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Abstract. Model-Driven Security (Mds) is a specialized Model-Driven
Engineering (Mde) approach for supporting the development of secure
systems. Model-Driven Security aims at improving the productivity of
the development process and quality of the resulting secure systems,
with models as the main artifact. Among the variety of models that
have been studied in a Model-Driven Security perspective, one can men-
tion access control models that specify the access rights. So far, these
models mainly focus on static definitions of access control policies, with-
out taking into account the more complex, but essential, delegation of
rights mechanism. Delegation is a meta-level mechanism for administrat-
ing access rights, which allows a user without any specific administrative
privileges to delegate his/her access rights to another user. This paper
gives a formalization of access control and delegation mechanisms, and
analyses the main hard-points for introducing various advanced delega-
tion semantics in Model-Driven Security. Then, we propose a modular
model-driven framework for 1) specifying access control, delegation and
the business logic as separate concerns; 2) dynamically enforcing/weav-
ing access control policies with various delegation features into security-
critical systems; and 3) providing a flexibly dynamic adaptation strategy.
We demonstrate the feasibility and effectiveness of our proposed solution
through the proof-of-concept implementations of different component-
based systems running on different adaptive execution platforms, i.e.
OSGi and Kevoree.

Keywords: Model-driven security, model-driven engineering, MDE, model com-
position, delegation, access control, dynamic adaptation, OSGi, Kevoree

1 Introduction

Software security is a polymorphic concept that encompasses different viewpoints
(hacker, security officer, end-user) and raises complex management issues when
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considering the ever increasing complexity and dynamism of modern software.
In this perspective, designing, implementing, and testing software for security
is a hard task, especially because security is dynamic, meaning that a security
policy can be updated at any time and that it must be kept aligned with the
software evolution. As one of the key concerns in software security, managing
access control to critical resources requires the dynamic enforcement of access
control policies. Access control policies stipulate actors access rights to internal
resources and ensure that users can only access the resources they are allowed
to in a given context. A sound methodology supporting such security-critical
systems development is extremely necessary because access control mechanisms
cannot be “blindly” inserted into a system, but the overall system development
must take access control aspects into account. Critical resources could be ac-
cessible to wrong (or even malicious) users just because of a small error in the
specification or in the implementation of the access control policy.

Several design approaches like [24] [4] have been proposed to enable the en-
forcement of classical security models, such as Role-Based Access Control (Rbac)
[12] [32]. These approaches bridge the gap from the high-level definition of an
access control policy to its enforcement in the running software, automating the
dynamic deployment of a given access control policy. Although such a bridge is
a prerequisite for the dynamic administration of a given access control policy, it
is not sufficient to offer the advanced administration instruments that are nec-
essary to efficiently manage access control. In particular, delegation of rights is
a complex dimension of access control that has not yet been addressed by the
adaptive access control mechanisms. User delegation is necessary for assigning
permissions from one user to another user. An expressive design of access control
must extensively take into account delegation requirements.

Delegation models based on Rbac management have been characterized as
secure, flexible and efficient access management for resource sharing, especially
in a distributed environment. Flexible means that different subjects for delega-
tion should be supported, i.e. delegation of roles, specific permissions or obliga-
tions. Also, different features of delegation should be supported, like temporary
and recurrent delegation, transfer of role or permissions, delegation to multiple
users, multi-step delegation, revocation, etc. However, the addition of flexibility
for delegation must come with mechanisms to make sure that the security policy
of the system is securely consistent. And last but not least, the administration
of delegations must remain simple to be efficient. Thus, delegation is a com-
plex problem to solve and to our best knowledge, there has been no complete
approach for both specifying and dynamically enforcing access control policies
by taking into account various features of delegation. Having such an expres-
sive security model is crucial in order to simplify the administrative task and
to manage collaborative work securely, especially with the increase in shared
information and distributed systems.

Based on previous work [24], in this paper we propose a new Modular Model-
Driven Security solution to easily and separately specify 1) the business logic of
the system without any security concern using a Domain Specific Modeling Lan-
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guage (Dsml) for describing the architecture of a system in terms of components
and bindings; 2) the “traditional” access control policy using a Dsml based on
a Rbac-based metamodel; 3) an advanced delegation policy based on a Dsml
dedicated to delegation management. In this third Dsml, delegation can be seen
as a “meta-level” mechanism which impacts the existing access control policies
similarly as an aspect can impact a base program. The security enforcement is
enabled by leveraging automated model transformation/composition (from secu-
rity model to architecture model). Consequently, in addition to [24], an advanced
model composition is required to correctly handle the new delegation features.
In this paper, we claim that delegation needs to be clearly separated from ac-
cess control because a delegation policy impacts access control rules. Therefore,
delegation and access control are not at the same level and should be separated.
This separation involves an advanced model composition approach to dynami-
cally know, at any time, what is the set of new access controls that has to be
considered, i.e., the “normal” access control rules as well as the access control
rules modified by the delegation rules. From a more technical point of view,
the security enforcement is dynamically done via automated model transforma-
tion/composition (from security model to architecture model) and the dynamic
reconfiguration ability of modern adaptive execution platforms.

This paper is an extension of our earlier paper [28] which was presented at
the conference Modularity: AOSD’13. The remainder of this paper is organized
as follows. Section 2 presents the background on access control, delegation, and
the security-driven model-based dynamic adaptation. Formal definitions of our
access control model and formalisms of advanced delegation features are given
in detail. Section 3 describes a running example. It will be used throughout
the paper to show the diverse characteristics of delegation and illustrate the
various aspects of our approach. In Section 4, we first give an overview of our
approach. Then, we formalize our delegation mechanisms based on Rbac and
show how our delegation metamodel can be used to specify expressive access
control policies that take into account various features of delegation. Based on the
delegation metamodel, we describe our model transformation/composition rules
used for transforming and weaving security policy into an architecture model.
This section ends with a discussion of several strategies for dynamic adaptation
and evolution of security policy. Section 5 describes how our approach has been
applied and evaluated in the development of three different systems running on
two different adaptive execution platforms. Next, related work is presented in
Section 6. Finally, Section 7 concludes the paper and discusses future work.

2 Background

This section introduces the main concepts which are used in this paper. Firstly,
formal definitions of Access Control and Delegation policies are presented. Based
on these definitions, some key advanced delegation features are introduced for-
mally. We keep all the definitions here generic so that they can be mapped into
different security models like Role-Based Access Control (Rbac), Organization-
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Based Access Control (Orbac) [16], Discretionary Access Control (Dac) [19],
etc. These definitions also provide the basis for deriving mutation operators that
can be used for testing delegation policy enforcement [29]. Then, a brief summary
of previous work on dynamic security policy enforcement [24] is given.

2.1 Access Control

Access Control [14] is known as one of the most important security mechanisms.
It enables the regulation of user access to system resources by enforcing access
control policies. A policy defines a set of access control rules which expresses:
who has the right to access a given resource or not, and the way to access it, i.e.
which actions a user can access under which conditions or contexts.

Definition 1 (Access Control). Let U be a set of users, P be a set of per-
missions, and C be a set of contexts. An access control policy AC is defined as
a user-permission-context assignment relation: AC ⊆ U × P × C. A user u is
granted permission p in a given context c if and only if (u, p, c) ∈ AC.

Additional details about contexts are given in next Sub-Section 2.2.

2.2 Delegation

In the field of access control, delegation is a very complex but important aspect
that plays a key role in the administration mechanism [5]. A software system
which supports delegation, should allow its users without any specific adminis-
trative privileges to grant some authorizations. Delegation of rights allows a user,
called the delegator, to delegate his/her access rights to another user, called the
delegatee. By this delegation, the delegatee is allowed to perform the delegated
roles/permissions on behalf of the delegator [9]. The delegator has full respon-
sibility and accountability for the delegated accesses since he/she provides the
accesses to the resources to other users, who are not initially authorized by the
access control rules to access these resources.

A delegation policy can be considered as an administration-related security
policy that is built on top of an access control policy. It is composed of delegation
rules that can be specified at two levels: master-level and user-level. Basically, a
delegation policy is two-fold:

1. It specifies who has the right to delegate which permission (for accessing
to a given resource/action/subject) to whom, and in which context. We call this
kind of rule master-level delegation rule as such a rule is normally defined by
security officers. For example, a security officer can define a rule to specify that
the head of a department at a university can only delegate the permission of
updating personnel accounts to a professor.

Definition 2 (Master-Level Delegation Policy). Let U be a set of users,
P be a set of permissions, and C be a set of contexts. A master-level delegation
policy MLD is defined as a user-user-permission-context assignment relation:
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MLD ⊆ U×U×P ×C with the following meaning. A delegation of a permission
p from a user u1 to a user u2 in a given context c is allowed if and only if
(u1, u2, p, c) ∈MLD.

2. It specifies who delegates to whom which permission, and in which context.
We call this kind of rule user-level delegation rule as these rules are mostly
defined by normal users. Note that user-level delegation rules must conform
to master-level delegation rules. For example, Bill (the head of department)
delegates his permission of updating personnel accounts to Bob (a professor)
during his absence.

