(BTW.) Simple Betweenness Monotonicity

(BTWI) Refined Betweenness Monotonicity

(QDA	HS
) Qualitative Distance Alignment by Hamming Set

(SQDA	HS
) Strict Qualitative Distance Alignment by Hamming Set

(QDA	RHP
) Qualitative Distance Alignment by Refined Hamming Pair

(SQDA	RHP
) Strict Qualitative Distance Alignment by Refined Hamming Pair

Compositionality Postulates

(COM) Syntactic Compositionality

(COMSem) Semantic Compositionality (under semantics Sem)

Equivalence Postulates

(AUTO) Automorphism Equivalence

(ISO) Isomorphism Equivalence

(LABSem) Labelling Equivalence (under semantics Sem)

(IPI) Indifference to peripheral issues

Table 1: The overview of the postulates

with the bijection between labellings assigning to L ∈ Sem(A+) its
restriction L[Args] ∈ Sem(A) therefore the distances between the cor-
responding labellings should be the same.

3.4 summary

In this chapter we proposed several postulates of distance measures
(metric postulates, betweenness and qualitative distance) and distance
methods (compositionality and equivalence postulates).

Simple discrete metric satisfies metric postulates
(REF, DD, SYM,TRI), but fails betweenness (BTW., BTWI), strong
qualitative distance alignment (SQDA	HS

, SQDA	RHP
) and composi-

tionality (COM, COMSem). Those postulates give motivation for search-
ing for a more detailed measure. The equivalence postulates
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(REF)

(DD)

(SYM)

(TRI)

(BTW.) (BTWI)

(SQDA	HS
) (SQDA	RHP

)

(QDA	HS
) (QDA	RHP

)

(COM)

(COMSem)

(AUTO)

(ISO)

(LABSem)

(IPI)

Ob. 15

Lem. 20, Ex. 21

Prop. 18

Prop. 33 (1) Def. (2) Def.

Def.(3)

Figure 10: The dependencies between the postulates. 1) For d satisfying
(LABSem), 2) For Sem satisfying Independence principle, 3) For
Sem satisfying Language Independence principle.

(ISO, AUTO, LABSem, IPI) and qualitative distance alignment
(QDA	HS

, QDA	RHP
) set the limit and specify which distances should

be the same.
The betweenness postulate (BTW.) and qualitative distance postu-

lates (SQDA	, QDA	) formalise some intuition and depend on the
provided betweenness relation . and partially ordered qualitative dis-
tance 	. We proposed two concrete betweenness relations (simple .

/refined I) and two qualitative distances (hamming set 	HS and re-
fined hamming pair 	RHP).

The syntactic compositionality postulate (COM), isomorphism (ISO),
and automorphism (AUTO) postulates depend only on the struc-
ture of the AF, although syntactic compositionality puts some mild
assumptions about semantics used. The semantics compositionality
postulate (COMSem) and labelling equivalence postulate (LABSem) de-
pend on the semantics used. Although betweenness and qualitative
distance based postulates (BTW., SQDA	, QDA	) are defined for
all labellings we think they should hold for labellings designated
by the semantics used, since their motivation relay on the fact that
compared labellings represent agents’ reasonable position. It will be
important in Chapter 5 where distances between any labellings are
considered. The indifference to peripheral issues postulate (IPI) is
motivated just for complete-based semantics - the semantics we will
concentrate on in Chapter 5.

We proposed the Independence principle for semantics and we
have investigated dependencies between proposed postulates which
are depicted in Figure 10.

In the next chapter we construct some concrete distance methods
which satisfy the postulates from this chapter.
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Q U A N T I F Y I N G D I S A G R E E M E N T B E T W E E N
L A B E L L I N G S : P R O D U C T D I S TA N C E

4.1 introduction

In this chapter we investigate a class of distance methods of a specific
form. The idea is first to define a distance diff over the set {in, out, undec}
of labels and then define the distance between two A-labellings as a
sum over some set of arguments of the distances between labels as-
signed by those A-labellings to arguments from the set. Formally, all
of the distance methods will share the following form.

Definition 35. A product distance method is a distance method which
is specified by (i) a label measure diff , i.e. a function from the set of pairs
of labels {in, out, undec}2 to R and (ii) a selection function S which for
each AF A selects a subset A ⊆ ArgsA of “important” arguments in A, and
which assigns to AF A a product distance measure given by the following
equation:

d
diff
S(A)(L1,L2) =

∑
a∈S(A)

diff (L1(a),L2(a)) (1)

where L1,L2 ∈ Sem(A).

This form is a standard way to define a distance over Cartesian
product, hence the name. Each argument can be seen as separate di-
mension over which we measure a disagreement between labellings.

The question we address in this chapter is the following:

Under which conditions placed on a selection function S

and a label measure diff , does a product distance method
satisfy postulates proposed in the previous chapter?

We start from the simplest distance method and tweak the choice
of the selection function and label measure so that it satisfies all the
postulates.

35
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It turns out that the results in this chapter depend only on a few
fundamental requirements on diff :

(ref) diff (x, x) = 0

(sym) diff (x, y) = diff (y, x)

(dd) if y 6= x then diff (x, y) > 0

(dd-) diff (in, out) > 0

(tri) diff (x, z) 6 diff (x, y) + diff (y, z)

(gcs) there exists c ∈ R s.t. if y 6= x then diff (x, y) = c

(General Conflict Similarity)

(scs) diff (in, undec) = diff (out, undec) (Soft Conflict Similarity)

(hcs) diff (in, out) > max{diff (in, undec), diff (out, undec)}

(Hard Conflict Significance)

(hcs+) diff (in, out) > max{diff (in, undec), diff (out, undec)}

(Strong Hard Conflict Significance)

We can recognise the properties of the metric space (ref, sym, dd, tri)
(written here in lower case to emphasise that they are properties of la-
bel measure) and a few additional properties (gcs, scs, hcs, hcs+, dd-)
describing the relation between different types of conflict.

We will always assume diff to satisfy (ref) and (sym). We implicitly
assume it in other properties.

Note the following dependencies: (dd-) is a weakening of (dd),
(hcs+) is a strenghtening of (hcs), (gcs) implies (scs).

Note that the space of labels is small therefore diff can be given by
a few constants. If diff satisfies (sym) then it is completely specified
by three quantities: diff (in, undec), diff (in, out) and diff (out, undec).
Furthermore, if diff satisfies (scs) then it is completely specified by 2

quantities: diff (in, undec) and diff (in, out), which may respectively be
thought of as the costs attached to a soft and hard conflict. Further, if
diff satisfies (gcs) then it is described by single constant c.

The most obvious choice for a diff function is a discrete metric, i.e.
DM(x, y) = 1 if x 6= y, DM(x, y) = 0 if x = y which satisfies (ref), (dd),
(sym), (tri), (gcs), (hsc).

4.2 full sum method

The most obvious choice for S is a function returning the set of all
arguments in the framework. We will fix it for now and concentrate
only on the diff function.

Definition 36. A full sum method is a product distance method with
S(A) = ArgsA for all A.

An important member of this family is the Hamming distance
which can be obtaining by plugging the discrete metric into the full
sum method.
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Figure 11: Three possible complete labellings L1,L2 and L3

Definition 37. A Hamming distance is a full sum method with diff =

DM for all A. We will denote it Hd.

Example 38. Consider for instance the results for Figure 11, where we see
that Hd(L1,L2) = 3 = Hd(L1,L3). Thus, according to Hd, labellings L2
and L3 are equidistant from L1.

Hamming distance satisfies all the metric properties. In fact it is
due to the fact that we used discrete metric for diff . In general metric
properties of the full sum measure are inherited from the diff func-
tion.

Proposition 39. If d is a full sum distance method defined via a label mea-
sure diff then d satisfies (REF), (DD), (SYM), (TRI) if the corresponding
properties (ref), (dd), (sym), (tri) are satisfied by diff .

We will obtain proofs of the propositions in this section as a corol-
laries of more general results in the sections that follow.

Hamming distance satisfies (BTM.) but fails (BTMI).

Example 40. Consider again AF from Figure 11. We have L1 II L2 JJ L3
but Hd(L1,L2) = 3 = Hd(L1,L3).

Proposition 41. If diff satisfies (ref) and (dd) then the full sum measure
satisfies (BTM.). If diff satisfies also (hcs+) then the full sum measure
satisfies (BTMI).

Hamming distance does not satisfy (hcs+) but we can easily refine
it replacing discrete metric with the refined version:

rDM(in, out) = 2, rDM(in, undec) = rDM(out, undec) = 1.

Note rDM(x, y) may be thought of as the length of the shortest path
between x and y in the neighbourhood graph in− undec− out over
the labels. It is still a metric over set of labels. The distance obtained
by plugging rDM into the full sum measure we call the Refined Ham-
ming distance.

Definition 42. A Refined Hamming distance is a full sum method with
diff = rDM for all A. We will denote it rHd.
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Figure 12: Example showing opposite results of Hd and rHd.

Example 43. Going back to Figure 11, we have

rHd(L1,L2) = 3× rDM(in, out) = 6 and

rHd(L1,L3) = 3× rDM(in, undec) = 3,

yielding the expected rHd(L1,L3) < rHd(L1,L3).

Note that there is an incompatibility between Hd and rHd, in the
sense that there exist examples in which Hd and rHd yield opposite
conclusions regarding the relative proximity of two labellings T1, T2
to a given S. For example, consider the three complete labellings of
the AF containing three pairs of mutually attacking arguments in
Figure 12.
Here we have Hd(S, T1) = 4 < 6 = Hd(S, T2) and rHd(S, T1) = 8 >

6 = rHd(S, T2).
Until now the Refined Hamming distance satisfies all the men-

tioned properties because refined discrete metric is still a metric and
the previous results still holds. Let us investigate what happens with
(QDA) and (SQDA). In Chapter 3 we observed that (SQDA	RHP

) is
incompatible with (QDA	HS

) (Example 19). In the context of the full
sum distances, commitment to qualitative distance given by Ham-
ming set or Refined Hamming pair leads to Hamming or Refined
Hamming distance.

Proposition 44. A full sum distance method satisfies (QDA	HS
) and

(SQDA	HS
) if it is defined via diff function satisfying (dd) and (gcs).

This sufficient condition happens also to be necessary for most in-
teresting semantics as shown by the following example.

Example 45. Consider A = ({a,b, c}, {(a,b), (b,a), (b, c)}) and any se-
mantics Sem such that {ioi, oio, uuu} ⊆ Sem(A), e. g.the complete seman-
tics (See again Figure 11). Since (ioi	HSoio) = (ioi	HSuuu) =

(uuu	HSoio) = {a,b, c} for any full sum distance measure ddiff satisfy-
ing (QDA	HS

) defined via diff function satisfying (sym) the correspond-
ing distances ddiff (ioi, oio) = 3 × diff (in, out), ddiff (ioi, uuu) = 2 ×
diff (in, undec) + diff (out, undec) and ddiff (uuu, oio) = diff (in, undec) +
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2× diff (out, undec) need to be equal as well. Comparing the last two we
obtain diff (in, undec) = diff (out, undec). Using this while comparing the
first distances we obtain diff (in, out) = diff (out, undec).

The above example shows that Hamming distance (up to constant)
is the only full sum distance satisfying (QDA	HS

). Note that this is in-
compatible with (BTMI) which requires in general that diff satisfies
(hcs+).

(QDA	RHP
) is weaker than (QDA	HS

) and leaves a bit more space
for diff .

Proposition 46. A full sum distance method d satisfies (QDA	RHP
) if it

is defined via diff function satisfying (dd), (scs) and (hcs). If diff function
satisfies also (hcs+) then d satisfies (SQDA	RHP

).

The above result shows that Refined Hamming distance (up to con-
stants attached to hard and soft conflict) is the only full sum distance
satisfying (SQDA	RHP

).
The above results pin down the conditions imposed by the Intuition-

based postulates on full sum distance. We will see that they carry
over to a more general family of product distance methods. On one
hand they may not seem surprising, because restrictions follow the
strengthening of the postulates observed in the previous chapter. On
the other hand it is good to be aware how strong they are.

Let us now investigate how does full sum distances behave with
regards to Compositionality and Equivalence postulates?

Proposition 47. Every full sum distance method satisfies (LABSem) (hence
(ISO) and (AUTO)) and (COMSem).

(LABSem) and (COMSem) put no constraints on the choice of diff
function. However a big problem with full sum methods is that they
fail to satisfy (IPI), as the following example (for the case of Hd)
shows.

Example 48. Again consider AF in Figure 11. This is an extension of the
AF without argument c. Any distance measure satisfying (IPI) should put
d(io,oi) = d(ioi,oio) but we have 2 = Hd(io,oi) 6= Hd(ioi,oio) = 3.

The above example works not only for Hamming distance. In fact
any full sum distance method defined via diff function satisfying (dd-)
will add positive value to the ’tail’ and fail (IPI). To find a distance
satisfying (IPI) we need to consider a wider family of distances.

4.3 critical set based methods

The only way to fix (IPI) is to ignore some arguments. This leads us
to the study of other selection functios S.
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The first idea comes from a concept introduced by Gabbay (2009)
(but here generalised to make it relative to a set of labellings X - Gab-
bay considered only the case X = Comp(A)). Instead of looking at all
arguments, one specifically focuses on the critical subsets.

Definition 49. Given A and X ⊆ Labs(A), a set of arguments A ⊆ ArgsA
is X-critical (for A) iff for any L1,L2 ∈ X, if L1[A] ≡ L2[A] then L1 ≡
L2.We denote the set of critical subsets for A and the set of labellings X by
X-crit(A).

A X-critical set is a set of arguments such that any two labellings
of X are different iff they label at least one argument in the set differ-
ently.

In other words a X-critical set for A is a set of arguments whose
status is enough to determine the status of all the arguments in Args
(knowing that they are labelled by one of labellings from X). Clearly
at least one critical subset exist, for ArgsA is obviously X-critical for
any set of labellings X. In general the following holds.

Observation 50. For any two sets of A-labellings X1 ⊆ X2, if a set of
arguments A is X2-critical then it is X1-critical. In the limiting cases, any
set (also empty) is ∅-critical and {L}-critical while there is only one Labs(A)-
critical set which is the set of all arguments ArgsA.

We formulated the notion of critical set in terms of arbitrary sets
of labellings but of course such a set is given a meaning. Usually it
will be a set of labellings accepted by a particular labelling semantics.
In such cases we will write Sem-critical set instead of Sem(A)-critical.
This means that ArgsA is the only Labs-critical set for A, there are
usually more Comp-critical sets, and for single status semantics, like
grounded any set of arguments is critical.

Definition 51. A critical set method is a product distance method with
S(A) is a Sem-critical set for all A.

Critical sets are important because the Metric and Betweenness con-
straints discussed in the previous section hold not only for the set of
all arguments but for all critical sets.

Theorem 52. Let A be an AF, X ⊆ Labs(A) and ddiff
S(A) be product distance

measure defined via diff and S. If diff is a metric over labels then ddiff
S(A) is a

pseudometric over X (satisfies (REF, SYM, TRI) but not (DD)). Moreover,
d

diff
S(A) is a metric over X iff S(A) is X-critical.

Before we start to prove this result let us recall a few metric trans-
forms from topology - constructions which define metric over one set
in terms of other metrics.

Lemma 53. (Metric Transforms)
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1. Induced metric (Deza and Deza (2009) page 41) Given a metric
space (X,d) and a subset X ′ ⊂ X, an induced metric is the restriction
d ′ of d to X ′ . A metric space (X ′,d ′) is called a metric subspace
of (X,d), and the metric space (X,d) is called a metric extension of
(X ′,d ′);

2. t-scaled metric (Deza and Deza (2009) page 80) For a metric space
(X,d) and t > 0, (X,dt) is a metric space defining dt(x,y) = t ∗
d(x,y);

3. For f : X→ Y and a metric d over Y function df(a,b) = d(f(a), f(b))
is a pseudometrics over X. Moreover, if f is an injection then df is a
metric (See also Deza and Deza (2009) page 81 Pullback metric);

4. Product metric (Deza and Deza (2009) page 83) For metric spaces
(X1,d1), ..., (Xn,dn) functions

Dsum(x,y) =
n∑

i=1

di(xi,yi),

D(x,y) =
( n∑
i=1

di(xi,yi)p
)1/p, 1 < p <∞,

Dmax(x,y) = max
i=1...n

di(xi,yi),

D(x,y) =
n∑

i=1

1

2i
di(xi,yi)

1+ di(xi,yi)
,

are a metrics on Cartesian product X = X1 × . . .×Xn.

Proof. We check the conditions of Definition 12 to show that the func-
tions defined above are indeed metrics.

1. Trivial, we restricted scope of quantification.

2. Trivial, we multiply both sides of each equation by t.

3. (DD) For injective f and a 6= b we have f(a) 6= f(b) and since
d is a metrics df(a,b) = d(f(a), f(b)) > 0. Now if f is not in-
jective then there exists some a 6= b such that f(a) = f(b) and
then df(a,b) = 0; (REF) df(a,a) = d(f(a), f(a)) = 0; (SYM)
df(a,b) = d(f(a), f(b)) = d(f(b), f(a)) = df(b,a); (TRI) df(a,b) =
d(f(a), f(b)) 6 d(f(a), f(c)) + d(f(c), f(b)) = df(a, c) + df(c,b).

4. We just prove the first case Dsum which we use later on. (DD)
For a 6= b we have at least one j such that aj 6= bj therefore
D(a,b) =

∑n
i=1 di(ai,bi) > dj(aj,bj) > 0; (REF) D(a,a) =∑n

i=1 di(ai,ai) =
∑n

i=1 0 = 0; (SYM)D(a,b) =
∑n

i=1 di(ai,bi) =∑n
i=1 di(bi,ai) = D(b,a); (TRI) D(a,b) =

∑n
i=1 di(ai,bi) 6∑n

i=1

(
di(ai, ci)+di(ci,bi)

)
=
∑n

i=1 di(ai, ci)+
∑n

i=1 di(ci,bi) =
D(a, c) +D(c,b).
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Now we can proceed with the proof of Theorem 52.

Proof. The difficulty is to notice that function given by Equation 1 is
a pullback metric of the product metric space {in, out, undec}|S(A)|

with the sum metric.
Let denote by n the number of selected arguments, i.e. |S(A)| = n.

For label metrics diff1, ...,diffn the functionDsum(x,y) =
∑n

i=1 diffi(xi,yi)
defines sum metric over Cartesian product {in, out, undec}n. Let us
order elements of S(A) by a bijection o : S(A) → {1, . . . ,n}. We as-
sociate with it a function go : Labs(A) ⊇ X(A) → {in, out, undec}n

assigning to the labelling L a vector of n labels assigned by L to the se-
lected arguments in order given by o, i.e. go(L) = (L(o−1(1)), . . . ,L(o−1(n))).
Now consider the pullback metric (Dsum)go . In Equation 1 the same
label metrics is used for each argument, i.e. diffi = diff for i = 1..n,
and ordering of arguments o is not mention since the outcome of the
sum does not depend on the bijection o. Finally note that go is an
injection iff S(A) is a X-critical set.

Now we proceed with Betweenness Monotonicity.

Theorem 54. If diff satisfies (ref) and (dd) then any critical set method
satisfies (BTM.). If diff satisfies also (hcs+) then any critical set method
satisfies (BTMI).

Proof. Let L1,L2,L3 by such that L1 .L2 //L3 respectively L1 I L2 JJ
L3. We need to show that for all critical sets C it holds that:

dC(L1,L2) =
∑
a∈C

diff (L1(a),L2(a)) <
∑
a∈C

diff (L1(a),L3(a)) = dC(L1,L3).

We compare sums argument by argument. Consider the following
(not exclusive) cases:

case a : L1(a) = L2(a)

we have 0 = diff (L1(a) , L2(a)) 6 diff (L1(a) , L3(a)) due to
(ref) and (dd).

case b : L2(a) = L3(a)

we have diff (L1(a) , L2(a)) = diff (L1(a) , L3(a)).

case c : L2(a) = undec ∧ L1(a) 6= L3(a)

either one of previous cases hold or we have diff (L1(a) , L2(a)) =
diff (L1(a) , undec) < diff (L1(a) , L3(a)) ∈ {diff (in, out) ,
diff (out, in)} by (hcs+).

Note that in all cases the left side is not bigger than the right side.
We need to show that there exists a for which right side is strictly
bigger. L2 6= L3 and C is critical therefore there exists an argument
a ∈ C for which L2(a) 6= L3(a). This excludes Case B. In Case C
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the right side is bigger by (hcs+), in Case A the right side is strictly
bigger since L2(a) 6= L3(a) by (dd). For L1 . L2 / /L3 Case C is
excluded so we do not need to assume (hcs+).

Since for all arguments a ∈ C, diff (L1(a),L2(a)) 6 diff (L1(a),L3(a))
and for some argument a ∈ C, diff (L1(a),L2(a)) < diff (L1(a),L3(a))
we have dC(L1,L2) < dC(L1,L3).

Note the above result holds taking C to be any critical subset, there-
fore by taking C = Args we obtain Proposition 39, Proposition 41 in
the previous section as corollaries of Theorem 52 and Theorem 54

respectively.
Qualitative distance alignment doesn’t depend on the selection func-

tion S at all.

Theorem 55. A product distance measure d defined via diff function sat-
isfying (dd), (scs) and (hcs), satisfies (QDA	RHP

). If diff function satisfy
(dd) and (gcs) then d satisfies (QDA	HS

).

Proof. Let dAr be a product distance measure defined via diff . Based
on the assumption about diff we group addends by conflict type.

Let CL = (L1	HSL2) ⊆ (N1	HSN2) = CN and assume diff satis-
fies (dd) and (gcs) (diff (x,y) = c for x 6= y, c > 0). We have:

dAr(N1,N2) =
∑
a∈Ar

diff (N1(a),N2(a))

=c× |Ar∩CN|

=c× (|Ar∩ (CN \CL)|+ |Ar∩CL|) (*)

=c× |Ar∩ (CN \CL)|

+ dAr(L1,L2).

(*) The fact that CL ⊆ CN allows us to partition CN into CN \CL

and CL. For assumed diffwe have c > 0 and |Ar∩ (CN \CL)| > 0. It is
clear from the reformulation above that d(N1,N2) has not decreased.

We proceed similarly with 	RHP. Let 〈CL,HL〉 = (L1	RHPL2) ⊆
(N1	RHPN2) = 〈CN,HN〉 which translates into two inclusions CL ⊆
CN and HL ⊆ HN and assume diff satisfies (dd), (scs) and (hcs). For
this assumptions diff is characterised by two constants ch > cs > 0

assigned to soft and hard conflicts respectively. We have:

d(N1,N2) =
∑
a∈Ar

diff (N1(a),N2(a))

=(ch − cs)× |Ar∩HN| (*)

+ cs × |Ar∩CN|

=(ch − cs)× (|Ar∩ (HN \HL)|+ |Ar∩HL|)

+ cs × (|Ar∩ (CN \CL)|+ |Ar∩CL|) (**)

=(ch − cs)× |Ar∩ (HN \HL)|

+ cs × |Ar∩ (CN \CL)|

+ d(L1,L2).
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(*) Since hard conflict are also conflicts (HN ⊆ CN,HL ⊆ CL) we
substract (ch− cs) to avoid double counting; (**) Again partitioning is
possible by assumed inclusions HL ⊆ HN and CL ⊆ CN; For assumed
diff we have (ch − cs) > 0 and cs > 0 hence d(N1,N2) has not
decreased.

Note that here the set Ar plays no role since we only need to show
that distance has not decreased. It is different in the case of (SQDA)
(Theorem 79).

Note that by taking Ar = Args we obtain (QDA) part of Propo-
sitions 44 and 46 in the previous section as corollaries of the above
theorem.

As we have stated in the beginning, to satisfy (IPI) we need to
ignore some arguments. The first idea is to concentrate on the minimal
critical subsets.

Definition 56. Given A and X ⊆ Labs(A), we denote the collection of set-
theoretically minimal subsets of X-crit(A) by X-mincrit(A), i.e.,

X-mincrit(A)
def
= {C ∈ X-crit(A) | @C ′(C ′ ∈ X-crit(A)∧C ′ ⊂ C)}.

Definition 57. A minimal critical set method is a product distance method
with S(A) ∈ Sem-mincrit(A) for all A.

Does any minimal critical set measure satisfy (IPI)? The answer
depends on the assigned selection function.

Lemma 58. Let A = (Args,⇀) be an arbitrary AF and let A+ be any
framework obtained from A by adding a single new argument b 6∈ Args
along with a single attack a⇀ b from some a ∈ Args. Then Sem-crit(A) ⊆
Sem-crit(A+) and Sem-mincrit(A) ⊆ Sem-mincrit(A+) for any complete
based semantics Sem.

Proof. For all L ∈ Sem(A+) it holds that L(a) = ¬L(b) because Sem
is complete-based and a is the only attacker of b. Therefore the argu-
ment b contains ’the same information’ as a and a restriction
Sem(A+) 3 L 7→ L[Args] ∈ Sem(A) is a bijection.

The above lemma shows that for all A and its single argument
extension A+ (as specified in (IPI)) it is possible to put

S(A) = S(A+). (2)

Proposition 59. Let d be a critical set method defined via selection function
S. If S satisfy 2 then d satisfies (IPI).

Proof. Follows from the definition of product distance measure.

The similar situation is with (COMSem).
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Lemma 60. Let A, B be semantically independent sets of an argumenta-
tion framework A under semantics Sem and let A1 = A�A,A2 = A�B
be the corresponding two subframeworks. If C1 ∈ Sem-crit(A1) and C2 ∈
Sem-crit(A2) then C1 ∪ C2 ∈ Sem-crit(A). Moreover if C1 and C2 are min-
imal then C1 ∪ C2 is also minimal.

