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Using the fluctuation theorem supplemented with geometric arguments, we derive universal features of the
(long-time) efficiency fluctuations for thermal and isothermal machines operating under steady or periodic
driving, close or far from equilibrium. In particular, the probabilities for observing the reversible efficiency and
the least likely efficiency are identical to those of the same machine working under the time-reversed driving.
For time-symmetric drivings, this reversible and the least probable efficiency coincide.
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I. INTRODUCTION

A thermodynamic machine is designed to operate for a
given purpose such as producing mechanical work or cooling.
This statement is correct “on average,” meaning that fluctua-
tions might occasionally prevent the machine from operating
in the same way as the average behavior. While fluctuations
are negligible when considering macroscopic machines, they
become highly relevant at small scales when considering
molecular machines or nanodevices. The macroscopic effi-
ciency η̄ used to characterize the performance of a machine
“on average” is defined as the ratio between an average
output and an average input contribution to the macroscopic
entropy production (EP) of the machine. A central result in
macroscopic thermodynamics is that the second law imposes
an upper bound to this macroscopic efficiency, which is only
reached when the machine operates reversibly. Stochastic
thermodynamics has taught us that entropy production, and
thus its output and input contributions, can be defined at the
level of single stochastic trajectories [1–6]. In this paper we
study the statistical properties of stochastic efficiencies defined
at the trajectory level as ratios between such output and input.
These efficiencies may be negative or higher than the reversible
efficiency, corresponding to large fluctuations along which the
machine does not operate in the same mode as the average
behavior. However, the fluctuation theorem [7–10] imposes
constraints on their probability distribution, more precisely on
their large deviation function (LDF). Remarkably, the shape of
the efficiency LDF is quite generic and displays universal fea-
tures: The long-time probabilities for observing the reversible
efficiency and the least likely efficiency are identical to those
of the same machine working under the time-reversed driving.
In the special case of machines operating at steady states
or under time-symmetric drivings, the reversible efficiency
coincides with the least probable and the main result predicted
in Ref. [11] is recovered. In this paper, besides proving these
general results, we also provide an efficient method to calculate
the efficiency LDF and extensively illustrate our results on
an exactly solvable driven two-level system. We note that
Ref. [12], which appeared while finalizing this paper, provides
further numerical evidence (see Fig. 3) that the forward and
time-reversed efficiency distributions cross at the reversible
efficiency on a model similar to ours.

After framing the basic issue in Sec. II, the general theory
and the main results are derived in Sec. III. Model-system

illustrations of these are provided in Sec. IV, and conclusions
are drawn in Sec. V.

II. THERMODYNAMICS OF NANOMACHINES

To study efficiency fluctuations of small-scale machines,
we consider the following generic setup. A small-scale
machine is subjected to two thermodynamic forces A1 and A2,
inducing over a certain time t , the conjugated time-integrated
currents J1 and J2, being positive when flowing toward the
machine. While thermodynamic forces are expressed in terms
of nonfluctuating properties of the macroscopic reservoirs, the
currents, and hence also the efficiency, will typically fluctuate.
These currents induce a fluctuating EP � = �1 + �2 + �S,
where �1 = A1J1, �2 = A2J2, and �S is the stochastic
entropy change of the machine itself. Integrated currents and
EP are time-extensive (i.e., over long times they typically
grow and their average increases linearly with time). We
consider small machines with finite state space, meaning that
the entropy changes �S become negligible in the long time
limit (they can be shown to vanish in a large deviation sense).
Their EP over long times thus reads

� ∼ J1A1 + J2A2. (1)

Machines operate either steadily or cyclically with period τ .
In this latter case, time is expressed in terms of the number of
periods n as t = nτ . We denote the time-intensive variables
by a lower case, e.g., j1 = J1/t or j2 = J2/t , σ = �/t , σ1 =
�1/t or σ2 = �2/t , and ensemble averages by brackets 〈..〉.

A device operating as a machine (in average) uses a
fueling process (the input) flowing in the spontaneous direction
of its corresponding forces 〈σ1〉 > 0 (e.g., a heat flowing
down a temperature gradient or particle flowing down a
chemical potential gradient) in order to power a second process
(the output) flowing against the spontaneous direction of its
corresponding forces 〈σ2〉 < 0 (e.g., a particles flowing up a
chemical potential gradient or a coordinate moving against
the direction of a mechanical force). Since the second law
imposes 〈σ 〉 � 0, the (“type II” [13]) macroscopic efficiency
of the machine defined as

η̄ = −〈σ2〉
〈σ1〉 = −A2〈j2〉

A1〈j1〉 � 1 (2)

is always bounded upwards by the reversible (or Carnot)
efficiency η̄rev = 1 occurring when 〈σ 〉 → 0. We note that
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TABLE I. Currents and affinities in the EP decomposition of
Eq. (1) with �1 = J1A1 and �2 = J2A2 for thermal machines
operating, respectively, as heat engine, heat pump, and refrigerator.
The input and output currents 〈J1〉 and −〈J2〉 are always positive on
average. ηC = 1 − Tc/Th is the Carnot efficiency. Type I efficiency is
defined as −〈J2〉 / 〈J1〉, which is always smaller or equal to A1/A2.
Type II efficiency, cf. Eq. (2), is equal to type I efficiency divided by
A1/A2, hence always smaller or equal to 1.

