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Abstract. We study access control policies based on the says operator by introducing

a logical framework called Fibred Security Language (FSL) which is able to deal with

features like joint responsibility between sets of principals and to identify them by means

of first-order formulas. FSL is based on a multimodal logic methodology. We first discuss

the main contributions from the expressiveness point of view, we give semantics for the

language (both for classical and intuitionistic fragment), we then prove that in order to

express well-known properties like ‘speaks-for’ or ‘hand-off’, defined in terms of says, we

do not need second-order logic (unlike previous approaches) but a decidable fragment of

first-order logic suffices. We propose a model-driven study of the says axiomatization by

constraining the Kripke models in order to respect desirable security properties, we study

how existing access control logics can be translated into FSL and we give completeness for

the logic.
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1. Introduction

Access control is a pervasive issue in security: it consists in determining
whether the principal (a key, channel, machine, user, program) that issues
a request to access a resource should be trusted on its request, i.e., if it is
authorized. Authorization can be based in the simplest case on access control
lists (ACL) associated with resources or with capabilities held by principals,
but it may be complicated, for instance, by membership of groups, roles and
delegation. Thus, logics are often introduced in access control to express
policies and to enable reasoning about principals and their requests, and
other general statements.

In many cases first-order/propositional logic suffices, but it does not in
the case of distributed policies and delegation, e.g., “administrator says that
Alice can be trusted when she says to delete file1”: Alice speaks for the
administrator concerning the deletion of file1, thus she should be trusted
as much as the administrator.
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Logical approaches to comprehend, analyze, create and verify the policies
and control mechanisms used to protect resources have been extensively
studied in these years [1,3,7,8,17,22]. The interest of the community is also
underlined by a number of research projects that have applied these logics
for designing or motivating various languages and systems [4,6,10,25]. On
the other hand, as reported in [14], there have been only few, limited efforts
to study the logics themselves (e.g. [1,3,15]). In particular, the problems of
the axiomatization of the well-known says operator has been studied only
recently in [2,14]. Generally, the full expressiveness of the proposed logics
is reached by employing second-order formalisms, this is due to the need of
axiomatize important concepts like the speaks-for or hand-off [3,20].

In this paper we introduce a novel first-order multimodal logic for access
control in distributed systems called Fibred Security Language (FSL). The
contribution of FSL addresses the following research questions:

1. How to define a general language capable to embody and extend existing
access control logics?

2. How to formalize a logic which provides axiomatizations of security prop-
erties that avoids undesired side effects and which at the same time ensure
tractability?

Our methodology is centered on a first-order language based on the fib-
ring approach of Gabbay [13] and goes in the direction of having a method
to integrate different logics into a single system.

We use a multimodal approach to express axioms which in the litera-
ture have been expressed in (computationally intractable) second-order log-
ics within a first-order logic. The reduction from second-order to first order
can be of practical value in the objective of building theorem provers for
logics for access control.

In Section 2 we present the use of the says modality and we comment the
axioms of the says defined in [2]. In Section 3 we present FSL by showing its
expressiveness. Section 4 is devoted to the introduction and formalization
of the basic system FSL. In Section 5, we show how the second-order ax-
ioms introduced in Section 2 can be translated into first-order constraints on
the multimodal-kripke semantics of FSL, we also discuss models that have
desirable security properties. In Section 6 we study a particular fragment
of FSL in which access control policies are expressed by Horn clauses. In
Section 7 we discuss how FSL can be used as a framework to embody and
extend existing access control logics, as an example we translate the logic
SecPAL [7] into FSL. Section 8 ends the paper.
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2. