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a b s t r a c t

In this paper, we present two new parallel algorithms to solve large instances of the scheduling of
independent tasks problem. First, we describe a parallel version of the Min–min heuristic. Second,
we present GraphCell, an advanced parallel cellular genetic algorithm (CGA) for the GPU. Two new
generic recombination operators that take advantage of the massive parallelism of the GPU are proposed
for GraphCell. A speedup study shows the high performance of the parallel Min–min algorithm in
the GPU versus several CPU versions of the algorithm (both sequential and parallel using multiple
threads). GraphCell improves state-of-the-art solutions, especially for larger problems, and it provides
an alternative to our GPUMin–min heuristic when more accurate solutions are needed, at the expense of
an increased runtime.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Task scheduling reflects some of the most important issues in
clusters. The goal is to execute all the arriving tasks at minimum
cost. This cost could be measured, for instance, in terms of the
time needed to compute the tasks, the use of resources, the energy
consumed, or any combination of them.

We focus in this paper on minimizing makespan for the batch
scheduling of independent tasks on a fixed number of machines.
We assume that the time needed to compute the tasks in every
machine is known [4], and that all the resources are free when
the schedule starts. This is a well known problem, and it meets
the typical necessities of many super-computing centers [4,14,37].
Finding the schedule that minimizes makespan is known to be NP-
complete [18]. This points to the use of heuristic andmetaheuristic
algorithms.

Our algorithm, GraphCell, is a metaheuristic based on the
Cellular Genetic algorithm (CGA) [1,30]. Before presenting our
CGA, it is worth stating that the motivation behind GraphCell is
not speedup, but finding better solutions (under an acceptable
runtime). CGAs are known to find good solutions tomany different
optimization problems [1], but also originate from the adaptation
of genetic algorithms to SIMDmachines [8,15,30,33]; precisely the
underlying architecture of the GPU. The CGA’s good performance
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as metaheuristic and its suitability to the SIMD architecture
make it a reasonable choice for the optimization problem
considered.

It is a common assumption in the literature that the use of
structured or decentralized populations in GAs allows a better
exploration of the search space [1,2,6]. Distributed and cellular
populations are the most common approaches of decentralized
populations. In distributed GAs (DGAs) [2,6], the population is
partitioned into a set of semi-isolated sub-populations (called
islands) that are evolved by independent GAs. Periodically, the
sub-populations exchange some information (typically, solutions)
among them in a process called migration. This way, sub-
populations are aware of the most promising locally explored
regions in the other islands, and they can use that information in
the search.

In the case of cellular GAs (CGAs) [1,30], the population is
(usually) arranged into a two-dimensional toroidal grid, and only
those solutions that are located next to each other in the lattice
are allowed to interact during the application of the variation
operators. The consequence is that solutions that are far from each
other in the population are semi-isolated, and therefore, different
regions of the population will hopefully explore distinct areas of
the search space. The population is typically evolved as shown
in Fig. 1. Every solution is sequentially updated by choosing the
parents from its neighborhood. The variation operators are then
applied to generate a new solution. Finally, the current solution is
replaced by the new one if it is better. Therefore, using a cellular
topology into the population restricts the number of solutions that
can influence the evolution of every solution.
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Fig. 1. How new solutions are generated in a cellular genetic algorithm.

The use of cellular populations in metaheuristics allows for
a better exploration of the search space with respect to the
equivalent one with other panmictic (i.e., non-decentralized) and
decentralized populations. This is concluded in the literature
for GAs [1,9], Particle Swarm Optimization (PSO) [21,22], and
Differential Evolution (DE) [11], among others.

Finally, CGAs have successfully been applied to solve real world
problems in domains like bioinformatics [39], telecommunica-
tions [41], logistics [10], image processing [31], or scheduling [17],
to name a few.

It is however challenging to design such algorithms that find
good solutions in a short execution time. In scheduling problems,
we usually have a limited amount of time to find the best possible
schedule of the tasks. Therefore, there is a need for algorithms that
are able to find highly accurate solutions within this important
time constraint.

The main contributions of this paper are (a) the design of a
novel and efficient parallel Min–min heuristic [19] for the GPU and
CPU, (b) two new highly parallel recombination operators for the
GPU, and (c) GraphCell, a highly parallel CGA for GPU architectures.
We analyze the performance of GraphCell with these two new
operators, in isolation and interaction, based on a preliminary
design [38].

The proposed new algorithm is highly competitive and efficient
with respect to the state of the art for the studied problem
instances, which range from smaller clusters of 16 processing units
and 512 tasks to much larger ones of 2048 processing units and
more than 65,000 tasks. Moreover, the GraphCell algorithm could
be improved straightforwardly by adding a local search operator,
an essential component in all the state-of-the-art techniques, that
is not used in the current version. This is future work.

The newparallelMin–min algorithm shows high speedupswith
respect to the sequential Min–min heuristic and two equivalent
parallel Min–min versions (using 4 and 8 threads) on the CPU.
GraphCell is shown to be a valid alternative when accurate
results are needed at the cost of longer computational times
to schedule the tasks, outperforming Min–min for all problem
instances and algorithm configurations, unlike its preliminary
version MPS–CGA [38].

One interesting advantage of the implementation of the
scheduler on the GPU, aside the excellent performance and low
price of such devices, is that it does not require any computations
to be done on the CPU. Therefore the load of the front-end in our
system due to the scheduler is almost null, allowing it to process
other requests.

The remainder of this paper is structured as follows. We give
a brief overview of the main related works in Section 2. Then, we
describe the problem at hands in Section 3. The new algorithms

proposed and the results obtained are later described in Sections 4
and 5. Finally, we conclude the paper in Section 6.

2. Related work

The complexity of the independent task mapping problem
confines candidate algorithms to heuristic and metaheuristic
approaches, except for small problems. This section reviews past
work on heuristic and metaheuristic algorithms for the GPU,
applied to the problem considered. Then, we provide an overview
of the main existing parallel CGAs on different architectures.

Solomon et al. [44] ported a metaheuristic algorithm called
Particle SwarmOptimization (PSO) to theGPU, and applied it to the
independent taskmapping problem. They reported a speedup of 37
times over the sequential version. However, the solutions found
by their algorithm are worse than those obtained with simpler
heuristics, for problem instance sizes of 200 tasks × 40 machines
and above.

Nesmachnow et al. [5] proposed GPU implementations of two
scheduling heuristics, includingMin–min. They report amaximum
speedup of about 5 with respect to the sequential version of
the heuristic. We obtain a much greater speedup, as presented
in Section 5.2, although their GPU hardware seems comparable
to ours. Their paper does not detail the parallel algorithm used,
therefore we cannot explain the difference.

Van Luong et al. [46] investigated how multiobjective local
search algorithms can be ported to the GPU for the flowshop
scheduling problem. Their objective is speedup, and they reported
an improvement of up to 16 times across the different local search
algorithms.

We have mentioned in Section 1 that GraphCell is a CGA, and
that CGAs are inherently parallel processes. Indeed, they initially
appeared as an alternative design to panmictic GAs for SIMD
machines, which is the underlying model of GPU. Some pioneer
works in this line are those by Manderick and Spiessens [30,45],
Mühlenbein [33,34], Gorges-Schleuter [15], and Collins [8].

With the popularity loss of massively parallel machines, some
authors proposed different parallel implementations of cellular
GAs, more appropriate for the distributed architectures that
started to be available from the 90s.

In 1993, Maruyama et al. proposed in [32] a peculiar version
of a parallel CGA for a cluster of machines in a local area network
(LAN) in which single solutions are located in the processors,
and after every generation solutions exchange information with
only one randomly selected neighbor, as an attempt to reduce
communications overhead.

After this first work on parallel CGAs for LAN architectures,
there are a number of more recent papers proposing other
designs that better fit the dynamics of the canonical sequential
model. Nakashima et al. proposed in [35] a combined CGA where
the population is divided into smaller square sub-populations,
interacting through their borders. An image of this model can be
seen on the right-hand side of Fig. 2, where the gray cells represent
the solutions exchanged in the inter-processor communications.
Folino et al. contributed in [13] with CAGE, a parallel cellular GP in
which the population is divided into groups of columns (or rows)
which constitute sub-populations (see the graph on the left in
Fig. 2) to be run on different processors. This way they can reduce
the number of messages with respect to the previous model, but
messages will be bigger.

Luque et al. compared the performance of several parallel GAs in
LAN environments [27]. Among them, both distributed and cellular
GAs were the best performing ones, being the cellular algorithm
slightly slower (from 3% to 10%) than the distributed one, but
providing better solutions. Later, the authors analyzed different
parallel CGA designs in [29], and proposed the use of asynchronous
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Fig. 2. CAGE (left) and the combined parallel model of CGA (right).

communications among processors in [28]. Dorronsoro et al.
proposed PEGA in [10], a new parallel GA distributed in islands,
with a CGA in every island, which can be executed either in
local area network environments or in computational grids. PEGA
was successfully applied to the largest existing instances of the
VRP problem, contributing to the state of the art with some new
solutions.

Pinel et al. proposed the first parallel implementations of
CGAs for multi-core architectures, with applications to real-world
problems as DNA sequencing [36] or scheduling [37]. In [39],
the authors also analyzed several different strategies for the
communications to deal with delays due to memory locks in
parallel asynchronous CGAs on multi-core architectures.

Finally, there are a number of implementations of parallel CGAs
in GPU architectures. The firstworks had to dealwith complex data
structures to map the algorithm data to texture rendering based
on GPU, i.e., the information contained in the solutions must be
allocated in the form of pixels in the GPU [23,25,51].

The appearance of tools like CUDA [42] or OpenCL [16] gave
a major boost for the development of new parallel algorithms
on GPU architectures. Among them, a few recent works are
targeting cellular Evolutionary Algorithms (EAs). Soca et al. [43]
proposed a framework for the implementation of cellular EAs on
GPUs. Vidal and Alba also proposed a parallel version of CGA in
a single GPU [48] and multiple ones [47]. Li et al. designed a
fine-grained parallel immune algorithm [24]. Finally, Pinel et al.
presented in [38] a parallel CGA for GPU architectures with a
new recombination operator that is especially designed for good
performance on the GPU. The current paper is an extension of that
work.

To end this section, we summarize in Table 1 the main existing
parallel cEAs proposed in the literature that have been discussed
here.

3. Problem description

The problem addressed in this paper is how to assign indepen-
dent tasks onto the different processors in a heterogeneous cluster,
in order to minimize the makespan. Makespan is the completion
time of the last machine (when the last machine finishes its tasks).
Makespan is definedmore formally later in this section. Amachine
is an independent computing unit, such as a single core in a multi-
core processor.

This problem arises frequently in parameter sweep applica-
tions, such as Monte-Carlo simulations [7]. In these applications,

many tasks with almost no interdependency are generated and
submitted to a distributed system. In fact, more generally, the sce-
nario in which the submission of independent tasks to a cluster is
quite natural given that cluster users independently submit their
tasks to the system and expect an efficient allocation of their tasks.
We notice that efficiency means to allocate tasks as fast as possi-
ble and to optimize some criterion, such as makespan or flowtime.
Makespan is among the most important optimization criteria of a
distributed system; it is ameasure of its productivity (throughput).

More precisely, assuming that the computing time needed to
perform a task is known (assumption that is usually made in the
literature [4,14,20]), we use the Expected Time to Compute (ETC)
model by Braun et al. [4] to formalize an instance of the problem,
as follows:

• A number of independent (user/application) tasks to be as-
signed.
• A number of heterogeneous machine candidates to participate

in the planning. A machine is the general term for a computing
unit, such as a core.
• The workload of each task (in millions of instructions).
• The computing capacity of each machine (inmips).
• Ready time indicating when machine m will have finished the

previously assigned tasks. In this work, we consider, without
loss of generality, that all the machines are available to process
the assigned tasks (readym = 0).
• The expected time to compute (ETC) matrix (of size nb_tasks×

nb_machines) in which ETC[t][m] is the expected execution
time of task t on machinem.

We consider the task assignment as a single objective optimiza-
tion problem, in which makespan is minimized.Makespan, the fin-
ishing time of latest task, is defined as:

max{completion[m] | m ∈ Machines}, (1)

where completion is the completion time of a machine. This time
indicates when the machine will finalize the processing of the
previous assigned tasks as well as of those already planned.
Formally, for a machine m and a schedule S, the completion time
ofm is defined as follows:

completion[m] = readym +


t∈S−1(m)

ETC[t][m]. (2)
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Table 1
Brief summary of the main existing parallel cEAs.

