
Selection of Regression System Tests for Security Policy
Evolution

JeeHyun Hwang1 Tao Xie1 Donia El Kateb2 Tejeddine Mouelhi3 Yves Le Traon3

1Department of Computer Science, North Carolina State University, Raleigh, USA
2Laboratory of Advanced Software SYstems (LASSY), University of Luxembourg, Luxembourg
3Security, Reliability and Trust Interdisciplinary Research Center, SnT, University of Luxembourg

jhwang4@ncsu.edu xie@csc.ncsu.edu {donia.elkateb,tejeddine.mouelhi,yves.letraon}@uni.lu

ABSTRACT
As security requirements of software often change, developers may
modify security policies such as access control policies (policies in
short) according to evolving requirements. To increase confidence
that the modification of policies is correct, developers conduct re-
gression testing. However, rerunning all of existing system test
cases could be costly and time-consuming. To address this issue,
we develop a regression-test-selection approach, which selects ev-
ery system test case that may reveal regression faults caused by
policy changes. Our evaluation results show that our test-selection
techniques reduce a significant number of system test cases effi-
ciently.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms
Theory

Keywords
Access Control Policy; Regression Testing; Test Selection

1. INTRODUCTION
Access control is one of the privacy and security mechanisms for

granting only legitimate users with access to critical information.
Access control is governed by access control policies (policies in
short), each of which includes a sequence of rules to specify which
subjects are permitted or denied to access which resources under
which conditions. To facilitate specifying policies, system devel-
opers often use policy specification languages such as XACML [1],
which helps specify and enforce policies separated from actual func-
tionality (i.e., business logic) of a system.

With the change of security requirements, developers may mod-
ify policies to comply with requirements. After the modification,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

it is important to validate and verify program code and policies to-
gether to determine that this modification is correct and does not
introduce unexpected behaviors of a given system (i.e., regression
faults). Consider that the system changes its original policyP with
a modified policyP ′. Due to this modification, the system may
reveal different system behaviors, which are “dangerous” portions.
Different system behaviors are caused by different policy behaviors
(i.e., given a request, its evaluated decisions againstP andP ′, re-
spectively, are different). In order to validate the “dangerous” por-
tions efficiently, the developers select and execute only test cases
(from existing test cases) that exercise the dangerous portions.

To exercise the dangerous portions with existing test cases, a
naive regression testing strategy is to rerun all existing non-redundant
system test cases. However, rerunning these test cases could be
costly and time-consuming, especially for large-scale systems. In-
stead of this strategy, developers often adopt test selection before
execution of test cases. This regression-test selection selects and
executes only test cases to expose different behaviors across differ-
ent versions of the system. This regression-test selection may re-
quire substantial cost to select and execute such system test cases.
In theory, if the cost of regression-test selection is smaller than
rerunning all of initial system test cases, regression-test selection
helps reduce overall cost in validating whether the modification is
correct.

In addition to cost-effectiveness, safeness is important as well.
An approach of safe regression-test selection selects every test case
that may reveal a fault in a modified program [6]. In contrast, an
unsafe approach of regression-test selection may omit test cases
that reveal a fault in the modified program.

In this paper, we propose a safe approach of regression-test se-
lection to select superset of the set of test cases (i.e., fault-revealing
test cases) that reveal faults due to the policy modification. To the
best of our knowledge, our paper is the first one for test selection
in the context of policy evolution. Different from prior research
work on test selection [2, 4, 6] that deals with changes in program
code, our work deals with code-related components such as poli-
cies, which impact behaviors of the program code.

We have developed an automated approach for three regression-
test selection techniques: the one based mutation analysis, the one
based on coverage analysis, and the most efficient one based on
recorded request evaluation. The first two techniques are based on
correlation between test cases and rulesRimp impacted by policy
changes.Rimp are rules revealing different policy behaviors due to
policy changes.

