

A Supervised Verifiable Voting Protocol for the

Victorian Electoral Commission

Craig Burton
1
, Chris Culnane

2
, James Heather

2
, Thea Peacock

3
, Peter Y. A. Ryan

3
,

Steve Schneider
2
, Sriramkrishnan Srinivasan

2
, Vanessa Teague

4
, Roland Wen

5
, Zhe Xia

2

1
Victorian Electoral Commission, Victoria, Australia

Craig.Burton@vec.vic.gov.au

2
University of Surrey

{c.culnane, j.heather, s.schneider, s.srinivasan, zhe.xia}@surrey.ac.uk

3
University of Luxembourg

{thea.peacock, peter.ryan}@uni.lu

4
The University of Melbourne

vjteague@unimelb.edu.au

5
The University of New South Wales

rolandw@cse.unsw.edu.au

Abstract: This paper describes the design of a supervised verifiable voting

protocol suitable for use for elections in the state of Victoria, Australia. We

provide a brief overview of the style and nature of the elections held in Victoria

and associated challenges. Our protocol, based on Prêt à Voter, presents a new

ballot overprinting front-end design, which assists the voter in completing the

potentially complex ballot. We also present and analyse a series of modifications

to the back-end that will enable it to handle the large number of candidates, ,

with ranking single transferable vote (STV), which some Victorian elections

require. We conclude with a threat analysis of the scheme and a discussion on the

impact of the modifications on the integrity and privacy assumptions of Prêt à

Voter.

1 Introduction

Australian elections have distinctive features that create unique challenges for

automation. Almost all elections in Australia use preferential electoral systems. Both the

alternative vote (AV) and the single transferable vote (STV) are common. Preferential

voting offers voters a high degree of freedom to express their choices, but at the same

time can make it hard for voters to cast binding votes and is prone to voter error.

Unintentional numbering errors are by far the largest category of errors contributing to

Appeared in Proceedings of the 5th International Conference on Electronic Voting

2012 (EVOTE 2012), Manuel J. Kripp, Melanie Volkamer, Rüdiger Grimm (Eds),

Lecture Notes in Informatics 205.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31203394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

informal
1
 ballot papers—comprising 50% of the total informal votes in the 2010

Victorian state election.

To help simplify the voting, STV elections often provide voters with the option of

selecting ‘group tickets’, which are predetermined preferences chosen by parties. This

can result in large and complex ballot papers. For example in Victorian elections, the

Legislative Council ballots have had up to 38 individual candidates and 11 group tickets.

Figure 1: Ballot paper for the Victorian Legislative Council

A sample ballot is shown in Figure 1. The ballot has a top section where voters can vote

for a party or group (known as voting ‘above-the-line’), and a bottom section where

voters can mark their preferences for individual candidate (known as voting ‘below-the-

line’).

There is a very tight turnaround for printing and delivering the ballots. Candidate

nominations typically close on a Friday with Early Voting commencing at 4pm the same

day. Ballots must be printed, checked and delivered as soon as possible, no later than the

following Monday morning.

Another important characteristic of Australian elections is compulsory voting. This

introduces numerous logistical challenges. For example, in state elections voters can cast

their votes at any polling place in their state, which means that ballot papers for every

electorate must be delivered to each polling place before the voting commences, and

then completed ballots must be returned to their correct electorates afterwards. Polling

places are also set up overseas, usually at Australian embassies.

There is a strong onus on electoral commissions to provide a high level of

accessibility for all voters. The complexity of preferential ballots causes difficulties for

marginalised voters, in particular for voters with a print disability and voters from non-

English speaking backgrounds. Many voters in these categories require human assistance

to fill out their ballots, in which case they have no protection of vote secrecy. E-voting

1 by informal we mean any vote that is incorrectly filled and/or somehow ambiguous and non-binding

has the potential to help solve many of these problems. Although electoral commissions

in Australia have generally been cautious about e-voting, there have been strong pushes

towards adopting e-voting over the last five years.