Authors Reference System Comments

Manderick and Spiessens [30] (1989) SIMD Cellular GA with binary genes
Mühlenbein [33] (1989) SIMD Cellular GA for TSP
Gorges-Schleuter [15] (1989) SIMD CGA with Local search
Collins and Jefferson [8] (1991) SIMD Study of different selection schemes
Maruyama et al. [32] (1993) LAN Communications limited to one random neighbor
Nakashima et al. [35] (2002) LAN Population divided into square sub-populations
Folino et al. [13] (2003) LAN Population divided into rows/columns
Luque et al. [27] (2005) LAN Comparison versus other parallel GAs
Yu et al. [51] (2005) GPU Direct mapping of data structures to textures
Luo and Liu [25] (2006) GPU Direct mapping of data structures to textures
Dorronsoro et al. [10] (2007) LAN/Grid Distributed GA with CGAs in every island
Li et al. [23] (2007) GPU Direct mapping of data structures to textures
Luque et al. [29] (2009) LAN Design and comparison of several CGAs
Luque et al. [28] (2009) LAN Asynchronous parallel CGA
Li et al. [24] (2009) GPU Fine-grained parallel immune system
Pinel et al. [37] (2010) Multi-core Asynchronous parallel CGA
Pinel et al. [39] (2010) Multi-core Different communication policies study
Soca et al. [43] (2010) GPU Framework for cEAs using CUDA
Vidal and Alba [48] (2010) GPU Synchronous CGA implemented in CUDA
Vidal and Alba [47] (2010) multiple GPUs Synchronous CGA implemented in CUDA
Pinel et al. [38] (2010) GPU Synchronous parallel CGA implemented in CUDA

4. GraphCell, our proposed algorithm

This section describes GraphCell, the algorithm used in our
experiments. GraphCell is a new parallel design of the CGA for
the independent task assignment problem. A solution of the
independent task assignment problem is the assignment of all
the tasks to machines. The population is initialized with random
solutions except for one, which is the result of the Min–min
heuristic. This improves the search of good solutions. The main
objective of GraphCell is to find accurate solutions, in a reasonable
time. Given the prohibitive runtime of the Min–min heuristic
on large problem instances, we require a parallel version of the
Min–min heuristic on the GPU.

Section 4.1 presents the Min–min heuristic and our parallel
version for the GPU. Section 4.2 describes the new parallel CGA for
GPU we propose.

4.1. Min–min heuristic for the scheduling problem

The Min–min heuristic is a simple deterministic algorithm
initially proposed by Ibarra and Kim in 1977 [19] for the scheduling
problem of independent tasks. Due to its accuracy and simplicity,
the algorithmhas beenused as a reference inmany research papers
since then [4,26,40] or as a component for the design of more
efficient algorithms [12,49,50].

The Min–min algorithm iteratively proceeds in three steps.
First, it finds the best machine assignment for each unassigned
task (the first ‘‘min’’). Here, best means minimal completion time.
Second, it chooses among all the previous possible assignments,
the one with the minimum completion time (the second ‘‘min’’).
Finally, it assigns that task to the corresponding machine. The
process continues until all tasks have been assigned.

Our proposed GPU implementation for the Min–min algorithm
is presented in Algorithm 1. The f <<< n >>>() notation
reflects the CUDA macros: it indicates that kernel f is launched
across n threads. The first step is the launch of the min_ct kernel.
For each task, a thread finds the best machine for a given task, by
selecting the machine with the minimum estimated completion
time. This kernel is launched with Tasks threads, because the
selection of the best machine can be conducted in parallel. Threads
of previously assigned tasks are also run, but immediately return
from the kernel. Then, the results are copied, from device memory
to a temporary area on device memory, for the parallel reduction.
The parallel reduction presented here (lines 5–9) is a simplified

Algorithm 1 Pseudo-code for Min–min heuristic on the GPU
1: for all Tasks of one solution do
2: min_ct <<< Tasks >>> (results) // Step 1
3: cudaMemcpy (results, temp, cudaMemcpyDeviceToDevice)
4: // Step 2: parallel reduction
5: n← 2
6: while Tasks/n ≥ 1 do
7: min_task <<< Tasks/n >>> (temp)
8: n← n× 2
9: end while

10: assign <<< 1 >>> (temp, solution) // Step 3
11: end for

version of the code actually used to identify the best (minimal)
task/machine assignment. Finally, one thread runs the assign
kernel to update the solution with the best assignment. When all
tasks have been assigned, the solution found can either be copied
to the host memory or kept into the device memory, depending if
the algorithm is run alone or as part of GraphCell. In the latter case,
the solution found by the heuristic is directly used by the parallel
CGA on the GPU, which is presented next.

4.2. Parallel synchronous CGA

GraphCell is a highly parallel synchronous cellular genetic
algorithm for GPU architectures. It uses two new recombination
operators. In order to study the effect of these operators, in
isolation and interaction, they are combined into a single operator.
The combination is called Uniform Proportional Recombination
(UPR). The two recombination operators of UPR are specifically
designed for algorithms implementing cellular topologies in
massively parallel architectures like GPUs. Indeed, we depart from
the usual design where one solution is evolved by a single GPU
thread. Instead, both recombination operators are run with one
thread per task of a solution. Also, each solution of the population
is recombined in parallel. This leads to a high number of threads,
especially when larger problem instances are experimented. The
details are presented in Algorithm 2, and a description is provided
below.

Fig. 3 shows how the recombination operators update each task
of a solution. The arrays shown represent the solutions, each cell
of the array corresponds to a task. The number in a cell of the
array is the machine to which this task is assigned (denoted by
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Fig. 3. Common design of the two parallel recombination operators.

the array’s index). The circled task of the center solution shows
the task being updated. Nine solutions are shown. The solutions
directly above, below, to right of, to the left of, the center solution
define the neighboring solutions. The other solutions are ignored
by both recombination operators. The newmachine assignment for
the circled task is computed by a dedicated thread (if Tasks is the
number of tasks of a solution, Tasks threads are run to compute the
new solution). The two proposed recombination operators follow
the same design: the offspring solution is generated by assigning
to each task, the machine of one of the neighboring solutions,
according to a proportionate selection mechanism. The operators
only differ in the criterion used for this selection:

• Fitness (UPRf ): we choose the assignment for each task
of one neighboring solution with a proportionate selection
mechanism based on the fitness of the solutions (i.e., the
probability for choosing one neighboring solution is given by
its fitness value over the sum of the fitness of all the neighbors).
Therefore, parent i will be chosen with probability:

PFSolutioni =
Fitness(Solutioni)

No. Solution
j=0

Fitness(Solutionj)

.

• Completion time (UPRct): we choose the assignment for each
task of one neighboring solution with a proportionate selection
mechanism based on the estimated time to complete on the
machine to which the considered task is assigned in the
neighboring solution. In this case, the probability of choosing
the assignment of neighboring solution i is:

PCTSolutioni =
ETCi,j

No. Solution
k=0

ETCk,j

,

where ETCi,j is the execution time of task j to the machine to
which it is assigned in neighboring solution i. This value is given
by the ETC matrix of the considered instance.

We study different combinations of these operators by defining
the probability (Psel) to apply the fitness based operator. The
probability to apply the completion time operator is 1 − Psel. This
decision is made for each task, and not for the entire solution.

The percentages shown in Fig. 3 highlight this selection
mechanism. From this description, we notice that the total number
of threads used for the recombination UPR is: population size
× solution size (which is the total number of tasks). This generates
a high number of lightweight threads (more than 106), which is
well suited to the GPU. Algorithm 2 presents the pseudo-code
for GraphCell. GraphCell, the Min–min heuristic and the CGA, is
executed only on the GPU.

GraphCell initializes the population of solutions randomly (with
a uniform distribution), except for one solution which is the result
of the Min–min heuristic, as presented in Section 4.1.

