View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Open Repository and Bibliography - Luxembourg

Using CPAL to model and validate the timing
behaviour of embedded systems

Sebastian Altmeyer, Nicolas Navet
University of Luxembourg
FSTC/Lassy
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
firstname.lastname @uni.lu

Abstract—This work presents a solution to the Formal Methods
for Timing Verification (FMTV) Challenge 2015 using CPAL.
CPAL stands for the Cyber-Physical Action Language and is
a novel language to model, simulate and verify cyber-physical
systems as those described in the challenge. We believe that
the complexity of the challenge mainly stems from the complex
interactions of the tasks and processes composing the aerial video
tracking system of the challenge. Using CPAL we have derived
a complete and unambiguous description of the system that
supports timing verification. The different sub-challenges were
solved by timing-accurate simulation and/or schedulability anal-
ysis. Even though simulation does not provide firm guarantees
on the worst-case behaviour, it helps the system designer solve
scheduling problems and validate the solutions, where verification
tools can not be applied directly due to the complexity of the
model as in the 2015 FMTYV challenge.

1. INTRODUCTION

The Formal Methods for Timing Verification (FMTV) Chal-
lenge 2015 is an instance of a schedulability problem where the
expressiveness of the traditional real-time scheduling theory
reaches its limits. Existing task and processor models simply
fail to account for the specific features of the system model; the
computational complexity of the problem itself is comparably
low. We advocate the use of CPAL (Cyber Physical Action
Language), a modelling framework to describe, analyse and
program cyber-physical systems. CPAL offers various means
to help cope with the inherent complexity of the system,
starting with an unambiguous description and simulation of
the system model. The CPAL model reveals all ambiguities in
the description and thus forces the system designer to consider
each important aspect of the modelled system. The simulation
environment of CPAL allows to explore the timing behaviour
at design-time and to validate or disprove assumptions about
it.

In this paper, we exemplify these uses of CPAL and show
how it helps to solve the FMTV challenge. The table below
summarizes our contributions to the 4 sub-challenges:

Description Simulation =~ Scheduling Analysis
1A v v v
1B v v .
2A v . v
2B v ° v

Loic Fejoz
RealTime-at-Work (RTaW)
615, Rue du Jardin Botanique
F-54600 Villers-les-Nancy, France
firstname.lastname @realtimeatwork.com

II. CPAL - A MODELLING AND A PROGRAMMING LANGUAGE FOR
EMBEDDED SYSTEMS

CPAL is an acronym for the Cyber Physical Action Lan-
guage. CPAL is a new language meant to model, simulate,
verify and program the kind of Cyber-Physical Systems (CPS)
that can be found in cars, planes, robots, UAV, medical
devices, home appliance, factory and home automation, power
production and distribution, etc. CPAL serves to describe both
the functional behaviour of activities, that is the code of the
function itself, as well as the functional architecture of the
system (i.e., the set of functions, how they are activated, and
the data flow among the functions). CPAL is a formal language
in the sense that it has well defined concepts of states and
transitions. An excerpt of a CPAL source code defining the
functional architecture of the model used for challenge 1 is
shown in Figure 3. CPAL is meant to support two use-cases:

e a design exploration platform for CPS with main
features being currently the formal description, the
edition, graphical representation and simulation of
CPS models. This is how CPAL is being used in this
paper, and

e a development and execution platform: the vision
behind CPAL is that programs can be executed and
verified in simulation mode on a workstation and the
exact same code can be later run on an embedded
board with the same run-time timing behaviour. As
CPAL models are currently executed through interpre-
tation, this second use-case is only for the CPS that
can afford the performance loss due to interpretation
(versus compiled code).