Definition 3 (User-Level Delegation Policy). Let U be a set of users, P be
a set of permissions, and C be a set of contexts. A user-level delegation policy
ULD is defined as a user-user-permission-context assignment relation: ULD ⊆
U × U × P × C with the following meaning. A user u2 has a permission p by
delegation from a user u1 in a given context c if and only if (u1, u2, p, c) ∈ ULD.
It can be seen that all the delegations in ULD conform to the rules defined in
the MLD. In other words, every delegation at the user-level can only be created
if it conforms to the delegation rules defined at the master-level.

Context A context is a condition or a combination of conditions in which
an access control/delegation rule is active, i.e. enforced in the running system.
Cuppens et al. discuss five different kinds of contexts in [10]. These kinds of
contexts include temporal context, spatial context, user-declared context, pre-
requisite context, and provisional context. Temporal delegation is delegation
within a time constraint, for example delegation is active for two days, or del-
egation is active for the time the delegator is on vacation. The spatial context
relies on the delegator/delegatee’s location, e.g. a delegated permission is only
active when the delegatee is at office. User-declared context is related to the
purpose of the delegator/delegatee, e.g. a delegator may state that his/her dele-
gatee cannot further delegate his/her permissions to someone else. Prerequisite
context allows delegation when some precondition is satisfied and the provisional
context depends on the previous actions that delegator/delegatee has performed
on the system. Moreover, it is possible for a security rule to have a complex con-
text, which is a composition of contexts. Our security model supports context
composition using conjunction &, disjunction ⊕, and negation .̄

Note that every access control rule and delegation rule defined in this paper
is always associated with a context c. By default, if not specified explicitly, a
context c is at least composed of a condition, called Default, i.e. always true.

2.3 Advanced Delegation Features

Delegation is a powerful and very useful way to augment access control policy
administration. On one hand, it allows users to temporarily modify the access
control policy by delegating access rights. By delegation, a delegatee can per-
form the delegated job, without requiring the intervention of the security officer.
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On the other hand, the delegator and/or some specific authorized users should
be supported to revoke the delegation either manually or automatically. In both
cases, the administrative task can be simplified and collaborative work can be
managed securely, especially with the increase in shared information and dis-
tributed systems [1]. However, the simpler the administrative task can be, the
more complex features of delegation have to be properly specified and enforced in
the software system. To the best of our knowledge, there is no approach for both
specifying and dynamically enforcing access control policies taking into account
all delegation features like temporary delegation, transfer delegation, multiple
delegation, multi-step delegation, etc.

In this section, we define the most well-known complex delegation features
and formally specify them w.r.t. the definitions of access control and delegation
policies. In the following definitions, we use pre, body, and post to respectively
specify the state of the policy before changing, the state while it is being changed
by the function (the delegation rule is being enforced), and the state after chang-
ing.

Monotonicity of Delegation Monotonicity of delegation refers to whether
or not the delegator can still use the permission while delegating it [9]. If the
delegator can still use the permission while delegating it, the delegation is called
grant delegation. Of course, the delegatee can use the permission while it is
delegated to him. This is monotonic because available authorizations (in the
set AC) are increased due to successful delegation operations. Again, note that
every delegation can only be performed if and only if it satisfies the master-level
delegation policy.

Definition 4 (Grant Delegation). grantDelegation(u1, u2, p, c) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) ∈MLD
body AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪ {(u1, u2, p, c)} end
post (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

Vice versa, if the delegator can not use the permission while delegating it, the
delegation is called transfer delegation. As such, this is non-monotonic because
available authorizations (in AC) are not increased due to successful delegation
operations.

Definition 5 (Transfer Delegation). transferDelegation(u1, u2, p, c) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) ∈MLD
body AC := AC \ {(u1, p, c)}; AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪
{(u1, u2, p, c)} end
post (u1, p, c) /∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

Temporary Delegation This is also a very common feature of delegation
needed by users. When revocation is handled automatically, the delegation is
called temporary. In this case, the delegator specifies the temporal conditions in
which this delegation applies: only at a given time, after or before a given time,
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or during a given time interval. The temporal conditions may correspond to a
day of the week, or to a time of the day, etc. If the temporal context is not used,
the delegation needs to be revoked manually.

Definition 6 (Temporary Delegation). Let c be a given context of a dele-
gation (either grant delegation or transfer delegation). A delegation is specified
as temporary if its context c is associated with a time constraint. The delegation
will only be active while the time constraint is satisfied.

For example, if the context is vacation period, a delegator Bill could have an
associated delegation rule with the following context:

c := c&vacation period(startDate, endDate)
where vacation period(startDate, endDate) : −
startDate ≤ endDate ∧ afterDate(startDate) ∧ beforeDate(endDate)

Here, afterDate(date) returns true iff date is equal or later than the current
date. Similarly, beforeDate(date) returns true iff date is equal or earlier than
the current date.

Multiple Delegation A permission can be delegated to more than a delegatee
at a given time. However, the number of times that a permission is concurrently
delegated have to be controlled. Multiple delegation refers to the maximum
number of times that a permission can be delegated at a given time.

Definition 7 (Multiple Delegation). Let Nm be the maximum number of
times that a permission can be concurrently delegated. Nm is predefined by the
security officer. The number of concurrent delegations in which the same role or
permission is delegated at a given time, in a given context can not exceed Nm.

We introduce a counting function to count the number of delegations of a
permission which is delegated by a delegator in a given context. The number
returned by this function is always updated according to the change in the
delegation policy, i.e. the number of delegation rules related to permission p.

countDelegation(u, p, c) := |{(u, v, p, c) | ∀v ∈ U : (u, v, p, c) ∈ ULD}|
If the number of concurrent delegations of the same permission at a given

time, in a given context has not exceeded Nm, then this permission is still allowed
to be delegated.

grantDelegation(u1, u2, p,
c&countDelegation(u1, p, c) < Nm) : − pre (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧
(u1, u2, p, c) ∈MLD ∧ countDelegation(u1, p, c) < Nm

body AC := AC ∪ {(u2, p, c)}; ULD := ULD ∪ {(u1, u2, p, c)} end
post (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

Multi-step Delegation This characteristic refers to the maximum number of
steps (Ns, normally specified by a security officer) that a permission p can be
re-delegated, counted from the first delegator of this permission. So if Ns = 0
that means the permission p can not be re-delegated anymore.
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Definition 8 (Multi-step Delegation). Let Ns ≥ 0 be the maximum number
of steps that a permission p can be re-delegated. A permission p can only be
delegated iff Ns > 0.

First, let us define a helper function that returns the number of times a
permission p is re-delegated in a given context c. stepCounter(u0, p, c) := Ns

where u0 is the first delegator of p in the delegation chain: u0 delegates p to ...
in a given context c; ... re-delegates p to u1 in context c; and u1 re-delegates p
to u2 in context c. Here, “...” is the users in the middle of the delegation chain,
u1 is the current last delegatee of this chain, and u2 is the next delegatee if
stepCounter(u1, p, c) ≥ 1.

If there exists a predefined maximum number of steps Ns for a permission p
as described above, the delegation is specified as following.

grantDelegation(u1, u2, p, c
&stepCounter(u1, p, c) ≥ 1) : −
pre (u1, p, c) ∈ AC∧(u2, p, c) /∈ AC∧(u1, u2, p, c) ∈MLD∧stepCounter(u1, p, c) ≥
1
body AC := AC∪{(u2, p, c)}; ULD := ULD∪{(u1, u2, p, c)}; stepCounter(u2, p, c) :=
stepCounter(u1, p, c)− 1 end
post (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD

Delegation Revocation Delegation supports a revocation feature in which a
delegation can be revoked and permissions are returned back to the original user.

Definition 9 (Delegation Revocation). Delegation revocation is the ability
for any delegation can be manually revoked by authorized users.

The revocation of a grant delegation means to deny access of the delegatee
to the delegated permission.

Definition 10. revokeGrantDelegation(u1, u2, p, c) : −
pre (u1, p, c) ∈ AC ∧ (u2, p, c) ∈ AC ∧ (u1, u2, p, c) ∈ ULD
body AC := AC \ {(u2, p, c)}; ULD := ULD \ {(u1, u2, p, c)} end
post (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) /∈ ULD

The permission to be revoked is deleted from the access rights of the delega-
tee. To revoke a transfer delegation, it is not only to deny access of the delegatee
to the delegated permission but also to re-grant access to the delegator who is
temporarily not having this access.

Definition 11. revokeTransferDelegation(u1, u2, p, c) : −
pre (u2, p, c) ∈ AC ∧ (u1, p, c) /∈ AC ∧ (u1, u2, p, c) ∈ ULD
body AC := AC\{(u2, p, c)}; AC := AC∪{(u1, p, c)}; ULD := ULD\{(u1, u2, p, c)}
end
post (u1, p, c) ∈ AC ∧ (u2, p, c) /∈ AC ∧ (u1, u2, p, c) /∈ ULD
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We have presented formal definitions of access control, delegation, and various
delegation features. These definitions are generic (at the conceptual level) so that
they can be mapped into different security models like Rbac, Orbac, Dac, etc.
Section 4 shows how these formal concepts can be implemented (based on Rbac)
using Mde techniques.