Algorithm 2 Pseudo-code of GraphCell
1: // Population initialization:
2: // First, initialize one solution with Min–min:
3: for all Tasks of one solution do
4: min_ct <<< Tasks >>> (results)
5: cudaMemcpy (results, temp, cudaMemcpyDeviceToDevice)
6: n← 2
7: while Tasks/n ≥ 1 do
8: min_task <<< Tasks/n >>> (temp)
9: n← n× 2

10: end while
11: assign <<< 1 >>> (temp, solution)
12: end for
13: // The rest of population is initialized randomly.
14: // The CGA:
15: while not stop_condition() do
16: neighborhood_prob <<< Pop >>> ()
17: upr <<< Pop× Tasks >>> ()
18: mutate <<< Pop >>> ()
19: fitness <<< Pop >>> ()
20: replace <<< Pop >>> ()
21: end while

UPR is implemented in the two GPU kernels neighborhood
_prob, and upr. Kernel neighborhood_prob computes the
probability for each solution in the neighborhood to be chosen
under fitness proportionality. This kernel is run by one thread
per solution, because the fitness is defined per solution. The
kernel upr randomly selects (with a uniform distribution) the
recombination operator (UPRf or UPRct) to apply for a task,
according to probability Psel. Then, the kernel randomly chooses
a task assignment among the same tasks of neighborhood
solutions, applying the proportionate selection mechanism. It
computes the different probabilities for the estimated completion
time proportionality, if needed, on demand because this is task
dependent. Kernel upr is run by one thread per task per solution,
because the assignment decision for a task is independent of
all the other tasks. The other kernels, mutate, fitness,
and replace are launched with one thread per solution.
Kernel mutate changes the assignment of a randomly chosen
task, to a randomly chosen machine. Kernel fitness computes
the makespan for the solution. Kernel replace replaces the old
solutionwith the newcomputed solution if it is notworse (in terms
of makespan). These last three kernels are standard operators in
genetic algorithms.

The stopping condition can either be a maximum number of
evaluations, or time (wall-clock).

5. Experimentation

In this section, we study the performance of the Min–min and
GraphCell algorithms. First, we describe in Section 5.1 the problem
instances generated for the simulations. Then, we evaluate in
Section 5.2 the GPU version of Min–min heuristic proposed.
We present in Section 5.3 the GraphCell configuration and its
performance (in terms of solution quality) on problem instances
ranging from512 tasks over 16machines, to 65,536 tasks over 2048
machines.

The computer used in the experiment is a Dell Precision T5400,
which includes two Intel Xeon E5440 processors (dual processor,
of 4 cores each), clocked at 2.83 GHz, with 16 GiB of main
memory. The computer runs the GNU/Linux operating system
Ubuntu Server (64-bit kernel, version 2.6.35-27). The GPU installed
on this computer is a Nvidia Tesla C2050, with CUDA driver version
3.20 (capability 2.0). This GPU holds 14 multi-processors (of 32
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Fig. 4. Speedup results of the GPU versus the equivalent sequential and parallel
CPU Min–min (logarithmic scale).

cores each), clocked at 1.15GHz, andwith a globalmemory of 2GiB.
All programs arewritten in C, except for the GPU kernels which are
written in CUDA C. The operating system’s Pthread library is used
for the multi-threaded versions of the parallel CPU versions.

5.1. Problem instances

As previously mentioned, Section 3, we assume that the
estimated computing time needed to perform each task on each
machine is known. The problem can therefore be represented by
the expected time to compute (ETC) model, as suggested by Braun
et al. [4].

We study six different instance sizes, specifically 512 × 16,
4096 × 128, 8192 × 256, 16,384 × 512, 32,768 × 1024, and
65,536 × 2048, where the first figure is the number of tasks and
the second the number of machines the tasks must be assigned
to. A machine is an independent computing unit, such as a core
in multi-core architectures.

The chosen problem instances are generatedwith high task and
machine heterogeneity,1 which we consider realistic. This reflects
different tasks and different processor types. Large problem
instances should reflect different processor types, as a cluster is
often the result of several machine acquisitions.

The instances were randomly generated (we created them as
described in [3], using R), therefore 20 different instances were
considered for every problem size in our experiments.

5.2. Performance evaluation of parallel Min–min

We evaluate in this section the performance of the parallel
Min–min design presented in Section 4.1. Because the Min–min
heuristic is a deterministic algorithm, and the parallel Min–min
performs exactly the same search as the sequential Min–min, we
only compare them by means of execution time. We implemented
three different parallel versions of the algorithm: two multi-
threaded CPU implementations, using 4 and 8 cores, and the GPU
implementation.