More specifically, given a ruleri in P , the first technique first
creates its mutantM(ri) by changing decision of the rule. On ex-
ecuting test cases on program code interacting withP andM(ri),
respectively, this technique collects test cases that reveal different

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31203327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: XACML policy evaluation process in a policy-based
software system

Figure 2: An example policy specified in XACML

policy behaviors. Our rationale is that, if a test case is correlated
with ri, the test case should reveal different policy behaviors in-
duced by policy changes. However, this technique is costly because
this technique requires at least 2×n execution of test cases to find
all correlation between test cases and rules wheren is the number
of rules inP .

The second technique uses coverage analysis to find correlation.
While executing test cases, this technique correlate rules, which
can be evaluated (i.e., covered) by test cases. Compared with the
first technique, this technique significantly reduces cost during cor-
relation process because it requires test case execution at once.

The third one first captures requests issued from program code
while executing test cases. This technique evaluates these requests
againstP andP ′, respectively. Among the requests, This technique
selects only requestsRo that reveal different policy behaviors and
findRo’s corresponding test cases.

2. BACKGROUND
Our approach is based on policy-based software systems regu-

lated by policies specified in XACML [1]. XACML has become the
de facto standard for specifying policies. Typically, XACML poli-
cies are specified separately from actual functionality (i.e., business
logic) in program code. Figure 1 illustrates XACML policy eval-
uation process. At an abstract level, program code interacts with
policies as follows. Program code includes security checks, called
Policy Enforcement Points (PEPs), to check whether a given sub-
ject can have access on protected information. The PEPs formulate
and send an access request to a security component, called Policy
Decision Point (PDP) loaded with policies. The PDP next evaluates
the request against the policies and determines whether the request
should be permitted or denied. Finally, the PDP sends the decision
back to the PEPs to proceed.

An XACML policy consists of apolicy set, which consists of
policy setsandpolicies. A policy consists of a sequence ofrules,
each of which specifies under what conditionsC subjectS is al-
lowed or denied to perform actionA (e.g., read) on certain object
(i.e., resources)O in a system.

Figure 3: An example mutant policy by changingR1’s rule de-
cision (i.e., effect)

More than one rule in a policy may be applicable to a given
request. Thecombining algorithmis used to combine multiple
decisions into a single decision. There are four standard com-
bining algorithms. Thedeny-overrides algorithmreturnsDeny if
any rule evaluation returnsDeny or no rule is applicable. The
permit-overrides algorithmreturnsPermit if any rule evaluation
returnsPermit. Otherwise, the algorithm returnsDeny. Thefirst-
applicable algorithmreturns whatever the evaluation of the first
applicable rule returns. Theonly-one-applicablealgorithm returns
the decision of the only applicable rule if there is only one applica-
ble rule, and returns error otherwise.

Figure 2 shows a policy specified in XACML. A policy may have
more than one XACML rule. Due to space limitation, we describe
only one rule in the example policy. Note that we simplified XML
formats to reduce space for this example. Lines 3-12 describe a
rule thatborrower is permitted toborroweractivity (e.g., bor-
rowing books)book in working days.

3. APPROACH
As manual selection of test cases for regression testing is tedious

and error-prone, we have developed three techniques to automate
selection of test cases for security policy evolution. Consider that a
program code interacts with a PDP loaded with a policyP . LetP ′

denoteP ’s modified policy. For regression-test selection, our gale
is to selectT ′

⊆ T whereT is an existing test suite andT ′ reveals
different policy behaviors forP andP ′.

3.1 Test Selection based on Mutation Analysis
Our first technique first establishes correlation (i.e., rule-test cor-

relation) between rules and test cases based on mutation analysis
before regression-test selection.

Correlation between rules and test cases.This step establishes
correlation that which rule inP are related with test casest ∈ T .
For each ruleri in P , we create its rule-decision-change (RDC)
mutantM(ri) by changing decision (e.g., Permit to Deny) ofri.
Figure 3 illustrates an example mutant by changing decision of the
first rule in Figure 2. The technique next executesT on program
for P andM(ri), respectively, and monitors evaluated decisions. If
the two decisions are different while executingt ∈ T , the technique
establishes correlation betweenri andt.