Heat engine Heat pump Refrigerator

J1 Qh W W

A1 ηC/Tc 1/Tc 1/Th

J2 W Qh −Qc

A2 1/Tc ηC/Tc ηC/Tc

traditional efficiencies (“type I” [13]) can be trivially recovered
from these efficiencies; see Table I for the case of thermal
machines.

In the same spirit, we introduce the following time-intensive
dimensionless quantity, called the stochastic efficiency:

η = −σ2

σ1
= −A2j2

A1j1
. (3)

As we will see below, its most probable value converges in the
long time limit to its macroscopic value η → η̄. To investigate
the approach to this limit, we focus on the convergence of
the intensive EPs σ1 and σ2 to their most probable value,
which also coincides with their average. Large deviation theory
describes the exponential decay of the probability Pt (σ1,σ2)
for observing nontypical (i.e., different from their infinite-time
average) EPs:

Pt (σ1,σ2) � exp{−tI (�1,�2)}. (4)

The rate I (σ1,σ2) is the nonnegative and convex LDF,
which reaches its minimum value at the point σ1 = 〈σ1〉
and σ2 = 〈σ2〉, which carries the entire probability weight
I (〈σ1〉,〈σ2〉) = 0.

A central result in stochastic thermodynamics known as
the fluctuation theorem states that the probability to observe
a positive EP in a driven machine is exponentially more
likely than that of observing its negative counterpart when
the machine is subjected to the time-reversed driving. This
result implies that any decomposition of the EP into subparts
that are antisymmetric under time reversal (as is the case for
� = �1 + �2) inherits the same symmetry property [14,15].
Expressed in the framework of large deviation theory, the
fluctuation theorem takes the following form (we set kB = 1):

I (σ1,σ2) − Î (−σ1,−σ2) = −σ1 − σ2, (5)

where P̂t (σ1,σ2) � exp{−t Î (σ1,σ2)} is the probability of the
EPs σ1 and σ2 for the machine working with the time-reversed
driving cycle. For symmetric driving cycles or for steady
machines, we obviously have that I (σ1,σ2) = Î (σ1,σ2). In
the next sections, we study the implications of this result for
efficiency fluctuations.

III. EFFICIENCY FLUCTUATIONS

A. Large deviation function of efficiency

We start by deriving the efficiency LDF from the EPs LDF
I (σ1,σ2). The probability to observe an efficiency η is given
by

Pt (η) =
∫

dσ1 dσ2 Pt (σ1,σ2)δ

(
η + σ2

σ1

)

=
∫

dσ1 Pt (σ1,−ησ1)|σ1|. (6)

Inserting Eqs. (4) into (6) and using the Laplace approximation
to compute the integral exactly in the long time limit, we find
that

Pt (η) � exp{−tJ (η)}, (7)

where

J (η) = min
σ1

I (σ1,−ησ1). (8)

This result implies that J (η) � I (0,0),∀η, an important prop-
erty to be used in the next section. Furthermore, it follows that
the efficiency LDF J (η) vanishes at the macroscopic effici-
ency η̄, thus corresponding to the most probable efficiency:

J (η̄) = min
σ1

I

(
σ1,σ1

〈σ2〉
〈σ1〉

)
= 0. (9)

The minimum value zero is reached for σ1 = 〈σ1〉 because the
LDF for EPs is convex and vanishes at the average EPs.

B. Geometric interpretation

We now analyze the contour lines of the convex LDF
I (σ1,σ2) in the input and output (σ1,−σ2) plane represented
in Fig. 1. They form closed convex lines encircling the point
C=(〈σ1〉,−〈σ2〉), where I reaches its minimal value I = 0; see
Fig. 1. This point corresponds to the most probable efficiency
η = η̄ and must lie in the upper-right corner of the (σ1,−σ2)
plane for the device to operate as a machine. A given value
of the stochastic efficiency corresponds to a straight line with
slope η and crossing the origin: −σ2 = ησ1. The corresponding
value of the LDF J (η) is, according to Eq. (8), found as the
minimum of I (σ1,σ2) along this line. This minimum is reached
for the contour line closest to the most probable point C,
namely the contour tangent to the line of slope η. A given
contour line has two tangent lines crossing the origin and
corresponding to two different efficiencies with the same value
of the LDF. For instance, in Fig. 1 the black solid contour line
has two tangent lines, one in B and one in D, corresponding to
the efficiencies ηB and ηD and to the same value of the LDF
J (ηB) = J (ηD) as shown in Fig. 2.