We show in Fig. 4 the speedup results of the different parallel
Min–min implementations. The speedup is measured as the time
the sequential Min–min takes on the CPU over the time of the
corresponding algorithm. Notice that the x axis is represented in
logarithmic scale. As it can be seen, the two parallel Min–min
algorithms scale well with the problem size, providing similar
speedup values for all of them. However, the algorithm does not

1 Instances available in: http://par-cga-sched.gforge.uni.lu/instances.

scale so well with the number of cores. This is probably due to
memory contention. As it can be seen, the parallelMin–min using 8
cores is always faster than the equivalent version with 4 cores, but
the average speedup increases from 4.024 to 5.918 when doubling
the number of cores from 4 to 8. It is worth emphasizing that
the parallel Min–min on 4 cores is achieving linear speedups in
average for the considered problem sizes. Additionally, we notice
that the algorithm performs super-linear speedups for the 8192
tasks instance: 7.11 for 4 cores and 10.67 for 8. We suspect this
is due to higher cache hit ratios thanks to memory sharing.

We now turn to the results of the GPU version. We can see
that its performance is clearly higher with respect to the CPU
versions, with speedups ranging from 9 for the smallest instance
to 538 for the biggest one (the sequentialMin–min algorithm takes
more than 3 days to find a solution for this instance). Additionally,
the algorithm scales well with the problem size, since the bigger
the problem, the higher the speedup obtained. Therefore, the
performance of the parallel GPUversionwith respect to the parallel
CPU ones is better when the problem size increases.

At this point, we shouldmention that the GPU version is slightly
different than the parallel CPU ones. They differ in the way the
second step of the Min–min algorithm is implemented, where it
searches for the task that is earlier accomplished among those
chosen in the first step. In the CPU version, tasks are iteratively
traversed to choose the earliest accomplished one, while in the
GPU algorithm this is donewith parallel reduction, benefiting from
the massively parallelization provided by the GPU, which requires
log2 Tasks iterations (cf., Section 4.1).

The GPU program only uses the global device memory,
therefore additional speedup may be achievable using the faster
GPUmemories, especially for the read only instancematrices. Also,
the default parameter settings for the cache size were used.

5.3. Performance evaluation of GraphCell

In this section, we investigate the performance of our new
highly parallel synchronous cellular genetic algorithm, GraphCell.
First, we detail in Section 5.3.1 the configuration used in the
algorithm. Then, Section 5.3.2 analyzes the performance results of
GraphCell.

5.3.1. Configuration of algorithms
Table 2 presents the configuration of the algorithms. The

population was set to 8× 8 solutions after some experimentation
with two other larger ones (16 × 16 and 32 × 32). The
population is randomly initialized, except for one solution that is
generated using the Min–min heuristic. The neighborhood used
is von Neumann, also called L5. The recombination operators
are combined into the new Uniform Proportional Recombination
(UPR). The solutions are encoded in an integer array of length the
number of tasks,where the content of a cell is themachine towhich
the task (denoted by the array index) is assigned. The mutation
operator consists of assigning a random machine to a task with
probability one over the number of tasks. Finally, new solutions
replace previous solutions in-place, if their fitness is less or equal
than the previous solutions. The execution stops after 100,000
generations (each solution is evolved 100,000 times).

5.3.2. Results
In this section, we analyze the quality of the solutions found

by GraphCell, across different problem sizes. The effect of each of
the two recombination operators is explored by varying the UPR
parameter Psel. When Psel = 1, then the fitness proportionate
selection is chosen (i.e., UPRf ). When Psel = 0, then the estimated
completion time proportionate selection is chosen (i.e., UPRct):
other values reflect the interaction of the two operators.

http://par-cga-sched.gforge.uni.lu/instances
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(a) 512 tasks× 16 machines. (b) 4096 tasks× 128 machines.

(c) 8192 tasks× 256 machines. (d) 16,384 tasks× 512 machines.

(e) 32,768 tasks× 1024 machines. (f) 65,536 tasks× 2048 machines.

Fig. 5. Improvement of best solution, compared to Min–min solution.

Table 2
Configuration for GraphCell.

Population size 8× 8 solutions
Population initialization 1 solution with Min–min and the rest random
Neighborhood von Neumann
Recombination Uniform Proportional Recombination (UPR)
Recombination probability pr = 1.0
Mutation Random
Mutation probability pm = 1.0/numberOfTasks
Replacement Replace if Better or Equal
Termination condition 100,000 generations

The results shown were obtained after 20 independent runs of
the algorithm, solving a different problem instance every time.