The Victorian Electoral Commission (VEC) is one of the early adopters of e-voting

in Australia. In 2006, the VEC trialled a supervised e-voting system provided by a third-

party vendor, and the system was rolled out on a larger scale in 2010. The e-voting

system offered several benefits for both voters and the VEC. The voting machines

alerted voters to numbering errors and provided instructions in a choice of 12 languages.

All machines were equipped with audio facilities to provide guidance and feedback to

vision impaired voters. The electronic nature of the ballots helped reduce the

administrative overhead and physical security risks of returning the ballots through

multiple third parties (for instance couriers); the ballots were submitted to centralised

servers via a private network.

However there were a number of concerns with this system. First and foremost, the

system did not provide any meaningful verifiability of the votes. In addition, the

proprietary nature of the system meant that none of the design and implementation

details could be made public. The necessary heavy customisation of the vendor’s core

product (for instance to handle preferential ballots) created difficulties in tightly

integrating the e-voting system with the VEC’s existing election administration process

(such as allowing general staff to run the entire system), and in deriving ongoing benefit

from the supplier’s core solution, which is on another development branch.

To address these shortcomings, the VEC has decided to develop its own e-voting

system in collaboration with the e-voting community. Academics from several

universities are working with the VEC to design a suitable cryptographic e-voting

protocol that provides both individual and universal verifiability. The design and the

final system will be publicly available for peer review. The VEC’s vision is for voters to

cast their votes using the machines, which will provide (optional) take-home receipts for

voters to verify their votes.

One of the main challenges is in finding the right balance between usability and

security, in particular requiring voters to verify large amounts of information in

preferential ballots and to perform cryptographic operations such as verifying digital

signatures. Our main contribution is not in the proposal of the protocol, but more

importantly in highlighting the difficulties and potential trade-offs in practice when

applying cryptographic voting schemes to large-scale public elections that have specific

requirements.

1.1 Related works

The present work is based on the Prêt à Voter (PaV) electronic voting system [Rya04,

CRS05]. The original PaV scheme has subsequently undergone various adaptations and

enhancements, some of which are described elsewhere in this paper. The basic concept

remains unchanged and is described as follows.

The voter receives a printed ballot as shown in Fig. 2 below. The order of the

candidates is independently randomised for each ballot and the value “7rJ94K” repre-

sents an encryption of the order on the form.

Beta

Gamma

Alpha

 7rJ94K

Figure 2: A Prêt à Voter ballot form

In the polling station, the voter is given at random a ballot sealed in an envelope. She

takes this to the booth, extracts the ballot form, marks the candidate of choice, separates

the right-hand and left-hand sides (RHS, LHS) and destroys the LHS. She can now leave

the privacy of the booth with the RHS of the ballot form. In the presence of officials and

perhaps observers, the RHS is placed under an optical reader which records the

information, that is, the value at the bottom of the strip and the position marked or the

preferential rankings. The RHS, or a copy thereof, is retained as a receipt. Note that as

the candidate order is randomised and has been destroyed, the receipt does not reveal her

vote (except to someone possessing the decryption keys). The decryption keys are shared

between a set of parties such that a threshold set of these parties is required to perform

decryption. This ensures that no single party can decrypt all ballots. Once all voting has

ceased, the receipts are posted on a secure Web Bulletin Board (WBB). Voters can use

this facility to confirm that their receipts appear correctly. A set of mix servers then

perform a series of robust, anonymising, re-encryption mixes (e.g. [Nef01, FS01,

Wik10]) on the receipts and the votes are emitted and counted.

Although apparently simple on the surface, the underlying protocol offers many of

the properties desirable in voting systems such as, ballot secrecy, individual and

universal verifiability and receipt-freeness. As PaV has a certain similarity to traditional

pen-and-paper, booth-based voting, the user experience is familiar and hence, the

scheme is readily adaptable to real-world situations.