From the above geometric analysis of Eq. (8) illustrated
in Fig. 1, we can deduce the overall typical shape of the
efficiency LDF J (η) represented in Fig. 2. Starting from the
point C with efficiency η = η̄ and decreasing the slope η, J (η)
increases until the contour line touches the vertical axis in
point A, with the corresponding efficiency η = −∞. Similarly,
increasing the slope η from C upward, the LDF J (η) increases
until the contour line crosses the origin corresponding to
I (0,0) = J (η∗), where η∗ is the contour slope at the origin.
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FIG. 1. (Color online) Typical contour lines of the LDF I (σ1,σ2).
The point C corresponds to the most probable value I (〈σ1〉,〈σ2〉) = 0.
A straight line through the origin with slope ηD touches the contour
line, whose I value equals J (ηD) (idem for point B sharing the
same J value). The maximum of J (η) corresponds to I value of
the contour crossing the origin J (η∗) = I (0,0) (blue long dashed
line), while J (∞) to that of the contour touching the σ2 axis in A
(red dash-dotted line).

This efficiency corresponds, as shown above, to the maximum
value of J (η), hence η∗ is the least-probable efficiency in
the sense of large deviations. For η � η∗, the intersection
between the contour and the efficiency line moves from the
upper-right corner to the lower-left corner of the plane, and
the LDF decreases until its limiting value is reached for
η = +∞. Positive and negative infinite efficiencies share the
same contour line touching the vertical axis in A, with the
same limiting J (∞) value.

C. Least likely and reversible efficiency

We have shown that the least probable efficiency is given
by the slope in zero of the contour line crossing the origin.

FIG. 2. (Color online) Typical shape of the efficiency LDF J (η).
For steady-state machines or machines with time-symmetric driving
cycles, the shape is the same and the maximum is at the reversible
efficiency η∗ = η̄rev = 1. The horizontal asymptote corresponds to
point A of Fig. 1.

Along a contour line the total differential of I has to vanish:

dI = ∂I

∂σ1
dσ1 + ∂I

∂σ2
dσ2 = 0. (10)

Evaluating this equation at the origin one gets

η∗ = −dσ2

dσ1
= ∂I

∂σ1

(
∂I

∂σ2

)−1

, (11)

and similarly for the machine subjected to the time-reversed
driving cycle

η̂∗ = −dσ2

dσ1
= ∂Î

∂σ1

(
∂Î

∂σ2

)−1

, (12)

where η∗ and η̂∗ are defined by J (η∗) = I (0,0) and Ĵ (η̂∗) =
Î (0,0). Taking the partial derivative with respect to σ1 and σ2

of the fluctuation theorem Eq. (5) and evaluating it at vanishing
EPs leads to the following two equations:

∂I

∂σ1
+ ∂Î

∂σ1
= −1,

∂I

∂σ2
+ ∂Î

∂σ2
= −1. (13)

Therefore, the least probable efficiency of the machine
subjected to the time-reversed driving cycle is related to the
EPs LDF of the original machine by

η̂∗ =
(

1 + ∂I

∂σ1

)(
1 + ∂I

∂σ2

)−1

. (14)

For machines operating at steady state or subjected to
time-symmetric driving cycles, I (σ1,σ2) = Î (σ1,σ2) and from
Eq. (13), one recovers the result first derived in Ref. [11] stating
that the least probable efficiency is the reversible efficiency:
η∗ = η̂∗ = η̄rev = 1. However, if the machine works with non-
time-symmetric cyclic driving, the reversible efficiency is not
the least probable any more but remains a special point of the
LDF. Indeed, if we evaluate Eq. (5) in σ2 = −η̄revσ1 = −σ1,
we find that

I (σ1,−η̄revσ1) = Î (−σ1,η̄revσ1), (15)

which after minimization over σ1 implies that

J (η̄rev) = Ĵ (η̄rev). (16)

Hence, the efficiency LDF takes the same value at the
reversible efficiency for both the forward and the reversed
machine. The two LDFs will thus cross at this point. Fur-
thermore, using the fluctuation theorem Eq. (5), we find that
I (0,0) = Î (0,0). This implies that the maximum of the forward
and reversed efficiency LDF have the same value:

J (η∗) = Ĵ (η̂∗). (17)

These two central results, Eqs. (16) and (17), show that the
fluctuation theorem imposes strong universal constraints on
efficiency fluctuations as illustrated in Fig. 3.