Fig. 5 shows the evolution of the improvement of the best so-
lution in the population (averaged over the 20 instances), com-
pared to the solution generated with the Min–min heuristic,
for the five different configurations of UPR. These configura-
tions are the different values of the Psel probability. These val-
ues are Psel = 1, 0.75, 0.5, 0.25, and 0. Therefore, these plots
show how the performance of the CGA part of GraphCell im-
proves upon Min–min with the five considered UPR configura-
tions. We can observe that increasing the weight of the fitness
proportionate operator improves the performance of the algo-
rithm. Indeed, from the first generations the algorithms using
Psel = 1 (this is UPRf ) and 0.75 are able to improve Min–min
solution by 3%, while the original algorithm with Psel = 0.5 is

not able to achieve this improvement in the 100,000 generations
allowed.

Therefore, GraphCell improves very quickly the initial Min–min
solution, and the improvement continues until the end of the run,
especially for the biggest instances.

It is well known that increasing the neighborhood size leads to
faster convergence speeds in cellular evolutionary algorithms [1].
Therefore we tried to accelerate the convergence speed of the
algorithm by employing a larger neighborhood, namely C13,
composed by the solution itself plus the 12 nearest ones in
Manhattan distance. We ran the GraphCell algorithm for 50,000
generations with the two neighborhood structures on the 20
instances of each of the problem sizes, but did not notice any
statistically significant differences (according to the unpaired
Wilcoxon signed rank test) on the quality of solutions found
(the p-values obtained were 0.4291, 0.718, 0.698, 0.57, and
0.5291 for the instances from smaller to larger, respectively).
However, the runtime of the program increased with the
neighborhood size.

We now plot in Fig. 6 the evolution of the average fitness
over the population for the GraphCell algorithm with the five
different UPR configurations. Since the population is initialized
with random solutions, except onewith theMin–min heuristic, the
initial average fitness is poor. We see that the results are similar to
the ones discussed in the previous experiment. The value of Psel has
a significant impact on the improvement of the population during
the run, and the larger the number of tasks to schedule, the more
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(a) 512 tasks× 16 machines. (b) 4096 tasks× 128 machines.

(c) 8192 tasks× 256 machines. (d) 16,384 tasks× 512 machines.

(e) 32,768 tasks× 1024 machines. (f) 65,536 tasks× 2048 machines.

Fig. 6. Improvement of fitness average across population, compared to fitness average across initial population.

important the difference with Psel = 1 is. With respect to the other
configurations, only for the smallest instances two of them are able
to perform significant improvements on the average quality of the
solutions in the initial population: Psel = 0.75 for 512 and 4096
tasks, and Psel = 0.5 for 512 tasks.

6. Conclusion and future work

In this paper, we presented the parallel Min–min heuristic for
the GPU, and GraphCell, an extension of the preliminary work
MPS–CGA, introduced in [38]. In that paper, we presented a new
GPU implementation of a CGA with a new recombination operator
for the scheduling problem. It was demonstrated to be faster and
more accurate than another highly specialized state-of-the-art
parallel CGA on the CPU, for most classes of small problem sizes.

In thiswork,we extendedour preliminary algorithmwith anew
design for a parallel implementation of Min–min algorithm both
on a multi-core CPU and a GPU. The design proposed in this work
is a fast and accurate state-of-the-art heuristic for scheduling of
independent tasks. The new GPU parallel Min–min provides high
speedup values and better scalabilitywith respect to the sequential
and multi-threaded versions.

Additionally, we explored the two recombination operators
designed for the GPU, and their interaction. In an extensive study,
five different configurations of these operators were analyzed,
and we discovered that the best performing operator was the

one relying on the fitness value of the solutions. Moreover, two
different neighborhoodswere studied, we did not find a significant
influence on the quality of the solutions. GraphCell uses this new
recombination operator and the GPU parallel Min–min algorithm
in the population initialization.

As future work, we are investigating the use of efficient local
search heuristics for this problem on the GPU. We believe that
adding a local search operator could help to improve our results,
as it is the case of most algorithms in the literature for this
problem. Also, the other GraphCell operators (i.e., mutation) could
be modified to exploit greater parallelism.
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