CPAL has been inspired by a number of very diverse
languages such as Eiffel, MISRA C and Erlang, model-based
design products such as Matlab/Simulink and Scade, verifi-
cation frameworks such as Promela/Spin and more generally
what is usually referred to as the synchronous programming
approach (Lustre, Signal, Prelude, etc). However, CPAL has
been designed with the requirement to remain a small, simple
and unambiguous language. CPAL purposely does not provide
constructs that are hard to handle, or lead to convoluted code.
To increase the developers productivity, CPAL offers high-level
abstractions well suited for the domain of CPS such as

https://core.ac.uk/display/31201348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: The CPAL editor shows the functional architecture of
a system (top-left), the FSM describing the logic of a process
(bottow-left) and the scheduling of the processes as seen during
a simulation.

e Real-time scheduling mechanisms: processes can be
activated with a user-defined period and offset rela-
tionships, or upon the occurrence of some external
events.

o Finite State Machines (FSM): the logic of a process
is defined as a Finite State Machine (FSM) possibly
organized in a hierarchical manner where code can be
executed in the states, or upon the firing of transitions.
The semantics that is implemented in CPAL is the
Mealy semantics which enables the control program
to react faster on external events,

o Communication channels to support control and data
flow exchanges between processes, and read/write to
hardware I/O ports with well-defined policies (FIFO
or LIFO buffering, data overwriting, etc).

Since the language is simple and the abstractions are
natural for the domain of CPS, developing CPAL programs
is quick and intuitive. In addition, both the FSMs and the
data-flow between processes can be visualized graphically in a
CPAL-Editor (see Figure 1), enabling some visual verification,
and providing a convenient way to explain a program, or part
of, to the stakeholders of the project. Model visualization and
simulation are already available in CPAL, and for instance a
CPAL model was used in [2] to simulate the SOME/IP Service
Discovery protocol used to manage service-oriented commu-
nication in automotive Ethernet networks. Upcoming releases
of the development environment and the CPAL interpretation
engine will gradually offer support for both on-line and oft-
line form verification so that correctness properties can be
comprehensively verified. A first step in that direction is the
availability of a small utility that extracts the characteristics of
the tasks and data flows from CPAL source to connect with
external schedulability analysis tools.

CPAL is a language jointly developed by our research
group at the University of Luxembourg and the company
RTaW. The CPAL documentation, graphical editor and sim-
ulation engine for Windows and Linux platforms are freely
available for all use from http://www.designcps.com.

camera [40ms]

t1 [cam_to_t1.notEmpty()]
tl_to_t2

t2 [t1_to_t2.notEmpty()]

3 [(40/3)ms]
t3_to t4

4 [40ms]
t4_to_monitor
RN

Quouitor [t4_to_mouitor.notEmpty()]j

Fig. 2: Graphical representation of the CPAL Model for
Challenge 1, the Video Frame Processing. This view is the
functional architecture of the model with the activities (pro-
cesses in CPAL) and their activation conditions, as well as the
flows of data between activities.

III. CHALLENGE 1: VIDEO FRAME PROCESSING

The timing behaviour and the characteristics of the video-
frame processing use case can be modelled and simulated com-
pletely in CPAL. Figure 2 shows the graphical representation
of the model (as shown in the CPAL Editor) and Figure 3
shows significant parts of the CPAL code. The complete code
of the model can be downloaded at http://www.designcps.
com/wp-content/uploads/fmtv15.zip. The modelling effort was
limited and the complete model was written in CPAL within
less than 3 hours.

For the sake of simplicity, we only explain the features of
the modelling language relevant for the challenge: processes,
queues and registers and timing annotations. The tasks defined
in the challenge are represented as processes in CPAL. Figure 3
shows the process definition of 7/ PreProcessor in line 6
and its instantiation in line 35. The process is activated on the
condition that the queue cam_to _tI is not empty. Its execution
time is defined by the annotation in line 37 to be 28ms. In
the graphical representation, rounded boxes correspond to the
processes, the angular boxes correspond to the queues and
registers. A detailed description of the language can be found
online http://www.designcps.com

A. Simulation

CPAL is able to simulate the complete model for the first
challenge. The simulation exposed a number of ambiguities in

struct Frame {
uint32: id;
uint32: emission_time;

b

processdef T1_PreProcessor(
in channel<Frame>: input,
out channel<Frame>: output)
{
state Main {
/* removes reflections
normalizes intensity, etc.
*/
assert(input.notEmpty());
output.push(input.pop());
}
}

processdef T2_Processor(...) { ... }
processdef T3_Filter(...) { ... }
processdef T4_DAConvertor(...) { ... }
processdef Camera(...) { ... }

var queue<Frame>: cam_to_t1[1];

var queue<Frame>: tl_to_t2[1];

var Frame: t2_to_t3;

var queue<Frame>: t3_to_t4[n];

var queue<Frame>: t4_to_monitor[1l];

process Camera:
camera[40ms] (cam_to_t1);
@cpal:time {
var uint32: drift = uint32.rand_uniform(999900, 1000100);
camera.period = (40 * drift)ns;