The original scheme was designed for First-Past-The-Post (FPTP) voting as currently

used in the UK, but it is clear that it adapts easily to ranked, AV etc.: the voter simply

adds further marks to the ballot. However, if done naively, this opens up possibilities of

“Italian” style attacks. This has been addressed in [TRN08, XCH10], which introduce

new mixing and tallying algorithms.

Certain fielded, verifiable voting systems offer potential for ranked voting such as,

Scantegrity II [CCC08] and Civitas [CCM08]. However, it is unclear how they would

perform with a large number of candidates. The “checkerboard style” ballots in

Scantegrity II would for instance, be impractical with potentially candidates.

Encoding of vote preferences in Civitas could incur a significant processing overhead

when scaled up for a sizeable candidate base. Furthermore, Civitas is a remote rather

than supervised scheme. Wombat (http://www.wombat-voting.com/) is currently

implemented as a FPTP supervised system, but again it is unclear how it would handle a

large number of ranked vote choices. There could also be privacy issues connected to the

plaintext audit trail provided by Wombat ballots.

With the PaV implementation for the VEC, we note that although workable solutions

have been found for the moment, many research challenges remain. Whilst a formal

security analysis has yet to be carried out, security of the scheme is forefront in the

development process and is being continuously monitored and discussed by all parties

involved.

2 Front-End Design

We now describe the proposed system.

2.1 Electronic Ballot Marking

In this section, we introduce the procedures of vote casting. In other words, how to

capture the voter’s intent into an encrypted vote and how to verify that the encrypted

vote has been correctly recorded by the election system.

Echo

Bravo

Alpha

Delta

Charlie

{P}

An example ballot is shown as in the above table. It contains a perforation vertically

down the middle so that the two halves can be separated. The LHS lists the candidates in

a random order. In the bottom of the LHS, there is also an unencrypted representation P

of the candidate order (e.g. it can be a computer-readable barcode). The RHS is left

blank for the voter to mark her rankings. Moreover, in the RHS, an encrypted value,

called an onion is associated with each candidate. If it is decrypted, its plaintext will

represent the corresponding candidate in the LHS. The encoding of the onions is

explained in section 3.

In contrast to the traditional PaV protocol, the voter does not mark her preferential

rankings on the ballot directly. This is because the state of Victoria’s upper house

election contains around 36 candidates, and ranking so many candidates using a

candidate list in the random order is obviously not user friendly. Instead, we will use a

voting device, called an Electronic Ballot Marker (EBM), to help the voter mark her

rankings. The EBM is a standalone, isolated computer device with a barcode reader and

touch screen user surface. To cast a vote, the voter first inserts the ballot into the EBM,

which will read the permutation information P in the bottom of the LHS. The EBM

displays the ballot on its touch screen user surface such that the candidate list is in the

official draw order. The user interacts with the touch screen to give her preferential

rankings. Note that the EBM can also assist the voter by pointing out ill-formed vote.

Once the vote is confirmed, the EBM sorts the voter’s rankings according to the

permutation information P, and overprints the results on the RHS of the ballot.

The voter takes her completed ballot paper to a scanner. As with the conventional

PaV, she separates the ballot along the perforation, destroys the LHS and then places the

RHS into the scanner. After that, the scanner submits the preferences and onions to the

WBB, which will then generate a hash value of the received information and send the

digital signature of the hash value back to the scanner. The scanner now overprints the

signed hash onto the RHS, which can then be taken away by the voter as her receipt.

The voter can optionally audit either the entire or part of the vote casting procedures.

Here, we explain how the complete auditing should be carried out:

• Audit the ballot: This audit checks whether the ballot is correctly generated. In

other words, whether each onion in the RHS correctly encrypts the corresponding

candidate in the LHS, and whether the permutation information P contains the

correct candidate order. A ballot can be either audit or cast, but not both. The

auditing method is as in the traditional PaV [CRS05].

• Audit the EBM: The EBM transfers the voter’s rankings wrt the candidate list in

the canonical order, to rankings wrt the candidate list printed in the ballot. This

audit checks that the transformation is done properly. For example, the voter can

randomly note down some or all of the candidate-preference pairs from the

EBM’s touch screen surface and then compare whether these pairs are consistent

with those printed on the ballot.