2.4 Security-Driven Model-Based Dynamic Adaptation

Figure 2: Implicit security mechanism

The second kind of hidden mechanisms is the explicit
mechanisms, which are implemented within some portions
of the application code that is not documented. Figure 3
shows an example of these explicit mechanisms:

1 public void borrowBook(Book b, User user) {
2 // visible mechanism , call to the security

policy service
3 SecurityPolicyService.check(user ,
4 SecurityModel.BORROW_METHOD ,Book.class ,

SecurityModel.DEFAULT_CONTEXT);
5
6 // do something else
7
8 // hidden mechanism
9 i f (getDayOfWeek().equals(‘‘Sunday ’’) ||

10 getDayOfWeek().equals(‘‘Saturday ’’)) {
11 // this is not authorized throw a business

exception
12 Throw new BusinessException(‘‘Not allowed to

borrow in week -ends’’);
13 }
14 }

Figure 3: Explicit security mechanism

In the body of the method, after the PEP call to the
PDP, a new check is done which forbids borrowing books
during week-ends. If the policy has to be modified to allow
borrowing books during week-ends, this hidden mechanism
should be located and deleted.

2.3 Discussion
Both the explicit and the implicit mechanisms reduce the

flexibility of the system. They are inevitable since they are
due to the way the standard architecture (PDP+PEP) is im-
plemented as illustrated through the examples. In fact, the
problem is not due to the architecture itself. It is caused
by the way applications are developed by separating the
process of implementing the security mechanism (the PDP
and the PEP) from the application logic implementation.
This application logic part should be implemented by tak-
ing into account the access control policy, so that this policy
is not hard-coded in the business logic. For these reasons,
we clearly need to take into account access control during
the modeling and more importantly the deployment of se-
cured systems. This is the main contribution of this work,
which involves providing a complete process that includes
access control throughout the modeling and the specially
deployment processes.

3. OVERVIEW
In commercial and government environments, any change

to the security policies normally requires impact assessments,
risk analysis and such changes should go through the RFC
(Request for Change) process. However, in case of urgency
(crisis events, intrusion detection, server crashes, interop-
erability with external systems to deal with a critical situ-
ation), the adaptation of a security policy at runtime is a
necessity. This adaptation may or may not have been al-
ready predicted or planned.

The proposed approach and the combination of composi-
tion and dynamic adaptation techniques shown in Figure 4
show how the security policy can be adapted conforming to
a defined adaptation plan or in an unplanned way. The secu-
rity adaptation mechanisms we propose deal with the chal-
lenging issue of how to provide running systems supporting
planned and unplanned security policy adaptations. The in-
puts of the process are two independent models: the business
architecture model of the system and the security model.
These two models are expressed in different domain-specific
modeling languages: the core business architecture with an
architecture modeling language (Section 4.2) and the secu-
rity policy with an access-control language (Section 4.1). By
dynamically composing the security model with the archi-
tecture model, the approach allows adapting the application
security policy according to pre-defined adaptation rules but
also to cope with any unplanned changes of the security
model.

Business

Architecture

Model

Security Enforced

Architecture Model

Security

Policy

Context

Information

Middleware platform

Running System Monitoring Framework

Adaptive

Security

Model

+
(2) Composition

The security policy is 
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business architecture

(1) Reasoning

depending on the context 
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from the security model

(3) Adaptation

The running system is 

safely and automatically 
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(4) Notification

The monitoring 

framework triggers 

reasoning by 

notifying relevant 

changes

(5) Evolution

At any time the 

security model can 

be updated

Models at runtime

Figure 4: Overview of the proposed approach

The adaptive security model contains a set of access con-
trol rules and a description of the context in which these
rules apply. At runtime, depending on the context infor-
mation coming from the system the appropriate set of rules
has to be chosen. This is the reasoning shown as (1) in
Figure 4. The reasoning phase processes the security model
based on the context information coming from the system to
produce the security policy to be enforced. Basically, when
some events are triggered, security rules can be activated or
deactivated. Once the appropriate security policy has been
defined, it has to be composed into the architecture model of
the application, see (2) in Figure 4. The models to compose
here are of different nature: an architecture model on one

Fig. 1. Overview of the Model-Driven Security Approach of [24]

In [24], the authors have proposed to leverage Mde techniques to provide a
very flexible approach for managing access control. The different steps of this
approach are summed up in Figure 1. On one hand, access control policies are
defined by security experts, using a Dsml, which describes the concepts of ac-
cess control, as well as their relationships. On the other hand, the application
is designed using another Dsml for describing the architecture of a system in
terms of components and bindings. This component-based software architecture
only contains the business components of the application, which encapsulate
the functionalities of the system, without any security concern. Then, the au-
thors define mappings between both Dsmls describing how security concepts
are mapped to architectural concepts. These mappings are used to fully gener-
ate an architecture that enforces the security rules. When the security policy
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is updated, the architecture is also updated. Finally, the proposed technique
leverages the notion of models@runtime [21] in order to keep the architectural
model (itself synchronized with the access control model) synchronized with the
running system. This way, the running system can be dynamically updated in
order to reflect changes in the security policy. Only users who have the right to
access a resource can actually access this resource.

3 A Running Example

In this section, we give a motivating example which will be used throughout the
paper for describing the diverse characteristics of delegation and illustrating the
various aspects of our approach.

Let us consider a Library Management System (Lms) providing library ser-
vices with security concerns like access control and delegation management.
There are two types of user account: personnel accounts (director, secretary,
administrator and librarian) are managed by an administrator; and borrower
accounts (lecturer and student) are managed by a secretary. The director of the
library has the same accesses as a secretary, but additionally, he can also con-
sult the personnel accounts. The librarian can consult the borrower accounts.
A secretary can add new books in the Lms when they are delivered. Lecturers
and students can borrow, reserve and return books, etc. In general, the library
is organized with the following entities and security rules.

Roles (users): access rights (e.g. working days)
Director (Bill): consult personnel account, consult, create, update, and delete
borrower account.
Secretary (Bob and Alice): consult, create, update, and delete borrower ac-
count, add book.
Administrator (Sam and Tom): consult, create, update, and delete personnel
account.
Librarian (Jane and John): consult borrower account, find book by state, find
book by keyword, report a book damaged, report a book repaired, fix a book.
Lecturer (Paul) and Student (Mary): find book by keyword, reserve, borrow
and return book.

Resources and actions to be protected
Personnel Account: consult, create, update, and delete personnel account.
Borrower Account: consult, create, update, and delete borrower account.
Book: report a book damaged, report a book repaired, borrow a book, deliver
a book, find book by keyword, find book by state, fix a book, reserve a book,
return a book

In this organization, users may need to delegate some of their authorities
to other users. For instance, the director may need the help of a secretary to
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replace him during his absence. A librarian may delegate his/her authorities to
an administrator during a maintenance day.

It is possible to only specify role or action delegations by using the Dsml
described in [24]. For instance, a role delegation rule can be created to specify
that Bill, the director (prior to his vacation) delegates his role to Bob, one of
his secretaries. But it is impossible for Bill to define whether or not Bob can
re-delegate the director role to someone else (in case Bob is also absent for some
reason). The role delegation of Bill to Bob is also handled manually: it is enforced
when Bill creates the delegation rule and only revoked when Bill deletes this
rule. There is no way for Bill to define a temporary delegation where its active
duration is automatically handled. Obviously the Dsml described in [24] is not
expressive enough to specify complex characteristics of delegation.

There are many delegation situations that should be supported by the sys-
tem. We give some delegation situations of the LMS as follows:
1. The director (Bill) delegates his role to a secretary (Bob) during his vaca-
tion (the delegation is automatically activated at the start of his vacation and
revoked at the end of his vacation).
2. A secretary (Alice) delegates her task/action of create borrower account to a
librarian (Jane).
3. A secretary (Bob) transfers his role to an administrator (Sam) during main-
tenance day. In case of a transfer delegation, the delegator temporarily loses
his/her rights during the time of delegation.
4. The role administrator is not delegable.
5. The permission of deleting borrower account is not delegable.
6. The director can delegate, on behalf of a secretary, the secretary’s role (or
some his/her permitted actions) to a librarian (e.g. during the secretary’s ab-
sence).
7. If a librarian empowered in role secretary by delegation is no longer able to
perform this task, then he/she can delegate, again, this role to another librarian.
8. The secretary empowered in role director by delegation is not allowed to del-
egate/transfer, again, this role to another secretary.
9. A secretary is allowed to delegate his/her role to a librarian only and to one
librarian at a given time.
10. A secretary is allowed to delegate his/her task of book delivery to a librarian
only and scheduled on every Monday.
11. Bill can delegate his role and permitted actions only to Bob
12. Bob is not allowed to delegate his role.
13. Alice is not allowed to delegate her permitted action of book delivery.
14. Users can always revoke their own delegations.
15. The director can revoke users from their delegated roles.
16. A secretary can revoke librarians empowered in secretary role by delegation,
even if he/she is not the creator of this delegation (e.g. the creator is the director
or another librarian).