}

process T1_PreProcessor:
tl[cam_to_tl.notEmpty()](cam_to_tl, tl_to_t2);
@cpal:time {
tl.execution_time = 28ms;
/% assert(tl.bcet == tl.wcet and
tl.wcet == tl.execution_time);*/

}

process T2_Processor:
t2[tl_to_t2.notEmpty()](tl_to_t2, t2_to_t3);
@cpal:time {
t2.bcet
t2.wcet

17ms;
19ms;

Fig. 3: Excerpt of the CPAL Code for Challenge 1. Process
activation conditions are specified at the definition of the
processes (e.g., tl is activated upon the arrival of a frame from
the camera). The annotations in the comments are used for the
simulation and the analysis of the model.

the challenge description, which directly influence the timing
behaviour of the model. The clock drifts and period jitters are
given as percentage of the periods, but it is not defined whether
clock drifts are considered mutable or immutable. The former
case where clock drifts may vary over time can be due for
instance to temperature variations (see [1]).

Also the probability distributions of both clock drifts and
task execution times are not defined. Yet, the most significant
uncertainty were the tasks’ release times. A synchronous
release of all task may be at first considered as a reasonable
assumption, but may not be feasible to implement in practice.

As these factors have not been specified, we had to evaluate

the different configurations and selected for each challenge the
configuration which led us to the corner cases of the timing
behaviour of the model.

B. Solution to Challenge 1A

The main focus of CPAL is on the modelling and the
simulation of Cyber Physical Systems. CPAL does not provide
any fully automatic analysis to compute a solution to the
FMTYV challenge. However, it helps to identify and validate
best and worst-case scenarios.

The minimum latency for a frame occurs (i) when each task
executes for its minimal execution time, (ii) when the buffer
is empty, (iii) and when each task is released exactly when
the task’s input is ready. We note that the minimal execution
time of task 74 when it processes a frame is 10ms. Hence, the
minimum latency is 63ms. As the buffer size has no impact on
the best-case latency, the minimum latency for the case n =3
is given by the minimum latency for the case n = 1. The
corresponding scenario is highly unlikely and can only occur
for the very first frame. For any other frame i > 1, the buffer
will not be empty if task T4 is released exactly when task
T3 has produced frame i for the very first time. The best-case
scenario for frames with index i > 1 is given when frame i — 1
has been consumed by task 74 right after it was produced by
T3, so minimizing the delay frame i has to wait in the buffer
for the next execution of task 74. The additional delay is given
by the shortest period of task 74 minus the longest period of
task 73, i.e.,

40ms — 40ms * 0.00001 — (40/3ms + 40/3ms - 0.00005)
= 26.6656ms. (1)

The minimum latency for the first frame is thus given by 63ms,
and for all other frames by 89.6656ms.

_ | 63ms

min _ ymin if frame index =1
Lyzi = L3 = { 89.6656ms

if frame index > 1

)

The maximum latency for buffer size of 1 and of 3 can be
considered infinite, as frames may get lost (see Challenge 1B).
For the sake of completeness, we derive the maximum latency
for frames which are not lost, i.e. frames which are delayed
as long as possible but will eventually be displayed.

We start with a buffer size of 1. The worst-case scenario
for frame i occurs if the buffer and the register contain the
information for frame i — 1. Task 74 empties the buffer right
before task 73 writes the same information to the buffer again,
which happens an instance before task 72 updates the register
to frame i. Task 74 then converts frame i — 1 twice, empties
the buffer right before task 7'3 writes the information for frame
i into it. Frame i is thus delayed by two complete cycles of
task T4; one cycle before it is written to the buffer, and one
cycle in which task T4 process the previous frame i — 1 for the
second time. Hence, the maximum latency is upper-bounded
by the sum of the maximum execution times 65ms and twice
the period of task T4.