• Audit the vote recording: This audit ensures that the encrypted vote has been

correctly recorded by the WBB. To perform the audit, the voter calculates a hash

value of the preferences and onions in her receipt and then checks whether the

signed hash from the WBB is valid.

2.2 Digital Signature Issues

One of the fundamental principles of PaV is the issuing of a receipt that the voter can use

to verify that their vote has been correctly recorded onto the WBB. It is this checking

that assures the voter that their vote is being included in the count. If anything is amiss,

the information on the receipt is different or missing from the WBB, the voter can

challenge the authorities. As such, the veracity of the receipt is vitally important.

A valid receipt provides protection for two parties: it provides the voter with

evidence to launch an appeal, whilst simultaneously providing the system with

protection from false accusation. It is therefore essential that any issued receipt is

verified by the voter when received. If it is invalid or false, the voter must appeal at that

point. Once the voter has left the polling station their right to appeal about false receipts

is over.

The difficulty is that it is easy to verify a digital signature on a computer, but

impossible for a human to do it in their head. When in the polling station the voter is

virtually devoid of any trusted hardware and therefore does not have the ability to check

the veracity of the digital signature in a way that is assured and trusted by them.

Alternative approaches have been suggested ([CBH11, Rya11]), that either augment

or entirely do away with the digitally signed receipt. Such schemes are based on

verifying codes to ensure that the vote has been accurately recorded on the WBB. Such

schemes have the desirable property that when the voter leaves the polling station they

have already completed their verification step. However, they do require a higher level

of trust in the WBB, although there already exists a degree of trust in it with the digital

signatures. The bigger disadvantage is that the codes used to verify the recording of the

vote must be distributed to the voter. The typical suggestion is to include them on the

ballot form issued to the voter. However, this then places a chain of custody requirement

on those ballots, which if breached could potentially undermine integrity. There may be

situations where such a chain of custody already exists or where it is a preferred

compromise to the digital signature approach.

The final and preferred option is to permit voters to use their mobile phones to verify

the digital signature. Constructing a phone application to do such a task is relatively easy

and multiple organisations could undertake such a task and provide it for free, allowing

voters to use an app from an organisation they trust or perhaps even build their own.

Such an approach does require that the voter is in possession of a smartphone and that

they sufficiently trust the device and the application to perform the operation. There is

growing concern about malware on mobile devices, but currently the average user is

likely to trust such a device. There are concerns about disenfranchising the less well off

or older generation who tend not to own smartphone devices. Whilst this is true, the

validity of the system only requires a small number of people to check their receipt.

Unless the machine/system can know in advance whether someone has a smartphone, it

cannot risk cheating in case it gets caught. There may also be legislative problems with

allowing phones and photographic devices to be used in a polling station, however,

provided that the process is well managed and checking is performed in a designated

area, such concerns should be mitigated. It is worth noting that the checking of the

signature can be performed within the polling station, in public with assistance if

required.

3 Back-End Design

In this section, we discuss how to tally the received encrypted votes into the election

result.

We will use the Exponential ElGamal cipher [ElG85] in our protocol. A plaintext

message will be encrypted as . In the ballot form, there will be a

ciphertext next to each candidate. Suppose there are candidates in the election, the -th

candidate will be encoded as , where is a value larger than (e.g.
). A received vote will look similar to the following table (note that the columns might

be in different orders, but the tally methods will not be affected):

Ciphertext …

Ranking R1 R2 … Rk

3.1 Tally Method 1

We first sort the ciphertexts within the above table according to their rankings. The

result will be a -ciphertexts tuple ranked in the canonical order. We then

treat each of the ciphertext tuples as an input to the mixnets (e.g. Verificatum [Wik10]).

After the shuffle, all ciphertexts in the outputs are decrypted, and the election result will

be calculated. However, the drawback of this method is that the computational cost for

the shuffle and decryption phase will be expensive if the number of candidates is large.