This running example shows the two levels of delegation rules as defined in
the previous section: user-level (rules defined by a user: e.g. situations 1, 2, 3) and
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master-level (rules defined by a security officer: e.g. 4, 5, 6). Obviously, delegation
rules at user-level have to conform to rules at master-level. For example, the
security officer can define that users of role director are able to delegate on
behalf of users of role secretary. Then at user-level, Bill (director) can create
a delegation rule to delegate, on behalf of Alice, her role (secretary) to Jane
(librarian).

4 Model-Driven Adaptive Delegation

4.1 Overview of Our Approach
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Fig. 2. Delegation impacting Access Control

In our approach, as noted in Section 2, delegation is considered as a “meta-
level” mechanism which impacts the existing access control policies, like an as-
pect can impact a base program. We claim that to handle advanced delegation
rules, an ideal solution is to logically separate the delegation rules from the access
control policy, each being specified in isolation, and then compose/weave them
together to obtain a new access control policy (called active security policy)
reflecting the delegation-driven policy (Figure 2). We present our metamodel
(Dsml) for specifying delegation based on Rbac in Section 4.2.
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Fig. 3. Overview of our approach

The separation of concerns is not only between delegation and access con-
trol, but also between the security policy and the business logic of the system.
Figure 3 presents a wider view of the overall approach. In order to enforce a secu-
rity policy for the system, the core business architecture model of the system is
composed with the active security policy previously obtained. The architecture
model is expressed in another Dsml, called architecture metamodel (an architec-
ture modeling language described in [24]). The idea is to reflect security policy
into the system at the architecture level. Section 4.3 defines transformation rules
to show how security concepts are mapped into architectural concepts.

The security-enforced architecture model obtained above is a pure architec-
ture model which by itself reflects how the security policy is enforced in the sys-
tem. Our model-driven framework to reflect security policy at the architecture
model is generic, meaning that from the security-enforced architecture model
of the system, it is possible to enforce security policy for running systems on
different execution platforms. In Section 5, we show how our approach is applied
for two different adaptive execution platforms, i.e. OSGi [33] and Kevoree [13]
1. It is important to note that the security-enforced architecture model is not
used for generating the whole system but only the proxy components. These
proxy components can be adapted and integrated with the running system at
runtime to physically enforce the security policy. The adaptation and integra-

1 www.kevoree.org, last access October 2013
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tion can be done by leveraging the runtime adaptation mechanisms provided
by modern adaptive execution middleware platforms. The approach of possibly
generating proxy components overcomes some main limitations of [24]. Section
4.4 is dedicated to discuss our strategy for adaptation and evolution of the secure
systems.

4.2 Delegation Metamodel

Our metamodel, displayed in Figure 4, defines the conceptual elements and their
relationships that can be used to specify access control and delegation policies
which are defined in Section 2. Because the delegation mechanism is based on
Rbac, we first explain the main conceptual elements of role-based access control.
Then, we show how our conceptual elements of delegation, based on the Rbac
conceptual elements, can be used to specify various delegation features which
are defined in Section 2.

Fig. 4. The Delegation metamodel

As shown in Figure 4, the root element of our metamodel is the Policy. It
contains Users, Roles, Resources, Rules, and Contexts. Each user has one role.
A security officer can specify all the roles in the system, e.g. admin, director,
etc., via the Role element. In order to specify an access control policy, the secu-
rity officer should have defined in advance the resources that must be protected
from unauthorized access. Each resource contains some actions which are only
accessible to authorized users. These protections are defined in rules: permission
rules and delegation rules. Permission rules are used to specify which actions are
accessible to users based on their roles. That means, without delegation rules or
user-specific access control rules, every user is able to access the actions associ-
ated with his/her role only. Delegation rules are used to specify which actions
are accessible to users by delegation. There are two basic types of delegation:
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– Role delegation: When users empowered in role(s) delegated by other
user(s), they are allowed to access not only actions associated with their
roles but also actions associated with the delegated role(s).

– Action delegation: Instead of delegating their roles, users may want to
delegate only some specific actions associated with their roles.

Another important aspect of our access control and delegation framework is
the notion of context which has been introduced in Section 2.2. It can be seen
from our metamodel that every permission/delegation rule is associated with a
context. A rule is only active within its context. The concept of context actually
provides our model with high flexibility. Security policies can be easily adapted
according to different contexts.

The full metamodel for specifying delegation is displayed in Figure 4. It
depicts the features that are supported by our delegation framework. All delega-
tion management features are developed based on two basic types of delegation
mentioned above. In the following, we show how the delegation features can be
specified, w.r.t. our metamodel. In other words, this is how the formal definitions
in Section 2 are actually implemented.

– Temporary delegation: This is one of the most common types of delega-
tion used by users. It describes when the delegation starts to be active and
when it ends. The delegator can specify that the delegated role/action is
authorized only during a given time interval, e.g. situation 1 of the running
example in Section 3. Actually, this can be specified using the recurrence of
delegation described below, but we want to define it separately because of
its common use.

– Monotonicity (Transfer of role or permissions): A property isMono-
tonic can be used to specify if a delegation is monotonic or non-monotonic.
The former (isMonotonic = true) specifies that the delegated access right is
available to both the delegator and delegatee after enforcing this delegation.
As defined in Section 2, this delegation is called a grant delegation. The lat-
ter (isMonotonic = false) means the delegated role/action is transferred to
the delegatee, and the delegator temporarily loses his rights while delegating,
e.g. situation 3. In this case, the delegation is called a transfer delegation.

– Recurrence: It refers to the repetition of the delegation. A user may want
to delegate his role to someone else for instance every week on Monday.
Recurrence defines how the delegation is repeated over time. It is similar to
what is implemented in calendar system and more precisely the icalendar
standard (RFC24452). It has several properties; the startDate and endDate
are the starting and ending dates of the recurrence. In addition, the startDate
defines the first occurrence of the delegation. The frequency indicates one
of the three predefined types of frequency, daily, weekly or monthly. The
occurrences is the number of times to repeat the delegation. If the occurrences
is for instance equals to 2 it means that it should only be repeated twice even

2 http://www.rfc-editor.org/info/rfc2445
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when the endDate is not reached. An example of this delegation is situation
10 of the running example.

– Delegable roles/actions: These kinds of delegation define which roles or
actions can be delegated and how (master-level). A policy officer can specify
that a role can only be delegated/transferred to specific role(s), e.g. situation
9. If no delegationTarget is defined for a role, this role cannot be delegated/-
transferred, e.g. situation 4. If a role or action (isDelegable = false) is not
delegable, it should never be included in a delegation rule. Moreover, a role
can also be delegated by a user not having this role but his/her own role is
specified as can delegate on behalf of a user in this role (canDelegateOnBe-
halfOf = true), e.g. situation 6.

– Multiple delegations: It should be possible to define the max number of
concurrent delegations in which the same role or action can be delegated
at a given time (master-level delegation rule). The properties maxConcur-
rentRoleDelegations and maxConcurrentActionDelegations define how many
concurrent delegations of the same role/action can be granted, e.g. situation
9. Moreover, it is possible to define for each specific user a specific maximum
number of concurrent delegations of the same role/action: maxRoleDelega-
tions and maxActionDelegations.

– User specific delegation rights: All user-specific elements are used to
define more strict rules for a specific user rather for his/her role. There are
other user-specific delegations than maxRoleDelegations and maxActionDel-
egations. It is possible to define that a specific user is allowed to delegate his
role/permitted action(s) or not (canDelegate = true or false), e.g. situation
12. The property isNonDelegableAction specifies an action that a specific
user cannot delegate, e.g. situation 13. Moreover, the security officer can
define to which explicit user(s) only (explicitDelegatee) a user can delegate/-
transfer his role to, e.g. situation 11.

– Multi-step delegation: It provides flexibility in authority management,
e.g. situations 7, 8. The property redelegationDepth is used to define whether
or not the role/action of a delegation can be delegated again. When a creator
creates a new delegation, he/she can specify how many times the delegated
role/action can be re-delegated. If the redelegationDepth = 0, it means that
the role/action cannot be delegated anymore, e.g. situation 8. If the redel-
egationDepth > 0, that means the role/action can be delegated again and
each time it is re-delegated, the redelegationDepth is decreased by 1.

– Revocations: All users can revoke their own delegations, e.g. situation 14.
Security officer may set canRevokeAllDelegations = true for a role with a
super revocation power in such a way that a user empowered in this role can
revoke all delegations, e.g. situation 15. Moreover, a role can also be defined
such that every user empowered in this role can revoke any delegation from
this role (canRevokeAllDelegationsOfThisRole = true), even he/she is not
the delegator of the delegation, e.g. situation 16.