L™ < 146ms. 3)

For the sake of simplicity, we only provide the results rounded
to the next larger ms.

For a buffer size of 3, a frame can only be displayed twice,
if the buffer is empty. The worst-case situation is thus different.
It occurs if the buffer is full and frame i can be written to the
buffer at the very last moment before it would be otherwise
discarded. At that moment, the buffer contains the frames i—2,
i—1 and i and task T4 converts frame i — 3. Frame i is thus
delayed by four cycles of task 74, and hence the worst-case
latency is:

L% < 226ms 4)

We were able to simulate the Challenge 1 in CPAL and
to validate our analyses. We have generated 103 different task
release patterns and simulated for each pattern the generation
of 10° frames. We have assumed mutable clock drifts. The
total simulation time was less than 6 hours on an Intel Core
17 clocked at 2.30GHz. Figure 4a shows the distribution of the
latencies for n = 1 and Figure 4b for n = 3. The simulation is
very close to our estimated minimum and maximum latencies
for a buffer size of 1. The simulation of the system with a
buffer size of 3 diverges stronger from our estimates, especially
for the worst-case latency, where we have computed a bound
of 226ms, but have only observed latencies of up to 220ms.
Also the shape of the distribution is less uniform and higher
latencies (starting from 160ms) occur with significantly smaller
frequency. We presume that the larger state-space of the second
case reduces the chance to see the extreme cases.

We also observed that starting from a single task release
pattern will require significantly longer simulation time to
cover a similar space of possible timing behaviours of the
model, compared to aggregating results from a set of simu-
lation runs with different initial release times.

C. Solution to Challenge 1B

We solve challenge 1B by simulation and measure the time
between two discarded frames. To maximize the number of
discarded frames, we have assumed immutable clock drifts
and the maximum period of the camera (producer task) and
minimum period of the task 74 (consumer task). For each
configuration (n = 1 and n = 3), we have simulated the
generation of 10% frames. The total simulation time for both
configurations combined was less than 4 hours on an Intel Core
17 clocked at 2.30GHz.

Figure 5a shows the distance for a buffer size of 1, and
Figure 5a for a buffer size of 3. In case of a buffer size of
1, the minimum observed distance in between two discarded
frames is 2. In this setting, frames are often discarded in bursts,
meaning that in an overload condition, many frames can be
lost in a relatively small time window. The higher distances
shown in Figure 5a show the number of frames in between
such bursts. The scenario leading to a discarded frame i occurs
when the previous frame i—1 is written to the buffer right after
T4 has read the same frame already before. Frame i—1 is thus
displayed twice and so, ’blocks’ the time window of frame i.
Before frame i can be written to the buffer, it has already been
overwritten in the register by task 72, and so frame i + 1 will
be written to the buffer by task 73 instead of frame i.

0.025 -

0.02 -

0.015 -

Frequency

0.01 -

0.005

L 9 < 2, <
0 0 % 2 &

Latency

(a) n=1

0.025 -

0.02 |-

0.015

Frequency

0.01 |-

0.005

% %

s,

<%
) &

o °
2 % 2

(4 4

Latency

(b) n=3
Fig. 4: Latency distribution for Challenge 1A.

A buffer size of 3 prevents such burst situations and ensures
a minimum observed distance in between two discarded frames
of more than 4500 frames. The discarded frames are well
distributed over the life-time of the system and occur (in case
of constant worst-case drifts) with a distance of at least 3800
and at most 5500 frames. Due to the policy that the buffer can
store each frame at most once, no frame can be displayed twice
in case of a buffer size of 3. A frame i is only discarded if
the buffer is already full when i arrives and the buffer can not
be freed before frame i+ 1 will arrive. After such an overload
condition, the contention on the buffer will be reduced and
will only slowly increase again due to the clock drifts.

We note that the correctness of these bounds for n = 3
strongly depends on the correctness of the simulation parame-
ters and of the selected random distribution. Higher clock drifts
can be used to derive lower bounds on the minimum distance.

IV. CHALLENGE 2: TRACKING & CAMERA CONTROL

Challenge 2, the tracking and camera control use case
exhibits properties which are not natively supported in CPAL.
CPAL is intended to model the behaviour of an embedded
real-time system and to specify the timing properties and

0.2 -

0.15

Frequency

0.1 -

0.05 -

0 | | L L I
o <o) £ i) So
number of frames between two discarded frames
(a) n=1
0.8
0.7
0.6
0.5 -
>
9
c
S o0af
o
o
frs
03 -
0.2
0.1 -
0 Il Il Il J
% RY R/ %4 3 Ny [
(@) S 0, S (2) S 0,
% % % % % % K3
number of frames between two discarded frames
(b) n=3

Fig. 5: Distance between two discarded frames (in number of
frames) Challenge 1B.

requirements. The second use-case, however, already specifies
scheduling decisions, i.e., pre-emptive scheduling and assigns
priorities to the system’s components. Especially pre-emptive
scheduling is not currently supported by CPAL. We can
nevertheless use CPAL to describe the task dependencies and
the timing properties of the challenge except for the priority
assignment and pre-emption.

The graphical representation of the CPAL model of Chal-
lenge 2A is shown in Figure 6a. Figure 6b shows the CPAL
model of 2B, i.e., including the additional activation condition
of task 72 and task 75. The dots connected to task 72
represent the processes defined in Challenge 1A. The com-
plete model can be downloaded at http://www.designcps.com/
wp-content/uploads/fmtv15.zip.

A. Solution to Challenge 2A

We first consider the execution of the subset {T'5,76,T7}
independently of the pre-empting task 72. Due to the priority
assignment, i.e, 72 > 76 > TS5 > T7, the synchronous call
of task 76 and the asynchronous call of task 77 only one
execution sequence is possible. We thus combined these tasks
to an artificial task 7T'x.

The execution time of Tx is given by the sum of the
execution times of the individual components:

[4+4+9+4+11ms : 447+104+5+15ms] = [33ms : 41ms] (5)

and the period of this task 100ms + j. The behaviour of task
Tx in isolation is independent of the pre-empting task 72. We
were thus able to model and simulate the timing behaviour of
Tx in CPAL and so, to validate computed execution times. Due
to the trivial distribution of the simulation, we have omitted
the graph.

The best-case end-to-end latency from activation of task
T5 to completion of 77 is given by the minimum execution
time of task T'x, irrespective of the jitter:

LY = L5, = 33ms ©)
The worst-case latency can be computed by the traditional
response-time analysis:

R+j
40.0004ms

By solving Equation (7), we get the following worst-case
latencies:

R=4lms+[}17ms @)

Lf;fg =75ms 8)

and
L?‘j‘;o = 112ms 9)

B. Solution to Challenge 2B

The latencies are not affected by the shared resource, as
the artificial task 7x has lower priority than the pre-empting
task 72. The best-case scenario remains the same, and so do
the minimum latencies:

L = L7, = 33ms, (10)
as well as the maximum latencies:
Lf;“:*io" = T75ms (11)
and
L?‘j‘;o = 112ms (12)

The priority assignment that minimizes the worst-case
latency is 77 > 76 > T5 > T2 with which task 72
can not pre-empt any other task any more, and task 77,
which controls the camera, can do so before task 75, which
has no observable output finishes. We have modelled the
various priority assignment within the subset {T'5,76,T7} of
the complete task set, i.e. without the independent task 72,
in CPAL and have been able to validate this conjecture.