Hence it is not ideal for elections with large numbers of candidates.

3.2 Tally Method 2

Alternatively, for a particular vote, we can use the homomorphic properties of the

exponential ElGamal cipher to first aborb all the ciphertexts and their corresponding

rankings into a single ciphertext as follows
2
:

where
 . Then for each vote, we input the ciphertext into the

mixnets. After the shuffle, all the ciphertexts will be decrypted. Hence, somewhere in the

outputs, there will be a value . In order to retrieve from , we can build up a

look-up table for all () value pairs in advance (e.g. even before the tally phase

starts). After the decryption, we search the table to retrieve the value , and the ranking

choice for this vote can be calculated using the value .

This method is superior to Tally Method 1 because the computational cost for the

shuffle and decryption phase has been reduced to the minimum: for each vote, there is

only one ciphertext to be shuffled and decrypted. However, the disadvantage is that we

need to build a look-up table in order to retrieve the plaintext. For an election with

candidates, the look-up table will contain different () values. So for elections

with small numbers of candidates (e.g. Victoria’s lower house election with around 7

candidates), to build such a look-up table is perfectly reasonable. But for elections with

large numbers of candidates, it will be infeasible to build such a look-up table. For

example, Victoria’s upper house election will have candidates, and the size of the

look-up table for 36 candidates is .

3.3 Tally Method 3

The third tally method can be considered as a trade-off between the above two methods.

It is specially designed for elections with large numbers of candidates. We use Victoria’s

upper house election as an example to demonstrate the idea (we assume there are 36

candidates).

Similar to the Tally Method 1, for a received vote as shown in the above table, we

first sort all its ciphertexts into a k-ciphertexts tuple which is ranked in the

canonical order. Now, start from the first ciphertext in the tuple, we treat every

ciphertexts as a group. Hence for the VEC election, if we set the size of the group ,

we can separate all 36 ciphertexts into groups. As follows, we treat each group

as ciphertexts ranked from 1 to .

The following processes will be similar as in the Tally Method 2. For each of the -

sizes group where , we will absorb all its

 ciphertexts into a single ciphertext using the homomorphic property as follows:

Hence, we have packed a -ciphertexts tuple into tuples of -ciphertexts each as

2 Note that in order to ensure the correctness of the election result, we need to ensure that is always smaller

than which is the order of . For 128-bit, 256-bit and 512-bit , we can handle at maximum 27, 47 and 81
candidates respectively.

At this moment, for each received vote, we input its many -ciphertexts tuples

into the mixnets. After the shuffle, all ciphertexts in the outputs are decrypted. Note that

after the decryption, somewhere in the outputs, we only obtain
and we still need one look-up table to retrieve their plaintexts { }.

This time, the size of the look-up table is

 which is much smaller than . In

our case, for and , the size of the table is
 .

We have shown a special case above that . In case if where
 , the above method still works. Now, we can group the ciphertexts into several -

sizes groups and the remaining ciphertexts are treated as a group. In such a case, we

build two look-up tables, one with size

 to look up the -sizes ciphertext

groups and the other with size

 to look up the -sizes ciphertext group.

Therefore, thanks to this tally method, we are able to handle elections with large

numbers of candidates. We can carefully choose the value (how many ciphertexts to be

absorbed into a single ciphertext) so that the size of the look-up table
 is reasonable.

Meanwhile, the shuffle and decryption phase is -times faster than the Tally Method 1.

4 Discussion

In the previous sections, we tried to clarify the fundamental design ideas in a simple

way, so some technical details and design decisions are left out. In this section, we

discuss some of these issues.

 Where are the onions stored? : In section 2, we mention that in the RHS, an

encrypted value, called an onion is associated with each candidate. This implies

that the onions are printed on the RHS. However, in order to achieve the proper

security level, the size of each onion will be around 1KB. Obviously, it will be

impractical to print 36KB data on the paper ballot. To solve this problem, we

suggest the onions are recorded on the WBB, and that they are linked to a

particular ballot using some unique serial number.

 Italian attack: There are two types of Italian attack. The first type works for

elections in which the voter can express her preference in a large number of

ways. Coercers can force a voter to cast her vote in a unique way that no one

else might use. Hence, if coercers find out that no one has cast a vote in this

way, the voter will be caught. The second type works for elections in which the

transfer history is revealed. Coercers can force a voter to rank an unpopular

candidate before a popular candidate. Hence if that unpopular candidate is

eliminated but there is no vote transfer to the popular candidate, the voter will be

caught. The tally methods in this scheme prevent neither type of Italian attack.

But this is a design decision to tradeoff security for the sake of efficiency. In the

literature, although some schemes (e.g. [TRN08, BMN09, XCH10]) are able to

solve the Italian attacks, their computational cost will prevent them from being

implemented in practice at the moment.

 Ballot validity proof: Generally speaking, in verifiable elections with

homomorphic tallying, every ballot should contain some validity proof which

proves that each ciphertext encodes one of the pre-defined values. Otherwise, a

faulty ballot could ruin the election result by introducing thousands of extra

votes. In our design, although the homomorphic property has been used in the

tally phase, it is only used within the ballot itself to encode the preferences but

not across different ballots. Hence the ballot validity proof is not required. Any

invalid ballot can only ruin itself: it could neither introduce extra votes nor ruin

the other ballots.

 Impact of the different tallying methods: In section 3, although we have

introduced three different tallying methods, the first two are just special cases of

the last method. The major difference lies in how many ciphertexts can be

absorbed into a single packing. Election authorities should choose this parameter

based on different circumstances, and the selection will only affect the

computational cost in the tallying phase rather than the security properties.

 Vote packing using small primes: There is an alternative method to pack the

ranking information using small primes [PABL04]. For example,

are small primes representing each of the candidates, and are their

rankings respectively. Then the vote can be packed as

 .

However, compared with the method we have introduced in the paper, this

method has two drawbacks. Firstly, when using small primes as counters, the

aggregated value will grow very quickly as the number of candidates increases.

If such value is larger than , it will be wrapped around by , and we still need a

look up table when retrieving the ranking choices. Moreover, this might cause

collision problem as well. Secondly, safe primes (primes of the form
) need to be used, so that small primes in can be selected as the counters.

However, this results in a much larger size of , which will make many

calculations much slower. With our method, primes of the form

where can be used to speed up ballot generation and tallying without

affecting security.

5 Security Properties

In this section we will briefly discuss how the modifications made to standard PaV

impact on the security properties normally associated with PaV. There are a number of

security properties that are important to an electronic voting scheme. They are:

• Integrity

• Privacy

• Receipt-freeness

• Coercion Resistance

• Verifiability

• Robustness

• Usability

The integrity and receipt-freeness properties of the proposed system are identical to that

of standard PaV. The manner in which the ballot form is filled out has changed, but not

the underlying casting process or receipt construction. Likewise the verifiability

properties are transferable, provided that the voter performs the necessary checks;

namely checking the overprinting and the digital signature. It could be argued that this is

a harder task with the proposed system, given the quantity of information that needs

checking. However, the system does make it is easier to correctly complete the complex

ballot form. The complexity of checking is a consequence of the complexity of the

election, not the underlying system. Whilst the area of usability has improved in one

sense, the filling out of the ballot, it may have suffered in how the overprinting approach

will work. This requires further analysis and trials to determine how easy and reliable it

is for the voter to perform.

The issue of robustness is constantly considered and has influenced the design, with

aspects like the WBB peered among different parties. The robustness of the system is

dependent on both the technology and the procedures surrounding it and is still being

refined. The issue of requiring a network connection throughout the election in order to

submit votes to the WBB and receive digital signatures back is a possible weakness.

Various fallback options are still being discussed and analysed to determine the best

compromise.

It is the privacy property that is most effected by the proposed changes. The system

now utilises an EBM that learns the vote. Strategies for mitigating this have been

included, for example enforcing that the EBM is offline and is wiped at the end of the

election. However, there is a new trust assumption here, that the EBM has been honestly

setup and has not been compromised in some way to record and transmit the votes.

The issue of coercion resistance is impacted by the changes in privacy. Coercion

resistance is far more complicated, since it also covers the perception of the voter. A

weakening in the privacy guarantees would likely reduce coercion resistance; such a

discussion is beyond the scope of this paper.

6 Conclusion

In this paper we have presented an end-to-end verifiable voting scheme, which would be

suitable for use in a Victorian state election. We have detailed the modifications we

would need to make to standard PaV in order to comply with the requirements of scale,

usability and legislation. In trying to move from theory to practice, modifications and

compromises are a necessity. The challenge is choosing the right compromises and being

able to adequately justify them. Whilst some of these modifications are specific to the

state of Victoria, for example above-the-line and below-the-line voting, the process we

have undertaken is transferable to alternative scenarios.

Acknowledgement

This work has been partially funded by the UK Engineering and Physical Sciences

Research Council (EPSRC) under project 'TVS: Trustworthy Voting Systems'

(EP/G025797/1) and the Luxembourg National Research Fund (FNR) under project

SeRTVS-C09/IS/06.

Bibliography

[BMN09] Josh Benaloh, Tal Moran, Lee Naish, Kim Ramchen, and Vanessa Teague. Shuffle-

Sum: coercion-resistant verifiable tallying for STV voting. IEEE Transactions on

Information Forensics and Security, 4(4), 2009.

[CBH11] Chris Culnane, David Bismark, James Heather, Steve Schneider, and Sriramkrishnan

Srinivasan. Authentication codes. Proceedings of the 6th USENIX/ACCURATE Electronic

Voting Technology Workshop (EVT’11), 2011. San Francisco, CA.

[CCC08] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc,

Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, and Alan T. Sherman. Scantegrity II: end-

to-end verifiability for optical scan election systems using invisible ink confirmation codes.

Proceedings of the 3rd USENIX/ACCURATE Electronic Voting Technology Workshop

(EVT’08), 2008. San Jose, CA.

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: toward a secure

voting system. 2008 IEEE Symposium on Security and Privacy, 2008.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-verifiable

election scheme. Proceedings of the 10th European Symposium on Research in Computer

Science (ESORICS’05), pages 118–139, 2005. LNCS 3679.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on IT, 31(4):467–472, 1985.

[FS01] Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. Advances in

CRYPTO’01, pages 368–387, 2001. LNCS 2139.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. Proceedings

of the 8th ACM Conference on Computer and Communications Security (CSS’01), pages

116–125, 2001.

[PABL04] Kun Peng, Riza Aditya, Colin Boyd, and Byoungcheon Lee. Multiplicative

homomorphic e-voting. In Advances in Cryptology - Indocrypt 04, pages 61–72, 2004.

LNCS 3348.

[Rya04] Peter Y. A. Ryan. A Variant of the Chaum voter-verifiable scheme. Technical Report of

University of Newcastle, CS-TR:864, 2004.

[Rya11] Peter Y. A. Ryan. Prêt à Voter with confirmation codes. Proceedings of the 6th

USENIX/ACCURATE Electronic Voting Technology Workshop (EVT’11), 2011. San

Francisco, CA.

[TRN08] Vanessa Teague, Kim Ramchen, and Lee Naish. Coercion-resistant tallying for STV

voting. Proceedings of the 3rd USENIX/ACCURATE Electronic Voting Technology

Workshop (EVT’08), 2008. San Jose, CA.

[Wik10] Douglas Wikström. Verificatum, 2010. http://www.verificatum.org/verificatum/.

[XCH10] Zhe Xia, Chris Culnane, James Heather, Hugo Jonker, Peter Y. A. Ryan, Steve

Schneider, and Sriramkrishnan Srinivasan. Versatile Prêt à Voter: Handling multiple

election methods with a unified interface. In Indocrypt: 11th International Conference on

Cryptology in India, 2010. LNCS.