D. Efficiency LDF from EPs cumulant generating function

We now propose a convenient way to calculate the
efficiency LDF directly using the EPs cumulant generating
function (CGF):

φ(γ1,γ2) = lim
t→∞

1

t
ln〈eγ1�1+γ2�2〉. (18)
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FIG. 3. (Color online) Typical shape of the efficiency LDF J (η)
and Ĵ (η). The two curves cross at η = η̄rev = 1 and take the same
maximum value at their least likely efficiency η∗ and η̂∗.

This latter is typically obtained analytically or numerically
from the dominant eigenvalue of a dressed stochastic generator
[16–18]. The CGF and LDF for EPs are known to be related
by a Legendre transform [19]:

φ(γ1,γ2) = max
σ1,σ2

{γ1σ1 + γ2σ2 − I (σ1,σ2)}, (19)

I (σ1,σ2) = max
γ1,γ2

{γ1σ1 + γ2σ2 − φ(γ1,γ2)}. (20)

Therefore, the minimization of Eq. (8) can be directly
performed on

I (σ1,−ησ1) = max
γ1,γ2

{(γ1 − γ2η)σ1 − φ(γ1,γ2)}. (21)

Using the change of variable γ = γ1 − γ2η and the efficiency
LDF definition, we get

J (η) = min
σ1

(max
γ

{γ σ1 + max
γ2

[−φ(γ + γ2η,γ2)]}).

Defining the function

fη(γ ) =− max
γ2

[−φ(γ + γ2η,γ2)] = min
γ2

φ(γ + γ2η,γ2),

(22)

whose Legendre transform is such that

Fη(σ1) = max
γ

{γ σ1 − fη(γ )}, (23)

fη(γ ) = max
σ1

{γ σ1 − Fη(γ )}, (24)

the efficiency LDF can be written as:

J (η) = min
σ1

{
max

γ
[γ σ1 − fη(γ )]

}
,

= min
σ1

Fη(σ1),

= − max
σ1

{−Fη(σ1)},
= −fη(0). (25)

Using Eq. (22), we finally conclude that

J (η) = − min
γ2

φ(γ2η,γ2). (26)

This result is of significant practical importance because it
shows that the efficiency LDF can be obtained using a simple
minimization procedure from the EPs CGF, which can be
calculated using well-known conventional techniques.

E. Efficiency fluctuations close to equilibrium

Close to equilibrium, the CGF of EPs is generically a
quadratic function

φ(γ1,γ2) = 1

2

∑
i,k=1,2

Cikγiγk +
∑
k=1,2

γk〈σk〉, (27)

with Cik the asymptotic value of the covariance matrix el-
ements Cik(t) = (〈�i(t)�k(t)〉 − 〈�i(t)〉 〈�k(t)〉)/t . The po-
sition of the minimum γ ∗

2 in Eq. (26) is solution of
dφ(γ2η,γ2)/dγ2 = 0 and reads

γ ∗
2 = − η〈σ1〉 + 〈σ2〉

η2C11 + 2ηC12 + C22
. (28)

It follows from Eqs. (26), (27), and (28) that the efficiency
LDF close to equilibrium is J (η) = −φ(γ ∗

2 η,γ ∗
2 ), namely,

J (η) = 1

2

(η〈σ1〉 + 〈σ2〉)2

η2C11 + 2ηC12 + C22
. (29)

From linear response theory, currents are a linear combination
of the affinities, 〈ji〉 = ∑

k=1,2 LikAk , with the Onsager
coefficient defined by

Lik = lim
t→∞

1

2t
〈[Ji(t) − 〈Ji〉eq][Jk(t) − 〈Jk〉eq]〉eq. (30)

They are related to the covariance matrix of EPs by
limt→∞ Cik(t)/2 = AiLikAk . Then, the average EPs are
related to the asymptotic covariance matrix by 〈σi〉 =∑

k=1,2 Cik/2 so that Eq. (29) can be rewritten as

J (η) = 1

8

[ηC11 + (1 + η)C12 + C22]2

η2C11 + 2ηC12 + C22
. (31)

This relation also results from combining the quadratic CGF
of Eq. (27) with the fluctuation theorem

φ(γ1,γ2) = φ̂(−1 − γ1,−1 − γ2), (32)

which is directly connected to Eq. (5). We have introduced
φ̂(γ1,γ2) the CGF for the machine working with the time-
reversed driving cycles. From the fact that Eq. (32) must hold
for any couple (γ1,γ2), we identify each monomial appearing
in the quadratic forms of Eq. (32). Using these constraints
and the exchange symmetry 1 ↔ 2, we conclude that, close
to equilibrium, the EPs CGF for both the drivings (direct
and reverse) follow the same statistics φ(γ1,γ2) = φ̂(γ1,γ2).
Therefore, we can generalize the result of Ref. [11] stating
that the efficiency LDF Eq. (31) applies to both symmetric
and nonsymmetric drivings. As a byproduct, we recover that
〈σi〉 = ∑

k=1,2 Cik/2 and Eq. (31).