Proof. Take L ∈ Sem(A) 6= ∅. Since A, B are semantically indepen-
dent sets of an argumentation framework A then L = LA ∪ LB for
some LA ∈ Sem(A1) and LB ∈ Sem(A2). We can identify LA and
LB by L[C1] and L[C2] because C1,C2 are critical sets of A1,A2 respec-
tively, hence C1∪C2 is a critical set. Since all combination of labellings
Sem(A1) and Sem(A2) can be used to form a labelling of Sem(A), no
information about LA can be inferred from LB and hence minimality
follows.

The above lemma shows that for all A whose arguments can be par-
titioned into independent (under semantics Sem) sets A, B (as speci-
fied in (COMSem)) it is possible to put

S(A) = S(A�A)∪S(A�B). (3)

Note that we can consider just A such that Sem(A) 6= ∅ because for A
with Sem(A) = ∅ distance measures postulates are empty-fulfilled.

Proposition 61. Let d be a critical set measure defined via diff and selection
function S. If S satisfies 3 then d satisfies (COMSem).

Proof. Follows from the definition of product distance measure.

Unfortunately, this approach, although can be made to satisfy (IPI)
and (COMSem), has three problems which we will discuss now.

Minimal critical set problems

The first problem is that more than one minimal critical subset may
exist. We would like the distance (or at least the similarity ordering in-
duced by it) to be independent of the particular choice. Unfortunately
this does not always hold in general, as the next example shows.

Example 62. Let us return to the AF A1 depicted in Figure 13. It is
not the case that by knowing the label of one argument we know the full
complete labelling, however, one can check that if we know the label of any
pair of arguments, we automatically know the label of the third. Thus we
have Comp-mincrit(A1) =

{
{a,b}, {a, c}, {b, c}

}
. We have ddiff

{a,b}(L1,L2) =

2× diff (in, out) and ddiff
{a,b}(L1,L3) = diff (in, out). Thus if we focus on

the critical subset {a,b} we obtain that L3 is closer to L1 than L2 is. But if
instead we focus on critical subset {a, c} we obtain the opposite conclusion,
for ddiff

{a,c}(L1,L2) = diff (in, out) and ddiff
{a,c}(L1,L3) = 2× diff (in, out).
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Figure 13: The AF A1 and its four possible complete labellings L1-L4

Figure 14: The AF for which all minimal critical set distance measures fail
(SQDA)

This sensitivity to the choice of critical subset is somewhat undesir-
able.

The second problem is that the minimal critical set measure fails to
satisfy (AUTO), as the following example shows:

Example 63. Consider A1 in Figure 13 and consider the mapping g such
that g(a) = b, g(b) = c and g(c) = a. It is easy to see that g is an automor-
phism on A1. Assume S(A1) = {a,b}. Recall L1 = {(a, in), (b, out), (c, out)}
and L3 = {(a, out), (b, out), (c, in)}. So g(L1) = {(a, out), (b, in), (c, out)}
and g(L3) = {(a, in), (b, out), (c, out)}. Then if (AUTO) were satisfied we
would expect ddiff

{a,b}(L1,L3) = d
diff
{a,b}(g(L1), g(L3)), but ddiff

{a,b}(L1,L3) =

diff (in, out) 6= 2× diff (in, out) = ddiff
{a,b}(g(L1),g(L3)). Note that this ex-

ample assumes S(A1) = {a,b}, but it should be clear that counterexamples
can also be found if either of the other two elements of Comp-mincrit(A1)

were selected.

The above example show that this method doesn’t satisfy (LABSem)
or (ISO) which are stronger than (AUTO). Intuitively it is because
there is not enough information in the labellings to select a particu-
lar minimal critical set. Such selection function S needs to be given
from outside. In consequence, first it is not easy to specify, second
satisfaction of (COMSem) depends on user choice.

The third problem is that minimal critical set measure does not
satisfy (SQDA) as can be seen in the following example.

Example 64. Consider A1 from Figure 14. The label of c is determined by
the labels of the other arguments, so there are 4 possible minimal Comp-
critical sets {a,b} ⊗ {d, e}. Let’s take {a,d} as our selected minimal set
(though the counterexample will also work for any of the other three possible
choices). Consider labellings l1 : oioio, l8 : ioioi and l2 : oiooi, l7 : iooio.
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Figure 15: Example showing that mincd fails the triangle inequality

We have (l2	RHPl7) = ({a,b,d, e}, {a,b,d, e}) ( ({a,b, c,d, e}, {a,b, c,d, e}) =
(l1	RHPl8) and also (l2	HSl7) = {a,b,d, e} ( {a,b, c,d, e} = (l1	HSl8)

so distance satisfying (SQDA) in both versions require ddiff
{a,d}(l2, l7) <

d
diff
{a,d}(l1, l8) but we have ddiff

{a,d}(l2, l7) = d
diff
{a,d}(l1, l8) = 2×diff (in, out).

We now try to fix these problems.

4.4 irresolute product measures

The first idea is to keep the critical sets distance, but factor away the
sensitivity to all the selected minimal critical sets by simply combin-
ing the values of ddiff

C for all C ∈ Sem-mincrit(A). The following three
spring to mind:

• mincddiff (S, T) def
= min{ddiff

C (S, T) | C ∈ Sem-mincrit(A)}

• sumcddiff (S, T) def
=
∑

{d
diff
C (S, T) | C ∈ Sem-mincrit(A)}

• maxcddiff (S, T) def
= max{ddiff

C (S, T) | C ∈ Sem-mincrit(A)}

In the above way we escape the problem of selection of a particu-
lar minimal-critical set. It can be shown that all the above methods
satisfy (LABSem) Unfortunately, each of them has other drawbacks.
mincd fails to satisfy the triangle inequality (TRI) as can be seen in
the following example.

Example 65. In Figure 15 are depicted three different complete labellings of
an AF. (All other labellings can be obtained by applying authomorphism to
one of them). It can be checked that the set of minimal critical sets contains
set {a,d, c} and four other sets obtained by turns. We have

3 = mincdDM(L1,L3) �mincdDM(L1,L2) + mincdDM(L2,L3) =

dDM
X (L1,L2) + dDM

Y (L2,L3) = 1+ 1 = 2
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a

b c d

y

x

Figure 16: AF with two independent parts.

sumcd fails to satisfy (IPI) and (COMSem). Informally we can ex-
plain it as follows. By adding a new argument or combining two
independent parts of the framework the number of minimal critical
sets multiplies which causes rapid increase of sumcd while those pos-
tulates require the distances of the framework to be proportional. The
example below illustrates this problem for (COMComp).

Example 66. Reconsider AF A from Example 23 depicted again in Fig-
ure 16 which can be divided into two independent parts A1 and A2.

A = {{a,b, c,d, x,y}, {(a,b)(b,a)(a, c)(a,d), (x,y), (y, x)}}

A1 = {{a,b, c,d}, {(a,b)(b,a)(a, c)(a,d)}}

A2 = {{x,y}, {(x,y), (y, x)}}

We have Comp(A1) = {iooo, oiii, uuuu} and Comp(A2) = {io, oi, uu}
and Comp(A) = Comp(A1) ⊗ Comp(A2). Any singleton set is a mini-
mal critical set of the part, i. e.Comp-mincrit(A1) = {{a}, {b}, {c}, {d}} and
Comp-mincrit(A2) = {{x}, {y}} and they can be combined in any way to
form critical set of A, i. e.

Comp-mincrit(A) = Comp-mincrit(A1)⊗Comp-mincrit(A2).

We have

mincddiff (ioooio, oiiioi) = |Comp-mincrit(A)|× diff (in, out) =

8× diff (in, out) > (4× diff (in, out)) + (2× diff (in, out)) =

(|Comp-mincrit(A1)|× diff (in, out)) + (|Comp-mincrit(A2)|× diff (in, out)) =

mincddiff (iooo, oiii) + mincddiff (io, oi).

All of them fail (SQDA) which can be seen going back to Exam-
ple 64.

Example 67. Consider situation from Example 64.
We have (l2	HSl7) ( (l1	HSl8) and (l2	RHPl7) ( (l1	RHPl8).

What differentiate these qualitative distances is argument c which doesn’t be-
long to any minimal Comp-critical set. There is simply not enough informa-
tion to make a distinction. For all minimal Comp-critical sets C, d

diff

C (l2, l7) =
d

diff

C (l1, l8) = 2 × diff (in, out) and taking minimum, maximum or sum
over them will still keep these distances equal.
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To summarise, maxcd can be used to solve the problem of sensi-
tivity to the selection of minimal critical set and (LABSem). To satisfy
(SQDA) we need another solution. It leads us to studies of critical
sets which are small enough to satisfy (IPI) and big enough to satisfy
(SQDA).

4.5 issue-based measures

In this section we will take another approach to remove redundant
arguments and satisfy (IPI).

We want to capture the idea that the labels of two arguments are
“tied together”. For example in a simple 2-argument AF consisting
of two arguments a and b mutually attacking each other, there may
be two arguments but to all intents and purposes there is really only
one “issue” at stake, and that is whether a or b (or none) should be
accepted. We want to isolate these different issues which are being
argued over.

Definition 68. Given AF A and X ⊆ Labs(A) we define an equivalence
relation ≡X over ArgsA by setting a ≡X b iff either [L(a) = L(b) for all
L ∈ X(A)] or [L(a) = ¬L(b) for all L ∈ X(A)]. Each ≡X-equivalence class
is called an X-issue, and we denote the ≡X-equivalence class to which a
belongs by [a]X. The set of all X-issues we will denote by IX(A).

Proposition 69. Given AF A and X ⊆ Labs(A), ≡X is an equivalence
relation over ArgsA.

Proof. Reflexivity trivially holds. Symmetry follows from the symme-
try of equality (=) and the fact that ¬¬l = l for l ∈ {in, out, undec}.
Transitivity is also direct. Assume a ≡X b and b ≡X c. If either
L(a) = L(b) or L(b) = L(c) then a ≡X c holds trivially. In case when
L(a) = ¬L(b) and L(b) = ¬L(c) we have L(a) = L(c).

For example, it can be checked that the Comp-issues for the AF in
Figure 17 are {a,b, c,d}, {e, f} and {g,h}. In the AF of Figure 13 there
are 3 Comp-issues {a}, {b} and {c}.

Within each ≡X-equivalence class, considering just labellings from
X there are at most 3 possible assignments of labels which can occur:
either (i) all its elements are labelled undec, or (ii) all its elements are
set to in or out, or (iii) the “inverse” labelling to (ii) occurs, in which
those arguments labelled in become out and those labelled out are
now in. Essentially each equivalence class acts as a single 3-valued
argument.

Now the idea is to take a sum over one representative from each
Sem-issue. It can be seen as taking a minimal hitting set of all the
issues.

Definition 70. Given A and X ⊆ Labs(A), a set of arguments H ⊆ ArgsA
is X-issue critical (for A) iff for any I ∈ IX(A) we have |I∩H| = 1.
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Figure 17: Source labelling S and 2 target labellings T1, T2

Definition 71. An Sem-issue-based method is a product distance method
with S selecting Sem-issue critical set for all A.

In the example in Figure 17 we can check that H = {a, e,g} is
Comp-issue critical set. We have ddiff

H (S, T1) = 2 × diff (in, out) and
d

diff
H (S, T2) = diff (in, out), as with the critical subsets approach of Sec-

tion 4.3. For the example in Figure 13 we get just one Comp-issue
critical set H = {a,b, c}. We have ddiff

H (L1,L2) = 2 × diff (in, out) =

d
diff
H (L1,L3). Thus according to the issue-based distance ddiff

H , L2 and
L3 are equidistant from L1.

What is a relation between issue critical sets and minimal critical
sets? We can see that in case of Figure 17 minimal critical sets and
issue sets overlap but in case of Figure 13 minimal critical sets are
subsets of a issue critical set.

The key to the answer is the following Lemma which states that
arguments in a single issue share conflict type.

Lemma 72. Given X ⊆ Labs(A) and any two labellings L1,L2 ∈ X the
following holds: (1) a ∈ S(L1,L2) iff [a]X ⊆ S(L1,L2), (2) a ∈ H(L1,L2)
iff [a]X ⊆ H(L1,L2), (3) a ∈ C(L1,L2) iff [a]X ⊆ C(L1,L2).

Proof. Since S(L1,L2) = C(L1,L2) \ H(L1,L2) it is enough to prove
(2) and (3). (←) Follows trivially from the fact that any element is a
member of its equivalence class. (→) Take any argument b ∈ [a]X.
We have two cases: 1. Positive correlation In this case L1(a) = L1(b)
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and L2(a) = L2(b). If L1(a) 6= L2(a) then also L1(b) 6= L2(b) and both
a,b ∈ C(L1,L2). If L1(a) = ¬L2(a) then also L1(b) = ¬L2(b) and both
a,b ∈ H(L1,L2); 2. Negative correlation In this case L1(a) = ¬L1(b)

and L2(a) = ¬L2(b). If L1(a) 6= L2(a) then also ¬L1(a) 6= ¬L2(a)

which is equivalent to L1(b) 6= L2(b). Therefore both a,b ∈ C(L1,L2).
If L1(a) = ¬L2(a) then ¬L1(b) = ¬(¬L2(b)) = L2(b) and both a,b ∈
H(L1,L2).

This result has two important consequences. First we obtain the
following relation to critical sets:

Proposition 73. For any AF A and set of labellings X ⊆ Labs(A) if H is
an X-issue critical set then H is X-critical set.

Proof. Assume H is a X-issue critical set of A. We will show the con-
traposition, for any L1,L2 ∈ X if L1 6= L2 then lab1[H] 6= lab2[H].
From L1 6= L2 follows that there exists a ∈ ArgsA such that L1(a) 6=
L2(a). Since H is X-issue set of A there exists b ∈ [a]X. We have
a ∈ C(L1,L2) and by Lemma 72 b ∈ [a]X ⊆ C(L1,L2). For such b,
lab1[H](b) 6= lab2[H](b).

This result justifies the name X-issue ’critical’, since they are indeed
a special kind of X-critical sets. Second, for a label distance diff satis-
fying (scs) (and (sym), (ref) which is our basic assumption) the choice
of a particular issue set does not matter.

Proposition 74. Let dH,dH ′ be two Sem-issue-based measures defined via
diff . If diff satisfies (scs) (and (sym), (ref)) then dH ≡ dH ′ .

Proof. Both dH,dH ′ take a sum over all issues possibly selecting a
different member of an issue. It is enough to show that for all la-
bellings L1,L2 ∈ Sem and any two members of an issue a,b ∈ I

we have diff(L1(a),L2(a)) = diff(L1(b),L2(b)). From Lemma 72 we
know that a,b share the same conflict type. We have three cases:

case 1 : a , b /∈ C(L1 , L2) (no conflict)
diff(in, in) = diff(out, out) = diff(undec, undec) = 0

by (ref).

case 2 : a , b ∈ H(L1 , L2)
by (sym) diff(in, out) = diff(out, in).

case 3 : a , b ∈ S(L1 , L2)
diff(in, undec) = diff(undec, in) = diff(out, undec) =

diff(undec, out) by (sym) and (scs).

Thus issue-based measure can be thought of as a critical-set based
measure which chooses from among a particular class of critical sets,
viz. those which contain one argument from each issue. However
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the critical set chosen need not be a minimal one, i.e., an element
of Comp-mincrit(A), as can be seen already in the AF of Figure 13.
We immediately inherit general critical set results from the previous
section - Theorem 52 and Theorem 54.

We have usually more arguments in one issue and hence many is-
sue critical sets. One may suspect to encounter the similar problem to
the one with selection of the minimal critical set. Indeed we could use
any of the techniques discussed for irresolute product measures but
a more promising way is to use a label distance diff satisfying (sym)
and (scs) which makes the precise choice of arguments for each issue
irrelevant. For such diff any issue-based method can be seen as max
over all issue-based methods. For that reason issue-based method
avoid the problems of minimal critical set method in a similar way
to the irresolute product methods.

Proposition 75. Any Issue-based distance method defined via diff satisfy-
ing (sym), (ref) and (scs) satisfies (LABSem).

It is a consequence of the following property.

Lemma 76. Let A1,A2 be two labelling equivalent AFs (under seman-
tics Sem) via bijection g. Then g preserves Sem-issues, i.e. {g(I) | I ∈
ISem(A1)} = ISem(A2).

Proof. We have g(L)(g(a)) = L(g−1(g(a))) = L(a) so a ≡Sem(A1) b

iff g(a) ≡g(Sem(A1)) g(b) which is equivalent to g(a) ≡Sem(A2) g(b)

because g (extended) is a bijection between Sem(A1) and Sem(A2).

We prove Proposition 75.

Proof. Let A1,A2 be two labelling equivalent AFs (under semantics
Sem) via bijection g and dA1

,dA2
issue-based distance methods de-

fined by diff satisfying (sym), (ref) and (scs). By Proposition 74 the
selection of the particular Sem-issue critical set H does not matter. By
Lemma 76 g(H) is an Sem-issue critical set of A2. We calculate

dA1
(L1,L2) =

∑
a∈H

diff (L1(a),L2(a))

=
∑
a∈H

diff (L1(g−1(g(a))),L2(g−1(g(a))))

=
∑

b∈g(H)

diff (L1(g−1(b)),L2(g−1(b)))

=
∑

b∈g(H)

diff (g(L1)(b),g(L2)(b))

=dg(H)(g(L1),g(L2)) = dA2
(g(L1),g(L2)).
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The following proposition holds.

Proposition 77. Let Sem be any complete-based semantics. All issue-based
methods defined via diff satisfying (sym), (ref) and (scs) satisfy (IPI).

Proof. Let A = (Args,⇀) be an arbitrary AF and let A+ be any frame-
work obtained from A by adding a single new argument b 6∈ Args
along with a single attack a ⇀ b from some a ∈ Args, Sem be any
complete-based semantics and dA, dA+ a distance measures assigned
by issue-based method defined via diff satisfying (sym), (ref) and
(scs). For all L ∈ Sem(A+) it holds that L(a) = ¬L(b) because Sem
is complete-based and a is the only attacker of b. Therefore a and b
belong to the same issue. By Proposition 74 the choice of the labelling
critical set H of A+ does not matter therefore we can assume dA+ =

dH for H ⊆ Args. Since restriction Sem(A+) 3 L 7→ L[Args] ∈ Sem(A)

is a bijection H is also labelling critical set of A therefore again by
Proposition 74 dA = dH.

Proposition 78. All Sem-issue-based methods defined via diff satisfying
(sym), (ref) and (scs) satisfy (COMSem).

Proof. Let A, B be semantically independent partition of A under se-
mantics Sem, i.e. Sem(A) = Sem(A�A)⊗ Sem(A�B), and dA,dA�A ,dA�B
distance measures assigned by Sem-issue-based method defined via
diff satisfying (sym), (ref) and (scs) to A,A�A,A�B respectively. We
need to show that dA(L1,L2) = dA�A(L1[A],L2[A])+dA�B(L1[B],L2[B]).

By Proposition 74 it is enough to show that I(A) = I(A�A)∪ I(A�B).
It is true with the exception of constant issues which we define for
any A as follows: uI(A) = {a ∈ ArgsA | L(a) = undec for all L ∈
Sem(A)} and ioI(A) = {a ∈ ArgsA | L(a) = l ∈ {in, out} for all L ∈
Sem(A)}. It is easy to check those set are issues (if non-empty) for
any A. The constant issues of semantically independent parts will
join but since they are constant they do not contribute to the distance
and can be ignored. Non-constant issues stay the same. For all a,b ∈
Args \ (uI(A)∪ ioI(A)) we have two cases:

a , b ∈ A (or similarly a , b ∈ B) Since by semantic independence
Sem(A�A) = Sem(A)[A], a ≡Sem(A) b iff a ≡Sem(A�A) b.

a ∈ A , b ∈ B Since a , b are non-constant there exist L1 , L2 ∈ Sem(A�A)

such L1(a) 6= L2(a), and L3 ∈ Sem(A�B). It is not the case
that a ≡ Sem(A)b because by semantic independence both
L1 ∪ L3 , L2 ∪ L3 ∈ Sem(A) and those labellings neither label
a , b the same nor the opposite.

We finally verify that this time (SQDA) is satisfied.
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Theorem 79. The issue-based method d defined via diff function satisfying
(dd), (scs) and (hcs+), satisfies (SQDA	RHP

). The issue-based method d
defined via diff function satisfying (gcs) and (dd), satisfies (SQDA	HS

).

Proof. Let us remind reformulations of product distance measures
dAr defined via diff in terms of conflict sets from Theorem 55. For
CL = (L1	HSL2) ⊆ (N1	HSN2) = CN we have

dAr(N1 ,N2) =c × |Ar ∩ (CN \ CL) | + dAr(L1 , L2) .

For 〈CL,HL〉 = (L1	RHPL2) ⊆ (N1	RHPN2) = 〈CN,HN〉 we have

d(N1,N2) =(ch − cs)× |Ar∩ (HN \HL)|

+ cs × |Ar∩ (CN \CL)|+ d(L1,L2).

For the assumption about diff all constants c, cs and (ch − cs) (note
(hcs+) instead of (hcs)) are positive. We need to show that the re-
spective set intersections are non-empty for issue critical set Ar. For
strict inclusion (L1	HSL2) ⊂ (N1	HSN2) we have CN \CL 6= ∅. Let
a ∈ CN \ CL. From Lemma 72 it follows tha [a]Sem ⊆ CN \ CL and
by the issue criticality of Ar we have |Ar ∩ (CN \CL)| > 1. Similarly,
from 〈CL,HL〉 = (L1	RHPL2) ⊂ (N1	RHPN2) = 〈CN,HN〉 it follows
that CN \CL 6= ∅ or HN \HL 6= ∅ and we reason in the same way.

Since the set of all arguments contain any issue critical set we ob-
tain Proposition 44 and Proposition 46 as corollaries of the above
theorem.

4.6 conclusion and related work

4.6.1 Conclusions

In this chapter we have analysed product distance measures, distance
measures of a special form, which can be specified by label distance
function diff and selection function S.

We identified the properties of diff and S on which depend satis-
faction of the postulates from the previous chapter.

We have proven sufficient conditions to satisfy distance measure
postulates (Metric and Intuition-based) (Table 2) and shown that in
cases we are interested in they are also necessary (Example 45

The incompatibility between (SQDA	RHP
) and (QDA	RHP

) in con-
text of product measures boils down to incompatibility between (gcs)
and (hcs+). We have proposed to use discrete metrics DM or refined
discrete metrics rDM for satisfying Hamming set or Refined Ham-
ming Pair related postulates respectively.

The restriction on the selected set of argument vary from none,
through critical set to hitting set of issues. The set of all arguments
satisfy all those restrictions.
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Property diff S Results

(REF) (ref) - Theorem 52

(DD) (dd) (crit) Theorem 52

(SYM) (sym) - Theorem 52

(TRI) (tri) - Theorem 52

(BTW.) (dd) (crit) Theorem 54

(BTWI) (dd), (hcs+) (crit) Theorem 54

(SQDA	RHP
) (dd), (scs),(hcs+) (issue) Theorem 79

(SQDA	HS
) (dd), (gcs) (issue) Theorem 79

(QDA	RHP
) (scs), (hcs) - Theorem 55

(QDA	HS
) (gcs) - Theorem 55

Table 2: Restrictions placed by Metric and Intuition-based postulates

In contrast to distance measure postulates which restricted label
distance function diff and the properties of the set of arguments se-
lected by selection function S, the distance method postulates restrict
the way selection function assigns sets of important arguments to dif-
ferent AFs (Table 3).

Property Restriction on S Results

(COMSem) S(A) = S(A�A)∪S(A�B) (3) Lemma 60

(LABSem) g(S(A1)) = S(A2)

(IPIComp) S(A) = S(A+) (2) Lemma 58

Table 3: Restrictions placed by Compositionality and Equivalence

Choosing all arguments of the AF satisfy (COMSem) and (LABSem)
but fails (IPI). It rises the question how to choose the particular crit-
ical set or hitting set of issues in a systematic way which satisfy the
restriction posed on distance method? We started with minimal criti-
cal sets and continued with issue sets (which are the minimal hitting
sets of all issues). In both cases there exists several ways to define
selection functions which satisfy (COMSem) and (IPI).

When selecting among minimal critical sets we identified two prob-
lems. First, there is no choice satisfying (LABSem). We can interpret it
as follows. All minimal critical sets are indistinguishable considering
the set of feasible labellings, therefore commitment to one particular
set needs to be made upon external information not contained in the
set of labellings. At the same time (LABSem) postulates that distance
measure should depend solely on information included in the set
of feasible labellings. We proposed to address that problem by com-
bining all distance measures of the class by taking their minimum,
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maximum or sum. We call the family of distance obtained in this
way irresolute distance measures. While all of them satisfy (LABSem),
taking minimum fails (TRI) and taking sum fails (IPI) and (COM)
therefore taking a maximum is a preferred method.

The second problem of minimal critical set measures that cannot
be solved by irresolute measures is a failure of (SQDA). The reason
is that minimal critical set ignores too many arguments. We solve it
by defining issues which partition all arguments into groups which
behaves similarly. We showed that any hitting set covering all the
issues, i. e.the set of argument which has non-empty intersection with
any issue, is a critical set. Again we considered minimal sets which
we call issue sets. Despite the fact that there exists more such sets, for
any diff function satisfying (sym) and (scs) choice of the particular
issue set doesn’t matter since it defines the same function.

Combining all the results above we propose three concrete distance
methods, each in two variants depending whether one commits to
qualitative distance defined by Hamming set or Refined Hamming
pair.

The issue-based measure defined via diff function satisfying (scs)
and (sym) is the only proposal which satisfy all the postulates. We
define IBd and rIBd by plugging discrete DM and refined discrete
metric rDM respectively over some issue critical set H, i.e. IBd =

dDM
H , rIBd = drDM

H . Note that selection of the issue critical set doesn’t
matter.

(SQDA) happened to be quite strong. If one is willing to give it up
the maximum over all minimal critical set measures is a valid way to
satisfy (IPI). We define MMCSd = mincdDM, rMMCSd = mincdrDM.

If (IPI) is not a vital request taking full sum measure is worth con-
sidering because of it simplicity and use Hamming distance Hd or
Refined Hamming distance rHd.

The properties satisfied by each of the above methods is gathered
in Table 4.

4.6.2 Related Work

We have initiated the investigation of the notion of distance between
two reasonable evaluations of an argument graph. While this issue
has been investigated in non-argument based accounts of both belief
revision Delgrande (2004); Lehmann et al. (2001); Peppas et al. (2004),
in judgement aggregation Miller and Osherson (2009); Pigozzi (2006),
and in abstract preferences Baigent (1987), to our knowledge we are
the first to study it in the context of formal argumentation theory.

Coste-Marquis et al. presented an approach for merging multiple
Dung-style argumentation graphs presented by multiple agents Coste-
Marquis et al. (2007). The authors use a combination of graph expan-
sion, distance calculation and voting in order to arrive at a single
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Property Hd rHd MMCSd rMMCSd IBd rIBd

(BTW.) X X X X X X

(BTWI) × X × X × X

(SQDA	HS
) X × × × X ×

(SQDA	RHP
) × X × × × X

(QDA	HS
) X X X X X X

(QDA	RHP
) × X × × × X

(COMSem) X X X X X X

(LABSem) X X X X X X

(IPI) × × X X X X

Table 4: Summary of Properties of proposed Distance Measures. All in-
cluded distances satisfy (REF),(DD),(SYM) and (TRI).

argumentation framework. This work addresses a fundamentally dif-
ferent problem, since agents may differ over which arguments exist,
or which arguments attack which other arguments. In contrast, in our
work, we assume that all arguments are available to all agents (e.g. as
in a jury hearing), and that the attack relation is not a subjective mat-
ter (i.e. it is objectively determined by the underlying logical system,
as is for instance the case in Gorogiannis and Hunter (2011); Prakken
(2010) ). In other words, the distance measures introduced by Coste-
Marquis et al are between different graphs, and thus address a funda-
mentally different problem (e.g. the edit distance, which measures the
number of insertions/deletions of attacks needed to turn one entire
argument graph into another). Our notion of distance, on the other
hand, is aimed at quantifying disagreement over the evaluation of
the given graph; i.e. it is the distance between different evaluations of
the given evidence, not between different perspectives on what the
evidence is.





5
U S I N G D I S TA N C E S F O R A G G R E G AT I O N I N
A B S T R A C T A R G U M E N TAT I O N

5.1 introduction

Individuals presented with the same set of conflicting arguments
might take different rational positions. In such a situation one of-
ten faces the problem of how to aggregate them into a collective one.
This problem has been explored in a number of recent papers Booth
et al. (2014); Caminada and Pigozzi (2011); Rahwan and Tohmé (2010)
which employ techniques from judgement aggregation (JA) List and
Puppe (2009) to the problem of aggregating 3-valued argument la-
bellings. These works have shown that, as with classical JA, it is not
possible to define general aggregation operators that satisfy a number
of seemingly mild constraints while ensuring collective rationality of
the outcome.

One way of getting around this problem is to first use an initial
aggregation operator, which intuitively can be thought of as a gold
standard operator that satisfies a number of basic postulates, without
always yielding collectively rational results and then to repair the re-
sult of this operator in the cases when it does not give a collectively
rational outcome.

In the argumentation setting, Caminada and Pigozzi suggested one
way to carry out such a repair, using what they called the down-
admissible and up-complete procedures (2011). In the JA setting, an-
other way to carry out such a repair is to use one of the distance-based
solution methods that were studied by Miller and Osherson (hereafter
MO) (2009) within the framework of binary judgement aggregation.
As the name suggests these depend on a provided notion of distance
measure between binary judgement sets.

In this chapter we show how this option can also be used in the
argumentation setting. We first modify the MO framework for our
purposes, using the distances measures defined in Chapter 4. We thus
illustrate the usefulness of these distance measures.

Along the way we generalise and extend some of the results. For
example some of the MO aggregation methods require a distance to
be defined between any two arbitrary labellings of an argumentation
framework, whereas the most interesting distance measures of Chap-
ter 4, such as the issue-based distance, are defined only between Sem-
labellings. We thus extend the definition of these distances to apply to
arbitrary labellings. Although in Chapter 4 we defined distance gener-
ally between a selected set of Sem-labellings, in this chapter we will as-

59
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sume the set of feasible labellings is given by complete semantics. We
make a link between the (IPI) postulate and the problem of agenda
manipulation in JA. Finally, we show that the down-admissible and up-
complete procedures Caminada and Pigozzi (2011) can be viewed as a
special case of one of the MO methods.

5.2 aggregation preliminaries

We first turn to aggregation. We assume a set of agentsAg = {1, . . . ,n}
(with n > 2) is fixed. In our argumentation setting, the roles of the
agenda and the judgement set are filled by the AF A and A-labelling
respectively.

Definition 80. Let A be an AF. An A-profile is an n-tuple of A-labellings
L = (L1, . . . ,Ln). If every Li is a complete A-labelling then we call L a
complete A-profile.

What we seek is a way to construct aggregation operators that,
given any A-profile L as input, return a set of A-labellings FA(L).
Note that an aggregation operator is always defined in a context of
some specific AF A. More generally we are interested in an aggrega-
tion method that given any context AF A will return in a systematic
way an aggregation operator for A.

Definition 81. Let A be an AF. An (irresolute) aggregation operator
(for A) is a function FA that assigns, to each A-profile L a set FA(L) ⊆
Labs(A). An aggregation method is a mapping that, given any context
AF A, returns an aggregation operator FA for A.

From now on we drop the irresolute and just say aggregation operator.
In previous work on aggregation in argumentation the output is usu-
ally taken to be a single labelling, but we relax that here. When impor-
tant, we call an operator which returns always a singleton set a reso-
lute operator. Also note for each A, FA is defined for all A-profiles (not
necessarily just the complete ones), and that the output of FA(L) is
allowed to be any subset of A-labellings. Ideally, of course, we would
like the output to consist only of complete A-labellings, i.e., we want
the following to hold:

Collective Rationality For all A and A-profiles L, FA(L) ⊆
Comp(A)

5.3 miller and osherson aggregation methods .

Miller and Osherson (2009) describe a framework for using distance
measures to define aggregation methods in binary judgement aggrega-
tion. In that setting agents evaluate a set of logical propositions called
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an agenda by providing a judgement set which is an assignment of ei-
ther True or False to each proposition in the agenda. Their framework
requires specification of two things:

1. An initial resolute aggregation method M that is able to give col-
lectively rational answers in simple cases. In their case they only
considered the proposition-wise majority method, but in prin-
ciple any M can be used. The intuition is that if the outcome
produced by M happens to be collectively rational then there is
no need to choose a different outcome.

2. A measure of distance between any two judgement sets of any
given agenda. This measure is assumed to be a metric.

We can extend a distance measure dA so that it also returns dis-
tance from an A-profile to an A-labelling, as well as distance be-
tween two A-profiles. For L ∈ Labs(A) and profiles L = (L1, . . . ,Ln),
L ′ = (L ′1, . . . ,L ′n) ∈ Labs(A)n we define

dA(L,L) =
n∑

i=1

dA(Li,L), dA(L, L ′) =
n∑

i=1

dA(Li,L ′i).

Also required for MO is the notion of anM-consistent profile. These
are the profiles that, when passed toM, result in a collectively rational
outcome.

Definition 82. Let A be an AF, L ∈ Labs(A)n and M a resolute aggrega-
tion method. Then L is M-consistent (for A) iff MA(L) ∈ Comp(A). We
denote byConsA(M) the set ofM-consistent A-profiles, and byConsA(M, Comp)
the set ConsA(M)∩Comp(A)n.

MO describe four different ways in which all the above ingredients
can be combined, resulting in four classes of aggregation methods
which we now describe. First some notation: For any function f : X→
Y and sets D ⊆ X, C ⊆ Y we denote the image of D by f(D) = {f(x) |

x ∈ D} and the inverse image of C by f−1(C) = {x ∈ X | f(x) ∈ C}. The
subset of D for which f obtains its minimal value is returned by the
operator arg minx∈D f(x) = {x ∈ D | f(x) 6 f(x ′) for all x ′ ∈ D}.

Definition 83 (Miller and Osherson (2009)). Let d be distance method
andM a resolute aggregation method. The four aggregation methods Prototyped,
EndpointM,d, FullM,d and OutputM,d are defined by setting, for each AF
A and A-profile L:

PrototypedA(L) = arg min
L∈Comp(A)

dA(L,L)

EndpointM,d
A (L) = arg min

L∈Comp(A)

dA(MA(L),L)

FullM,d
A (L) =MA

(
arg min

L ′∈ConsA(M,Comp)
dA(L, L ′)

)
OutputM,d

A (L) =MA

(
arg min

L ′∈ConsA(M)

dA(L, L ′)
)
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All four MO aggregation methods minimise distance to ensure the
collective outcome is rational. The Prototype and Endpoint methods
minimise the distance over all complete labellings. Prototype returns
the complete labellings closest to the profile L. Endpoint returns the
complete labellings closest to the labelling returned by initial aggre-
gator MA(L), which possibly is not complete. The Full and Output

methods select the M-consistent profiles closest to L and then applies
MA to them. The difference bettween these two is that Output per-
forms its selection from among all M-consistent profiles, while Full

selects only from those that are, in addition, themselves complete.
Some observations in these definitions:

(i) All four aggregation methods are potentially irresolute.

(ii) Prototype does not require an initial aggregator M, only a dis-
tance method d. The other three all rely on M.

(iii) A distance method d used in Endpoint and Output needs to re-
turn the distance between all labellings. In contrast, for Prototype
and Full it is enough that d is defined only between complete
labellings.

If we want to apply MO to our problem of aggregating labellings
we need to instantiate the two parameters M and d. Let’s look at each
in turn.

5.3.1 Initial Aggregation Methods

A family of resolute aggregation methods capturing many operators
in a uniform way has been defined in Booth et al. (2014), namely the
interval aggregation methods.

Formally, let Intn be the set of intervals of non-zero length in {0, 1, . . . ,n},
i.e., Intn = {(k, l) | k < l, k, l ∈ {0, 1, . . . ,n}}. Let Y ⊆ Intn be some
subset of distinguished intervals in Intn. Then we define aggregation
method FY by setting, for each A, A-profile L and a ∈ ArgsA:

[FYA(L)](a) =

 x if x ∈ {in, out} and (|VL
a:¬x|, |VL

a:x|) ∈ Y

undec otherwise,
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where, for any x ∈ {in, out, undec}, VL
a:x denotes {i ∈ Ag | Li(a) = x}.

A particular member of this family, which we use in our examples, is
the credulous aggregation method Caminada and Pigozzi (2011),

[cioA(L)](a) =



in if ∃L ∈ L : L(a) = in and

@L ∈ L : L(a) = out,

out if ∃L ∈ L : L(a) = out and

@L ∈ L : L(a) = in,

undec otherwise,

which can be also defined by taking Ycio = {(0, l) ∈ Intn | l > 0}.
The credulous method cio returns a collective label of in (resp. out)

to an argument if at least one agent votes for in (resp. out) while none
vote for the opposite label out (resp. in). Otherwise it returns undec.

Interval methods may be characterised by a number of postulates
such as Anonymity, Unanimity and AF-Independence (the collective la-
bel of a is calculated independently of which other arguments might
be present or absent from A) Booth et al. (2014). However, despite
their simplicity, there is no interval method that satisfies Collective Ra-
tionality. For the sake of simplicity, from now on we stick to the cio
method, but in principle any interval method could be used as an
initial aggregation operator (we refer the reader to Booth et al. (2014)
for the details).

5.3.2 Extension to the Set of All Labellings

We would like to use one of the distance methods defined in Chap-
ter 4 but there is one problem. It was assumed distances were defined
only between complete labellings (or more general the set of feasible
labellings). In this case issue-based distance iddiff defined via diff sat-
isfying (scs) seems to be a good candidate to use in MO. But two of
the MO aggregation methods, namely Endpoint and Output, require
distance to be defined between all labellings, and in this case Theo-
rem 52 gives us a problem, for it tells us that the only way for any
product distance method to yield a metric over the whole set Labs(A)

is if S(A) = ArgsA. The question is, is there any alternative way to
define a distance method such that dA is a metric over Labs(A), but
which agrees with iddiff on Comp(A)? Here we give one possibility.
The idea is to take a sum over all arguments, but to weigh the con-
tribution of an argument a in the sum by the inverse of the size of
the Comp-issue to which a belongs. This gives rise to the extended
issue-based distance method eiddiff .

eid
diff
A (L1,L2) =

∑
a∈ArgsA

diff (L1(a),L2(a))
|[a]Comp|
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Figure 18: Two aggregation frameworks.

l1 l2 l3 l4 l5 l6 n1 n2 n3 n4

l1 : oioio 0.0 2.0 1.0 1.0 4.0 3.0 2.0 5.0 5.0 4.5

l2 : oiooi 2.0 0.0 1.0 3.0 2.0 3.0 2.0 3.0 3.0 2.5

l3 : oiouu 1.0 1.0 0.0 2.0 3.0 2.0 1.0 4.0 4.0 3.5

l4 : uuoio 1.0 3.0 2.0 0.0 3.0 2.0 1.0 4.0 4.0 4.5

l5 : uuuoi 4.0 2.0 3.0 3.0 0.0 1.0 2.0 1.0 1.0 1.5

l6 : uuuuu 3.0 3.0 2.0 2.0 1.0 0.0 1.0 2.0 2.0 2.5

n1 : uuouu 2.0 2.0 1.0 1.0 2.0 1.0 0.0 3.0 3.0 3.5

n2 : iouoi 5.0 3.0 4.0 4.0 1.0 2.0 3.0 0.0 2.0 2.5

n3 : uuioi 5.0 3.0 4.0 4.0 1.0 2.0 3.0 2.0 0.0 0.5

n4 : uiioi 4.5 2.5 3.5 4.5 1.5 2.5 3.5 2.5 0.5 0.0

Table 5: Distance between labellings by eiddiff with refined Hamming dis-
tance diff rh over the labels of A2 from Figure 18.

Proposition 84. (i) eiddiff
A is a metric over Labs(A)

(ii) eiddiff
A (L1,L2) = id

diff
A (L1,L2) for all L1,L2 ∈ Comp(A).

Proof. (i) The eiddiff
A is constructed the same way as ddiff ,S

A in Theo-
rem 52 but this time instead of using the same label metric diff we
use t-scaled metrics with t = 1

|[a]Comp|
depending on the size of the

issue argument belongs to. The set of all arguments is Labs-critical
therefore eiddiff

A is a metric (not only pseudometric). (ii) For complete
labelling all arguments from the issue have the same conflict. The dif-
ference is counted for each member of the issue and then divided by
the number of the elements in the issue.

We define Extended Issue-based distance method in two variant
by plugging two variants of discrete metric (EIBd, rEIBd). Therefore
we have two distance methods that can be used freely on Labs(A):
Hd/rHd and EIBd/rEIBd.

Example 85. Table 5 presents some distances returned by rEIBdA2
, where

A2 is from Figure 18.
ArgsA2

partitions into three Comp-issues {a,b}, {c} and {d, e}. Let us cal-
culate a few entries as an example: rEIBd(l1, l2) = 2 because there is no
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abcde abcde
cio(L) n1 : uuouu n1 : uuouu

Prototype(L) l5 : uuuoi l5 : uuuoi

Endpoint(L) l3 : oiouu l6 : uuuuu

l4 : uuoio

l6 : uuuuu

Output(L) l3 : oiouu l6 : uuuuu

l6 : uuuuu

Full(L) l3 : oiouu l3 : oiouu

Table 6: Aggregation of the profile L = (l4 : uuoio, l5 : uuuoi, l5 : uuuoi) - out-
comes for different MO aggregation methods used with: extended
issue-based labelling distance (rEIBd) (left column), and sum over
all arguments (rHd) (right column). In both columns refined ham-
ming distance over the labels and credulous initial operator is used.

conflict over the first two issues and there is a hard conflict over the last
one (0+ 0+ 2); rEIBd(l3, l4) = 2 because there are two soft conflicts over
the first and the last issue and no conflict on the middle one (1 + 0 + 1);
rEIBd(l5,n4) = 1.5 because there is half of a soft conflict over the first
issue and a soft conflict over the second one (0.5+ 1+ 0); etc.

5.3.3 Example of the MO Methods

We illustrate the MO methods in our setting by continuing with the
AF A2 from Figure 18. The A2-profile L = (l4 : uuoio, l5 : uuuoi, l5 : uuuoi)
aggregated with cio results in the non-complete labelling n1 : uuouu.
The result of repairing it with MO methods is listed in Table 6.

In the left column the MO methods were instantiated with rEIBd.
Method Prototype returns the closest complete labelling to the pro-
file L. We calculate the distance between L and labellings l1 − l6 by
adding distances from the row l4 (Table 5) to the doubled distances
from the row l5 and receive 9, 7, 8, 6, 3, 4 respectively. The minimum
is obtained for labelling l5 : uuuoi.

The Endpoint procedure returns the closest complete labelling to
cio(L). We inspect the row n1 in Table 5 to find that the minimum
distance 1 is obtained for l3, l4 and l6.

The Full and Output procedures search for closest cio-consistent
profiles L ′ to profile L. The Full procedure is restricted to the com-
plete cio-consistent profiles. Consider L ′ = (l1 : oioio, l5 : uuoio, l5 : uuoio).
It is a cio-consistent profile with with cio(L ′) = l3 : oiouu. It is also
minimal. The profiles L and L ′ differ just on l1 and l4 with dis-
tance 1 (soft conflict on issue {a,b}). There are no other complete
cio-consistent profiles with different cio outcome and same distance,
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Figure 19: Aggregation frameworks extended with dependant chains.

because any change of labelling l4 to another complete labelling costs
more than 1. The only other candidate for change is labelling l5. It can
be changed to l6 : uuuuu for a cost of 1 but to affect the outcome of
cio both occurrences of l5 in L would have to be changed with a total
cost of 2. The profile L ′ works for the Output procedure as well but
Output is not restricted to complete cio-consistent profiles. Changing
one of the l5 labellings to a non-complete labelling n3 : uuioi with
distance 1 creates additional conflict on argument c. As a result the
labelling l6 : uuuuu is produced.

The results change when we switch to using rHd rather than rEIBd
(right column). In this case the size of the issues does matter. The
Endpoint procedure only selects l6 because it differs with n1 over
issue {c} with one argument, while the other two labellings l3, l4 differ
over the two-argument issues {a,b} and {d, e} respectively. Similarly
in the case of Output changing l5 into n3 over a single-argument
issue is closer than the change of l4 into l1 over an issue with two
arguments.

5.4 agenda manipulation

In this section we explain informally why Indifference to peripheral
issues (IPI) introduced in Section 3.3.4 of Chapter 3 is important in
the context of judgement aggregation. Let us remind that (IPI) states
that the distance between corresponding labellings of an AF and its
extension with a single attacked argument should be the same.

Example 86. Consider AF A from Figure 19 which is AF A1 from Figure 18
extended wiith the chains of attacking arguments attached to arguments a, c
and e. Consider the chain of arguments a1, ...,ak attached to the argument
a with the attacks (a,a1), (a1,a2), ..., (ak−1,ak). The status of such chain
under complete semantics is determined by the labelling of argument a there-
fore they belong to the [a]Comp. The same holds for the chains attached to the
arguments c and e. We have three Comp-issues [a]Comp = {a,b,a1, . . . ,ak},
[c]Comp = {c, c1, . . . , cl} and [e]Comp = {d, e, e1, . . . , em}. Let A[k, l,m] for
k, l,m > 0 denote AF extended with k, l,m arguments attached to a,c and
e respectively.

Assume, we have two agents with expertise in issue [a]Comp and [e]Comp

respectively with opinions expressed by complete A1-labellings iouuu and
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uuuoi, i.e. the first agent accepts argument a, rejects argument b and re-
mains undecided about arguments from other issues while the second agent
accepts argument e rejects argument d and remains undecided about argu-
ments in other issues. Since agents are rational i.e. express opinions using
complete labellings we can assume that while presented with any A[k, l,m]

agents will extend their labellings in a unique way according to the rules of
complete semantics. We denote those extended labellings by iouuu, uuuoi.

Assume experts are questioned in a court and their opinions L = (iouuu, uuuoi)
are agregated using Endpoint and cio. If distance satisfying (IPI), like issue-
based IBd, is used ’the chains are ignored’. We obtain

Endpointcio,IBd
A[k,l,m](L) = {ioioi}

for any k, l,m. But if distance failing (IPI) is used, like full sum distance
Hd, then dependent on the lengths of the chains k, l,m we have

Endpointcio,Hd
A[0,0,0](L) = {ioioi},

Endpointcio,Hd
A[0,3,0](L) = {iouuu, uuuoi},

Endpointcio,Hd
A[1,3,0](L) = {uuuoi},

Endpointcio,Hd
A[0,3,1](L) = {iouuu}.

This kind of behaviour allows the judge to change the outcome of the expertise
by formulating problem in different seemingly equivalent ways. Intuitively
we would like to avoid such behaviour.

Similar examples can be constructed for other MO methods. This
kind of behaviour is referred to as agenda manipulation. We leave
formalisation of the above problem for a future work.

5.5 down-admissible and up-complete as a mo method

Caminada and Pigozzi (2011) explore another way of repairing the
results of an initial aggregator M in the argumentation setting, using
the down-admissible and up-complete labellings. To recall them we need
some more notation.

Definition 87 (Caminada and Pigozzi (2011)). Let A be an AF and
L1,L2 ∈ Labs(A). We say that L1 is less or equally committed as L2,
written L1 v L2, iff in(L1) ⊆ in(L2) and out(L1) ⊆ out(L2).

It can be observed Caminada and Pigozzi (2011) that v defines
partial order over all A-labellings.

Definition 88 (Caminada and Pigozzi (2011)). Given an A-labelling L,

• the down-admissible labelling of L, denoted by �L, is the (unique)
greatest element (under v) of the set of all admissible A-labellings N
such that N v L,
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abcde abcde

L l5 : uuuoi l4 : uuoio

l9 : iouuu l5 : uuuoi

cio(L) n2 : iouoi n1 : uuouu

�cio(L) n2 : iouoi l6 : uuuuu

��cio(L) l8 : ioioi l6 : uuuuu

Table 7: Two profiles (l5, l9) and (l4, l5) for which cio violates collective
rationality and is repaired with down-admissible up-complete pro-
cedures.

• the up-complete labelling of L, denoted by �L, is the (unique) smallest
element (under v) of the set of all complete A-labellings N such that
L v N.

Two computation procedures were given to calculate � L and � L
Caminada and Pigozzi (2011). Namely to obtain �L one need to re-
label any illegally in and illegally out argument into undec as long
as there are illegal in (out) arguments. The order of relabelling does
not matter. To obtain �L one need to relabel any illegally undec ar-
gument into legally in or legally out. Again the order in which we
relabel does not influence the outcome. We denote by �� L the com-
posite operation of performing the down-admissible followed by the
up-complete procedures on an A-labelling L.

Example 89. In Table 7 two profiles (considered over A1 and A2 respec-
tively from Figure 18) are aggregated with the cio method and repaired with
down-admissible up-complete procedures (assuming n = 2).

For the left column we consider the A1-profile (l5, l9). The labelling
cioA1

(l5, l9) = n2 is admissible therefore the down-admissible procedure
is vacuous. But although c was legally-undec in each of the labellings in the
profile it is illegally-undec because all its attackers are labelled out. The up-
complete procedure relabels it to in and a complete labelling l8 is produced.

For the right column we consider the A2-profile (l4, l5). The labelling
cioA2

(l4, l5) = n1 is not complete because argument c is labelled out de-
spite the fact that none of its attackers is in. Thus it needs to be repaired. The
down-admissible procedure relabels c to undec to obtain �n1 = l6 : uuuuu.
Since there are no illegally-undec arguments the up-complete procedure is
not needed and so ��n1 = l6.

The above procedure can be viewed more generally as an aggrega-
tion method that takes any initial aggregation operator (not just cio)
as a parameter.

Definition 90. Let M be any initial aggregation method. The aggrega-
tion method DAUCM is defined by setting, for any AF A and A-profile L,
DAUCMA (L) = {��L | L ∈MA(L)}.
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By construction DAUCM is collectively rational, whatever we take M
to be. The above definition is applicable also for cases in which M
might not be resolute. However in case M is resolute then clearly so
too is DAUCM.

How does this aggregation compare to the MO methods? It turns
out that DAUC can be viewed as an instance of the Endpoint method
of MO by taking the following distance.

d
��
A(L1,L2) =



0 if L1 = L2

1 if L1 6= L2 and �L1 =�L2

2 if �L1 6=�L2 and

��L1 =��L2

3 otherwise.

Proposition 91. (i). d��A is a metric (over Labs(A)).
(ii). For resolute initial aggregation operator M, DAUCMA = EndpointM,d��

A

Proof. (i) Metrics. The conditions (REF,DD,SYM) (Definition 12) are
self evident. Only condition (TRI), the triangle inequity - d��A(L1,L2) 6
d
��
A(L1,L3) + d

��
A(L3,L2) - can rise doubts. We prove by considering

all possible distances between L1 and L2. If d��A(L1,L2) = 3 then
�� L1 6=�� L2. In this case either �� L3 6=�� L1 or �� L3 6=�� L2 from which
follows that either d��A(L1,L3) = 3 or d��A(L3,L2) = 3. Therefore at least
one of the non-negative addends of the right side is equal to the left
side and the inequity holds. Similarly, if d��A(L1,L2) = 2 then �L3 6=�L1
or �L3 6=�L2 and so d��A(L1,L3) > 2 or d��A(L3,L2) > 2. And so on, at
least one of the addends of the right side is bigger than the left side.

(ii) Take any A-profile L. We have

DAUCMA (L) = {��M(L)}

and
Endpoint

M,d��A
A = arg min

L∈Comp(A)

d
��
A(L,M(L)).

Consider complete labellings over which Endpoint minimalise dis-
tance. By definition d��A(��M(L),M(L)) 6 2 while for any other com-

plete labelling L ′ 6=��M(L), d��A(L ′,M(L)) = 3 therefore EndpointM,d��A
A =

{��M(L)}.

5.6 conclusions

We have continued work on distance methods for argumentation
from Chapter 4, illustrating how they can be employed to address
problems of aggregation in argumentation. To do this we adapted
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the framework of Miller and Osherson from binary judgement ag-
gregation to our setting, defining several operators for aggregating
argument labellings.

To use the Miller and Osherson framework fully requires distance
which is a metric defined for all labellings. From the three distance
measures proposed in Chapter 4 only full sum distance Hd satisfies
this requirement while issue-based distance IBd and maximum over
minimal critical set distance MMCSd are pseudometrics. To address
this problem, we extended issue-based distance measure to the set of
all labellings. We illustrated informally that methods which fail (IPI)
may lead to agenda manipulation, which makes IBd superior to the
Hd when applied to MO framework. The generalisation of MMCSd,
another distance satisfying (IPI) is left for future work.

Finally we illustrated the generality of the resulting framework for
aggregation by showing how the ��aggregation method of Caminada
and Pigozzi (2011) can be viewed as an instance of one of the MO
methods.

There are several avenues open for future work. Firstly, a feature
of our examples (see Section 5.3.3) is that the different aggregation
methods can all yield quite different results. This raises the question
of which method to prefer. We plan to classify the different meth-
ods in terms of the postulates they satisfy. Previous work on labelling
aggregation Booth et al. (2014); Rahwan and Tohmé (2010) have exam-
ined postulates for such operators (inspired by postulates from JA),
but have done so only for resolute aggregation methods. We will gen-
eralise these to irresolute methods, perhaps taking a lead from similar
generalisations from JA, Grandi and Pigozzi (2012).

Another interesting question is to consider what happens if you ag-
gregate all complete A-labellings of an AF. This question was consid-
ered in Caminada and Pigozzi (2011), but again only for resolute oper-
ators. In this way the operators of Caminada and Pigozzi (2011) were
able to characterise certain single-status argumentation semantics (i.e.,
grounded and ideal). Our move to irresolute aggregation opens the
possibility that we might be able to capture also some multiple-status
semantics such as Dung’s (1995) preferred semantics. That is, does ag-
gregating all complete A-labellings yield precisely the set of preferred
A-labellings?



6
A P E R S U A S I O N D I A L O G U E F O R G R O U N D E D
S E M A N T I C S

6.1 introduction

The field of formal argumentation consists two main lines of research.
One line of research is concerned with the dialectical process of two
or more players who are involved in a discussion. This kind of argu-
mentation, referred to as dialogue theory in the ASPIC project ASPIC-
consortium (2005), can be traced back to the work of Hamblin (1970;
1971) and Mackenzie (1979; 1990). A different line of research is con-
cerned with arguments as a basis for nonmonotonic inference. The
idea is that (nonmonotonic) reasoning can be performed by construct-
ing and evaluating arguments, which are composed of a number of
reasons that collectively support a particular claim. This line of re-
search can be traced back to the work of Pollock (1992; 1995), Vreeswijk
(1993; 1997) and Simari and Loui (1992), and has culminated with the
work of Dung (1995), which serves as the basis of much of today’s
argumentation research.

One particular question one may ask is to what extent it is possi-
ble to create links between these two lines of research. One particular
way of doing so would be to have an argument accepted (under a
particular Dung-style semantics) iff it can be defended in a particular
type of formal dialogue. In previous work, Caminada (2010) observed
that (credulous) preferred semantics can be reinterpreted as a partic-
ular type of Socratic dialogue. That is, an argument is in at least one
preferred extension iff the proponent is able to successfully defend
the argument in the associated Socratic discussion game, against a
maximally sceptical opponent. In the current chapter we take a simi-
lar approach, this time not for preferred but for grounded semantics.
Our claim is that the acceptance of an argument under grounded se-
mantics coincides with the ability to win a particular type of dialogue,
against a maximally sceptical opponent.

One of the aims of our work is to contribute to a conceptual basis
for (abstract) argumentation theory. Whereas, for instance, classical
logic is based on the notion of truth, it is not immediately obvious
where a notion like truth would fit in when it comes to (abstact) ar-
gumentation research. Still, one would like to determine what the
various argumentation semantics actually constitute to. An answer
like “preferred semantics is about the maximal conflict-free fixpoints,
whereas grounded semantics is about the minimal conflict-free fix-
point” might be technically correct, but is still conceptually somewhat
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unsatisfying. We believe that formal dialogue can serve as a concep-
tual basis for (abstract) argumentation theory. The idea is that one
infers not so much what is true, as is the case in classical logic, but
what can be defended in rational discussion. In particular, our aim is to
show that different argumentation semantics correspond with differ-
ent types of rational discussion.

The remaining part of this chapter is structured as follows. First,
in Section 6.2 we present our formal persuasion dialogue and prove
its equivalence with acceptance under grounded semantics. Then we
round off in Section 6.3 with a discussion of the obtained results and
a treatment of related research.

6.2 a dialogue game for grounded semantics

Our proposed dialogue game consists of the following moves.

claim This is the first move in the dialogue, at which the proponent
claims that a particular argument has to be labelled in, creating
a commitment at the side of the speaker.

why With this move, the opponent asks why a particular argument
has to be labelled a particular way.

because With this move, similar to the since move in Mackenzie’s
DC, a party explains why the status of a particular argument
has to be the way the party stated earlier. The explanation can
create new commitments at the side of the speaker.

concede With this move, a party concedes part of the statements
uttered earlier by the other party, creating new commitments
at the side of the speaker. Although the act of conceding is left
implicit in Mackenzie’s DC, we agree with Walton and Krabbe
(1995) that it can have advantages to explicitly represent the act
of conceding.

Before laying out the precise formal rules of the dialogue game,
it can be illustrative to examine some examples. Consider for in-
stance the argumentation framework of Figure 20. Here, the discus-
sion could go as follows.
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Figure 20: An Argumentation framework with simple reinstatement

Commitment

Moves Proponent Opponent

in out in out

P: claim in(a) a - - -

O: why in(a) a - - -

P: because out(b) a b - -

O: why out(b) a b - -

P: because in(c) a,c b - -

O: concede in(c), out(b), in(a) a,c b c,a b

In essence, our inspiration comes from the argument game for
grounded semantics as described in Prakken and Sartor (1997); Cami-
nada (2004); Modgil and Caminada (2009). Here, a game basically con-
sists of a proponent (P) and an opponent (O) taking turns in putting
forward arguments (proponent begins). Each moved argument has to
be an attacker of the previously moved argument by the other player.
In order to ensure that the game terminates, the proponent is disal-
lowed from moving the same argument twice (although the opponent
does not have this restriction). A player wins if the other player can-
not move any more.

Although the standard grounded game, as described in Prakken
and Sartor (1997); Caminada (2004); Modgil and Caminada (2009),
can serve fine as a basis for argument-based proof procedures, it does
have some properties that deviate from what one would expect for a
persuasion dialogue. In particular, where the definition of a complete
labelling requires that for an argument to be in all of its attackers
have to be out, in the standard grounded game, it is only claimed
that just one of the attackers is out.1 It is difficult to maintain that an
agent can be persuaded that all attackers of an argument are labelled
out when this is shown only for one of them. Therefore, the standard
grounded game cannot be said to be truly about persuasion, at least
not within an individual game.2,3

1That is, if one interprets the standard grounded game in terms of argument
labellings, where the proponent makes in moves and the opponent makes out moves,
as is done in Modgil and Caminada (2009).

2For establishing correctness and completeness with respect to membership of
the grounded extension, the standard grounded game relies not on an individual
game, but on the presence of a winning strategy. We refer to Prakken and Sartor
(1997); Caminada (2004); Modgil and Caminada (2009) for details.

3Similar remarks can be made about other existing dialectical proof procedures
for abstract argumentation semantics, such as Dung et al. (2007); Thang et al. (2009).
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Figure 21: Two paths coming from the same argument

For the grounded game to be categorized as persuasion, it would
be highly desirable to be able to evaluate, in the same game, all attack-
ers of a particular argument that is claimed to be in. This, however,
creates a new type of problems. Consider the example in Figure 21.

A discussion in which all attackers of an in-labelled argument can
be evaluated might look as follows.

Commitment

Moves Proponent Opponent

in out in out

P: claim in(a) a - - -

O: why in(a) a - - -

P: because out(b), out(c) a b,c - -

O: why out(b) a b,c - -

P: because in(d) a,d b,c - -

O: why in(d) a,d b,c - -

P: because out(f) a,d b,c,f - -

O: why out(f) a,d b,c,f - -

P: because in(h) a,d,h b,c,f - -

O: concede in(h), out(f), in(d), out(b) a,d,h b,c,f h,d f,b

O: why out(c) a,d,h b,c,f h,d f,b

P: because in(e) a,d,h,e b,c,f h,d f,b

O: why in(e) a,d,h,e b,c,f h,d f,b

P: because out(g) a,d,h,e b,c,f,g h,d f,b

O: why out(g) a,d,h,e b,c,f,g h,d f,b

P: because in(h) a,d,h,e b,c,f,g h,d f,b

O: concede out(g), in(e), out(c), in(a) a,d,h,e b,c,f,g h,d,e,a f,b,g,c

In the above game, the proponent moves the same argument (h)
twice. In the standard grounded game, this would not be allowed,
since it can lead to non-termination. Take for instance an argumenta-
tion framework consisting of two arguments a and b that attack each
other as in Figure 22. When one allows for the proponent to repeat
arguments, the resulting game can be infinite.
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Figure 22: Two arguments attacking each other

Commitment

Moves Proponent Opponent

in out in out

P: claim in(a) a - - -

O: why in(a) a - - -

P: because out(b) a b - -

O: why out(b) a b - -

P: because in(a) a b - -

O: why in(a) a b - -

P: because out(b) a b - -
...

...
...

...
...

In the standard grounded game, the reason one does not have to re-
peat argument h in the example of Figure 21 is because the lines of ar-
guments in(a)− out(b)− in(d)− out(f)− in(h) and in(a)− out(c)−

in(e) − out(g) − in(h) are considered to be distinct, constituting dif-
ferent discussions.4 However, they can only be distinct because one
does not require all attackers of an in-labelled argument to be evalu-
ated to be labelled out in the same discussion.

Overall, what we are interested in is to define a dialogue game
such that (1) all attackers of an argument that is claimed to be in

can be evaluated to be out in the same dialogue, (2) each dialogue is
guaranteed to terminate, and (3) the ability for the proponent to win
the dialogue coincides with membership of the grounded extension.

As labellings can be seen as information about all arguments in
the graph, partial labellings are handy to express partial information
about a subset of arguments.

Definition 92. Let (Args,⇀) be an argumentation framework. A partial
argument labelling is a partial function L : Args→ {in, out, undec}.

When we talk about partial labellings we will use caligraphic L in
contrast to usual L. By dom(L) we denote a domain of L.

For any arguments a1, ...,an ∈ Args by in(a1, ...,an) we mean par-
tial labelling that labels precisely arguments a1, ...,an in. Similarly
we use out(...) and undec(...)

To keep notation short and skip writing separate cases for argu-
ments labelled in and out we use the following two definitions.

4They are essentially branches in the tree of the winning strategy Prakken and
Sartor (1997); Caminada (2004); Modgil and Caminada (2009).
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Definition 93. Let L1 and L2 be partial labellings. We say L1 is a reason
for L2 iff:

1. L2 = in(a) or L2 = out(a).

2. if L2 = in(a) then L1 = out(b1, ...,bn) where bi, i > 0 are all
attackers of a in the framework.

3. if L2 = out(a) then L1 = in(b) for some b attacker of a.

We extend this notion to partial labellings of any size.

Definition 94. Let L1 and L2 be partial labellings. We say L1 contains a
reason for L2 iff:

1. L2(a) ∈ {in, out} for all arguments a in the domain of L2.

2. for any singleton argument labelling, that is a labelling that labels
only a single argument, L ⊆ L2, there exists a labelling L ′ such that
L ′ is a reason for L and L ′ ⊆ L1.

Note that if L1 is a reason for L2 then L1 contains a reason for
L2 but usually not the reverse. Directly from Definition 9 follows the
observation below.

Observation 95. Let L be a complete labelling. If L1 contains a reason for
L2 and L1 ⊆ L then L2 ⊆ L.

So if L represents the position of a rational agent that satisfies the
condition of a complete labelling and contains reasons for singleton
argument labelling La, then it must also contain labelling La itself.

The dialogue game is guided by the definition of complete labelling.
The opponent is assumed to be maximally sceptical, conceding only
if this cannot be avoided. That is, he only concedes that argument is
in if he is already committed that all attackers are out and he only
concedes that an argument is out if he is already committed that at
least one attacker is in. Informally, the rules of the dialogue can be
described as follows.

• The proponent (P) and opponent (O) takes turns; Each turn of
P contains single move claim or because; In each turn O plays
one or more moves. O’s turn starts with an optional sequence
of concede moves and finishes (when possible) with single why

move.

• P gets committed to arguments used in claim and because

moves; O gets committed to arguments used in concede moves.

• P starts with claim in(a) where a is the main argument of the
discussion; claim cannot be repeated later in the game.
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• In consecutive turns P provides reasons for the directly preced-
ing why L move of O by moving because L ′ where L ′ is a reason
of L.

• P can play because only if the reason given does not contain
any arguments already mentioned (in P’s commitment store)
but not yet accepted (not in O’s commitment store). We call
such arguments open issues.

• O addresses the most recent open issue L (in(a) or out(a))
in the discussion. If O is committed to reasons for L it must
concede L otherwise O questions all reasons that O is not com-
mitted to with why.

• O can question with why just one argument.

• The moves claim, because and concede can be played only if
new commitments do not contradict a previous one.

• The discussion terminates when no more moves are possible. If
O conceded the main argument then P wins, otherwise O wins.

We now formally define the above sketched dialogue game.

Definition 96 (Discussion move). A discussion move is a triple M =

(P,T,L) where P ∈ {proponent, opponent} is a player, T ∈ {claim, why, because, concede}
is a move type and L is a partial labelling.

Definition 97 (Discussion). A discussion is a tuple (M,CS) where M is
a finite sequence of moves [M1, ...,Mn] and CS is a function assigning to
each player a partial labelling representing his commitment.

Additionally we define open issues asOI(D) = CS(proponent)\CS(opponent)

and the last open issue LOI(D) = OI(D)∩Lk whereMk = (Pk,Tk,Lk)

is the last move such that OI(D)∩Lk is not empty (maximal k).

Definition 98 (Grounded discussion). A discussion D = (M,CS), M =

[M1, ...,Mn+1] is a grounded discussion iff the following recursive con-
ditions (basis) or (construction) hold.

(basis) n = 0 and the following holds

I1 M1 = (proponent, claim, in(A))

I2 CS(proponent) = in(A) and CS(opponent) = ∅

(construction) n > 0 and D ′ = (M ′,CS ′) (where M ′ is [M1, ...,Mn])
is a grounded discussion and one of the following holds:

W1 Mn+1 = (opponent, why,L) and

W2 Mn = (Pn,Tn,Ln), Tn 6= why and

W3 L ⊆ LOI(D ′), #L = 1 and
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W4 there is no L ′ ⊆ LOI(D ′), #L ′ = 1 such that CS(opponent)

contains the reason for L ′ and

W5 CS = CS ′

or

B1 Mn+1 = (proponent, because,L) and

B2 Mn = (opponent, why,L ′) and

B3 L is a reason for L ′ and

B4 L∩OI(D ′) = ∅ and

B5 CS(proponent) = CS ′(proponent)∪L and

B6 CS(opponent) = CS ′(opponent)

or

C1 Mn+1 = (opponent, concede,L) and

C2 L ⊆ LOI(D ′), #L = 1 and

C3 CS ′(opponent) contains a reason for L and

C4 CS(proponent) = CS ′(proponent) and

C5 CS(opponent) = CS ′(opponent)∪L

We say that a discussion is terminated if it cannot be extended any more.
For a terminated discussion proponent wins if opponent conceded the main
claim of the discussion, otherwise opponent wins.

Observation 99. (Grounded discussion properties)

1. The claim move is the first move in every discussion (I1) and it is
never repeated as it is not listed in construction part of Defini-
tion 98.

2. The concede is never played after why as W4 excludes C3 so C3 does
not hold when why is played and also in the next move as why does not
change the commitment store.

3. After each concede move CS(opponent) is enlarged with one argu-
ment. Consider a partial labelling L that is added to CS(opponent)

during a concede move (C5). By condition C2 it labels exactly one
argument and because L ⊆ LOI(D ′) ⊆ OI(D ′) and OI(D ′) ∩
CS(opponent) = ∅ it was not in CS(opponent) before.

4. The why move cannot be repeated directly after other why move (W2).

5. Whenever a concede move can be played, by condition W4 why move
cannot.

6. The because move follows directly after a why move (B2).
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7. After each because move CS(proponent) is enlarged. Consider la-
belling L that is added to CS(proponent) during a because move
(B5). L is a reason for L ′ from the previous why move (B3). By W4 L

is not contained in CS(opponent) and in particular L\CS(opponent)

is not empty. By B4 L\CS(opponent) is also not an open issue. There-
fore L needs to contain at least one new element.

8. It is always the case that CS(opponent) ⊆ CS(proponent). It holds
after first claim move (I2), then opponent’s commitment store is
only modified during concede move when it is extended by L ⊆
LOI(D) ⊆ OI(D) ⊆ CS(proponent).

9. The because move cannot be played if the new commitment store de-
fined in B5 is not a partial labelling. Grounded discussion is a discus-
sion and so the commitment stores need to be partial labellings. This
rules out the possibility that the same argument can be labelled both
in and out. This is not a concern in case of concede as opponent’s
commitment store is always subset of proponent’s store (see previous
point).

We simplify the winning criteria as follows. The opponent wins
(conversely the proponent loses) if and only if the proponent cannot
respond to the why move of the opponent. Thus we can determine the
winner of the game just by examining the type of the last move.

Lemma 100. Let D = (M,CS) with Mi = [M1, ...,Mk] be a terminated
grounded discussion based on argumentation framework A = (Args,⇀).
The opponent wins iff the last move Mk is of type why.

Proof. If the opponent wins then the main claim is not in its commit-
ment store but it is in the proponent’s commitment store, therefore
the set of open issues is not empty. Then the set of last open issues is
not empty as well. For all artial labellings L labelling one argument
from open issues the opponent is not committed to any reason for L

otherwise D which is terminated could be extended with a concedeL

move. But then condition W4 (Definition 98) is fulfilled. The only
reason for which D cannot be extended with the whyL move is condi-
tion W2 i.e. another why move was already played. By contraposition,
players commitments stores in a terminated discussion which doesn’t
finish with why need to be equal. Since proponent is committed to the
main claim so is the opponent. In this case the proponent wins.

Theorem 101. Any grounded discussion over a finite argumentation frame-
work has to terminate.

Proof. Assume there is an infinite sequence of grounded discussions
Di = (Mi,CSi) and Mi = [M1, ...,Mi] for i = 1, ...,∞. As noticed
in Observation 99 the claim move is played only once. Furthermore
after both the because move and the concede move, the commitment
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stores of proponent and opponent respectively are extended with at
least one new argument, so this moves can be played at most N
times where N is a number of arguments in argumentation frame-
work. Therefore after 2N + 1 moves only why moves can be played.
But why moves cannot be played uninterrupted (without being inter-
leaved with other types of moves). Therefore, every grounded game
must terminate (cannot be extended infinitely many times).

Lemma 102. For any grounded discussion D = (M,CS) based on argu-
mentation framework A = (Args,⇀) the commitment store of opponent is
in the grounded labelling of A. This is CS(opponent) ⊆ Lgr where Lgr is
the grounded labelling.

Proof. We use induction over the number of moves in the discussion.
(Basis) For a discussion containing just one move (main claim) op-

ponent’s store is empty and condition is trivially fulfilled (CS(opponent) =
∅ ⊆ Lgr).

(Step) Assume that for grounded discussion D ′ = (M ′,CS ′), M ′ =
[M1, ...,Mn] our claim hold i.e. CS ′(opponent) ⊆ Lgr.5 We need to
show that it holds for a grounded discussion D = (M,CS), M =

[M1, ...,Mn,Mn+1], Mn+1 = (Pn+1,Tn+1,Ln+1) as well.
We need to consider only the case where Tn+1 = concede. In other

cases CS(opponent) = CS ′(opponent) ⊆ Lgr by assumption.
After the concede move CS(opponent) = CS ′(opponent) ∪ L (C5).

We only need to show that L ⊆ Lgr . According to C3 CS ′(opponent)

contain the reasons for L. Then by assumption Lgr contains the rea-
sons and by Observation 95 Lgr needs to include L as well.

Corollary 103. If proponent wins a grounded discussion then the main
claim is in the grounded extension that is, it is labelled in by the grounded
labelling.

To show that our dialogue is not only sound but also complete, we
construct the grounded persuasion game won by the proponent for
all in-labelled arguments of the grounded labelling. For that, we re-
call the concept of strong admissibility first introduced by Baroni and
Giacomin (2007) as an extension-based semantics and recently intro-
duced by Caminada (2014) in terms of labellings. We use later ver-
sion defined by min-max numbering, i.e. function assigning to each
in/out labelled argument a natural number or infinity.

Definition 104 (Caminada (2014)). Let L be an admissible labelling of
argumentation framework (Args,⇀). A min-max numbering is a total
function MML : in(L)∪out(L)→N∪ {∞} such that for each a ∈ in(L)∪
out(L) it holds that:
• if L(a) = in then MML(a) = max({MML(b) | b attacks a and
L(b) = out}) + 1 (with max(∅) defined as 0)

5Notice that CS ′ is well defined by Definition 98
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• if L(a) = out then MML(a) = min({MML(b) | b attacks a and
L(b) = in}) + 1 (with min(∅) defined as∞)

Caminada proved that every admissible labelling has a unique min-
max numbering. The strongly admissible labellings are those admis-
sible labelling whose min-max numbering is finite, (2014).

Definition 105 (Caminada (2014)). A strongly admissible labelling is
an admissible labelling whose min-max numbering yields natural numbers
only (so no argument is numbered∞).

We use the fact that the grounded labelling is strongly admissible
labelling, (2014).

Theorem 106. Let A = (Args,⇀) be argumentation framework and Lgr
its unique grounded labelling. For any argument a ∈ Args if Lgr(a) = in

then there exists a grounded discussion for a that is won by a proponent.

Proof. Let a be an in-labelled argument of Lgr. We construct the
grounded persuasion game D won by proponent as follows:

1. Start by (proponent, claim, in(a)).

2. Extend the game with a valid move M, whose labelling agrees
with Lgr and labels an argument with the lowest possible min-
max number.

3. Repeat the previous step as long as possible.

Note that the above rules define a valid game because we start and
extend with valid moves, and by Theorem 101 this process stops at
some point. The only ambiguous steps are the following:

1. the opponent asks why out(b) where b is one of several attackers
of in-labelled arguments,

2. the proponent answers to the why out(b) by because in(c) where
c is one of several in-labelled attackers of b.

In those cases moves contain partial labelling which labels exactly
one argument. It may happen that several arguments in question has
the same min-max number but then choice between them is not im-
portant.

We show that at each step of the above construction the last open
issues are the open issues which have the lowest min-max numbering.
We state this property formally. For two partial labellings L1, L2 we
will write MM(L1) > MM(L2) iff ∀a ∈ dom(L1),b ∈ dom(L2) :

MM(a) >MM(b). We prove by induction (with respect to the length
of the game) that the following property is preserved:

MM(OID \ LOID) >MM(LOID) (IP)
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(basis) After the first move OID = LOID so (IP) trivially holds.

(construction) Assume (IP) holds for D with the last move M =

(P,T,L). Let D ′ be an extension of D with moveM ′ = (P ′,T ′,L ′).
We have the following cases based on the type of the extending
move:

(T ′ = why) OID = OI ′D and L ′ = LOID ⊆ LOI ′D. By the in-
ductive assumption MM(OID \ LOID) > MM(LOID)

and MM(LOID) > MM(L ′) because by construction the
minimal argument was questioned. Therefore MM(OI ′D \

LOI ′D) > MM(LOI ′D). In other words, by construction
L ′ labels a single argument with minimal min-max num-
ber among the last open issues of the previous step, which
by the inductive assumption labels arguments with min-
imal min-max numbers among all open issues which are
the same before and after extension. Therefore the last open
issues labels arguments with minimal min-max numbers
among arguments labelled by open issues, i.e. (IP) is pre-
served.

(T ′ = concede) After the concede move the opponent com-
mits to L ′ therefore it is no longer an open issue. Either
LOID ′ = L ′′ ∩ OID ′ for some L ′′ used in earlier move
M ′′ or there are no more open issues and game stops. In
the later case (IP) is trivially fulfilled. In the case OID ′ is
not empty we have OID ′ ⊆ OID ′′ because both players
commitment stores increase with the length of the game
(CSD ′′ (opponent) ⊆ CSD ′ (opponent), CSD ′′ (proponent) ⊆
CSD ′ (proponent)) and CSD ′ (proponent) \ CSD ′ (opponent) ⊆
CSD ′′ (proponent) because of maximality of M ′′ is the
latest move with labelling not fully committed by propo-
nent. Then we have also LOID ′ ⊆ LOID ′′ . By the in-
ductive assumption LOID ′′ label arguments with mini-
mal min-max numbering among the arguments labelled
by OID ′′ and it is preserved to it subsets.

(T ′ = because) Then L ′ = LOID ′ is a reason for L = LOID.
We have two cases:

L = in(v) Then L ′ = out(w1 , . . . , w2) where w1 , . . . , w2

are all the attackers of v. By definition of min-max
numbering MM(L) > MM(L ′).

L = out(v) Then L ′ = in(w) for some w attacking v.
By the strategy w has a minimal min-max number
and by definition of min-max numbering MM(v) >

MM(w).

In both cases we have strict inequity MM(L) > MM(L ′).
Since by the inductive assumption L labels arguments with
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minimal min-max numberings among OID, OID ′ = OID ∪
(L ′ \ CS(opponent)) and L ′ labels argument with strictly
smaller min-max number than ones labelled by L, L ′ la-
bels argument with strictly smaller min-max number than
any other argument labelled by OID ′ .

We have shown that at each step of the above construction the last
open issues are the open issues which have the lowest min-max num-
bering. Moreover, in the case when the reason of the labelling ques-
tioned in the why move is given it labels arguments with strictly lower
min-max numbers. It means that the order of moves in the construc-
tion guarantees that a because move never fails because of Condition
B4 - L∩OI(D) = ∅). Also, there always exists a reason for a labelling
questioned in the why move because by construction the proponent
plays moves compatible with Lgr (Condition B3). Therefore the propo-
nent can always address the why moves of the opponent. This means
that why move is not the last move of the game therefore by Lemma
100 the proponent wins.

Note that the decision points in the construction of Theorem 106

are taken by both parts. Therefore discussion testifying the inclusion
of an argument in the grounded extension, although it exists, to be ac-
tually played requires the proponent and the opponent to cooperate.
It can be shown that the proponent not always has a wining strategy
to convince the opponent.

It can be illustrative to examine how the earlier mentioned exam-
ples of discussion games (related to Figure 20, Figure 21 and Fig-
ure 22) are handled by the formal definition of the grounded discus-
sion. The discussions related to Figure 20 and Figure 21 are in essence
instances of the formal grounded game (one difference is that in the
formal game, conceding several arguments is done using a sequence
of concede moves instead of in a single move) although in the exam-
ple related to Figure 21 one would have to omit the 15th and 16th

moves, since the fact that G is out already follows from the oppo-
nent’s existing commitments, where H is in. The third discussion,
that is related to the case of two arguments attacking each other (Fig-
ure 22), however, is not a legal grounded game. The reason is that
in the fifth step (“P: because in(a)”) the proponent gives a reason
(in(a)) that is actually an open issue, which is explicitly forbidden by
rule B4 of Definition 98.

Overall, one can observe that our approach to the grounded dis-
cussion no longer relies on an implicit tree-like structure (as was still
the case in the standard grounded game, in which this tree is essen-
tially a winning strategy of lines of arguments Prakken and Sartor
(1997); Caminada (2004); Modgil and Caminada (2009), or in the ap-
proach of Prakken (2005)) to be able to allow certain forms of desir-
able repetition (in different lines of arguments, as is the case in the
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example related to Figure 21) while at the same time ruling out cer-
tain forms of undesirable repetition (in the same line of arguments,
as is the example related to Figure 22). By cleverly using the commit-
ment store we made desirable repetition unnecessary, which means
that all other forms of repetition are undesirable and can simply be
forbidden. We simply do not need the concept of lines of arguments
anymore in order to distinguish between desirable repetition and un-
desirable repetition. In this way, the discussion related to grounded
semantics has become in line with standard dialogue theory, where
one relies only on the notion of a commitment store, and not on all
kinds of implicit mathematical structures (like trees or lines of argu-
ments) to keep track of the status of the dialogue.

6.3 discussion

In the current chapter, we have examined how the notion of grounded
semantics can be specified in terms of persuasion dialogue. Unlike
for instance the standard grounded game Prakken and Sartor (1997);
Caminada (2004); Modgil and Caminada (2009) or the approach of
Prakken (2005), our dialogue game does not depend on an implicit
tree-like structure, in which the moves have to fit. Also, unlike the ap-
proach in for instance Parsons et al. (2002, 2003a,b), we do not merely
apply the concept of grounded semantics (for instance for determining
what moves an agent is allowed to make, depending on its acceptance
attitude) but we characterize it.

The aim of our work, as well as that of Caminada (2010) is to
build a connection between two lines of argumentation research: ar-
gumentation as a basis for specifying nonmonotonic inference Dung
(1995); Caminada and Amgoud (2007); Prakken (2010); Gorogiannis
and Hunter (2011) and argumentation as a dialectical process of struc-
tured discussion Hamblin (1970, 1971); Mackenzie (1979, 1990); Yuan
et al. (2003). The idea is that argumentation as nonmonotonic infer-
ence can be specified by means of structured discussion.

It should be observed that although the dialogue game described
in the current chapter should not be seen as an algorithm or proof
procedure. Although we prove that an argument is in the grounded
extension iff the proponent can win the dialogue game for it, we did
not provide any procedure for actually finding such a dialogue game.
Moreover, it might very well be that several such dialogue games
exist, of different length. If the aim is for an information system to
use dialogue to convince the user to accept a particular argument,
then it can have advantages to try to aim for the shortest dialogue
that has this effect. The issue of how to find such a shortest dialogue
has been left open as a topic for further research.

The prospect of interpreting inference-based argumentation theory
in terms of dialogue also opens various other research issues. One
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of the issues that could for instance be explored is how the dialogue
games work out in the context of instantiated argumentation Gover-
natori et al. (2004); Caminada and Amgoud (2007); Wu et al. (2009);
Prakken (2010) where an argument is essentially composed of a num-
ber of reasons (usually represented as rules) that collectively support
a particular conclusion. An argument, in this sense, can be regarded
as a defeasible proof. Since approaches like Governatori et al. (2004);
Caminada and Amgoud (2007); Wu et al. (2009); Prakken (2010) all
apply standard Dung-style semantics at the abstract level, it would
be possible to directly apply a dialogue game for abstract argumenta-
tion, as is for instance specified in the current chapter. This, however,
would imply that a move would consist of an entire argument, for in-
stance an entire tree of rules in case of Caminada and Amgoud (2007);
Wu et al. (2009); Prakken (2010). A more natural approach might be
to aim for a smaller grain size. Instead of a move consisting of an en-
tire argument (an entire aggregate of rules) one might opt to have a
move consisting of a single rule (or, alternatively, of a single premise
or assumption), which would allow for an argument to be “rolled
off” in a gradual way, starting from its top-conclusion. Ideally, what
one would want is that the ability to win such a dialogue coincides
with what would be entailed by an instantiated argumentation ap-
proach like Governatori et al. (2004); Caminada and Amgoud (2007);
Wu et al. (2009); Prakken (2010). We think that the approach in the
current chapter as well as in Caminada (2010), where the ability to
win a dialogue coincides with standard Dung-style semantics on the
abstract level, could serve as a basis for examining more fine-grained
approaches.

The approach in the current chapter assumes that both players have
access to the same argumentation framework. Although this is a nec-
essary assumption if one’s aim is to describe existing argumentation
semantics, it could be interesting to examine what happens if one
would weaken this assumption and allow for private information to
be released during the course of the dialogue. Unlike approaches like
Cayrol et al. (2010); Liao et al. (2011) argumentation updates would
become available in an interactive way, allowing parties to react and
dynamically search for counterarguments to react on the newly re-
ceived information, which could give rise to a whole range of strate-
gic aspects Rahwan et al. (2009); S. Pan and Rahwan (2010). Overall,
the approach would be similar to what humans tend to do when they
disagree: to discuss and see whether one has information that can
convince the other.





7
I M P L E M E N T I N G C R A S H - R E S I S TA N C E A N D
N O N - I N T E R F E R E N C E I N L O G I C - B A S E D
A R G U M E N TAT I O N

7.1 introduction

The field of formal argumentation can be traced back to the work
of Pollock (1992, 1995), Vreeswijk (1993, 1997), and Simari and Loui
(1992). The idea is that (non-monotonic) reasoning can be performed
by constructing and evaluating arguments, which are composed of a
number of reasons for the validity of a claim. Arguments distinguish
themselves from proofs by the fact that they are defeasible, that is,
the validity of their conclusions can be disputed by other arguments.
Whether a claim can be accepted therefore depends not only on the
existence of an argument that supports this claim, but also on the
existence of possible counter arguments, that can then themselves be
defeated by counter arguments, etc.

Nowadays, much research on the topic of argumentation is based
on the abstract argumentation theory of Dung (1995). The central con-
cept in this work is that of an argumentation framework, which is
essentially a directed graph in which the arguments are represented
as nodes and the defeat relation is represented by the arrows. Given
such a graph, one can then examine the question which set(s) of argu-
ments can be accepted: answering this question corresponds to defin-
ing an argumentation semantics. Various proposals have been formu-
lated in this respect, and in the current thesis we will describe some
of the mainstream approaches. It is, however, important to keep in
mind that the issue of argumentation semantics is only one specific
aspect (although an important one) in the overall theory of formal ar-
gumentation. For instance, if one wants to use argumentation theory
for the purpose of (non-monotonic) entailment, one can distinguish
three steps (see Figure 23). First of all, one would use an underly-
ing knowledge base to generate a set of arguments and determine
in which ways these arguments defeat each other (step 1). The result
is an argumentation framework, represented as a directed graph in
which the internal structure of the arguments, as well as the nature
of the defeat relation has been abstracted away. Based on such an
argumentation framework, the next step is to determine the sets of
arguments that can be accepted, using a pre-defined criterion called
an argumentation semantics (step 2). After the set(s) of accepted ar-
guments have been identified, one then has to identify the set(s) of ac-
cepted conclusions (step 3), for which there exist various approaches.

87
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framework
argumentation

knowledge base

of arguments
extensions

extensions
of conclusions

step 1:

step 2:

step 3:

construction of arguments and attacks

identifying sets of accepted arguments

identifying sets of accepted conclusions

(applying argumentation semantics)

Figure 23: Argumentation for inference

As illustrated in Figure 23, the argumentation approach provides a
graph based way of performing non-monotonic reasoning. An inter-
esting phenomenon is that the non-monotonicity is isolated purely in
step 2 of the process. Step 1 is monotonic (having additional informa-
tion in the knowledge base yields an argumentation framework with
zero or more additional vertices and edges), just like step 3 is mono-
tonic (having additional arguments in an argument-based extension
yields an associated conclusion-based extension with zero or more
additional conclusions). Step 2, however, is non-monotonic because
adding new arguments and extending the defeat relation can change
the status of arguments that were already present in the argumenta-
tion framework when it comes to determining the argument-based ex-
tensions. That is, when adding new arguments and extending the de-
feat relation it is by no means guaranteed that the resulting argument-
based extensions will be supersets of the previous argument-based
extensions. Apart from isolating non-monotonicity in step 2, the ar-
gumentation approach to NMR also offers the advantage of different
levels of abstraction. The field of abstract argumentation, for instance,
only studies step 2 of the overall argumentation process and has now
become one of the most popular topics in argumentation research.

Despite its advantages, the argumentation approach to non-monotonic
reasoning also has important difficulties that are often overlooked
by those studying purely abstract argumentation. The point is that
in step 1 of the overall argumentation process, one constructs argu-
ments that have a logical content. Yet, in step 2, one selects the sets
of accepted arguments (argument-based extensions) based purely on
some topological principle of the resulting graph, without looking
what is actually inside of the arguments. The abstract level (step 2)
is essentially about how to apply a semantics "blindly", without look-
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ing at the logical content of the arguments. But if one cannot see what
is inside of the arguments, then how can one make sure that the se-
lected set of arguments makes sense from a logical perspective? For
instance, how can one be sure that the conclusions yielded by these
sets of arguments (step 3) will be consistent?1 Or, alternatively, how
does one know that these conclusions will actually be closed under
logical entailment?

Issues like that of consistency and closure of argumentation-based
entailment cannot be handled purely at the level of any of the indi-
vidual three steps in the overall argumentation process. Instead, they
require a carefully selected combination of how to carry out each of
these individual steps. For instance, Caminada and Amgoud (2005;
2007) point out that when applying the argumentation process to a
knowledge base consisting of strict and defeasible rules, one can ob-
tain closure and consistency of the resulting conclusions by applying
transposition and restricted rebut when constructing the argumen-
tation framework (step 1), in combination with any complete-based
argumentation semantics (step 2). Under these conditions, the conclu-
sions associated with the argument-based extensions (step 3) will be
consistent and closed under the strict rules Caminada and Amgoud
(2007).

Caminada and Amgoud introduce three postulates that they aim
to satisfy for argument-based entailment: Direct Consistency, Indirect
Consistency and Closure. The current chapter extends this line of re-
search by examining two additional postulates: Crash-resistance and
Non-interference Caminada et al. (2012). It is explained why these
postulates matter, and how they are in fact violated by several well-
known formalisms for argument-based entailment (including Pollock’s
oscar system Pollock (1995)). We focus on a formalism calledASPICLite,
but our findings are also relevant for other formalisms that aim to
combine classical logic with defeasible rules, such as Pollock (1995);
Prakken (2010); Reiter (1980). Furthermore, we provide a general way
of satisfying the postulates of Caminada and Amgoud (2005; 2007)
as well as the additional postulates discussed in this chapter, in the
context of argumentation formalisms that apply defeasible argument
schemes in combination with classical logic.

The remaining part of this chapter is structured as follows. In Sec-
tion 7.3, the postulates of Non-interference and Crash-resistance are
described, and it is examined how these are violated by formalisms

1To make an analogy, consider the (fictitious) case of uncle Bob who lives in a
retirement home. Every day, he has to take a number of medicines, which come in
small bottles that a nurse puts on the table for him. However, some combinations
of medicines are poisonous when taken at the same time. Having lost his reading
glasses, uncle Bob is unable to read the labels, to determine the actual contents of the
medicines. Instead, he chooses which medicines to take purely on how the bottles
have been arranged on his table, hoping that the nurse somehow knows his selection
criterion and has arranged the bottles accordingly.
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like ASPICLite, oscar Pollock (1995) and ASPIC Prakken (2010). In
Section 7.4, we provide a general solution to satisfy both the postu-
lates introduced in Caminada and Amgoud (2005, 2007) (Direct Con-
sistency, Indirect Consistency and Closure) and the additional postu-
lates examined in the current chapter (Non-interference and Crash-
resistance Caminada et al. (2012)). The discussion is then rounded off
with some concluding remarks in Section 7.6.

7.2 preliminaries

In this section, we briefly introduce some preliminaries. Following
the three-step argumentation process in Figure 23, we first show how
to construct an argumentation framework based on the argumenta-
tion formalism introduced by Caminada and Amgoud (2007) (step 1).
Then we discuss Dung’s abstract argumentation semantics (step 2).
Finally (step 3), we review how to determine sets (extensions) of ac-
cepted conclusions based on the sets (extensions) of accepted argu-
ments. Based on this three-step process, then we restate postulates
of Direct Consistency, Indirect Consistency and Closure. Finally, we
introduce the ASPICLite system.

7.2.1 The Three-Step Argumentation Process

7.2.1.1 Step 1: constructing the argumentation framework

Given a knowledge base, the question becomes how to construct
the associated argumentation framework. In order to illustrate how
to construct a Dung-style abstract argumentation framework from a
knowledge base, we discuss an argumentation formalism introduced
by Caminada and Amgoud (2007). The knowledge base in this case
corresponds to the defeasible theory T.

In the following, let L be a set of literals, closed under negation.
Arguments consist of strict or defeasible rules Lin and Shoham (1989);
Pollock (1987); Vreeswijk (1993).

Definition 107 (Strict and defeasible rules (Caminada and Amgoud
(2007))). Let ϕ1, . . . ,ϕn,ϕ ∈ L (n > 0).

• A strict rule is of the form ϕ1, . . . ,ϕn → ϕ.

• A defeasible rule is of the form ϕ1, . . . ,ϕn ⇒ ϕ.

ϕ1, . . . ,ϕn are called the antecedents of the rule and ϕ its consequent.
A strict rule of the form ϕ1, . . . ,ϕn → ϕ indicates that if ϕ1, . . . ,ϕn

hold, then without exception it holds that ϕ. A defeasible rule of the
form ϕ1, . . . ,ϕn ⇒ ϕ indicates that if ϕ1, . . . ,ϕn hold, then usually
it holds that ϕ.
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Definition 108 (Closure of a set of formulas (Definition 5 in Caminada
and Amgoud (2007))). Let P ⊆ L. The closure of P under the set S of strict
rules, denoted ClS(P), is the smallest set such that:

• P ⊆ ClS(P).

• if φ1, . . . ,φn → ψ ∈ S and φ1, . . . ,φn ∈ ClS(P) then ψ ∈ ClS(P).

The consistency of a set in L is defined according to classical nega-
tion.

Definition 109 (Consistent set (Definition 6 in Caminada and Am-
goud (2007)) ). Let P ⊆ L. P is consistent iff @ ψ,ϕ ∈ P such that
ψ = ¬ϕ.

Definition 110. A defeasible theory T is a pair (S,D) where S is a set of
strict rules and D is a set of defeasible rules.

Arguments are built from a defeasible theory according to the re-
cursive definition below. In the base case arguments are constructed
from rules with empty antecedent. In other cases arguments are con-
structed by applying strict or defeasible rule to previously constructed
arguments. Along the definition we define several helper functions.
The conclusion of an argument is returned by a function Conc which
is the consequent of the root rule of the argument. Sub returns all sub-
arguments of the argument and functions StrictRules and DefRules

return all the strict rules and the defeasible rules respectively.

Definition 111 (Argument (Definition 7 in Caminada and Amgoud
(2007))). Let T = (S,D) be a defeasible theory. An argument A is:

• A1, . . . ,An → ψ (n > 0) if A1, . . . ,An are arguments such that
there exists a strict rule r ∈ S and r = Conc(A1), . . . , Conc(An) →
ψ,

Conc(A) = ψ,

Sub(A) = Sub(A1)∪ . . .∪ Sub(An)∪ {A},
TopRule(A) = r,

DefRules(A) = DefRules(A1)∪ . . .∪ DefRules(An),

StrictRules(A) = StrictRules(A1)∪ . . .∪ StrictRules(An)∪
{r}.

• A1, . . . ,An ⇒ ψ (n > 0) if A1, . . . ,An are arguments such that
there exists a defeasible rule r ∈ D and r = Conc(A1), . . . , Conc(An)⇒
ψ,

Conc(A) = ψ,

Sub(A) = Sub(A1)∪ . . .∪ Sub(An)∪ {A},
TopRule(A) = r,

DefRules(A) = DefRules(A1)∪ . . .∪ DefRules(An)∪ {r},
StrictRules(A) = StrictRules(A1)∪ . . .∪ StrictRules(An).
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Let Args be the set of all arguments that can be built from T and let A,A ′ ∈
Args.

• A ′ is a subargument of A iff A ′ ∈ Sub(A).

• A ′ is a direct subargument of A iff A ′ ∈ Sub(A), A ′ 6= A, @A ′′ ∈
Args such that A ′′ ∈ Sub(A) and A ′ ∈ Sub(A ′′), A 6= A ′′ and
A ′ 6= A ′′.

• A is an atomic argument iff @A ′ ∈ Args, A ′ 6= A and A ′ ∈ Sub(A).

• The depth of A (depth(A)) is 1 if A is an atomic argument, or
else 1+ depth(A ′) where A ′ is a direct subargument of A such that
depth(A ′) is maximal.

We extend Sub to a set of arguments, i.e. Sub({A1, . . . ,An}) = Sub(A1)∪
. . .∪ Sub(An) where A1, . . . ,An ∈ Args.

An argument is strict if it is constructed only by strict rules, other-
wise it is defeasible.

Definition 112 (Strict argument and defeasible argument (Definition
8 in Caminada and Amgoud (2007))). An argument A is

• strict if DefRules(A) = ∅;

• defeasible if DefRules(A) 6= ∅;

An argument can defeat arguments in two different ways: under-
cutting and rebutting.

The definition of undercutting, taken from Caminada and Amgoud
(2007), applies the objectification operator (d. . .e) introduced by Pol-
lock. The idea is to translate a meta-level expression (in our case: a
rule) to an object-level expression (in our case: an element of L) Pol-
lock (1992, 1995). Undercutting an argument means that there is a
defeasible rule in the argument that is claimed not to be applicable.

Definition 113 (Undercutting (Definition 10 in Caminada and Am-
goud (2007))). Argument A undercuts argument B (on B ′) iff Conc(A) =
¬dConc(B ′′1 ), . . . , Conc(B ′′n) ⇒ ψe for some B ′ ∈ Sub(B) of the form
B ′′1 , . . . ,B ′′n ⇒ ψ.

Rebutting an argument means that there is a contrary conclusion
of the conclusion of a defeasible rule in the argument so that the
conclusion of the defeasible rule is argued against.

Definition 114 (Rebutting (Definition 15 in Caminada and Amgoud
(2007))). Argument A rebuts argument B (on B ′) iff Conc(A) = ¬ϕ for
some B ′ ∈ Sub(B) of the form B ′′1 , . . . ,B ′′n ⇒ ϕ.

Using the notions of rebut and undercut, one can then subsequently
define the notion of defeat.
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Definition 115 (Defeat (Definition 16 in Caminada and Amgoud (2007))).
Argument A defeats argument B iff A rebuts B or A undercuts B.

Note that a defeat is determined by a conclusion of a defeating
argument and is always aimed at some defeasible rule of a defeated
argument. Among two arguments with contrary conclusions, one of
which has a strict top rule and the other a defeasible top rule, the
argument with the strict top rule rebuts asymmetrically the one with
the defeasible top rule.

Overall, given a defeasible theory (S,D), one can construct the as-
sociated argumentation framework by applying Definition 111 and
Definition 115.

Definition 116 (Argumentation framework). An abstract argumenta-
tion framework A built from a defeasible theory T is a pair (Args,⇀) such
that:

• Args is the set of arguments on the basis of T as defined by Defini-
tion 111,

• ⇀ is the relation on Args given by Definition 115.

Definition 116 completes the first step in the overall argumentation
process: constructing an argumentation framework given a knowl-
edge base.

7.2.1.2 Step 2: applying abstract argumentation semantics

Given the argumentation framework as provided at the end of step 1

(Definition 116) the next question then becomes how to determine
the associated sets of arguments that can collectively be accepted. In
Dung’s approach, this question is answered on abstract level without
looking at the logical content of the arguments. In the previous chap-
ters we used labellings. In this chapter we use extension approach as
described in Subsection 2.2.1 of Chapter 2.

7.2.1.3 Step 3: determining the sets of justified conclusions

Depending on the particular abstract argumentation semantics, step 2

provides zero or more extensions of arguments. However, what one
is often interested in for practical purposes are not so much the argu-
ments themselves, but the conclusions supported by these arguments.
That is, for each set (extension) of arguments, one needs to identify
the associated set (extension) of conclusions.

Definition 117. Let Ar be a set of arguments whose structure complies with
Definition 111. We define Concs(Ar) as {Conc(A) | A ∈ Ar}.

Definition 117 makes it possible to refer to the extensions of con-
clusions under various argumentation semantics. For instance, the
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extensions of conclusions under preferred semantics are simply the
associated conclusions (Definition 117) of each preferred extension of
arguments.

The justified conclusions Caminada and Amgoud (2007) are conclu-
sions that are supported by at least one argument in each extension.

Definition 118 (Justified conclusions (Definition 12 in Caminada and
Amgoud (2007))). Let (Args,⇀) be an argumentation framework, and
{E1, . . . ,En}(n > 1) be its set of extensions under a given semantics sub-
sumed by complete semantics.

Output =
⋂

i=1,...,n

Concs(Ei)

Output is the set of justified conclusions under the given semantics.

7.2.2 Rationality Postulates

Caminada and Amgoud (2007) specify the rationality postulates of
Direct Consistency, Indirect Consistency and Closure. In this section we
restate the definitions of these three postulates.

The idea of Closure is that the conclusions of an argumentation
framework should be complete. If there exists a strict rule a→ b and
a is justified then b should be justified too.

An argumentation framework satisfies Closure if its set of justified
conclusions, as well as the set of conclusions supported by each ex-
tension are closed.

Definition 119 (Closure (Postulate 1 in Caminada and Amgoud (2007))).
Let T = (S,D) be a defeasible theory and A be an argumentation framework
(Definition 116) built from T. Let E1, . . . ,En be its extensions and Output
be its set of justified conclusions under a given argumentation semantics. A
satisfies Closure iff:

(1) Concs(Ei) = ClS(Concs(Ei)) for each 1 6 i 6 n.

(2) Output = ClS(Output).

The following Proposition shows that if the different sets of conclu-
sions of the extensions are closed, then the set Output is also closed.

Proposition 120 (Proposition 4 in Caminada and Amgoud (2007)).
Let T = (S,D) be a defeasible theory and A be an argumentation framework
built from T. Let E1, . . . ,En be extensions of A under a given semantics. Let
Output be its set of justified conclusions. If Concs(Ei) = ClS(Concs(Ei))

for each 1 6 i 6 n then Output = ClS(Output).

An argumentation framework satisfies Direct Consistency if its set
of justified conclusions is consistent and the set of conclusions of each
individual extension is consistent.
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Definition 121 (Direct Consistency (Postulate 2 in Caminada and Am-
goud (2007))). Let T = (S,D) be a defeasible theory and A be an argumen-
tation framework built from T. Let E1, . . . ,En be extensions of A under a
given semantics. Let Output be its set of justified conclusions. A satisfies
Direct Consistency iff:

(1) Concs(Ei) is consistent (according to Definition 109) for each 1 6
i 6 n.

(2) Output is consistent (according to Definition 109).

If the closure of the set of justified conclusions is consistent and
the closure of conclusions of each extension is consistent, then the
argumentation framework satisfies Indirect Consistency.

Definition 122 (Indirect consistency (Postulate 3 in Caminada and
Amgoud (2007))). Let T = (S,D) be a defeasible theory and A be an argu-
mentation framework built from T. Let E1, . . . ,En be extensions of A under
a given semantics. Let Output be its set of justified conclusions. A satisfies
Indirect Consistency iff:

(1) ClS(Concs(Ei)) is consistent (according to Definition 109) for each
1 6 i 6 n.

(2) ClS(Output) is consistent (according to Definition 109).

It follows that if Indirect Consistency is satisfied by an argumen-
tation framework, then the argumentation framework also satisfies
Direct Consistency.

The following proposition shows that if the closure of conclusions
of each extension is consistent, then the closure of the justified con-
clusions is consistent.

Proposition 123 (Proposition 5 in Caminada and Amgoud (2007)).
Let T = (S,D) be a defeasible theory and A be an argumentation framework
built from T. Let E1, . . . ,En be extensions of A under a given semantics. Let
Output be its set of justified conclusions. If ClS(Concs(Ei)) is consistent
for each 1 6 i 6 n then ClS(Output) is consistent.

Proposition 124 (Proposition 7 in Caminada and Amgoud (2007)).
Let T = (S,D) be a defeasible theory and A be an argumentation framework
built from T. If A satisfies Closure and Direct Consistency, then it satisfies
Indirect Consistency.

Caminada and Amgoud (2007) prove that if we construct an argu-
mentation framework from the defeasible theory whose set of strict
rules S is closed under transposition (i.e. for any strict rule α1, . . . ,αn →
α ∈ S also α1, . . . ,αj−1,¬α,αj+1, . . . ,αn → ¬αj ∈ S for j = 1 . . . n)
and apply any complete-based semantics (semantics such that each
extension of arguments is a complete extension) according to Step 1,
2, 3, the set of conclusions yielded satisfies the postulates of Direct
Consistency, Indirect Consistency and Closure.

In the next section we introduce the ASPICLite system.
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7.2.3 The ASPIC Lite System

Rule-based argumentation formalisms, i.e. instances that support strict
and defeasible rules, assume some underlying language. For example,
the formalism of Caminada and Amgoud (2007) described in the pre-
vious section assumes the language L to be a set of literals, closed un-
der negation. In this case the underlying language is simple but it can
be more expressive e.g. propositional logic with classical inference re-
lation `. If the language has logical structure then there is usually an
inference relation that models deductive reasoning. This is similar to
the role of strict rules in rule-based argumentation formalisms. More-
over, the rule-based formalisms known so far to satisfy postulates of
Consistency and Closure Caminada and Amgoud (2005); Modgil and
Prakken (2013); Prakken (2010) require strict rules to be closed under
transposition or contraposition. Also, it can be observed that trans-
position is satisfied by the classical logic entailment operator `. This
then leads to the question of why not to define strict rules in terms of
`. At least there should be some synchronisation between ` and S. We
will explore this approach and show the possible problems related to
it.

In the current section we define the ASPICLite formalism that inte-
grates classical logic with the formalism of Caminada and Amgoud
(2005, 2007). Our formalism can be specified in the ASPIC+ frame-
work Modgil and Prakken (2013); Prakken (2010) therefore problems
described in the next section also apply to at least some of formalisms
specified in ASPIC+. We do not model preferences over arguments,
which corresponds to using equally preferred defeasible rules inASPIC+,
because, as will be demonstrated in the last section, our solution can-
not be generalised immediately to the class of preferences given by
the last-link principle. We leave such generalisation for future work.

Let L be a propositional language. Based on Definition 107, we
extend defeasible rules by explicitly showing all their undercutters.

Definition 125. A defeasible rule is of the form ϕ1, . . . ,ϕn ⇒
U
ψ where

U ⊆ L.

This form of defeasible rules indicates that if ¬u holds (for any
u ∈ U), then the defeasible rule ϕ1, . . . ,ϕn ⇒

U
ψ is inapplicable.

In this work, we use defeasible rules of the form in Definition 125.
The definition of undercutting becomes the following.

Definition 126. An argumentA undercuts argument B on B ′ iff Conc(A) =
¬u where u ∈ U for some B ′ ∈ Sub(B) of the form B ′′1 , . . . ,B ′′n ⇒

U
ψ.

In the remaining part of this chapter, we use the notion of under-
cutting specified by Definition 126 instead of the one specified by
Definition 113.
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The first step of the three-step argumentation process is construct-
ing an argumentation framework from a given knowledge base. In
the previous section the defeasible theory was playing that role. In
ASPICLite we have a defeasible theory of strict and defeasible rules,
as before, but the set of strict rules will be (partly) generated by stan-
dard propositional entailment. We define a knowledge base as a pair
consisting of a set of premises and a set of defeasible rules.

Definition 127 (Knowledge base). A knowledge base in theASPICLite
system is a pair (P,D) where P ⊆ L is a propositionally consistent (i.e. there
is no α ∈ L such that P ` α and P ` ¬α where ` is classical consequence
relation)2 set of premises and D is a set of defeasible rules.

In the rest of the chapter we use Atoms(F) for the atoms that occur
in a set of formulas F. For instance: Atoms({a∧ b,¬b∨ c}) = {a,b, c}.
Furthermore, if At is a set of atoms and F is a set of formulas, then we
write F|At for formulas in F that contain only atoms from At. For in-
stance: {a∧b,¬b∨ c}|{a,b} = {a∧b}. We say that two sets of formulas
F1 and F2 are syntactically disjoint iff Atoms(F1) ∩ Atoms(F2) = ∅. For
a strict rule s = ϕ1, . . . ,ϕn → ψ, Atoms(s) = Atoms({ϕ1, . . . ,ϕn,ψ}).
Similarly, for a defeasible rule d = ϕ1, . . . ,ϕn ⇒

U
ψ, Atoms(d) =

Atoms({ϕ1, . . . ,ϕn,ψ})∪Atoms(U). Atoms(S) = Atoms(s1)∪ . . .∪Atoms(sn)
where S = {s1, . . . , sn} is a set of strict rules. Similarly for a set
of defeasible rules D = {d1, . . . ,dn}, Atoms(D) = Atoms(d1) ∪ . . . ∪
Atoms(dn). Then for a knowledge base B = (P,D), Atoms(B) = Atoms(P)∪
Atoms(D). For an argument A, Atoms(A) = Atoms(StrictRules(A)) ∪
Atoms(DefRules(A)) and for a set of arguments Ar = {A1, . . . ,An},
Atoms(Ar) = Atoms(A1)∪ . . .∪ Atoms(An).

Definition 128 (Defeasible theory). A defeasible theory associated with
a knowledge base (P,D) is a pair (S(P),D) such that S(P) = {→ ϕ |

ϕ ∈ P} ∪ {ϕ1, . . . ,ϕn → ψ | ϕ1, . . . ,ϕn,ψ ∈ L and ϕ1, . . . ,ϕn `
ψ and Atoms({ϕ1, . . . ,ϕn,ψ}) ⊆ Atoms(P)∪ Atoms(D)}.

Note that a set of strict rules S(P) generated from premises P is
closed under transposition, therefore from Caminada and Amgoud
(2007) it follows that the ASPICLite system satisfies Closure, Direct
Consistency and Indirect Consistency when used with complete-based
semantics.

Definition 129 (Argumentation framework). An abstract argumen-
tation framework A built from a knowledge base B = (P,D) is a pair
(Args,⇀) such that:

2The notion of propositional consistency used here is different from the notion
of consistency defined in Definition 109. The notion from Definition 109 is used by
Caminada and Amgoud in a context of language containing literals and closed under
negation. We use it in preliminaries and in the formulation of postulates of Closure
and Consistency, which we kept in the original form. In the context of the ASPICLite
system we rely on the propositional consistency defined here, which sometimes we
call simply consistency.
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• Args is the set of arguments on the basis of T = (S(P),D) as defined
by Definition 111,

• ⇀ is the relation on Args given by Definition 115.3

In the ASPICLite system, the definitions except the definitions of
defeasible rules, undercutting, defeasible theory and argumentation
framework are the same as the definitions in Section 7.2.

7.3 problems and postulates

Although Closure, Direct Consistency and Indirect Consistency are
three important properties of the ASPICLite system, they are not
the only properties that matter. There are other postulates that an
argumentation framework should satisfy to make the system stable
and prevent the system from crashing because of some problematic
piece of information. So Non-interference and Crash-resistance are
two more postulates we will discuss in this section.

In order to illustrate the kinds of problems that we are interested in,
let us first take a look at Example 130 which is essentially equivalent
to an example in Pollock (1994).

Example 130 (Caminada (2005)). Consider a knowledge base B = (P,D)

where

P = {says_J_s, (“John says the cup of coffee contains sugar.”)

says_M_ns, (“Mary says the cup of coffee does not contain sugar.”)

says_WF_r}, (“The weather forecaster predicts rain today.”)

D = {says_J_s ⇒
{rel_J}

s, (“If John says the cup of coffee contains sugar then
the cup of coffee probably contains sugar.”

)

says_M_ns ⇒
{rel_M}

¬s, (“If Mary says the cup of coffee does not contain sugar then
the cup of coffee probably does not contain sugar.”

)

says_WF_r ⇒
{rel_WF}

r}. (“If the weather forecaster predicts rain today then
it probably rains today.”

)

Note that we use a propositional language. For example says_WF_r is a
single atom representing the fact that the weather forecaster announced rain
and rel_WF is a single atom representing the fact that the weather forecaster
is reliable4. Consider the following arguments:

J1 : says_J_s ⇒
{rel_J}

s W1 : says_WF_r ⇒
{rel_WF}

r

M1 : says_M_ns ⇒
{rel_M}

¬s JM : J1,M1 → ¬r

3Definition 115 referred here is meant to use the notion of undercut defined by
Definition 126.

4Our notation differs from Caminada (2005), where an atom says_WF_r is rep-
resented by an instantiated propositional schema Says(WF, r).
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where rel_J means that John is reliable and rel_M means that Mary is
reliable.
The resulting argumentation framework is partly illustrated in Figure 24.

Figure 24: Arguments J1 and M1 “contaminate” argument W1.

In the argumentation framework of Figure 24, arguments J1 and
M1 defeat each other. As one may expect, a particularly troublesome
argument is JM. It is composed of J1 and M1, together with the strict
rule s,¬s → ¬r (which exists because of the fact that s,¬s ` ¬r).
JM defeats (rebuts) W1 and is defeated (rebutted) by J1 and M1. Fig-
ure 24 illustrates a general problem when trying to embed classical
logic into rule-based argumentation formalisms: whenever there are
two arguments that rebut each other (like J1 and M1) it is possible to
combine them into an argument with any arbitrary conclusion (like
JM) that can then be used to defeat any defeasible argument (like
W1).

Simply forbidding rules with inconsistent antecedents does not pro-
vide a solution. For instance, in the case of Example 130, classical
logic also generates the strict rules s → s∨¬r and s∨¬r,¬s → ¬r

which can then be used (together with J1 and M1) to construct an
argument for ¬r, even in the absence of s,¬s → ¬r or any other rule
with inconsistent antecedent.

The argumentation framework of Figure 24 is particularly trouble-
some under grounded semantics. Since every defeasible argument
is defeated, the grounded extension contains strict arguments only. It
means that effectively all defeasible inferences are blocked. Hence, un-
der grounded semantics, the weather forecast is not justified because
John and Mary are having a disagreement about a cup of coffee. This
is of course absurd.

However, as has been observed by Prakken (2010), the problem
seems to go away when using preferred semantics. In the example of
Figure 24, there exist two preferred extensions: {J1,W1} and {M1,W1}.
Each of these extension contains W1. A similar observation can be
made for stable Dung (1995), semi-stable Caminada (2006b); Verheij
(1996) semantics. So if the problem of Figure 24 only becomes serious
under grounded semantics, then why not for instance use preferred
semantics instead? The problem, however, is that although preferred
semantics “solves” the problem of Figure 24, there exist other more
complex situations where preferred semantics alone does not provide
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a solution. One of these situations is described in Example 131 (taken
from Caminada (2005)).

Example 131 (Caminada (2005)). Given a knowledge base B = (P,D)

where

P = {says_J_s, (“John says the cup of coffee contains sugar.”)

says_M_ns, (“Mary says the cup of coffee does not contain sugar.”)

says_J_urJ, (“John says John is unreliable.”)

says_M_urM, (“Mary says Mary is unreliable.”)

says_WF_r}, (“The weather forecaster predicts rain today.”)

D = {says_J_s ⇒
{rel_J}

s, (“If John says the cup of coffee contains sugar then
the cup of coffee probably contains sugar.”

)

says_M_ns ⇒
{rel_M}

¬s, (“If Mary says the cup of coffee does not contain sugar then
the cup of coffee probably does not contain sugar.”

)

says_J_urJ ⇒
{rel_J}

¬rel_J, (“If John says John is unreliable then
John probably is unreliable.”

)

says_M_urM ⇒
{rel_M}

¬rel_M, (“If Mary says Mary is unreliable then
Mary probably is unreliable.”

)

says_WF_r ⇒
{rel_WF}

r}. (“If the weather forecaster predicts rain today then
it probably rains today.”

)

Consider the following arguments:

J0 : says_J_s M0 : says_M_s W0 : says_WF_r

J1 : says_J_urJ M1 : says_M_urM W1 :W0 ⇒
{rel_WF}

r

J2 : J1 ⇒
{rel_J}

¬rel_J M2 :M1 ⇒
{rel_M}

¬rel_M

J3 : J0 ⇒
{rel_J}

s M3 :M0 ⇒
{rel_M}

¬s JM : J3,M3 → ¬r

Figure 25: Switching from grounded to preferred semantics still does not
always provide a solution.

When applying the defeat relation specified by Definition 115, the ar-
gumentation framework A in Figure 25 can be built (In Figure 25, we
give only the arguments that can be captured by intuition. We can use
a part of the argumentation framework to illustrate the contamination of
the ASPICLite system since all defeasible arguments can be defeated by ar-
guments that are obtained by substituting the conclusion of the argument
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JM). In this argumentation framework, only one complete extension exists
{J0, J1,M0,M1,W0}, which is also a preferred extension and a stable exten-
sion. So we have that the weather forecast is not justified because unreliable
John and unreliable Mary are having a disagreement about a cup of coffee.

Here the argument JM is the contaminating information. Without ar-
gument JM, the argumentation framework in Figure 25 can be split into
two syntactically disjoint argumentation frameworks. The argumentation
framework Ar on the right side part consists of two arguments W0 and
W1. The set {W0,W1} is the only complete extension of the argumenta-
tion framework Ar. The only complete extension of the whole argumenta-
tion framework {J0, J1,M0,M1,W0} does not contain W1. The argument
W1 which is supposed to be accepted in the small argumentation frame-
work, is rejected in the big argumentation framework. This means that the
combination of knowledge bases interferes with the reasoning results of the
system. In this case, we say that this system does not satisfy the postulate
of Non-interference under complete semantics. Besides, there are arguments
that can be constructed by replacing the conclusion of argument JM with
an arbitrary formula. Therefore all defeasible arguments could be defeated
by those arguments. The consequence is that only strict arguments can be
accepted. Then the argumentation system crashes because it can only supply
the set of strict arguments as the result under complete semantics.

The aim of the current chapter is to come up with a general so-
lution to problems like those illustrated in Figure 24 and Figure 25.
However, in order to claim any general solution, we first need to pre-
cisely define what it actually is that is violated in the outcome of Ex-
ample 130 (Figure 24) and Example 131 (Figure 25). To do so, we now
proceed to describe contamination, non-triviality and the postulates of
Non-interference and Crash-resistance Caminada et al. (2012).

The original formulation as stated by Caminada et al. (2012) was
done in a very general way for an arbitrary logical formalism.

Definition 132 (Logical formalism (Definition 1 in Caminada et al.
(2012))). A logical formalism is a triple (Atoms,Formulas,Cn) where
Atoms is a countable (finite or infinite) set of atoms, Formulas is the
set of all well-formed formulas that can be constructed using Atoms, and
Cn : 2Formulas → 22

Formulas
is a consequence function.

We can regard a particular argumentation system as a logical for-
malism with consequence function defined in the three-step process
described in Section 7.2.1. In the following, we first make precise
how to treat the ASPICLite formalism as a logical formalism. Then
we define Non-interference, Crash-resistance, contamination and non-
triviality in the specific case of the ASPICLite formalism. Finally we
give a theorem that states that non-triviality and Non-interference
together imply Crash-resistance.

In the case of theASPICLite formalism, the set of atoms is the set of
propositional atoms of the propositional language that is a parameter
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of the formalism. The relation between the knowledge base and the
set of atoms is given below Definition 127. We remind that in this
chapter, Atoms(B) represents the atoms that occur in a knowledge
base B and Atoms(Args) represents the atoms that occur in a set of
arguments Args. We say also that two knowledge bases B1 and B2

are syntactically disjoint if Atoms(B1)∩ Atoms(B2) = ∅.
An ASPICLite knowledge base consists of a set of premises and a

set of defeasible rules. To accommodate to the definition of a logical
formalism, whose input is a simple set of formulas, we treat a knowl-
edge base as a set of two types of formulas of a single language. To
be precise we need to define the union of knowledge bases.

Definition 133 (Union of knowledge bases). Let B1 = 〈P1,D1〉 and
B2 = 〈P2,D2〉 be two knowledge bases. The union of B1 and B2 (denoted
B1 ∪ B2) is a knowledge base B = 〈P,D〉 such that P = P1 ∪ P2 and
D = D1 ∪D2.

Finally, we define the consequence function CnSem, such that CnSem(B)

is a set of sets of conclusions under certain argumentation semantics.

Definition 134. Let B be a set of all possible knowledge bases over some
language L. Let B ∈ B be a knowledge base and A = (Args,⇀) be the
argumentation framework built from B. CnSem : B → 22

Concs(Args)
is a func-

tion such that CnSem(B) = {Concs(E1), . . . , Concs(En)} where E1, . . . ,En

(n > 0) are the extensions of arguments of A under certain semantics
Sem ∈ {complete,grounded,preferred, stable,
semi-stable}.

Now we can proceed with the description of the properties.
The idea of Non-interference Caminada et al. (2012) is that for

two completely independent knowledge bases B1 and B2, B1 should
not influence the outcome with respect to the language of B2 and
vice versa. In the specific case of the ASPICLite formalism, Non-
interference can be described as follows.

Definition 135 (Non-interference). TheASPICLite system satisfies Non-
interference under a given semantics Sem iff for every pair of syntactically
disjoint knowledge bases B1 and B2 it holds that CnSem(B1)|Atoms(B1) =

CnSem(B1 ∪B2)|Atoms(B1).

Example 136. Let B be the knowledge base in Example 131. B is the union
of the following two syntactically disjoint knowledge bases B1 = (P1,D1)

where



7.3 problems and postulates 103

P1 = {says_J_s, (“John says the cup of coffee contains sugar.”)

says_M_ns, (“Mary says the cup of coffee does not contain sugar.”)

says_J_urJ, (“John says John is unreliable.”)

says_M_urM}, (“Mary says Mary is unreliable.”)

D1 = {says_J_s ⇒
{rel_J}

s, ( “If John says the cup of coffee contains sugar
then the cup of coffee probably contains sugar.”

)

says_M_ns ⇒
{rel_M}

¬s, ( “If Mary says the cup of coffee does not contain sugar
then the cup of coffee probably does not contain sugar.”

)

says_J_urJ ⇒
{rel_J}

¬rel_J, (“If John says John is unreliable then
John probably is unreliable.”

)

says_M_urM ⇒
{rel_M}

¬rel_M}, (“If Mary says Mary is unreliable then
Mary probably is unreliable.”

)

and B2 = (P2,D2) where

P2 = {says_WF_r}, (“The weather forecaster predicts rain today.”)

D2 = {says_WF_r ⇒
{rel_WF}

r}. (“If the weather forecaster predicts rain today then
it probably rains today.”

)

Consider the following arguments:

W0 : says_WF_r

W1 :W0 ⇒
{rel_WF}

r

Figure 26: The argumentation framework A2 built from B2.

There is one complete extension {W0,W1} of the argumentation frame-
work A2 which is built from B2. There is only one complete extension of
A built from B (Example 131) which is {J0, J1,M0,M1,W0}. Atoms of the
knowledge base B2 are {says_WF_r, rel_WF, r}. ThenCnSem(B)|Atoms(B2) =

{{says_WF_r}} and CnSem(B2)|Atoms(B2) = {{says_WF_r, r}}. In this case
CnSem(B)|Atoms(B2) 6= CnSem(B2)|Atoms(B2). Therefore, theASPICLite sys-
tem does not satisfy the postulate of Non-interference.

There might be a set F1 of formulas which determines the con-
sequences of every set in which it is contained even if the larger
set contains information syntactically disjoint from F1. We call this
undesired phenomenon contamination and a formalism that is free
from it will be said to satisfy Crash-resistance. The definition of con-
tamination and the postulate of Crash-resistance in the case of the
ASPICLite are as follows.
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Definition 137 (Contamination). Let Atoms be a set of atoms of the
propositional language L. The knowledge base B1, with Atoms(B1) ( Atoms,
is called contaminating (under a given semantics Sem) iff for every knowl-
edge base B2 such that B1 and B2 are syntactically disjoint it holds that
CnSem(B1) = CnSem(B1 ∪B2).

Definition 138 (Crash-resistance). TheASPICLite system satisfies Crash-
resistance iff there does not exist a knowledge base B that is contaminating.

We say that a formalism is non-trivial if for any set of atoms differ-
ent knowledge bases can be constructed with different consequences.
Caminada et al. (2012) proved that for any non-trivial formalism,
Non-interference implies Crash-resistance. Since demonstrating non-
triviality is much easier than proving Crash-resistance directly, non-
triviality is a useful tool that we also use in this chapter. In the specific
case of the ASPICLite formalism, non-triviality can be described as
follows.

Definition 139 (Non-trivial). TheASPICLite system is called non-trivial
iff for each nonempty set At of atoms there exist knowledge bases B1 and B2

such that Atoms(B1) = Atoms(B2) = At andCnSem(B1)|At 6= CnSem(B2)|At.

Below we provide the mentioned proof in the specific case of the
ASPICLite formalism.

Theorem 140. If the ASPICLite system is non-trivial and satisfies Non-
interference then it satisfies Crash-resistance.

Proof. We prove by contradiction: (1) Assume the ASPICLite system
does not satisfy Crash-resistance. Hence there exists a knowledge
base B built from a strict subset of all atoms of the propositional
language L, i.e. Atoms(B) ( Atoms(L), which is contaminating; (2)
By assumption the ASPICLite system is non-trivial so for the set of
atoms At unused in B (At = Atoms(L) \ Atoms(B)), there exist two
knowledge bases B1,B2 such that CnSem(B1)|At 6= CnSem(B2)|At. By
construction they both are syntactically disjoint with B; (3) By as-
sumption the ASPICLite system satisfies Non-interference therefore
CnSem(B1)|At = CnSem(B1∪B)|At and CnSem(B2∪B)|At = CnSem(B2)|At;
(4) For contaminating B we have CnSem(B1 ∪B)|At = CnSem(B)|At =

CnSem(B2∪B)|At; (5) From 3 and 4 we have CnSem(B1)|At = CnSem(B2)|At.
Contradiction with 2.

7.4 solution

In this section we provide a solution to the contamination of the
ASPICLite system. In Figure 25, the argument JM connects the two
unconnected graphs. It leads to argument W1 being affected by com-
pletely irrelevant information which is the reason of the contamina-
tion. The idea is to avoid this by deleting the inconsistent arguments.
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We build an argumentation framework A from a knowledge base, as
before, but then we prune from it all inconsistent arguments. We start
by formalising the above idea and demonstrating how it deals with
our running example.

An argument is inconsistent iff the set of conclusions of all its sub-
arguments is propositionally inconsistent.

Definition 141 (Consistent argument). An argument A ∈ Args is con-
sistent iff {Conc(A ′) | A ′ ∈ Sub(A)} is (propositionally) consistent. Other-
wise, the argument is inconsistent.

A set of arguments is consistent if the set of conclusions of all sub-
arguments of arguments in the set is consistent.

Definition 142 (Consistent set of arguments). A set of arguments Ar =
{A1, . . . ,An} is consistent if Concs(Sub(A1)) ∪ . . . ∪ Concs(Sub(An)) is
(propositionally) consistent, otherwise Ar is inconsistent.

Note that a consistent set of arguments is different from a set of
consistent arguments. For example each argument in the set {→ a,⇒
¬a ∧ ¬b} is consistent, but it is not a consistent set of arguments
since the set of conclusions {a,¬a∧ ¬b} is propositionally inconsis-
tent. Now we can define inconsistency-cleaned argumentation frame-
work.

Definition 143 (Inconsistency-cleaned argumentation framework). Let
(Args,⇀) be an argumentation framework built from a knowledge base B.
We define Argsc as {A | A ∈ Args and A is consistent}, and ⇀c=⇀

∩(Argsc × Argsc). We refer to (Argsc,⇀c) as the inconsistency-cleaned
argumentation framework built from B.

In the remaining part of the chapter, we write the inconsistency-
cleaned version of the ASPICLite system to refer to the ASPICLite
system in which the inconsistency-cleaned argumentation framework
is constructed.

In the ASPICLite system we distinguish three kinds of arguments
depending on their origin:

1. atomic arguments constructed from the strict rules which origi-
nate from the set of premises in the knowledge base,

2. arguments with a defeasible top rule, and

3. arguments constructed by application of a strict rule correspond-
ing to the inference relation of the underlying logic to the previ-
ously constructed arguments.

We define a special class of arguments, which we call flat arguments,
and then we demonstrate that for each argument of the last kind there
exists a flat argument which is in essence equivalent. Later on, this
will allow us to concentrate in the proofs on arguments of this special
form.
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Definition 144 (Flat argument). Let A = (Args,⇀) be an argumentation
framework built from some knowledge base and let A ∈ Args. We say that
A is flat iff TopRule(A) is strict, A = A1, . . . ,An → α and for Ai (1 6
i 6 n) one of the following conditions holds:

1. TopRule(Ai) is defeasible or,

2. TopRule(Ai) has an empty antecedent and is not trivial, i.e. Conc(Ai)

is not a tautology.

In other words, a flat argument has strict top rule and if that rule
is applied to any subarguments with strict top rule then the strict top
rule of subargument need to originate from the set of premises in the
knowledge base, i.e. it has empty antecedent and a consequent which
is a premise. Formally arguments with a strict top rule which have
an empty antecedent are also flat, but they are not important to us.

Lemma 145 (Flattening). Let A = (Args,⇀) be an argumentation frame-
work built from some knowledge base and let A be any of its arguments with
a strict top rule. There exists a flat argument A ′ such that:

1. Conc(A ′) = Conc(A),

2. A ′+ = A+,

3. A ′− = A−,

4. A ′ is propositionally consistent iff A is propositionally consistent.

Proof. Let A = (Args,⇀) be an argumentation framework built from
some knowledge base. Consider argument A = A1, . . . ,An → α with
a strict top rule, and without loss of generality, let A1 = A1

1, . . . ,A1
k →

α1 be an argument with a top rule that is strict and has non-empty
antecedent (or has an empty antecedent, i.e. k = 0, and α1 is a tautol-
ogy). There needs to be such an argument, otherwise A is already flat.
Consider an argument constructed by absorbing A1 into the main
argument A ′ = A1

1, . . . ,A1
k,A2, . . . ,An → α (for k = 0 absorption

means removal of A1). First, the strict rule used in A ′ exists and there-
fore it is a proper argument. It is because strict rules with antecedent
(or tautological consequences) correspond to the inference relation `
and propositional logic satisfy monotony (if Γ ` φ and Γ ⊂ ∆ then
∆ ` φ) and cut (if Γ ` φ and Γ ,φ ` ψ then Γ ` ψ). We can derive the
needed rule as follows.

1. a1, ...,an ` a assumption

2. b1, ...,bk ` an assumption

3. b1, ...,bk,a1, ...,an−1 ` an 2 + monotony

4. b1, ...,bk,a1, ...,an−1,an ` a 1 + monotony

5. b1, ...,bk,a1, ...,an−1 ` a 3 + 4 + cut



7.4 solution 107

Second, notice that by construction, A ′ and A share the conclu-
sion and the set of defeasible rules, i.e. DefRules(A) = DefRules(A ′)

(we have removed just one strict rule). The defeat relation in the
ASPICLite system depends only on the conclusion of a defeater and
the defeasible rules of the defeated argument. Therefore it follows
that A ′ and A defeat and are defeated by exactly the same argu-
ments. Third, it has exactly one less subargument, i.e. Sub(A ′) =

Sub(A) \ {A1}, and therefore if A was propositionally consistent A ′

is also propositionally consistent. Conversely, if A ′ is propositionally
consistent, i.e. Concs(Sub(A ′)) is propositionally consistent, adding
the conclusion already derivable from the set doesn’t change its con-
sistency.

If A ′ is flat we are done. If not, we can repeat exactly the same
reasoning, and as we remove one subargument each time and the
number of subarguments in A is finite, we will finally obtain A ′ that
is requested.

The first three conditions assures that under a complete-based se-
mantics, A belongs to an extension if and only if A ′ does and as they
share the conclusion they contribute in the same way to the outcome.
The fourth condition assures that either both A and A ′ are in the
consistency-cleaned argumentation framework or neither of them is.
In the rest of this chapter we will assume that we deal with flat ar-
guments, since the non-flat arguments are essentially superfluous as
they do not influence the overall outcome regarding conclusions.

Now let us see whether the problem in Example 131 can be fixed
in the inconsistency-cleaned argumentation framework.

Figure 27: Repaired argumentation framework

Example 146. Consider the argumentation framework generated by Exam-
ple 131. We delete the argument JM from the argumentation framework
because it is an inconsistent argument. We then obtain the argumentation
framework of Figure 27. In this new argumentation framework, there is only
one complete extension, andW1 is justified under any mainstream argumen-
tation semantics (including grounded and preferred). The weather forecast is
no longer affected by a quarrel between the other two persons over a cup of
coffee.

Since our approach is to delete the class of inconsistent arguments,
we have to make sure that this does not cause any problems. Hence,
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we need to prove not only that our approach satisfies the postulates
of Non-interference and Crash-resistance, but that it also continues
to satisfy the previously satisfied postulates of Closure, Direct Con-
sistency and Indirect Consistency.

The prior postulates

We first demonstrate that without inconsistent arguments theASPICLite
system still satisfies all the prior postulates.

The following lemma is our main tool to demonstrate an inclusion
of a particular argument A of an argumentation framework (before
cleaning) in a complete extension E of an inconsistency-cleaned argu-
mentation framework. The demonstration of inclusion boils down to
verifying two conditions: (1) argument A needs to be consistent and
therefore hasn’t been cleaned away; and (2) it is less vulnerable then
a subset of arguments S in the extension, i.e. every defeater of A is
also a defeater of some argument in S for some S ⊆ E. Note that set
S may range from empty set (a trivial case when A has no defeaters)
through singleton set to the whole extension S = E, and of course if
the property holds for some subset S of the extension it also holds
for the extension E itself. This may appear superfluous, but we keep
that formulation, because in practice the set S is usually clear from
the context.

Lemma 147. Let A = (Args,⇀) be an argumentation framework built
from some knowledge base and (Argsc,⇀c) be an inconsistency-cleaned
argumentation framework built from the same knowledge base. Let E be a
complete extension of an inconsistency-cleaned argumentation framework,
S ⊆ E and A ∈ Args. If A is propositionally consistent and A− ⊆ S−, i.e.
every defeater of A is a defeater of S, then A ∈ E.

Proof. The argument A is propositionally consistent therefore A ∈
Argsc. The extension E is admissible therefore it defends its subset S
and also the argument A because it has less defeaters then S. The ex-
tension E is complete and therefore includes all defended arguments.
Hence A ∈ E.

The simple consequence of the lemma is that closure under sub-
arguments is satisfied by the inconsistency cleaned version of the
ASPICLite system under complete semantics.

Lemma 148 (Subargument closure). The inconsistency-cleaned version
of the ASPICLite system satisfies closure under subarguments.

Proof. A subset of a consistent set is consistent, therefore a subargu-
ment of a consistent argument is consistent. Every defeater of an ar-
gument’s subargument is also a defeater of the argument itself. There-
fore by Lemma 147 (taking S = {A}) for every complete extension E
and every argument A ∈ E, Sub(A) ⊆ E.
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The main challenge in proving satisfaction of the prior postulates is
to show that each complete extension is a consistent set of arguments.
We will prove it by induction on the heights of arguments. Consider-
ing an argument as a tree, the height of an argument is the number
of defeasible rules on the path that uses the most defeasible rules.

Definition 149 (Height of argument). The height of an argument A (de-
noted hd(A)) is

• 0 if A consists of a single strict rule with empty antecedent.

• 1 if A consists of a single defeasible rule with empty antecedent.

• 1+ max{hd(B1), . . . ,hd(Bn)} if A = B1, . . . ,Bn ⇒ c (n > 1).

• max{hd(B1), . . . ,hd(Bn)} if A = B1, . . . ,Bn → c (n > 1).

The following theorem shows that every complete extension of an
inconsistency-cleaned argumentation framework is a propositionally
consistent set of argument.

Theorem 150. Let B = (P,D) be a knowledge base and A = (Args,⇀) be
an inconsistency-cleaned argumentation framework built from B. Let E be a
complete extension of A. E is propositionally consistent.

Proof. Let E be an arbitrary complete extension of A. We can partition
E into sets of arguments that have different heights as follows:

E =
⋃

i=0..∞Ei where Ei = {A ∈ E | hd(A) = i}.

Additionally let us denote partial sums:

Sk =
⋃

06i6k

Ei.

Observations:

• Any argument A ∈ E is finite so hd(A) is defined and so A falls
into exactly one Ei.

• If for some i, Ei = ∅ then Ej = ∅ for all j > i. This follows from
Lemma 148.

• Si is closed under subarguments because E is closed under sub-
arguments and for each A ∈ Si, it holds that if A ′ ∈ Sub(A)

then hd(A ′) 6 hd(A). So A ′ ∈ Si. It follows that Si is consis-
tent, i.e. Concs(Sub(Si)) is propositionally consistent, if and only
if Concs(Si) is propositionally consistent.

• Let us denote arguments whose top rule doesn’t correspond to
the inference relation `, i.e. is defeasible or originate in the set
of premises P, by Elem = {A ∈ Args | TopRule(A) ∈ D}∪ {→ p |

p ∈ P}. The set Si is consistent iff Si ∩ Elem is consistent. It is
because Concs(Si ∩ Elem) ` Concs(Si \ Elem).
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In order to prove E is consistent, it is enough to show that for any i,
Concs(Si ∩ Elem) is propositional consistent. We prove by induction
on i.

Basis step: The set Concs(S0 ∩ Elem) = P which is propositional con-
sistent by assumption.
Induction step: Assume Concs(Sk ∩ Elem) is consistent. We need to
verify that the set Concs(Sk+1 ∩ Elem) is consistent. We prove by
contradiction. Assume Concs(Sk+1 ∩ Elem) is inconsistent and let
{c1, . . . , cn} ⊆ Concs(Sk+1 ∩ Elem) be an inconsistent set of conclu-
sions supported by a finite set of arguments C ⊆ Sk+1 ∩ Elem, i.e.
such that Concs(C) = {c1, . . . , cn}. There exists such set because propo-
sitional logic is compact. In case there are more such sets we choose C

with minimal number of arguments belonging to Ek+1, i.e. minimal
C2 where

C1 = {A1, ...,Al} = C∩ Sk,

C2 = {B1, ...,Bm} = C \ Sk

is the partition of C. Because {c1, . . . , cn} is inconsistent, the inference

Conc(A1), . . . , Conc(Al), Conc(B1), . . . , Conc(Bm) ` ⊥

holds and also by transposition

Conc(A1), . . . , Conc(Al), Conc(B2), . . . , Conc(Bm) ` ¬Conc(B1)

holds, so the strict rule

Conc(A1), . . . , Conc(Al), Conc(B2), . . . , Conc(Bm)→ ¬Conc(B1)

is in S(P). Note that the set C2 is non-empty since Sk is consistent
and C is inconsistent. Then consider an argument

K = A1, . . . ,Al,B2, . . . ,Bm → ¬Conc(B1).

K is consistent, otherwise the set Sub(A1, . . . ,Al,B2, . . . ,Bm)∩Elem
is inconsistent and it has strictly less elements belonging to Ek+1.
Namely,

(
Sub(A1, . . . ,Al,B2, . . . ,Bm) ∩ Elem

)
\ Sk = {B2, . . . ,Bm} (

C2. This contradicts with the way the set C was chosen.
All defeaters of K are also defeaters of its proper arguments which

are in the extension, i.e. K− ⊆ (Sub(K) \ {K})−, Sub(K) \ {K} ⊆ E, be-
cause it has a strict top rule. Therefore by Lemma 147 K ∈ E.
K rebuts Bi because the top rule of Bi is defeasible. Then K defeats

Bi and Bi ∈ Ek+1 ⊆ E. Then E is not conflict-free. Contradiction.
So by the induction, we have proven that Concs(Sk ∩ Elem) is con-

sistent for all k ∈N. So E is consistent.

From the fact that every complete extension is propositionally con-
sistent, it follows that the ASPICLite system without inconsistent ar-
guments satisfies Direct Consistency.
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Theorem 151. The inconsistency-cleaned version of the ASPICLite system
satisfies Direct Consistency under complete semantics.

Proof. Let B be a knowledge base and Ac = (Argsc,⇀c) be the inconsistency-
cleaned argumentation framework built from B. Let E be a complete
extension of Ac. By Theorem 150 E is a consistent set of arguments,
then Concs(E) is propositionally consistent and in particular Concs(E)
does not contain a formula φ and a formula ¬φ.

The following theorem shows that inconsistency-cleaned argumen-
tation frameworks satisfy Closure under complete semantics.

Theorem 152. The inconsistency-cleaned version of the ASPICLite system
satisfies Closure under complete semantics.

Proof. Let B = (P,D) be a knowledge base, T = (S,D) be a defeasible
theory associated with B and Ac = (Argsc,⇀c) be the inconsistency-
cleaned argumentation framework built from B. Let E be a complete
extension of Ac. We need to prove that Concs(E) = ClS(Concs(E)).

“⊆”: This follows from the fact that ClS is a closure operator (Defi-
nition 108).

“⊇”: Let c1, . . . , cn → c ∈ S and Ar = {C1, . . . ,Cn} ⊆ E such
that for each i ∈ {1..n} Conc(Ci) = ci. It suffices to show that ar-
gument C = C1, . . . ,Cn → c is (1) consistent, i.e. Concs(Sub(C)) =

Concs(Sub(Ar)) ∪ {c} is propositionally consistent, and (2) not more
vulnerable than Ar, then by Lemma 147 C ∈ E. There are two cases.

Case 1: The strict rule originates from the set of premises. In this
case Concs(Sub(C)) = {c} ⊆ P which is consistent by assumption.

Case 2: The strict rule corresponds to a propositional inference. The
set Concs(Sub(Ar)) is consistent by Theorem 150 and the formula c is
a logical consequence of Concs(Sub(Ar)), i.e. Concs(Sub(Ar)) ` c. In
this case the set Concs(Sub(Ar)) ∪ {c} is consistent because extending
a consistent set with its logical consequences preserves consistency.

In both cases condition (1) holds. The condition (2) follows from
the fact that every defeater of C is a defeater of Ar since C cannot be
defeated on its top rule which is strict.

Since inconsistency-cleaned argumentation frameworks satisfy Clo-
sure and Direct Consistency under complete semantics, from Proposi-
tion 124, Indirect Consistency is satisfied under complete semantics.

Theorem 153. The inconsistency-cleaned version of the ASPICLite system
satisfies Indirect Consistency under complete semantics.

Proof. It follows from Theorem 152 and Theorem 151.

Now that we have proved that the inconsistency-cleanedASPICLite
system satisfies Direct Consistency and Indirect Consistency, as well
as Closure, the next step is to prove that the inconsistency-cleaned
ASPICLite system satisfies Non-interference and Crash-resistance.
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The new postulates

The new postulates of Non-interference and Crash-resistance con-
strain the output an argumentation system produces from some knowl-
edge base B1 and a knowledge base B = B1 ∪ B2. In this section
we call B1 the initial knowledge base and B the extended knowledge
base. Non-interference treats the situation where a knowledge base
B1 is extended with a knowledge base B2 that is syntactically dis-
joint, i.e. Atoms(B1) ∩ Atoms(B2) = ∅, and postulates that the output
of the system produced from B1 should be recoverable from the out-
put produced from the extended knowledge base B in a systematic
way, i.e. restricting the outcome to the atoms of the initial knowledge
base B1. Crash-resistance states that it should be possible to extend
every knowledge base which does not use all atoms of the underlying
language in a meaningful way, i.e. there is no input knowledge base
B1 which determines the output of all its extensions.

Figure 28: Different types of arguments produced from a union of two syn-
tactically disjoint knowledge bases B1 and B2

We start with a few observations about the ASPICLite system in
this context. Let B1 and B2 be two syntactically disjoint knowledge
bases and B be a knowledge base such that B = B1 ∪B2. Let A =

(Args,⇀), A1 = (Args1,⇀1) and A2 = (Args2,⇀2) be the argumen-
tation frameworks built from B, B1 and B2 respectively. This situa-
tion is depicted in figure 28. Finally, let E be an extension of A. For
i ∈ {1, 2}:

1. The arguments constructed from the knowledge base Bi are
proper arguments of A, i.e. Ari ⊆ Ar, because the construction
of arguments and defeats is monotonic. We will call those argu-
ments pure. Moreover, for syntactically disjoint knowledge bases
B1,B2, pure arguments are exactly the ones built from atoms
present in the knowledge base they come from, i.e. Ari = {A ∈
Ar | Atoms(A) ⊆ Atoms(Bi)}.

2. There are no new defeats between Args1 and Args2 considered
as a part of the argumentation framework A, i.e. ⇀i=⇀ ∩Argsi×
Argsi.
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3. Let the set Ar⊕i contain arguments whose conclusions are built
from atoms of the knowledge base Bi, i.e. Ar⊕i = {A ∈ Ar |

Atoms(Conc(A)) ⊆ Atoms(Bi)}. We will call those the arguments
with pure conclusions. They are important for two reasons. First,
they are the only arguments outside the argumentation frame-
work Ai that can defeat arguments in the framework. This is
because, to rebut or undercut an argument from Ai a defeater
needs to have a conclusion that is a negation of the conclusion or
the undercutting formula (u ∈ U) which both are constructed
from a subset of atoms Atoms(Bi). Second, they are the only
arguments of the A that influence the outcome of the system
produced from the knowledge base B restricted to the atoms of
Bi.

4. Pure arguments are also arguments with pure conclusions.

5. For syntactically disjoint knowledge bases the sets of arguments
with pure conclusions, i.e. Ar⊕1 and Ar⊕2 , are disjoint.

6. There are also other arguments constructed by connecting previ-
ously discussed arguments with strict rules corresponding to
the inference of the propositional logic.

The satisfaction of the postulates in this section is based on the
following property of the construction of arguments: for every argu-
ment A with pure conclusion there exists a pure argument A ′ with the same
conclusion that is not more vulnerable, i.e. A ′− ⊆ A−. In the following
lemma we formalise this property and prove that it holds for the
inconsistency-cleaned version of the ASPICLite system.

Lemma 154. Let B be a knowledge base such that B = B1 ∪ B2 where
B1 = (P1,D1) and B2 = (P2,D2) are syntactically disjoint. Let A =

(Args,⇀) and A1 = (Args1,⇀1) be the inconsistency-cleaned argumenta-
tion frameworks built from B and B1 respectively. For each argument C ∈
Args with pure conclusion, i.e. Atoms(Conc(C)) ⊆ Atoms(B1), there exists
a pure argument C ′ ∈ Args1 such that Conc(C ′) = Conc(C), C ′+ = C+

and C ′− ⊆ C−.

Proof. We prove by induction on depths of arguments. We will con-
struct argument C ′ such that Conc(C ′) = Conc(C) and check two prop-
erties: (1) Concs(Sub(C ′)) ⊆ Concs(Sub(C)) which guarantees that C ′

is consistent and was not cleaned away; (2) DefRules(C ′) ⊆ DefRules(C)

which actually proves that C ′− ⊆ C− since defeats in the ASPICLite
system are always aimed at a particular defeasible rule. Additionally
we use the fact that in theASPICLite system Atoms(C) ⊆ Atoms(B1) is
equivalent to C ∈ Ar1 and C ′+ = C+ follows directly from Conc(C ′) =

Conc(C).
Basis step: depth(C) = 1. Then C is an atomic argument, i.e. C has

empty antecedent, therefore Atoms(C) = Atoms(Conc(C)) ⊆ Atoms(B1)
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which implies C ∈ Args1. The conditions trivially hold for C ′ = C.

Induction step: Assume the condition (1) and (2) hold for each
argument C such that depth(C) 6 k. We show that for each argument
C such that depth(C) = k+ 1 they also hold. There are two possible
cases:

1. TopRule(C) is defeasible. The defeasible rules belongs either to
D1 or D2 and since Conc(C) ⊆ Atoms(B1), the TopRule(C) needs
to belong to D1.

Let C = C1, . . . ,Cn ⇒
U
c. By construction, depth(Ci) 6 k and

Atoms(Conc(Ci)) ⊆ Atoms(B1) because TopRule(C) ∈ D1 for
(1 6 i 6 n). By the induction hypothesis there exist arguments
C ′1 (1 6 i 6 n) such that:

a) Ci ∈ Ar1,

b) Conc(C ′i) = Conc(Ci),

c) DefRules(C ′i) ⊆ DefRules(Ci),

d) Concs(Sub(C ′i)) ⊆ Concs(Sub(Ci)).

We apply the rule TopRule(C) to construct an argument C ′ =
C ′1, . . . ,C ′n ⇒ Conc(C).

The required properties of C ′ follow straightforwardly from the
properties of C ′i (1 6 i 6 n):

a) C ′ ∈ Ar1 because
Atoms(C ′) = Atoms(TopRule(C))∪

⋃
16i6n

Atoms(C ′i) ⊆

Atoms(B1),

b) Conc(C ′) = Conc(C) because the arguments C and C ′ share
the same top rule,

c) DefRules(C ′) = {TopRule(C)}∪
⋃

16i6n
DefRules(C ′i) ⊆

{TopRule(C)}∪
⋃

16i6n
DefRules(Ci) = DefRules(C),

d) Concs(Sub(C ′)) = {c}∪
⋃

16i6n
Concs(Sub(C ′i)) ⊆

{c}∪
⋃

16i6n
Concs(Sub(Ci)) = Concs(Sub(C)).

2. TopRule(C) is strict. By Lemma 145 we can assume the argu-
ment C = C1, ...,Cn → c is flat. Therefore we can partition
arguments Ci into two groups Ip ∪ Id = {1, . . . ,n}, Ip ∩ Id = ∅
such that:

a) for i ∈ Ip an argument Ci has an empty antecedent and a
consequent that corresponds to a premise, i.e. TopRule(Ci) =→
ci and Conc(Ci) ∈ P1 ∪P2,
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b) for i ∈ Id an argument Ci has defeasible top rule, i.e.
TopRule(Ci) ∈ D1 ∪D2.

Since knowledge bases B1 and B2 are syntactically disjoint,
Conc(Ci) (for i ∈ Ip) and TopRule(Ci) (for i ∈ Id) belong to
exactly one knowledge base. This allows for another partition
of direct subarguments of C according to the atoms from which
their conclusions are built. Let I1 ∪ I2 = {1, . . . ,n}, I1 ∩ I2 = ∅
such that:

a) for i ∈ I1 it holds that Atoms(Conc(Ci)) ⊆ Atoms(B1),

b) for i ∈ I2 it holds that Atoms(Conc(Ci)) ⊆ Atoms(B2).

Let Ip∩ I1 = {p1, . . . ,pk}, Id∩ I1 = {d1, . . . ,dl} and I2 = {o1, . . . ,om}.
Consider an argument

C ′ = Cp1
, . . . ,Cpk

,C ′d1
, . . . ,C ′dl

→ c

where arguments C ′i are the pure arguments corresponding to
arguments Ci for i ∈ Id ∩ I1. Those arguments exist by the in-
duction hypothesis because arguments Ci for i ∈ Id ∩ I1 have
conclusions built from atoms of the first knowledge base and
are of height at most k. Now consider the propositional infer-
ence

Conc(Cp1
), . . . , Conc(Cpk

),

Conc(Cd1
), . . . , Conc(Cdl

),

Conc(Co1
), . . . , Conc(Com) ` c

corresponding to the strict rule TopRule(C). Since

Atoms({Conc(Co1
), . . . , Conc(Com)})∩ Atoms(c) = ∅

it needs to hold that

Conc(Cp1
), . . . , Conc(Cpk

), Conc(Cd1
), . . . , Conc(Cdl

) ` c

or {Conc(Co1
), . . . , Conc(Com)} is inconsistent. The set {Conc(Co1

), . . . , Conc(Com)}

cannot be inconsistent because argument C is consistent, there-
fore

Conc(Cp1
), . . . , Conc(Cpk

), Conc(Cd1
), . . . , Conc(Cdl

) ` c

needs to be a valid propositional inference rule. Since Conc(C ′i) =
Conc(Ci) for i = d1 . . . dl it follows that TopRule(C ′) is a valid
rule. This finishes the demonstration that the argument C ′ is
valid.

It remains to show that C ′ has the requested properties. It has
the same conclusion as the argument C by construction. It is
pure because it has a pure conclusion, subarguments Cp1

, . . . ,Cpk
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are pure by construction and subarguments C ′d1
, . . . ,C ′dl

are
pure by induction hypothesis. The sets of defeasible rules used
for construction of argument C ′ is a subset of the set of defeasi-
ble rules used for construction of argument C, since we erased
some of its subarguments and replaced others with ones where
subset of defeasible rules were used. For the same reasons, ex-
cluding argument C ′ itself which has same conclusion as C, the
set of subarguments of C ′ is a subset of the set of subarguments
of C. From that follows Concs(Sub(C ′)) ⊆ Concs(Sub(C)).

The proof above is the only place where we use the fact that A is
inconsistency-cleaned. This assures C is consistent allows us to con-
struct a pure argument C ′. The argument JM from the leading exam-
ple has a pure conclusion, but has no corresponding pure argument.

Lemma 155. Let B be a knowledge base such that B = B1 ∪B2 where B1

and B2 are syntactically disjoint. Let A = (Args,⇀), A1 = (Args1,⇀1)

be the inconsistency-cleaned argumentation frameworks built from B and
B1 respectively. For any complete extension E ⊆ Args of A we have

Concs(E∩Ar1) = Concs(E)|Atoms(B1).

Proof. “⊆”: We have Concs(E ∩ Ar1) ⊆ Concs(E) because Concs is
monotonic. Filtering both sides and noticing that it is vacuous on the
left side, since not only conclusions but whole arguments in Ar1 are
built from the atoms Atoms(B1), we have Concs(E∩Ar1) = Concs(E∩
Ar1)|Atoms(B1) ⊆ Concs(E)|Atoms(B1).

“⊇”: For any α ∈ Concs(E)|Atoms(B1) there exists argument A ∈ E
such that Conc(A) = α and Atoms(α) ⊆ Atoms(B1). By Lemma 154

there exists an argument A ′ ∈ Ar1 with the same conclusion, which is
less or equally vulnerable than A, i.e. A ′− ⊆ A−. Since E is a complete
extension A ′ ∈ E and so A ′ ∈ E ∩ Ar1. Therefore α ∈ Concs(E ∩
Ar1).

Please recall Definition 4 of the characteristic function FA associ-
ated with the argumentation framework A = (Args,⇀), which for a
given set of arguments Ar ⊆ Args returns a set of arguments that are
defended by Ar in A. The following lemma expresses the characteris-
tic function FA1

associated with the subframework A1 in terms of the
characteristic function FA associated with A.

Lemma 156. Let B be a knowledge base such that B = B1 ∪B2 where B1

and B2 are syntactically disjoint. Let A = (Args,⇀), A1 = (Args1,⇀1)

be the inconsistency-cleaned argumentation frameworks built from B and
B1 respectively. For any set of arguments Ar ⊆ Args1 we have

FA1
(Ar) = FA(Ar)∩Args1.
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Proof. “⊇”: Let A ∈ Args1 be defended by Ar in A. All defeaters of A
from A1 defeat A in A as well, therefore Ar defends against them.

“⊆”: Let A ∈ Args1 be defended by Ar in A1. Take any argument
B ∈ Args defeating A in A. By Lemma 154 there exists an argument
B ′ ∈ Ar1 with the same conclusion, which is less or equally vulnera-
ble than B, i.e. B ′− ⊆ B−. Since B ′ has the same conclusion it is also a
defeater of A. Since A is defended by Ar in A1 there exists argument
C ∈ Ar defeating B ′ and because B is at least as vulnerable as B ′ it
also defeats B. Therefore A is defended by Ar in A.

Now we will use the above lemmas to prove that a complete exten-
sion of the argumentation framework constructed from the extended
knowledge base restricted to the arguments of its subframework con-
structed from the initial knowledge base is a complete extension of
that subframework.

Lemma 157. Let B be a knowledge base such that B = B1 ∪B2 where B1

and B2 are syntactically disjoint. Let A = (Args,⇀), A1 = (Args1,⇀1)

be the inconsistency-cleaned argumentation frameworks built from B and
B1 respectively. If E is a complete extension of A then E∩Ar1 is a complete
extension of A1.

Proof. E ∩ Ar1 is conflict-free in A1, because E is conflict-free in A

and there are no new defeats in A1, since the construction step is
monotonic.

From the monotony of FA and the fact that E is a complete exten-
sion of A we have FA(E ∩Ar1) ⊆ FA(E) = E. Intersecting both sides
we obtain FA(E ∩Ar1) ∩Ar1 ⊆ E ∩Ar1. Using equivalence FA(E ∩
Ar1) ∩ Ar1 = FA1

(E ∩ Ar1) from Lemma 156, we obtain FA1
(E ∩

Ar1) ⊆ E∩Ar1.
It remains to show the reverse inclusion E ∩Ar1 ⊆ FA1

(E ∩Ar1),
i.e. the set E ∩ Ar1 is an admissible set of A1. Let A ∈ Ar1 be an
argument defeating some argument in E ∩ Ar1. This defeat is also
present in A and E is admissible therefore there exists an argument
B ∈ E which defends E against A. By Lemma 154 there exists an
argument B ′ ∈ Ar1 defending against A such that B ′− ⊆ B−. By
Lemma 147 (taking S = {B}) B ′ ∈ E. Hence E∩Ar1 defends against A.
Since A has been chosen arbitrarily, E∩Ar1 defends itself.

Lemma 158. Let B be a knowledge base such that B = B1 ∪B2 where B1

and B2 are syntactically disjoint. Let A = (Args,⇀), A1 = (Args1,⇀1) be
the inconsistency-cleaned argumentation frameworks built from B and B1

respectively. Let Ar ⊆ Args1 be a set of arguments. If Ar is an admissible
set in A1 then Ar is an admissible set in A.

Proof. The set of arguments Ar is conflict-free in A, because it is
conflict-free in A1 and there are no defeats between arguments Ar
in A which where not present in A1. It remains to show that Ar de-
fends itself in A.
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Take any argument A ∈ Args defeating the set Ar. It is only possible
if Atoms(Conc(A)) ⊆ Atoms(B1). By Lemma 154 there exists an argu-
ment A ′ ∈ Args1 such that Conc(A ′) = Conc(A) and A ′− ⊆ A−. The
argument A ′ defeats Ar in A1 and since Ar is admissible in A1 there
exists an argument B ∈ Ar defeating A ′ and also A since A ′− ⊆ A−.
Therefore Ar defends itself in A.

Now we show that inconsistency-cleaned argumentation frameworks
satisfy Non-interference under complete semantics.

Theorem 159. The inconsistency-cleaned version of the ASPICLite system
satisfies Non-interference under complete semantics.

Proof. Let B be a knowledge base such that B = B1 ∪ B2 where
B1 and B2 are syntactically disjoint. Let A = (Args,⇀) and A1 =

(Args1,⇀1) be the inconsistency-cleaned argumentation frameworks
built from B and B1 respectively.

Let {BE1, . . . ,BEn} and {SE1, . . . ,SEm} be sets of complete exten-
sions of the argumentation frameworks A and A1 respectively. We
need to show that L = R where:

L =Cncomplete(B)|Atoms(B1) = {Concs(BE1)|Atoms(B1), . . . , Concs(BEn)|Atoms(B1)},

R =Cncomplete(B1)|Atoms(B1) = {Concs(SE1), . . . , Concs(SEm)}.

By Lemma 155 L = {Concs(BE1 ∩Ar1), . . . , Concs(BEn ∩Ar1)} and
by Lemma 157 BE ∩Ar1 is a complete extension of A1 for any com-
plete extension BE of A. We need to prove that for each complete
extension SE of A1 there exists a complete extension BE of A, such
that BE∩Ar1 = SE.

Let SE be a complete extension of the argumentation framework
A1, i.e. FA1

(SE) = SE. By Lemma 158 SE is an admissible set in A.

Consider the set BE =
∞⋃

n=1

FnA(SE). It is a complete extension of A

as the least fixed point of FA containing SE. It remains to show that
BE∩Ar1 = SE. Indeed by Lemma 156 we have

BE∩Ar1 =
( ∞⋃
n=1

FnA(SE)
)
∩Ar1 =

∞⋃
n=1

FnA(SE)∩Ar1 =

=

∞⋃
n=1

FnA1
(SE) =

∞⋃
n=1

SE = SE.

An inconsistency-cleaned argumentation framework is non-trivial
under complete semantics.

Theorem 160. The inconsistency-cleaned version of the ASPICLite system
satisfies non-triviality under complete semantics.
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Proof. Let At be a non-empty set of atoms. We have to prove that there
exist two inconsistency-cleaned argumentation frameworks A1 = (Args1,⇀1

) and A2 = (Args2,⇀2) built from B1 = (P1,D1) and B2 = (P2,D2)

respectively such that Atoms(B1) = Atoms(B2) = At and Cncomplete(A1) 6=
Cncomplete(A2).

Let At = {a1, . . . ,an} (n > 1). Let B1 = (∅, {⇒ a1, . . . ,⇒ an})

and B2 = (∅, {a1 ⇒ a1, . . . ,an ⇒ an}). Then Cncomplete(A1) =

{{a1, . . . ,an}} and Cncomplete(A2) = {∅}. Cncomplete(A1) 6= Cncomplete(A2).

From the fact that for any non-trivial formalism, Non-interference
implies Crash-resistance (Theorem 140), it follows that without incon-
sistent arguments, argumentation frameworks satisfy crash resistance
under complete semantics.

Theorem 161. The inconsistency-cleaned version of the ASPICLite system
satisfies Crash-resistance under complete semantics.

Proof. It follows from Theorem 159 and Theorem 160.

7.5 related work

We have proposed to solve the problem of contamination by delet-
ing all inconsistent arguments. There are other solutions proposed,
for instance, deleting self-defeating arguments discussed by Pollock
(1994) and Caminada and Amgoud (2007). We show that deleting self-
defeating arguments does not solve the contamination problem of the
ASPICLite system by the following example.

Example 162. Consider the argumentation framework A in Figure 25. There
are two self-defeating arguments J2 and M2 in A. We obtain the argumen-
tation framework in Figure 29 after deleting the self-defeating arguments J2
and M2 of A. We can see that in Figure 29, the argument W1 is still not

Figure 29: Deleting self-defeating arguments from the AF of Figure 25

necessarily accepted. The weather forecast is still contaminated by completely
irrelevant information.

In general one has to be extremely careful when starting to re-
move arguments from an argumentation framework. To illustrate the
perils, let us examine what happens when one starts deleting self-
undercutting arguments.
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Example 163. Pollock (1994) Let D = {p⇒
U
q}, {q→ ¬a} ⊆ S. Let a ∈ U

and let S contain all propositional inferences. Then:
A1 : p A2 : A1 ⇒ q A3 : A2 → ¬a

(A possible interpretation: p: John says that he is unreliable and q: John
is unreliable.)

In this argumentation framework (Figure 30), A3 is a self-undercutting
argument. If we deleted A3 from the argumentation framework, A1 and
A2 would be in the grounded extension and preferred extension. Then the
postulate of Closure is violated because q ∈ Concs(E) but ¬a /∈ Concs(E).

Figure 30: The argumentation framework of Example 163

What Example 163 illustrates is that if one starts deleting particu-
lar classes of arguments, then one may end up violating some of the
rationality postulates (in this case: Closure). Our contribution is that
we have proved that these problems do not occur when deleting in-
consistent arguments. That is, unlike for instance deleting the class of
self-undercutting arguments, deleting the class of inconsistent argu-
ments does not cause any violations of for instance, the postulates of
Closure and (Direct/Indirect) Consistency.

7.6 summary and future work

In this chapter we have introduced the ASPICLite system, which is
similar to the argumentation formalism treated by Caminada and
Amgoud (2007), and we identified conditions under which it can
avoid being affected by contaminating information.
ASPIC+ Prakken (2010); Modgil and Prakken (2013) is a frame-

work for specifying argumentation systems. The specification includes
an ordering on defeasible rules which is used to instantiate prefer-
ences over arguments according to one of two principles (last-link
or weakest-link). The ASPICLite formalism can be seen as a system
specified inASPIC+ by setting the universal order on defeasible rules,
i.e. every two rules are related, which then leads to equally preferred
arguments irrespectively of the principle used. The following is an
example (due to Leon van der Torre) showing that after applying the
current solution to an ASPICLite framework with the last-link prin-
ciple and an arbitrary ordering on defeasible rules, the postulate of
Closure can be violated.

Example 164. Given the knowledge base B = (P,D) with P = ∅ and
D = {⇒ p;p⇒ q;
⇒ ¬p∨¬q}ASPICLitewill construct the arguments depicted in Figure 31
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a). Further assume that⇒ p has priority 1 (lowest),⇒ ¬p∨¬q has priority
2 (middle) and p⇒ q has priority 3 (highest).

The last-link principle5 gives an ordering over arguments based on an or-
dering over defeasible rules by comparing sets of the last defeasible rules used
in the construction of arguments, i.e. argument A is less or equally preferred
to B if and only if there exists a last defeasible rule used in A that is less or
equally preferred to any last defeasible rule used in B. The set of last defea-
sible rules of an argument whose top rule is defeasible contains this single
rule. If the top rule of an argument is strict and it has no antecedent the set
of last defeasible rules is empty, otherwise it is the union of the last defeasi-
ble rules of its direct subarguments. For example, to compare argument A4

with A3 we need to consider rules {⇒ p,p ⇒ q} and {⇒ ¬p∨¬q} respec-
tively. Since⇒ p is less preferred than⇒ ¬p∨¬q but⇒ ¬p∨¬q is not
less or equally preferred to ⇒ p argument A4 is strictly less preferred than
argument A3. In consequence argument A4 no longer rebuts arguments
A3,A5,A6 (on A3). In the table below are listed arguments with associated
last defeasible rules and preference, and the resulting framework is depicted
in Figure 31 b).

Argument Last Defeasible Rules Preference

A1: ⇒ p ⇒ p (1)

A2: A1 ⇒ q p⇒ q (3)

A3: ⇒ ¬p∨¬q ⇒ ¬p∨¬q (2)

A4: A1,A2 → ¬(¬p∨¬q) ⇒ p;p⇒ q (1)

A5: A1,A3 → ¬q ⇒ p;⇒ ¬p∨¬q (1)

A6: A2,A3 → ¬p p⇒ q;⇒ ¬p∨¬q (2)

Figure 31: The argumentation frameworks illustrating problems with inte-
gration of preferences: a) ASPICLite, b) ASPICLite with Last
Link, c) inconsistency-cleaned version of ASPICLite with Last
Link

5We refer to last-link principle described in Prakken (2010) which corresponds
to the last link principle with Elitist comparison in Modgil and Prakken (2013). The
last-link principle considers also an ordering over premises which we omit for sim-
plification, since we do not use premises in our example.
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The argument A6 is an inconsistent argument, therefore according to the
solution proposed in this chapter, we delete it. The resulting framework is
depicted in Figure 31 c). There is one complete extension of arguments
{A1,A2,A3,A4,A5}

6 with conclusions that are inconsistent (arguments
A3 and A4) and not closed under strict rules (arguments A2 and A3 with-
out A6).

Notice that it is combination of preferences with ’cleaning’ that causes the
problem since framework Figure 31 b) has a single extension {A3} which
violates neither Closure nor consistency postulates.

From Example 164 we can conclude that our solution does not work
for any arbitrary reasonable argument ordering in the sense of Mod-
gil and Prakken (2013); Prakken (2010).

In Section 7.3 we defined the postulates of Non-interference and
Crash-resistance in the specific case of theASPICLite formalism. Then
we illustrated how these postulates were violated by that system.
Then a solution, namely deleting inconsistent arguments, has been
proposed. We showed that without inconsistent arguments, theASPICLite
system satisfies the postulates of Closure, Direct Consistency, Indirect
Consistency, Non-interference and Crash-resistance under complete
semantics.

Argumentation frameworks are built from knowledge bases. Some
knowledge bases can be regarded as unions of syntactically disjoint
knowledge bases. The consequences of each small argumentation frame-
work should not influence other argumentation frameworks when
they are logically unrelated. The union of the consequences of sub-
frameworks should also be in the consequence of the whole argumen-
tation framework. Inconsistent arguments can connect the graphs to-
gether and change the logical consequences of the frameworks. This
leads to unrelated arguments affecting each other so that the conse-
quences become unreasonable. The argumentation systems that have
this problem violate the postulates of Non-interference and Crash-
resistance. Several formalisms for argument-based entailment violate
these two postulates, for instance, Pollock’s OSCAR system Pollock
(1995) and some instantiations of the ASPIC+ framework Modgil and
Prakken (2013); Prakken (2010). The ASPICLite system also violates
the postulates of Non-interference and Crash-resistance. In order to
solve this problem in the ASPICLite system we delete inconsistent ar-
guments from argumentation frameworks. Then the ASPICLite sys-
tem under complete semantics satisfies the five postulates of Closure,
Direct Consistency, Indirect Consistency, Non-interference and Crash-
resistance. Those postulates ensure that the system does not crash
and can produce logically reasonable results even when potentially
contaminating information is being input into the system. The five
postulates are satisfied by the inconsistency-cleaned version of the

6Some arguments corresponding to logical consequences of the arguments
present were omitted.
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ASPICLite system under complete semantics. So the troublesome be-
havior that occurs in formalisms like that of Prakken (2010) and that
of Pollock (1994) is avoided in this particular argumentation system.

One important question is what is the price of our filtering. We can
give just an informal answer. First, filtering of inconsistent arguments
adds an additional step to the construction that possibly can increase
complexity since verifying consistency is a hard problem. Second, in-
consistent arguments represent in the framework information about
the other arguments affected by inconsistency that is lost in the prun-
ing step. Example 164 illustrates that adding preferences using the
last-link principle doesn’t work when inconsistent arguments are re-
moved which suggests that this procedure relies on that information.
The exact impact of the solution remains to be investigated in the
future work.

A potential topic for future research would be how our solution
(deleting inconsistent arguments) behaves in the context of semantics
like grounded, preferred, semi-stable and ideal. Another topic would
be the search for alternative solutions, for instance, forbidding strict
rules feeding their consequents into the antecedents of other strict
rules and disallowing the application of strict rules to an indirectly
inconsistent set of formulas. Finally, another topic for investigation is
to what extent is it possible to satisfy all five rationality postulates
without having to delete all inconsistent arguments?





8
C O N C L U S I O N S

Below we summarise the answers found in this work to the research
questions stated in the introductory chapter.

RQ 1: How can we measure a distance between view-
points represented by labellings in argumentation?

A distance is relevant to the problem of belief revision and judge-
ment aggregation. Belief revision can be seen as finding a position
consistent with the new information which is the closest to the orig-
inal one. Judgement aggregation can be seen as finding a collective
position which is closest to the positions of individuals in the group.
There are generic distance measures like Hamming distance which
can be used but they treat labellings as a vectors of labels. What
makes measuring the distance between labellings challenging is to
reflect the argumentation semantics. We used an axiomatic method
and divided the above question into two subquestions.

RQ 1.1: What are desirable properties of distance mea-
sures for labellings?

In Chapter 3, in addition to metric postulates, we proposed and
analysed two compositionality postulates (COM, COMSem), four equiv-
alence postulates (AUTO, ISO, LABSem, IPI) and three postulates based
on betweenness and qualitative distance (BTW, QDA, SQDA) (each
in two variants), which connect distance with argumentation frame-
work and argumentation semantics.

The compositionality postulates state that for argumentation frame-
works which can be divided into independent parts, measuring can
be performed part by part and summed together. We consider two
variants of independence.

The equivalence postulates state that the distance between the la-
bellings of equivalent argumentation frameworks should be the same.
Our postulates correspond to four notions of equivalence between
frameworks and corresponding mappings between their labellings.

The betweenness postulate and qualitative distance postulates de-
pend on the provided betweenness relation and partially ordered
qualitative distance. We proposed two concrete betweenness relations
(simple/refined) and two qualitative distances (Hamming set and Re-
fined Hamming pair) which capture some approaches in literature,
Miller and Osherson (2009); Duddy and Piggins (2012). Those pos-
tulates allow to specify in a systematic way a partial ordering over

125
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distances between pairs of labellings that should be preserved based
on the way we interpret labelling.

Subsequently we addressed the following question:

RQ 1.2: Are those postulates jointly consistent?

In Chapter 4 we have analysed product distance measures, distance
measures of a special form, which can be specified by a label distance
function diff and a selection function S. We identified the properties
of diff and S on which depend satisfaction of the postulates from the
previous chapter.

We have noted in Chapter 3 that the qualitative distance postulates
based on Hamming set and Refined Hamming pair are incompatible.
In Chapter 4 we proposed distance measures satisfying the qualitative
distance postulates (separately each version) with all other postulates
demonstrating they are jointly consistent.

Labels of arguments in a labellings of an argumentation framework
are interdependent. The main challenge in the construction of the
product distance measure is to select the set of arguments which
captures all the differences and avoids redundancy. Hamming dis-
tance, which is one of product distance measures, fails (IPI) because
it treats uniformly all arguments and therefore is sensitive to redun-
dancy. Another generic distance, discrete metrics, fails compositional-
ity, betweenness and strong qualitative distance postulates because it
ignores too much information. We have introduced the notion of an
issue which intuitively captures the arguments containing the same
information. The proposed issue-based distance, which satisfies all
postulates, selects exactly one argument from each issue. The full
characterisation of issue-based distance is left for future work.

Our postulates (with exception of (IPI) whose generalisation we
leave for future work) and distance measure constructions, and def-
inition of issues in particular, depend on arbitrary set of labellings.
This is important for two reasons. First, in this way our work can be
combined with any of the argumentation semantics proposed. Sec-
ond, it can be useful in cases when we are interested in a distance
measure between a given set of labellings. The clustering of agents
based on their opinions or judgement aggregation operators which
select most ’central’ opinion in the group are possible examples. The
problem of calculating the set of labellings returned by multi-status
semantics like complete usually has high computational complexity.
But the problem of labelling verification is often easier. Therefore this
class of problems is easier to apply. The relevant question to investi-
gate in the future is: how issue-based distance changes when the set
of known Sem-labellings used for issue calculation tends to the set of
all Sem-labellings.

Whether our postulates are desirable remains an open question.
Nevertheless the fact that they depend strongly on the argumenta-
tion semantics and can separate generic distance measures makes
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them properties worth considering. The application to judgement ag-
gregation shows that (IPI) is desirable (more information follows). In
the future work we would like to investigate the consequences of the
other postulates in a similar way.

RQ 2: How to use distance for aggregation of judgements
represented by labellings?

RQ 2.1: How can we ’repair’ the collective outcome when
it is not rational?

In Chapter 5 we used the distance methods for argumentation from
Chapter 4, illustrating how they can be employed to address prob-
lems of aggregation in argumentation. We adapted the framework of
Miller and Osherson from binary judgement aggregation to our set-
ting, defining several operators for aggregating argument labellings.
We illustrated informally that methods which fail (IPI) may lead to
agenda manipulation. Finally we illustrated the generality of the re-
sulting framework for aggregation by showing how the ��aggregation
method of Caminada and Pigozzi (2011) can be viewed as an instance
of one of the MO methods.

RQ 3: What type of dialogue can be associated with grounded
semantics?

In Chapter 6, we have examined how the notion of grounded se-
mantics can be specified in terms of persuasion dialogue. Unlike
for instance the standard grounded game Prakken and Sartor (1997);
Caminada (2004); Modgil and Caminada (2009) or the approach of
Prakken (2005), our dialogue game does not depend on an implicit
tree-like structure, in which the moves have to fit. Also, unlike the ap-
proach in for instance Parsons et al. (2002, 2003a,b), we do not merely
apply the concept of grounded semantics (for instance for determining
what moves an agent is allowed to make, depending on its acceptance
attitude) but we characterize it.

In Chapter 7 we investigated the idea of instantiating ASPIC+

Prakken (2010); Modgil and Prakken (2013) with the set of strict rules
generated by classical logic. We asked the following question:

RQ 4: What are the consequences of generating strict rules
by the entailment of classical logic?

We have introduced the ASPICLite system, which is similar to the
argumentation formalism treated by Caminada and Amgoud (2007),
and can be specified in ASPIC+. As expected after generating the
strict rules with entailment of classical logic the obtained system fails
consistency due to the principle of explosion. We adapted the pos-
tulates of Non-interference and Crash-resistance in the specific case
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of the ASPICLite formalism. Then we illustrated how these postu-
lates were violated by that system. Then a solution, namely deleting
inconsistent arguments, has been proposed. We showed that without
inconsistent arguments, the ASPICLite system satisfies the postulates
of Closure, Direct Consistency, Indirect Consistency, Non-interference
and Crash-resistance under complete semantics. This provides the
positive answer to the subquestion:

RQ 4.1: Is it feasible to implement Crash-resistance and
Non-interference in Argumentation-based logical formalism
by removing inconsistent arguments?

Nevertheless, we found serious drawbacks in our implementation.
The ability to deal with preferences is a strong side of the ASPIC+
framework. In ASPICLite this feature is lost. ASPICLite is no longer
an instantiation of ASPIC+ due to the modified way in which argu-
mentation framework is constructed. Moreover, it is not possible to
keep preference handling as they are handled in ASPIC+ framework
because the information contained in the inconsistent arguments re-
moved in ASPICLite is used by ASPIC+ framework to maintain con-
sistency.

The work started in this chapter was recently pushed forward by
Grooters (2014); Grooters and Prakken (2014). In the proposedASPIC?

system they manage to combine preference handling and satisfy all
the here mentioned postulates. In their approach they generate the set
of strict rules with paraconsistent logic formalism - a family of logical
formalisms which were studied to address the principle of explosion.
It is worth noting that not all paraconsistent formalisms can be used
and again the ASPIC? customise the construction of argumentation
framework. This may suggest that Dung’s style argumentation as a
methodology to develop non-monotonic logic is difficult.

Future work

Concrete ideas about the future work have been pointed at the end
of each chapter. Here we would like just to give the general line of
research that we see as being important to this field.

First we would like to investigate the general notion of position. One
of the points of real argumentation is to exchange and build positions.
Therefore we need a system that will enable to express such position,
search between expressed positions and monitor changes. This is a
concern for the growing field of web and social argumentation, Leite
and Martins (2011).

An agent is in an ongoing process of reasoning. The position can
pre-formally be thought of as a fixed point in this process which de-
termines agent’s actions, opinions etc. This position can be elicited
by presenting arguments to the agent which the agent assigns labels
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to. But this labelling is only an approximation of the position and
cannot capture the whole knowledge or beliefs of an agent. The first
idea may be to define a position as a function pos which assigns a
labelling to every possible framework A 7→ pos(A) ∈ Labs(A).

The future work is to formally define a notion of position and de-
velop new kind of argumentation theory in which this notion of po-
sition plays a central role. The point is not to define what a rational
position is but to define a communication tool so that agents can
express their position with the requested precision. Thus semantics
does not describe agents but the communication language.

Comparing to Dung, we propose to keep the formalism on an ab-
stract level. In contrast to Dung we propose to bring argument con-
struction to the picture through the notion of position and deliber-
ately abandon the control over the way arguments are created. We
see it as an advantage. First, there are cases where we simply have no
control over arguments, e.g. text arguments created by humans. Sec-
ond, in case where arguments are constructed from the knowledge
base the issue of control simply shifts from argument construction
into knowledge base construction. Third, it is questionable if knowl-
edge can be expressed as a symbolic database. The advancements
in non-symbolic artificial intelligence suggest the contrary. The chal-
lenge here is to define position through the interaction with an argu-
mentation framework which need to be extended for that purpose.
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