Moreover, each possible instance of the security policy has to satisfy all nec-
essary validation condition expressed as OCL invariants. For example, we can
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make sure that no delegation is out of target, meaning that delegatee’s role has
to be a delegation target of delegator’s role:

context Delegation inv NoDelegationOutOfTarget:
self.delegator.role.delegationTarget −>exists (t | t = self.delegatee.role)

Or to check that for every user, the number of concurrent role delegations
cannot be over its thresholds:

context User inv NoRoleDelegationOverMax: RoleDelega-
tion.allInstances −>select (d | d.delegator = self) −>size() ≤
self.role.maxConcurrentRoleDelegations and RoleDelegation.allInstances
−>select (d | d.delegator = self) −>size() ≤ self.maxRoleDelegations

Other examples are to restrict the value of the redelegationDepth must not
be negative, or startDate cannot be later than endDate:

context Delegation inv NonNegativeDeleDepth: self.redelegationDepth
≥ 0

context Duration inv ValidDates: self.startDate ≤ self.endDate

4.3 Transformations/Compositions

After specifying a security policy by the Dsml described in Section 4.2, it is cru-
cial to dynamically enforce this policy into the running system. Transformations
play an important role in the dynamic enforcement process. Via model trans-
formations, security models containing delegation rules and access control rules
are automatically transformed into component-based architecture models. Note
that instances of security models and architecture models are checked before and
after model transformations, using predefined OCL constraints.

The model transformation is executed according to a set of transformation
rules. The purpose of defining transformation rules is to correctly reflect security
policy at the architectural level. Based on transformation rules, security policy
is automatically transformed to proxy components, which are then integrated to
the business logic components of the system in order to enforce the security rules.
The metamodel of component-based architecture can be found in [24] and an
instance of it can be seen in Figure 7. We first describe the transformation that
derives an access control model according to delegation rules (step 1), and then
describe another transformation to show how security policy can be reflected
at the architecture level (step 2). Moreover, we also show an alternative way of
transformation that combines two steps into one.

Adapting Role-Based Access Control policy model to reflect delega-
tion (step 1): Within the security model shown in Figure 2, delegation rules
are considered as “meta-level” mechanisms that impact the access control rules.
The appropriate access control rules and delegation rules are selected depending
on the context information and/or the request of changing security rules com-
ing from the system at runtime. According to the currently active context (e.g.
WorkingDays), only in-context delegation rules and in-context access control
rules of the security model (e.g. rules that are defined with context = Working-
Days) are taken into account to derive the active security policy model (Figure
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Fig. 5. A pure Rbac metamodel

2). Theoretically, we could say that delegation rules impact the core Rbac el-
ements in the security model in order to derive a pure Rbac model (without
any delegation and context elements) which conforms to a “pure” metamodel of
Rbac (Figure 5). Delegation elements of a security policy model are transformed
as follows:
A.1: Each action delegation is transformed into a new permission rule. The
subject of the permission is user (delegatee) object. The set of actions of the
permission contains the delegated action.
A.2: Each role delegation is transformed as follows. First, a set of actions
associated to a role is identified from the permissions of this role. Then, each
action is transformed into a permission like transforming an action delegation
described above.
A.3: A temporary delegation is only taken into account in the transformation
if it is in active duration defined by the start and end properties. In fact, when
its active duration starts the (temporary) action/role delegation is transformed
into permission rule(s) as described above. When its active duration ends the
temporary delegation is removed from the policy model.
A.4: If an action delegation is of type transfer delegation (monotonic), then it
is transformed into a permission rule and a prohibition rule. The subject of the
permission is the user -delegatee object. The set of actions of the permission con-
tains the delegated action. The subject of the prohibition is the user -delegator
object. The set of actions of the prohibition contains the delegated action.
A.5: If a role delegation is of type transfer delegation, then it is also transformed
into a permission rule and a prohibition rule. The subject of the permission is
the user -delegatee object. The set of actions of the permission contains the del-
egated actions. The delegated actions here are the actions associated with this
role. The subject of the prohibition is the user -delegator object. The set of ac-
tions of the prohibition also contains the delegated actions.
A.6: If a delegation rule is defined with a recurrence, based on the values set
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to the recurrence, the delegation rule is only taken into account in the transfor-
mation within its fromDate and untilDate, repeated by frequency and limited
by occurrences. In other words, only active (during recurrence) delegation rules
are transformed.
A.7: (User-specific) If a user is associated with any non-delegable action, the
action delegation containing this action and this user (as delegator) is not trans-
formed into a permission rule. Similarly, if a user is specified as he/she cannot
delegate his/her role/action, no role/action delegation involving this user is
transformed.
A.8: (Role/action-specific) Any delegation rule with a non-delegable role/ac-
tion will not be transformed. In fact, a delegation rule is only transformed if it
satisfies (at least) both user-specific and role/action-specific requirements.
A.9: Only a role delegation to a user (delegatee) whose role is in the set of
delegationTarget will be considered in the transformation.
A.10: Before any delegation is taken into account in the transformation, it has to
satisfy the requirements of max concurrent action/role delegations. Note
that the user-specific values have higher priorities than the role-specific values.
A.11: A delegation is only transformed if its redelegationDepth > 0. When-
ever a user empowered in a role/an action by delegation re-delegates this role/ac-
tion, the newly created delegation is assigned a redelegationDepth = the pre-
vious redelegationDepth - 1.

After transforming all delegation rules, we obtain a pure Rbac model which
reflects both the delegation model and access control model. This pure Rbac
model is then transformed into a security-enforced architecture model as de-
scribed next.

Transformation of Security Policy to Component-based Architecture
(step 2): The transformation rules are defined below. The goal is to transform
every security policy model (pure Rbac model obtained in step 1) which con-
forms to the metamodel shown in Figure 5 to a component-based architecture
model which conforms to the metamodel described in [24]. However, both the
security policy model and the base model provided by a system designer are used
as inputs for the model transformation/composition. Via a graphical editor, the
security designer must define in advance how the resource elements in the policy
model are related to the business components in the base model. Figure 6 shows
how each action in the policy can be mapped to the Java method in the business
logic.

Because the base model already conforms to the architecture metamodel,
we now only focus on transforming the security policy model into the security-
reflected architecture model. As we know, this transformation/composition pro-
cess will also weave the security-reflected elements into the base model in order
to obtain the security-enforced architecture model.

The core elements of Rbac like resource, role, and user are transformed fol-
lowing these transformation rules. All the transformation rules make sure that
the security policy is reflected at the architectural level.



20 Phu H. Nguyen et al.

Fig. 6. Mapping Resources to Business Logic Components

R-A.1: Each resource is transformed into a component instance, called a re-
source proxy component. According to the relationship between the resource
elements in the policy model and the business components in the base model,
each resource proxy component is connected to a set of business components
via bindings. To be more specific, each action of a resource element is linked
to an operation of a business component (Figure 6). By connecting to business
components, a resource proxy component provides and requires all the services
(actions) offered by the resource.
R-A.2: Each role is also transformed into a role proxy component. According to
the granted accesses (permission rules associated with this role) to the services
provided by the resources, the corresponding role proxy component is connected
to some resource proxy component(s) (Figure 7). A role proxy component is
connected to a resource proxy component by transforming granted accesses into
ports and bindings. Each (active) access granted to a role is transformed into a
pair of ports: a client port associated with the role proxy component, a server
port associated with the resource proxy component, and a binding linking these
ports.
R-A.3: Each user element defined in the policy model is also transformed into
a user proxy component. Because each user must have one role, each user proxy
component is connected to the corresponding role proxy component. However,
each user may have access to actions associated to not only his/her role but
also to actions associated to other roles by delegation. Thus, each user proxy
component may connect to several role proxy components. The connection is
established by transforming each access granted to a user into a pair of ports: a
client port associated with the user proxy component, a server port associated
with the corresponding role proxy component (providing the access/port), and
a binding linking these ports (Figure 7). Actually, the granted accesses are cal-
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Fig. 7. Architecture reflecting security policy before and after adding a delegation rule
(bold lines)

culated not only from permission rules but also from prohibition rules. Simply,
the granted accesses that equal permissions exclude prohibitions.

In our approach, revocation of a delegation simply consists in deleting the
corresponding delegation rule. In this way, the revocation is reflected at the ar-
chitectural level and physically enforced in the running system. Moreover, both
the delegator and delegatee elements will be removed if these users are not
involved in any delegation rules. As described above, user elements are trans-
formed into proxy components. However, it is important to stress that only users
involved in delegation rules (e.g. Bill, Bob and Sam in Figure 7) are created in
the security policy model and transformed into proxy components. Users who
are not involved in any delegation rules (e.g. Jane and Mary in Figure 7), are
manipulated as session objects which directly access the services offered by the
corresponding role proxy components.

Two steps described above are two separate model transformations that are
mainly used to explain how delegation can be considered as a “meta-level” mech-
anism for administrating access rights. The first model transformation is to
transform a delegation-driven security model into a pure Rbac model. The sec-
ond model transformation is to transform the Rbac model into an architecture
model. In fact, these two steps could be done in only one model transforma-
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tion that directly transforms the delegations, the access control policy and the
business logic model into an architecture model reflecting the security policy.
However, this alternative way (described in the following) has the disadvantage
of losing the intermediate security model (the active security policy) that could
be useful for traceability purpose.

An alternative way using only one transformation: In this approach,
we have to define different transformation rules to transform directly every se-
curity policy model which conforms to the metamodel, shown in Figure 4, to a
component-based architecture model which conforms to the architecture meta-
model described in [24]. Core elements of Rbac like resources, roles, and users
are transformed following these transformation rules:
R-B.1: Each resource is transformed into a component instance, called a re-
source proxy component (already presented).
R-B.2: Each role also is transformed into a role proxy component (already pre-
sented). The only difference here is that the context has to be taken into account
(in the step 2 of transformation mentioned earlier, no context existed because
context was already dealt with in the step 1). Because every permission is as-
sociated with a context, we only transform permissions with the context that is
active at the moment.
R-B.3: Each user element defined in the policy model is also transformed into
a user proxy component. However, the connection (via bindings) from a user
proxy component to the role proxy component(s) is not only depended on the
user’s role but also delegation rules that the corresponding user involved in. The
transformation of delegation rules is presented below.

All the transformation rules above make sure that access control rules are
reflected at the architecture level. However, the delegation rules will impact
this transformation process in order to derive the security-enforced architecture
model reflecting both access control and delegation policy. Delegation elements
of a policy model are transformed as follows:
R-B.4: Each action involved in an action delegation is transformed into a
pair of ports and a binding. A client port (representing the required action) is
associated with the user (delegatee) proxy component. The binding links the
client port to the corresponding server port (representing the same action pro-
vided) that associated with the role proxy component reflecting the role of the
delegator.
R-B.5: Each role delegation is transformed in a similar way as action del-
egation. First, a set of actions associated to a role can be identified from the
permissions of this role. Then, each action in the set is transformed into a pair
of ports and a binding as transforming an action delegation.
R-B.6: A temporary delegation is only transformed into bindings if it is still
in active duration defined by start and end properties.
R-B.7: If a delegation is of type transfer delegation, then both user ele-
ments (delegator and delegatee) are transformed into delegator and delegatee
proxy components as described above. The delegator proxy component is not
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connected to the corresponding role proxy component because he/she already
transfered his/her access rights to the delegatee. Figure 7 shows a change in the
architecture when Bill transfers his role to Bob.
R-B.8: If a delegation is defined with a recurrence, based on the values set to
recurrence, the delegation rule is only active during the recurrence (similar to
A.6).
R-B.9: If a user is associated with any non-delegable action, the delegation
of this action is not taken into account while doing the transformation. Simi-
larly, if a user is specified as he/she can not delegate his/her role/action, no
delegation requested by this user will be transformed.
R-B.10: Only a role delegation to a user (delegatee) whose role is in the set of
delegationTarget will be consider in the transformation.
R-B.11: Before any delegation is taken into account in the transformation, it
has to satisfy the requirements of max concurrent action/role delegations.
Note that the user-specific values have higher priorities than the role-specific
values.
R-B.12: A delegation is only transformed if its redelegationDepth > 0. When-
ever a user empowered in a role/an action by delegation re-delegates this role/ac-
tion, the newly created delegation is assigned a redelegationDepth = the pre-
vious redelegationDepth - 1.

By taking into account delegation rules while transforming access control
rules of policy model into security-enforced architecture model, both delegation
and access control rules are reflected at the architecture level.

4.4 Adaptation and Evolution Strategies

The model transformation/composition presented in Section 4.3 ensures that
the security policies are correctly and automatically reflected in an architectural
model of the system. The key steps to support delegation (i.e. specifications and
transformations) are already presented in Sections 4.2 and 4.3. The last step
consists in a physical enforcement of the security policy by means of a dynamic
adaptation of the running system. In this section, our adaptation and evolution
strategies are discussed.

Adaptation The input for the adaptation process is a newly created security-
enforced architecture model (Figure 8). First, this new architecture model is
validated using invariant checking [22]. This valid architectural model actually
represents the new system state the runtime must reach to enforce the new se-
curity policy of the system. According to the classical MAPE control loop of
self-adaptive applications, our reasoning process performs a comparison (using
EMFCommpare) between the new architecture model (target configuration) and
the current architecture model (kept synchronized with the running system) [23].
This process triggers a code generation/compilation process, and also generates a
safe sequence of reconfiguration commands [22]. Actually, the code generation/-
compilation process is only triggered if there are new proxy components, e.g.
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Fig. 8. Overview of our adaptation strategy

new user proxy components involved in delegation, that need to be introduced
into the running system. The dynamic adaptation of the running system is pos-
sible thanks to modern adaptive execution platforms like OSGi [33] or Fractal
[8], and most recently Kevoree [13], which provide low-level APIs to reconfig-
ure a system at runtime. The running system is then reconfigured by executing
the safe sequence of commands, compliant to the platform API, issued by the
reasoning process. In an optimized model@runtime platform like Kevoree, all
we need to do is to provide the reconfiguration script (Kevoree script) for the
platform. The reasoning process is taken care of by the platform. In fact, the
generation/compilation phase if needed could be time consuming. However, this
phase has no impact on the running system, which remains stable until being
adapted by executing the reconfiguration script. Thus, the actual adaptation
phase lasts for only several milliseconds.

In [24], the adaptation is entirely based on executing platform-specific re-
configuration scripts specifying which components have to be stopped, which
components and/or bindings should be added and/or removed. This results in
several limitations regarding delegation mechanisms:
L.1: Using only reconfiguration scripts implies to create all the potentially
needed ports (used for bindings between user proxy components) beforehand.
But all the combinations of users, roles, resources, actions could lead to a com-
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binatorial explosion and make it infeasible for implementation.
L.2: In [24], the delegation between users are reflected using bindings connecting
one user proxy component to another. But this approach is not suitable for sup-
porting complex delegation features. For example, a transfer delegation will be
reflected by adding bindings between the delegator and delegatee but removing
bindings between delegator and the corresponding role proxy component. Con-
sequently both delegator and delegatee cannot access the resource, which does
not correctly reflect a transfer delegation.

L.1 can be solved by the automatic re-generation of proxy components and
bindings between them according to changes in the architectural model. More-
over, as mentioned in Section 4.3, only users involved in a delegation are trans-
formed into user proxy components with necessary ports and bindings. In this
way, only required ports and bindings are created dynamically. L.2 is solved by
our model transformation approach. All complex delegation features are consid-
ered as “meta-level” mechanisms that impact access control rules. In this way,
a transfer delegation will be reflected by adding bindings between the delegatee
and the corresponding delegated role proxy component, but removing bindings
between delegator and the corresponding role proxy component.

Our adaptation strategy could take more time than simply running a re-
configuration script because of the generation and compilation time of newly
generated proxy components. But the process of generating and compiling new
proxy components does not in fact harm the performance because each proxy
component is very light-weight and only necessary proxy components are gener-
ated (see Section 5). Moreover, for each specific security policy, it is possible to
think in advance and prepare as many proxy component types as possible. This
strategy could make the generation/compilation phase unnecessary for most of
the cases, except some major evolution of the business logic and/or the security
policy.

Evolution In [24], the evolution of the security policy is not totally dealt with.
It is possible to run a reconfiguration script to reflect changes like adding, re-
moving and updating rules. But adding a new user, role or resource requires the
generation and compilation of new proxy components, which is impossible using
only reconfiguration scripts. Thus, our strategy of automatically generating and
compiling proxy components (see Section 5) is more practical w.r.t. evolution.

Another important aspect of evolution relates to the addition, removal or
update of resources and actions in the business logic. The base architecture model
can be updated with changes in the business logic, e.g. when a new resource is
added. On the other side, security officers can manually update the mappings
(Figure 6) following changes of resources/actions in the base architecture model.
By composing the security model with the base architecture model as described
earlier, the security policy is evolved together with the business logic of the
system.
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Fig. 9. OSGi and Kevoree as adaptive execution platforms

5 Implementation and Evaluation

This section shows how the steps described in Figure 3 have been implemented.
In order to prove that our approach is generic, we target two different adaptive
execution platforms: OSGi (Section 5.1) and Kevoree (Section 5.2). Figure 9
shows that our metamodels and model-to-model transformation/composition are
generic, i.e. independent of execution platforms. Only the adaptation process
(e.g. the reconfiguration script) and the running system are platform-specific.
We evaluate our proof-of-concept implementations and discuss the results in
Section 5.3. The description of three case studies used in our experiments are
given below. The business logic of these case studies are the same for the OSGi
and Kevoree adaptive execution platforms.

To evaluate the feasibility of our approach, we have applied it on three differ-
ent Java-based case studies, which have also been used in our previous research
work on access control testing [25]:
1) LMS: as described in our running example.
2) VMS3: The Virtual Meeting System offers simplified web conference ser-
vices. The virtual meeting server allows the organization of work meetings on

3 For more information about VMS (server side), please refer to
http://franck.fleurey.free.fr/VirtualMeeting.
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a distributed platform. When connected to the server, a user can enter (exit) a
meeting, ask to speak, eventually speak, or plan new meetings. There are three
resources (Meeting, Personnel Account, User Account) and six roles (Adminis-
trator, Webmaster, Owner, Moderator, Attendee, and Non-attendee) defined for
this system with many access control rules, and delegation situations between
the users of each role.
3) ASMS: The Auction Sale Management System allows users to buy and sell
products online. Each user in the system has a profile including some personal
information. Users wanting to sell a product (sellers) are able to start a new auc-
tion by submitting a description of the product, the starting and ending date of
the auction. There are five resources (Sale, Bid, Comment, Personnel Account,
User Account) and five roles (Administrator, Moderator, Seller, Senior Buyer,
and Junior Buyer) defined for this system, also with many access control rules,
and delegation situations between users of each role.

Table 1. Size of each system in terms of source code

# Classes # Methods # LOC

LMS 62 335 3204

VMS 134 581 6077

ASMS 122 797 10703

Table 2. Security rules defined for each system

# AC rules # Delegations Total

LMS 23 4 27

VMS 36 8 44

ASMS 89 8 97

Table 1 provides some information about the size of these three systems (the
number of classes, methods and lines of code). In terms of security policies, Table
2 shows the number of access control (AC) rules and delegation rules defined for
each system, used in our experiments.

All these systems are designed as component-based systems. The business
components of each system contain the business logic, e.g. Book Service com-
ponent, Personnel Account component, Meeting, Sale, Authenticate component,
Data Access Object components, etc. To enable dynamic security enforcement
for a system, the resources (components that have to be controlled) are spec-
ified in the base model, and mapped to the resources of the security policies.
Our metamodels are applicable for different systems without any modification
or adaptation. The structure of delegation and access control policies for all
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case studies is the same, only roles, users, resources, actions are specific to each
case study. The proxy components are automatically generated and synchronized
with the security policy model via model transformations and reconfiguration at
runtime. The model-to-model transformation and model-to-text transformation
(code generation) can be implemented correspondingly using transformation en-
gines like Kermeta [26] (or ATL4), and Xpand [18].

5.1 OSGi (Equinox) as the target Adaptive Execution Platform

As shown in Figure 9, once we obtain the security-enforced architecture model
from the previous steps, we have to reflect this security enforcement in the run-
ning system. In case we use Equinox5 as the target execution platform, all com-
ponents (business logic components and proxy components) are implemented as
OSGi bundles (Spring Dynamic Modules) [30]. In OSGi service platforms, there
are two ways to declare and bind services via interfaces (ports): declaring/bind-
ing exported services in Spring osgi-context.xml files, or in the source code by
overriding the method start of BundleActivator class of OSGi bundle. Here we
show the code for the sake of simplicity but in practice, the declaration of services
and bindings can be configured in Xml files which means no need to recompile
code to change the bindings. Once the services are made available, they can be
called from other services. For example, the code snippet in Listing 1.1 shows
how the deleteBorrowerAccountService of a proxy component of Role Director
is bound to the exported service reference of the deleteBorrowerAccountService
of the BorrowerAccountResource proxy component (lines 1-8). The lines 12-20
show that this Role Director can also access to consultPersonnelAccount of Per-
sonnelAccountResource.

1 Se rv i c eRe f e r ence [ ] refIdeleteBorrowerAccount DIRECTOR =
bundleContext . g e t S e r v i c e R e f e r e n c e s (

lms . proxy . i n t e r f a c e s . Ide leteBorrowerAccount . c l a s s
3 . getName ( ) , ” ( host=BorrowerAccountResource ) ” ) ;

lms . proxy . i n t e r f a c e s . Ide leteBorrowerAccount
serverIdeleteBorrowerAccount DIRECTOR = ( lms . proxy .
i n t e r f a c e s . Ide leteBorrowerAccount ) bundleContext

5 . g e t S e r v i c e ( refIdeleteBorrowerAccount DIRECTOR [ 0 ] ) ;

7 myDIRECTORService
. s e tde l e t eBorrowerAccountServ i ce (

serverIdeleteBorrowerAccount DIRECTOR ) ;
9

. . .
11

Se rv i c eRe f e r ence [ ] refIconsultPersonnelAccount DIRECTOR =
bundleContext . g e t S e r v i c e R e f e r e n c e s (

4 http://www.eclipse.org/atl/
5 http://www.eclipse.org/equinox/



Model-Driven Adaptive Delegation in Access Control Management 29

13 lms . proxy . i n t e r f a c e s . I consu l tPersonne lAccount .
c l a s s

. getName ( ) , ” ( host=PersonnelAccountResource ) ” )
;

15 lms . proxy . i n t e r f a c e s . I consu l tPersonne lAccount
serverIconsultPersonnelAccount DIRECTOR = ( lms . proxy .
i n t e r f a c e s . I consu l tPersonne lAccount ) bundleContext

. g e t S e r v i c e ( refIconsultPersonnelAccount DIRECTOR [ 0 ] ) ;
17

myDIRECTORService
19 . s e t consu l tPe r sonne lAccountSe rv i c e (

serverIconsultPersonnelAccount DIRECTOR ) ;

Listing 1.1. Services and Bindings in the Director proxy component

As we mentioned before, all the proxy components are very light-weight com-
ponents. Every method of proxy components only contains the redirecting call to
another service that (directly/indirectly) calls to the real method in the business
logic. The code snippet in Listing 1.2 shows that a call to the deleteBorrower-
Account method (line 1) of a proxy component of Role Director actually is
redirected to call the deleteBorrowerAccount method (line 3) of the Borrower-
AccountResource proxy component that already was made available previously
(lines 1-8, Listing 1.1). Similarly, the consultPersonnelAccount method (line 7)
contains a call to the consultPersonnelAccount method (line 10) of the Person-
nelAccountResource proxy component that already was made available previ-
ously (lines 12-20, Listing 1.1).

1 pub l i c void deleteBorrowerAccount (
lms . bo . user . BorrowerAccount borrowerAccount ) throws

BSException {
3 de leteBorrowerAccountServ ice . deleteBorrowerAccount (

borrowerAccount ) ;
}

5 . . .

7 pub l i c lms . bo . user . PersonnelAccount consultPersonne lAccount (
lms . bo . user . User per sonne l ) throws BSException {

9 return consu l tPer sonne lAccountServ i ce
. consultPersonne lAccount ( per sonne l ) ;

11 }

Listing 1.2. Redirecting the method calls in the Director proxy component

The adaptation process is directed by a generated reconfiguration script that
is specific for Equinox adaptive execution platform. The reconfiguration script is
executed in order to reflect the change of the policy from the model level to the
running system, e.g. a new delegation rule is active. Figure 10 shows a new del-
egation rule has been enforced in the running system so that Bob (Secretary) is
delegated the permission to consult personnel account by Bill (Director). This
means after enforcing this delegation rule, there exists a connection from the port
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Fig. 10. Bob is delegated by Bill 5 permissions, e.g. consult personnel account

consultPersonnelAccount of the User proxy component Bob, via corresponding
Role and Resource proxy components, to the real method consultPersonnelAc-
count in the business logic.

5.2 Kevoree as the target Adaptive Execution Platform

In case we use Kevoree as the target execution platform, all components (business
logic components and proxy components) are implemented as Kevoree compo-
nent instances [13]. The adaptation process is driven by a generated reconfigu-
ration Kevoree script. The Kevoree script orchestrates the adaptation process of
the running system by adding, removing component instances, binding the ser-
vice ports between proxy components. An example of the configuration of proxy
components (the 3-layer architecture) is shown in Figure 7. In order to explain
how the proxy components are implemented, let’s take a look at the Director
Role proxy component. This Role proxy component is representative as it is be-
tween the User layer and the Resource layer (Figure 7). It can be seen that this
Director Role proxy component provides the ports (services) to the User proxy
components and also requires the ports (services) of the Resource proxy compo-
nents. The code snippet in Listing 1.3 shows the ports required and provided by
the Director Role proxy component. The required ports are bound to the cor-
responding ports provided by the BorrowerAccountResource proxy component
and the PersonnelAccountResource proxy component. The provided ports are to
be bound by the ports required by the corresponding User proxy components.
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Once the corresponding User proxy component calls the service provided by
the port “deleteBorrowerAccountIn” (line 8, Listing 1.3), the method delete-
BorrowerAccount (line 3, Listing 1.4) in the Director Role proxy component is
executed that in turn calls the service provided by the port “deleteBorrowerAc-
countOut” (line 5, Listing 1.4. In fact this port is provided by the BorrowerAc-
countResource proxy component that finally calls to the corresponding method
of deleteBorrowerAccount in the business logic code.

1 @Requires ({
@RequiredPort (name=” deleteBorrowerAccountOut ” , type =

PortType .SERVICE, className = IDeleteBorrowerAccount . c l a s s
, op t i ona l = true ) ,

3 @RequiredPort (name = ” consultPersonnelAccountOut ” ,
type = PortType .SERVICE, className =
Iconsu l tPersonne lAccount . c l a s s , op t i ona l = true ) ,

. . .
5 })

7 @Provides ({
@ProvidedPort (name=” deleteBorrowerAccountIn ” , type =

PortType .SERVICE, className =
9 IDeleteBorrowerAccount . c l a s s ) ,

@ProvidedPort (name = ” consu l tPersonne lAccountIn ” , type
= PortType .SERVICE, className = Iconsu l tPersonne lAccount .

c l a s s ) ,
11 . . .

})

Listing 1.3. The ports required and provided by the Director Role proxy component

@Override
2 @Port (name = ” deleteBorrowerAccountIn ” , method = ”

deleteBorrowerAccount ” )
pub l i c void deleteBorrowerAccount ( BorrowerAccount

borrowerAccount ) throws BSException {
4

IDeleteBorrowerAccount deleteBorrowerAccountPort =
getPortByName ( ” deleteBorrowerAccountOut ” ,
IDeleteBorrowerAccount . c l a s s ) ;

6
deleteBorrowerAccountPort . deleteBorrowerAccount (
borrowerAccount ) ;

8 }

Listing 1.4. Redirecting the method call in the Director Role proxy component in
Kevoree

There are three main advantages of using Kevoree over OSGi as the execu-
tion platform. Firstly, all we need to provide for the platform is the Kevoree
reconfiguration script saying how to adapt the system. The Kevoree execution



32 Phu H. Nguyen et al.

Table 3. Performance of weaving Security Policies using Kermeta and ATL

# Rules Kermeta 1.4.1 Kermeta 2.0.6 ATL 3.2.1

LMS 27 4s 1.836s 0.048s

VMS 44 7s 2.161s 0.055s

ASMS 97 18s 2.834s 0.140s

platform takes care of the necessary adaptation order for the running system ac-
cording to changes. In case of using OSGi, we have to take care of the adaptation
order manually. Secondly, the model@runtime environment of Kevoree makes it
easier for implementing our model driven framework. In Kevoree, we can use
the Kevoree framework itself to manage the security policy models. Thirdly, the
way of declaring ports and bindings in Kevoree are very close to the concepts of
ports and bindings described in our 3-layer architecture (Figure 7). This makes
it very convenient to implement the running systems in Kevoree.

5.3 Evaluation and Discussion

There are two kinds of response time we would like to measure in our case
studies: the authorization mechanism and the dynamic adaptation according to
changing security policies. The experiments were performed on Intel Core i7
CPU 2.20 GHz with 2.91 GB usable RAM running on Windows 7. The number
of security rules defined for each system in our experiments is indicated in Table
2. Because all our access control and delegation rules are transformed to proxy
components reflecting our security policy, response times to an access request
only depends on method calls between these proxy components and business
components (Figure 7). Unsurprisingly, response time to every resource access
is a constant, only about 1 millisecond, because the access is already possible or
not by construction. In other words, our 3-layered architecture reflecting security
policy enables very quick response, independently from the number of access
control and delegation rules.

For experimenting with performance of adapting the running system, we have
implemented the model transformation/composition rules using not only Ker-
meta but also ATL. Regarding the adaptation process, Table 3 shows results
of each case study for performing the model transformations of security poli-
cies mentioned in Table 2, using Kermeta 1.4.1, Kermeta 2.0.6, and ATL 3.2.1
correspondingly. Note that these model-to-model transformations are generic,
platform-independent w.r.t the implementation platform of the running system.
Thus, the same model-to-model transformations are used in both cases of imple-
mentation platform, i.e. OSGi and Kevoree. At first, we used Kermeta 1.4.1 to
implement our model transformations. However, the performance of using Ker-
meta 1.4.1 shown in Table 3 was disappointing. It took more than 18 seconds to
weave 97 security rules in case of the ASMS. To know if this performance prob-
lem is inherently linked to our approach or simply linked to the use of Kermeta
1.4.1, we decided to also implement our model transformations using ATL 3.2.1.
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Our experiments show that the implementation using ATL 3.2.1 is much more
efficient. We can conclude that the initial performance issue was due to Ker-
meta 1.4.1. Then, we have tried to use Kermeta 2.0.6 that is the latest version
of Kermeta at this moment, compiled to byte code, which means much better
performances. As can be seen from Table 3, the results of using Kermeta 2.0.6
are much better compared to using Kermeta 1.4.1.

Note that the transformation, code generation and compilation are performed
“offline” meaning that the running system is not yet adapted. The actual adapta-
tion happens when the newly compiled proxy components are integrated into the
running system to replace the current proxy components. This actual adaptation
process takes only some milliseconds by using the low-level APIs to reconfigure
a system at runtime provided by the modern adaptive execution platforms, i.e.
OSGi [33] and Kevoree [13]. Right after the new proxy components are up and
running, the new security policy is really enforced in the running system.

6 Related Work

There is substantial work related to delegation as an extension of existing access
control models. Most researchers focused on proposing models solely relying on
the Rbac formalism [32], which is not expressive enough to deal with all delega-
tion requirements. Therefore, some other researchers extended the Rbac model
by adding new components, such as new types of roles, permissions and relation-
ships [2, 34, 1, 9, 27]. In [5], the authors proposed yet another delegation approach
for role-based access control (more precisely for Orbac model) which is more
flexible and comprehensive. However, no related work has provided a model-
driven approach for both specifying and dynamically enforcing access control
policies with various delegation requirements. Compared to [24], we extend the
model-based dynamic adaptation approach of [24] with some key improvements.
More specifically, we propose a new Dsml for delegation management, but also
new composition rules to weave delegation in a Rbac-based access control policy.
In addition, we present a new way (by generating proxy) to implement the adap-
tation of the security-enforced architecture of the system. Indeed, we provide an
extensive support for delegation as well as co-evolution of security policy and
security-critical system. That means our approach makes it possible to deeply
modify the security policy (e.g. according to evolution of the security-critical
system) and dynamically adapt the running system, which is often infeasible
using the other approaches mentioned above.

In addition, several researchers proposed new flexible access control models
that may not include delegation, but allow a flexible and easy to update policy.
For instance, Bertino et al. [6] proposed a new access control model that allows
expressing flexible policies that can be easily modified and updated by users to
be adapted to specific contexts. The advantage of their model resides in the abil-
ity to change the access control rules by granting or revoking the access based
on specific exceptions. Their model provides a wide range of interesting features
that increase the flexibility of the access control policy. It allows advanced ad-
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ministrative functions for regulating the specification of access controls rules.
More importantly, their model supports delegation, enabling users to temporar-
ily grant other users some of their permissions. Furthermore, Bertolissi et al.
proposed Debac [7] a new access control model based on the notion of event
that allows the policy to be adapted to distributed and changing environments.
Their model is represented as a term rewriting system [3], which allows specify-
ing changing and dynamic access control policies. This enables having a dynamic
policy that is easy to change and update.

As far as we know, no previous work tackled the issue of enforcing adap-
tive delegation. Some previous approaches were proposed to help modeling more
general access control formalisms using Uml diagrams (focusing on models like
Rbac or MAC). Rbac was modeled using a dedicated Uml diagram template
[17], while Doan et al. proposed a methodology [11] to incorporate MAC in Uml
diagrams during the design process. All these approaches allow access control
formalisms to be expressed during the design. They do not provide a specific
framework to enable adaptive delegation at runtime. Concerning the approaches
related to applying Mde for security, we can cite Umlsec [15], which is an
extension of Uml that allows security properties to be expressed in Uml dia-
grams. In addition, Lodderstedt et al. [20] propose Secureuml which provides
a methodology for generating security components from specific models. The ap-
proach proposes a security modeling language to define the access control model.
The resulting security model is combined with the Uml business model in order
to automatically produce the access control infrastructure. More precisely, they
use the Meta-Object facility to create a new modeling language to define Rbac
policies (extended to include constraints on rules). They apply their technique in
different examples of distributed system architectures including Enterprise Java
Beans and Microsoft Enterprise Services for .NET. Their approach provides a
tool for specifying the access control rules along with the model-driven devel-
opment process and then automatically exporting these rules to generate the
access control infrastructure. However, they do not directly support delegation.
Delegation rules should be taken into account early and the whole system should
be generated again to enforce the new rules. Our approach enables supporting
directly the delegation rules and dynamically enforcing them by reconfiguring
the system at runtime.

7 Conclusion and Future Work

In this paper, we have proposed an extensive Model-Driven Security approach
for adaptive delegation in access control management. By giving a formalization
of access control and delegation mechanisms, we introduced various advanced
delegation features that would provide secure, flexible, and efficient access con-
trol management. It has been shown that these advanced delegation features can
be specified using our delegation Dsml. Our Dsml supports complex delegation
characteristics like temporary, recurrence delegation, transfer delegation, multi-
ple and multi-step delegation, etc. We have also shown that revocation can be
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dealt with in a simple manner. Another main contribution of this paper is our
adaptive delegation enforcement in which delegation is considered as a “meta-
level” mechanism that impacts the access control rules. A complete model-driven
framework has been proposed to enable dynamic enforcement of delegation and
access control policies that allows the automatic configuration of the system ac-
cording to the changes in delegation/access control rules. Moreover, our frame-
work also enables an adaptation strategy that better supports co-evolution of
security policy and business logic of the system. The model-driven framework
proposed in this paper can be applied for securing (distributed) systems running
on different adaptive execution platform like OSGi (Equinox), or an optimized
models@runtime framework such as Kevoree. Our approach has been validated
via three different case studies with consideration of performance and extensi-
bility issues.

In this paper, we only focus on the delegation of rights, further work will
also be dedicated to the delegation of obligations and the support for usage
control [31]. Usage control is called the next generation of access control with
more flexible access management mechanisms that we would adopt our current
approach for. We have not dealt with this idea yet in this paper, but keep it
for our future work. Moreover, revocation mechanism in our current approach
has not been completely taken into account, i.e. without options of strong/weak
revocation. Besides, in order to complete the framework, we also propose an
approach for testing delegation policy enforcement. In this direction, we continue
working on the extension of testing delegation policy enforcement via mutation
analysis [29].
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