IV. TWO-STATE CYCLIC MACHINE

To illustrate the results of the previous section, we consider
a system made of two states θ = ±1 coupled to a cold
and a hot heat reservoir ν = c,h at temperatures Tν = 1/βν .
The system energies E(t) = −h(t)θ (t) are modulated by an
external piecewise constant driving h(t) of period τ , where
θ (t) denotes the system state at time t . The energy changes
in the system due to changes in the driving h(t) (occurring at
fixed θ ) constitute work. The energy changes between system
states (occurring at a fixed driving value h) induced by either
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FIG. 4. (Color online) (Top) External driving h(t) following a
piecewise constant protocol of period τ . The driving takes the
value h± = h0 ± a during α±τ , with α− + α+ = 1. (Bottom) Time
evolution of �ν(t) indicating the coupling with cold reservoir ν = c

for the blue solid line and with the hot reservoir ν = h for the red
dashed line. At driving h±, the hot reservoir coupling is �± and the
cold reservoir coupling is �∓.

reservoirs and occurring at random times constitute heat (work
and heat are by convention positive when they increase the
system energy). The Markovian rates describing these latter
transitions from θ to −θ due to reservoir ν are of the form

kν[h(t),θ ] = ων[h(t)]e−βνh(t)θ , (33)

and thus satisfy local detailed balance. We consider Fermi
rates ων[h(t)] = �ν[h(t)]/[2 cosh βνh(t)], but Arrhenius rates
ων[h(t)] = �ν[h(t)]/|2 sinh βνh(t)| or Bose rates ων[h(t)] =
�ν[h(t)]/|2 sinh βνh(t)| may be considered as well. In order
for the system to operate as a thermal machine, the coupling
constants �ν[h(t)] between the system and the reservoir ν

have to depend on the driving value. The heat per period
received from the hot (respectively, cold) reservoir is denoted
qh (respectively, qc). The work per period performed by the
driving on the system is denoted w. Table I describes the
different possible operating regimes of our thermal machine
and explains how to relate work and heat to the EPs and
efficiency of the general formulation of Sec. II.

We first consider the piecewise constant driving depicted
in Fig. 4. This driving is symmetric under time-reversal (up to
a time shift negligible in the long time limit) and the single
reservoir version of this model was studied analytically in
Refs. [20,21]. The work and heat CGF can also be calculated
analytically for our machine as described in the Appendix.

Depending on the choice of the various parameters, this
machine operates in the different modes illustrated in Fig. 5.
Note that refrigerators and heat pumps only differ by the
way efficiency is defined: using either the heat from the cold
reservoir or from the hot reservoir for output process. We also
see that the heat pump and refrigerator region is separated from
the heat engine region by two different dud engine regions.
The red region corresponds to a heater using work to heat the
hot and the cold reservoirs. The light beige region is also a
dud engine that uses work to enhance the heat flow in its

a

βch−

Dud Engine, w > 0, qc < 0, qh < 0
Refrigerator and Heat Pump, w > 0, qc > 0, qh < 0

Dud Engine, w > 0, qc < 0, qh > 0
Heat Engine, w < 0, qc < 0, qh > 0
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FIG. 5. (Color online) Diagram representing the various operat-
ing modes of our thermal machine subjected to the driving cycle
depicted in Fig. 4, as a function of the inverse temperature difference
βch

− = βc − βh and the amplitude a of the driving (h± = h0 ± a). We
used: sum of inverse temperatures βch

+ = βc + βh = 2, period τ = 1,
cyclic ratio α− = 0.3, bare field h0 = 1, and coupling constants
�− = 0.25 and �+ = 4. These parameters are also used for all figures
using this model (excepted Fig. 10). Black dots correspond to the
values of a and βch

− used in Figs. 6, 7, and 8. I: βch
− = 0.05, a = 0.05;

II: βch
− = 0.5, a = 0.5; III: βch

− = 0.1, a = 0.02; IV: βch
− = 0.8,

a = 0.2.

spontaneous direction. The two black dots in the blue as well
as in the orange region correspond to the close-to-equilibrium
(dots I and III) and far-from-equilibrium (dots II and IV)
parameter values.

Using Table II and the exact CGF derived for work
and heat in the Appendix, the efficiency LDF J (η) can be
directly obtained by a numerical minimization as suggested
by Eq. (26). Alternatively, one could also directly minimize
the LDF I (σ1,σ2) computed via a two-dimensional Legendre
transform of the joint CGF.

In Fig. 6, the LDF I (σ1,σ2) is displayed for the three
operating modes of the machine, both close and far from equi-
librium. Since the driving depicted in Fig. 4 is symmetric under
time-reversal, i.e., I (σ1,σ2) = Î (σ1,σ2), we verify Eq. (5) and
obtain that the least probable efficiency coincides with the
reversible efficiency (given by the slope of the contour lines
crossing the origin). The fact that the contour lines become
elliptical close to equilibrium entails Gaussian statistics for
the EPs, σ1 and σ2.

In Fig. 7 (respectively, Fig. 8), we plot J (η) for the three
operating modes of the machine operating close to equilibrium
(respectively, far from equilibrium) and corresponding to the
black dots in Fig. 5. We verify that the reversible efficiency
corresponds to a maximum of the LDF as it should for time-
symmetric drivings. Figure 7 also confirms the validity of
our close-to-equilibrium theory presented in Sec. III E. We
observe that the curves for the refrigerator and the heat pump
are very similar in the close-to-equilibrium limit. The plateau
value for large efficiencies and the value of the efficiency LDF
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FIG. 6. (Color online) LDF of work and heat for the three operating modes of the machine: heat engine (a,d), heat pump (b,e), and
refrigerator (c,f), far from (top row) or close to equilibrium (bottom row). The parameter values correspond to the black dots in Fig. 5. The
solid black contour lines corresponding to I (σ1,σ2) and the orange dashed lines corresponding to I (−σ1,−σ2) − σ1 − σ2 perfectly coincide,
illustrating the fluctuation theorem for symmetric drivings under time-reversal. The yellow dotted line is the straight line of slope η̄rev crossing
the origin.

at the reversible efficiency are also very similar on Fig. 8 in
far-from-equilibrium conditions, even though the position of
the most probable efficiency is different. Finally, we remark
that for all the parameter values and operating modes that
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FIG. 7. (Color online) Efficiency LDF for the three main types
of machines working close to equilibrium (CE). Lines are for J (η)
obtain from Eq. (26) and Table II and symbols come from the close-to-
equilibrium prediction of Eq. (31). The chosen parameters correspond
to point I of Fig. 5 for the heat pump and the refrigerator and to point
III of the same figure for the heat engine. The indicated type of
machine corresponds to the average behavior.

we considered, the general shape of the efficiency LDF is
consistent with the one represented in Fig. 2.

In order to illustrate the general results of Sec. III C, we
now consider the driving cycle depicted in Fig. 9, which
is not symmetric under time reversal. We see in Fig. 10
that as anticipated, the reversible efficiency is not the least
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FIG. 8. (Color online) Efficiency LDF for the three main types
of machines working far from equilibrium. The chosen parameters
correspond to point II of Fig. 5 for the heat pump and the refrigerator
and to point IV of the same figure for the heat engine. The indicated
type of machine corresponds to the average behavior.
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FIG. 9. (Color online) (Top) External driving following a piece-
wise constant protocol of period τ . The driving takes three different
values hj with j = 1, 2, 3 during three time intervals αjτ , with
α1 + α2 + α3 = 1. (Bottom) Time evolution of �ν(t) indicating the
coupling with the cold reservoir ν = c for the blue solid line and
the hot reservoir ν = h for the red dashed line. Note that the reverse
driving cycle is defined by ĥ(t) = h(τ − t) and �̂ν(t) = �ν(τ − t).

probable anymore but lies at the intersection of the forward
and time-reversed driving curves. This is only clearly seen far
from equilibrium since the effect of the time asymmetry of the
driving vanishes as one approaches equilibrium as noted in the
end of Sec. III E. A similar observation was recently made in
Fig. 3 of Ref. [12].
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FIG. 10. (Color online) Efficiency LDF for a refrigerator (aver-
age behavior) working far from equilibrium (squares) or close to
equilibrium (circles) with the asymmetric driving cycle under time
reversal of Fig. 9. The empty (full) symbols are for the direct (reverse)
driving. The kinetics is described by Fermi rates and the common
parameters to all curves are α1 = 0.6, α2 = α3 = 0.2, τ = 1, �1 =
0.1, �2 = 1, �3 = 10, and βh = 1. For far-from-equilibrium case,
h1 = 0.5, h2 = 1.5, h3 = 2, and βc = 1.5. For close-to-equilibrium
case, h1 = 1.45, h2 = 1.5, h3 = 1.55, and βc = 1.05.

V. CONCLUSION

We first summarize our results. Using the fluctuation
theorem and assuming convexity of the currents LDF, we
described the general properties of the LDF of efficiency
fluctuations. Our conclusions hold for thermal and isothermal
machines working arbitrarily far from equilibrium. We proved
that the macroscopic efficiency defined as the ratio of average
output power over average input power is the most probable
efficiency. For general driving cycles, the reversible efficiency
is special in that the efficiency LDF of a machine subjected to
a forward driving cycle and that of the same machine driven by
the time-reversal protocol, coincide at that point. For machines
operating at steady state or subjected to time-symmetric
driving cycles, the reversible efficiency is also the least likely
efficiency as shown in Ref. [11]. In the close-to-equilibrium
limit, the efficiency LDF is fully characterized by the response
coefficients of the machine. Furthermore, in this regime,
machines subjected to a driving cycle or its time-reversed
version display the same efficiency LDF. We explicitly verified
and illustrated our results by considering a two-level system
machine subjected to piecewise constant driving protocols. We
finally also proposed a very efficient method to calculate the
efficiency LDF directly from the cumulant-generating function
for the input and output currents.

Nowadays, stochastic quantities such as heat and work
have been measured in various small systems [22–35] (e.g.,
biomolecules, systems of colloidal particles, polymers, quan-
tum dots, single electron box). Hence their ratio, the stochastic
efficiency, should be easily accessible experimentally. The
statistical properties of the efficiency provide a much more ac-
curate characterization of the performance of small machines
than the macroscopic efficiency. In view of the high interest
in recent years for the study of finite-time thermodynamics at
small scales [7,35–44], we expect that the study of efficiency
fluctuations will become a paradigm in this field. Finally, let
us emphasize that the predictions of our theory for efficiency
fluctuations provide a way to verify the implications of the
fluctuation theorem, which can be seen as the generalization
of the second law for small systems.
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APPENDIX: WORK AND HEAT CGF

We derive here the work and heat CGF for the two-state
model of Sec. IV with the driving of Fig. 4. In this model, tran-
sitions between system states require an instantaneous energy
input or output, which corresponds to the heat exchanged with
one of the reservoirs ν. We use the label ν(t) to specify which
reservoir caused the transition at time t . Energy conservation
implies that the system energy change,

�E(t) = W (t) + Qc(t) + Qh(t), (A1)
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can be expressed as the sum of the work provided by the
driving,

W (t) = −
∫ t

0
dt ′ḣ(t ′)θ (t ′), (A2)

and the heat provided by the reservoirs,

Qν(t) = −
∫ t

0
dt ′h(t ′)θ̇(t ′)δν,ν(t), (A3)

where δ is the Kronecker symbol.
For simplicity, we focus on the efficiency fluctuations of a

refrigerator studying the statistics of work W (t) and heat Qc(t).
This implies no loss of generality: upon relabeling, we can
also get the heat-engine or heat-pump efficiency fluctuations.
The moment generating functions for work and heat at time t

conditioned on the final state θ is defined by

Gθ (γ1,γ2,t) = 〈eγ1W (t)+γ2Qc(t)δθ,θ(t)〉. (A4)

The one without conditioning is given by G(γ1,γ2,t) =∑
θ Gθ (γ1,γ2,t). The evolution of Eq. (A4) is ruled by the

master equation

∂tGθ (γ1,γ2,t) =
∑

θ ′=±1

L
(γ1,γ2)
θ,θ ′ [h(t)]Gθ ′(γ1,γ2,t), (A5)

where L(γ1,γ2) is a 2 by 2 matrix dependent of h with elements

L
(γ1,γ2)
θ,θ ′ (h) = −

∑
ν=h,c

θθ ′ων(h)e−βνθ ′h+γ2h(θ ′−θ)δν,l − ḣγ1θδθ,θ ′ .