The latency is given by the sum of the maximum execution
time of the tasks 77, T6, TS5, except for the last fragment
of task 76 and by the maximal delay task 72 can block the
execution of task 75, i.e. 2ms. Hence

L™ = 37ms (13)

V. Discussion

In the process of modelling the systems under study we
identified a few undefined properties: whether the tasks had
offsets relationships or not, the probability distribution for

Tracking_&_camera_control

[T7 [IC_IO_CC.I]OIEIHPI)’()]HC:UI]CI':I [cameraC mds.notEmpty()])

[sensors [100ms]

T6 [sensorsSource.nolEmply()])‘_—’(TS [lcfloflpcAnolEmply()]j

(a) 2A

Tracking_&_camera_control

I

T7 [tc_to_cc.notEmpty()] camera [cameraCmds.notEmpty()])

i

sensors [100ms] T6 [sensorsSource.notEmply()]j‘:’(TS [tc_to_tpe.notEmpty() and lheSh:\redResource.lxy.-\cquire()])

|

T2 [40ms and theSha.redResource.uyAcquire()])

o

(b) 2B
Fig. 6: Functional architecture of the CPAL Model for Challenge 2.

random numbers, and whether clock drifts are set for once
or dynamic at run-time. We believe that the use of a precise
description language like CPAL, with well understood abstrac-
tions, helps to limit the ambiguities among the stakeholders of
a project, and ultimately improve the quality of the delivered
product and time-to-market. In addition to an unambiguous
description, provided that the functional behaviour of the tasks
is coded, it becomes possible with CPAL from the same code
to simulate, prototype and execute the application.

Deriving the solution for the first challenge by hand proved
to be error-prone, and the use of simulation was helpful to
better understand the dynamics of the system, and specif-
ically check whether the worst-case conditions we devised
could actually happen. In order to increase the likelihood to
meet unfavourable scheduling scenarios, we used a random
number generator that gave higher probability to the bounds
of the interval, instead of a uniform distribution. This sim-
ple strategy was effective in creating situations leading to
the maximum interferences in our experiments on the first
challenge. Simulation is also helpful to gain confidence in
the schedulability analysis results. For instance, a flaw in the
analysis can be detected if the maximum values observed
by simulation exceed the bounds derived by analysis, which
never happened here. Finally, simulation provides more fine-
grained information than schedulability analysis, such as here
the minimum observed distance between two discarded frames,
which may permit to consider a solution with lost frames
provided that the application is sufficiently robust to tolerate
the loss rate observed.

With the help of a simple utility it is possible to extract
from the CPAL system’s description the characteristics of the
tasks and automate a schedulability analysis. We can possibly
add more semantics in CPAL with new language constructs
or annotations, for instance to specify complex activation
patterns like multirate tasks or activation upon the reception
of several messages. However, we do not see how to answer
in an automated manner complex questions like asked in this
challenge without resorting to ad-hoc analyses. Identifying the
scope of what can be fully, or partially, automated is in our
view a question that deserves future work.

VI. ConcLusioN AND FUTURE WORK

In this paper, we have derived a solution to the 2015
FMTV Challenge using CPAL, a new modelling language
for cyber-physical systems. The correctness of our solution
depends on the correctness of the CPAL model: does the model
capture the behaviour of the system correctly? We believe the
unambiguous while rather intuitive semantics of CPAL helps
to perform this verification, and gain confidence in the model.

Verification in the time domain in the early phases of
the development cycle, where the costs of repairing errors
is the smallest, is mainly non-existing today and this is one
of the limitations of Model-Driven Development for real-time
systems. A main reason for this is that verification techniques
are not sufficiently well automated and integrated within devel-
opment environments. CPAL, a modelling language supporting
timing verification, is a contribution in that direction.

The intention of CPAL is to provide not a only a modelling
language, but also an interpreter which ensures equivalence be-
tween the simulated behaviour of the model and the behaviour
on the execution platform. CPAL code can be currently exe-
cuted on a workstation, as a stand-alone interpreter or within
Matlab-Simulink, or on an embedded target through model
interpretation. For CPS requiring maximal performances, code
generation or hooks to call native object code from CPAL
programs would be feasible options.

REFERENCES

[1] A. Monot, N. Navet, and B. Bavoux. Fine-grained simula-
tion in the design of automotive communication systems.
In Embedded Real-Time Software and Systems (ERTS2
2012), Toulouse, France, 2012.

[2] J. R. Seyler, T. Streichert, M. GlaB3, N. Navet, and J. Teich.
Formal analysis of the startup delay of SOME/IP Service
Discovery. In Proc. 2015 Design, Automation & Test in
Europe Conference, DATE ’15, pages 49-54, San Jose,
USA, 2015.