Regression-Test selection.This step first analyzes syntactic dif-
ference betweenP andP ′ (i.e., which rules are changed due to the
policy changes). Once these rules (which are reflected by syntactic
difference) are identified, our technique selects the subset of test
cases which are correlated with the changed rules.

The drawback is that this technique requires correlation step,
which could be costly in terms of execution time. This technique
executesT for 2×n times wheren is the number of rules inP .
Moreover, if a policy is modified, correlation step should be done

again for changed rules. As this regression-test selection is based
on syntactic differences, this technique may select rules that may
not result in actual policy behavior changes (i.e., semantic policy
changes) due to various reasons such as a newly added rule is over-
written by existing rules.

3.2 Test Selection based on Coverage Analysis
To reduce cost of correlation step in the preceding technique, our

second technique correlate only rules, which can be evaluated (i.e.,
covered) by test cases.

Correlation between rules and test cases.Our technique ex-
ecutes test casesT on program that interacts withP and moni-
tors which ruleri is evaluated with requests issued from test cases
t ∈ T . Our technique establishes correlation betweenri andt ∈ T .

Regression-Test selection.We use the same regression-test se-
lection step in the preceding technique

An important benefit of this technique is to reduce cost in terms
of execution time. This technique requires executingT only once.
Similar to the preceding technique, this technique find the changed
rules based on syntactic differences betweenP andP ′, which may
not result in actual policy behavior changes as well.

3.3 Test Selection based on Recorded Request
Evaluation

To reduce such correlation efforts in the preceding techniques,
we develop a technique, which does not require correlation between
test cases and rules. The third technique executes test casesT on
a program forP . Our technique captures and records requests is-
sued from test casesT . For test selection, our technique evaluates
all recorded requests againstP andP ′. Our technique selects test
casest ∈ T that issue requests that engender different decisions for
P andP ′.

This technique requires the execution ofT only once. Moreover,
different from the two preceding techniques, this technique does
not require the availability of policies in practice. It is useful espe-
cially when polices are not available, but only evaluated decisions
are available. As different decisions are reflected by actual policy
behaviors changes (i.e, semantic changes) betweenP andPm, this
technique can select only test cases precisely.

3.4 Safe Test-Selection Techniques

4. EXPERIMENTS
We conducted to evaluate our proposed techniques of regression-

test selection. We carried out our evaluation on a PC, running Win-
dows 7 with Intel Core i5, 2410 Mhz processor, and 4 GB of RAM.
We collected three Java programs [5] each interacting with policies
written in XACML. Library Management System (LMS) provides
web services to borrow/return/manage books in a library. Virtual
Meeting System (VMS) provides web conference services to orga-
nize online meetings. Auction Sale Management System (ASMS)
provides web services to manage online auction. These three sub-
jects include 29, 10, and 91 security test cases, which target at test-
ing of security checks and policies. The test cases cover 100%,
12%, and 83% of 42, 106, and 129 rules in policies inLMS,VMS,
ASMS, respectively.

Instrumentation. We implemented regression simulator, which
injects any number of policy changes based on predefined three re-
gression types.RMR (Rule Removal) removes a randomly selected
rule. RDC (Rule Decision Change) changes the decision of a ran-
domly selected rule.RA (Rule Addition) adds a new rule consisting
of random attributes collected fromP in a random place. Combi-
nation of the three regression types can incur any policy changes.

For experiments, the regression simulator injects 5, 10, 15, 20,
and 25 policy changes, respectively. Our experiments are repeated
12 times to avoid the impact of randomness of policy changes.
We measure effectiveness and efficiency of our three techniques
by measuring the number of selected test cases and elapsed time
during test selection process, respectively.

Research questions. We intend to address the following re-
search questions:

• RQ1: How high percentage of test cases (from an existing
test suite) is reduced by our test-selection techniques? This
question helps to show that our techniques can reduce the
cost of regression testing.

• RQ2: How many selected test cases can reveal regression
faults? This question helps to show that our techniques can
detect regression faults.

• RQ3: How much time do our techniques take to conduct test
selection by given subjects? This question helps to compare
performance of our techniques by measuring their efficiency.

Results.To answerRQ1, we measure test reduction percentage
(%TR), which is the number of selected test cases divided by the
number of existing security test cases. Table 1 shows the number
of selected test cases on average for each technique.. “Regression
- m” denotes a group of modified policies wherem denotes the
number of policy changes onP . “#SM ”, “#SC ”, and “#SR” de-
note the number of selected test cases on average by our three tech-
niques, test selection based on mutation analysis (TSM), test selec-
tion based on coverage analysis (TSC), and test selection based on
recorded request evaluation (TSR), respectively. We observe that
TSR selected less number of test cases than other two techniques.
The reason is because, whileTSM andTSC select test cases im-
pacted by syntactic policy changes,TSR select test cases impacted
by semantic policy changes. As illustrated in Section 3, syntactic
policy changes do not always incur semantic policy changes (e.g.,
a newly added rule is overwritten by existing rules).

Figure 4 shows the results of test reduction percentage for the
policies modified from our three subjects. LMS1 (LMS2), VMS1
(VMS2), and ASMS1 (ASMS2) show test reduction percentages
for modified policies on our three subjects, respectively, using TSM

and TSC (TSR). We observe that our techniques achieve 42%∼97%
of test reduction for a modified policy with 5∼25 policy changes.
Such test reduction may reduce a significant cost in terms of test
execution time for regression testing.

To answerRQ2, we show that our selected test cases detect re-
gression faults. Detection of regression faults is dependent on the
quality of test oracles in test cases. We observe that test cases is
our subjects include strong test oracles. Given requestsrs issued
from test cases, the test oracles checks thatrs’s evaluated decisions
are consistent with expected evaluated decisions. Due to the strong
test oracles, when policy changes introduce actual different policy
behaviors (reflected by semantic policy changes), our selected test
cases by TSR fail for testing. For our subjects, all of test cases
selected by TSR detect regression faults.

To answerRQ3, we measure elapsed time. The goal of this re-
search question is to compare efficiency of our three test-selection
techniques. Table 2 shows the evaluation results for the three sub-
jects and each technique. For TSM and TSC , the result shows the
elapsed time of correlation (“Cor”) and test selection (“Se;”), re-
spectively. For TSR, the table shows the elapsed time of request
recording (“Col”), and test selection (“Sel”). We observe that cor-
relation e1 of TSC takes significantly more time than thate2 of
TSM . e1 ande2 take 11,714 milliseconds and 69505 milliseconds
on average, respectively. The reason is because TSC executes the

Table 1: The number of selected test cases on average for each policy group by each technique

Subject
Regression - 5 Regression - 10 Regression - 15 Regression - 20 Regression - 25

#SM #SC #SR #SM #SC #SR #SM #SC #SR #SM #SC #SR #SM #SC #SR

LMS 4.7 4.7 4.5 11.0 11.0 9.5 12.9 12.9 10.2 14.8 14.8 13.8 16.8 16.8 14.6
VMS 0.1 0.1 0.1 0.4 0.4 0.2 1.2 1.2 0.8 1.6 1.6 1.2 1.8 1.8 1.1
ASMS 6.6 6.6 5.9 10.9 10.9 10.0 16.4 16.4 14.8 21.3 21.3 19.3 22.4 22.4 17.2

Average 3.8 3.8 3.5 7.4 7.4 6.6 10.2 10.2 8.6 12.6 12.6 11.4 13.7 13.7 11.0

0

20

40

60

80

100

1 2 3 4 5

LMS1 VMS1 ASMS1 LMS2 VMS2 ASMS2

Figure 4: LMS1 (LMS2), VMS1 (VMS2), and ASMS1
(ASMS2) shows test reduction percentages for modified poli-
cies on our three subjects, respectively, using TSM and TSC

(TSR). Y axis denotes the percentage of test reduction. X axis
denotes the number of policy changes on our subjects.

Table 2: Elapsed time (millisecond) for each test-selection tech-
nique, and each policy

Subject
TSM TSC TSR

Cor Sel Cor Sel Col Sel

LMS 70,496 4 5,214 4 2,096 2
VMS 19,771 1 7,506 1 1,873 2
ASMS 118,248 11 22,423 11 1,064 21

Average 69,505 5 11,714 5 1,678 8

existing test cases only once butTR2 executes the existing test
cases for 2×n times wheren is the number of rules in a policy un-
der test. For total elapsed time for each technique, we observe that
the total elapsed time of TSR is 43 and 8 times faster than those of
TSM and TSC , respectively.

Threats to Validity. The threats to external validity primarily
include the degree to which the subject programs, the policies and
regression model are representative of true practice. These threats
could be reduced by further experimentation on a wider type of
policy-based software systems and larger number of policies. The
threats to internal validity are instrumentation effects that can bias
our results such as faults in PDP, and faults in our implementation.

5. RELATED WORK
Various techniques have been proposed on regression testing of

software programs in software engineering and programming lan-
guage communities [2,4,6,7]. These techniques aim to select every
test case to reveal different behaviors correctly after modification
in program or augment test cases. These techniques are related to
regression test selection [6], [4], test-suite prioritization [2], and
test-suite augmentation [7]. Note that these techniques focus on
changes at code level. None of these techniques consider poten-
tial changes that can arise from code-related components (such as
a policy that interacts with application code). Polices and general

programs are fundamentally different in terms of structures, seman-
tics, and functionalities, etc. Therefore, techniques for regression
testing of general programs are not suitable for addressing the test
selection problem for policy evolution. Our work is the first one
for automatic test-selection approach in the context of policy evo-
lution.

Another work closest to ours is Fisler et al.’s work [3]. They de-
veloped a tool called “Margrave” that enables verifying properties
against policies written in XACML and conducts change impact
analysis. Margrave supports for detecting changed policy behav-
iors between two XACML policies. However, Margrave supports
for limited functionality of XACML and does not handle with situ-
ations where program behaviors are changed by policy changes as
our work focuses on.

6. CONCLUSION
We believe that our approach could be practical and effective to

select test cases for policy-based software systems interacting not
only XACML policies but also policies specified by other policy
specification languages (e.g., EPAL). We make two key contribu-
tions in this paper. First, we proposed three test selection tech-
niques for access control policy evolution. To the best of our knowl-
edge, our paper is the first one for automatic test-selection approach
in the context of policy evolution. Second we conduct an evaluation
to measure the effectiveness of our approach and the efficiency of
our three test-selection techniques. The evaluation results demon-
strated that our approach is effective and efficient to select test cases
for policy evolution.

7. REFERENCES
[1] OASIS eXtensible Access Control Markup Language (XACML).

http://www.oasis-open.org/committees/xacml/, 2005.
[2] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test cases for

regression testing. InProc. 2000 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), pages 102–112, 2000.

[3] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification
and change-impact analysis of access-control policies. InProc. 27th
International Conference on Software Engineering (ICSE), pages 196–205,
2005.

[4] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An
empirical study of regression test selection techniques.ACM Trans. Softw. Eng.
Methodol., pages 184–208, 2001.

[5] T. Mouelhi, Y. Le Traon, and B. Baudry. Transforming and selecting functional
test cases for security policy testing. InProc. 2nd International Conference on
Software Testing, Verification, and Validation (ICST 2009), 2009.

[6] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques.
IEEE Trans. Softw. Eng., 22:529–551, August 1996.

[7] R. A. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.
Harrold. Test-suite augmentation for evolving software. InProc. IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages
218–227, 2008.