(A6)

This so-called “dressed” generator of the evolution is equal to
the master equation generator for the probability of the system
states when γ1 and γ2 vanish. The asymptotic CGF of work
and heat is related to the highest eigenvalue ρ(γ1,γ2) of the
propagator over one period of Eq. (A5), written

Q = −→exp
∫ τ

0
L(γ1,γ2)[h(t)]dt, (A7)

where −→exp stands for the time-ordered exponential. To see
this, we write gθ (γ1,γ2) the right eigenvector of Q associated
to ρ(γ1,γ2) and g(γ1,γ2) = ∑

θ gθ (γ1,γ2) the sum of its
components. Then, we have after n periods

G(γ1,γ2,nτ ) =
∑
θ,θ ′

( Qn)θ,θ ′gθ ′(γ1,γ2), (A8)

= ρ(γ1,γ2)ng(γ1,γ2), (A9)

leading to the asymptotic CGF of work and heat (per period)
coming from the cold reservoir,

ϕc(γ1,γ2) = lim
n→∞

1

n
ln G(γ1,γ2,nτ ) = ln ρ(γ1,γ2). (A10)

In other words, we have to compute the matrix Q and look
for its largest eigenvalue. This propagator follows from the
product of four propagators for Eq. (A5): the propagator
between time 0 and α−τ with the driving being h−, the
propagator over a unique time step during which occurs

the transition from h− to h+—only the second term in the
right hand side of Eq. (A6) matters for this propagation—the
propagator between time α−τ and τ with the driving being h+
and, finally, the propagation over the time step of the transition
from h+ to h−. These calculations have been described in more
detail in Ref. [20] in the case of a modulated two-level system
in contact with a unique heat reservoir, but the calculations
here are essentially the same. The final result for the CGF is

ϕc(γ1,γ2) = ln
tr Q +

√
[tr Q]2 − 4 det Q

2
, (A11)

which is a function of the determinant det Q = z+z− with
z± = exp(−τα±k±) and k± = 2

∑
θ,ν kν(h±,θ ), and of the

trace

tr Q =
√

z+z−

Z+Z−

[
1 + Z+Z− + (1 − Z+)(1 − Z−)

× 2C − K+K−

2K+K−

]
(A12)

with

C =
∑

μ,ν=h,c

ε=±

ε ω−
μω+

ν cosh
(
βμν

ε h0 − β
μν
−ε a

)

+
∑

μ,ν=h,c

2ω−
μω+

ν cosh[(βμν
+ − 2γ2(δc,μ + δc,ν) + 4γ1)a

− (βμν
− − 2γ2εμν)h0]. (A13)

In these expressions, we have defined β
μν
± = βμ ± βν for

the sum and difference of inverse temperatures, used the
short notation ων(h±) = ω±

ν , and introduced the Levi-
Civita tensor for the heat reservoirs εcc = εhh = 0, εch = 1,
and εhc = −1. We have also defined Z± = exp(−τα±K±)
and

K± =
{

4
∑
μ,ν

ω±
μω±

ν [cosh h±(βμν
− − 2γ2εμν)

− cosh h±β
μν
− ] + (k±)2

}1/2

. (A14)

We observe in Eqs. (A11)–(A14) that we have ϕc(γ1,0) ∼
±4aγ1 in the limit γ1 → ±∞: the maximum slope of the CGF
is ±4a, which is consistent with the extremal work values for
this model. The heat exchanges are in principle unbounded;
this corresponds, in the large |γ2| limit, to the fact that the
CGF increases exponentially (no bounds on the slopes). As
announced, the CGF of work and heat coming from the hot
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TABLE II. Connection between the CGF φ of the EPs per unit time and the CGF of the work and heat per period.

Heat engine Heat pump Refrigerator

φ(γ1,γ2) ϕh(γ2/Tc,γ1ηC/Tc)/τ ϕh(γ1/Tc,γ2ηC/Tc)/τ ϕc(γ1/Th,−γ2ηC/Tc)/τ

reservoir is defined by

ϕh(γ1,γ2) = lim
n→∞

1

n
ln〈eγ1W (t)+γ2Qh(t)〉, (A15)

and is obtained exchanging the labels c and h in Eqs. (A11)–
(A14). The CGF ϕc(γ1,γ2) and ϕh(γ1,γ2) provide all the
required information to study the efficiency fluctuations
of the three types of thermal machines as shown in
Table II.

Evaluating the derivative of the CGF of work and heat at
the origin, one obtains the average work per period,

〈w〉 = 8aZ
k−k+

∑
μν

ω−
μω+

ν sinh(βμν
+ a − β

μν
− h0), (A16)

and the average heat per period coming from the cold reservoir,

〈qc〉 = 4
∑
ε=±

[ Z
kεkε

− ταε

kε

]
ωε

cω
ε
hh

ε sinh βch
− hε

− 4Z
k−k+

[∑
ε=±

εωε
cω

−ε
h hε sinh(βch

+ a + εβch
− h0)

+ 2aω−
c ω+

c sinh 2βca

]
, (A17)

where we have definedZ = (1 − z−)(1 − z+)/(1 − z−z+). As
for the generating function, the average heat from the hot
reservoir 〈qh〉 is obtained by interchanging all the labels c

with h.
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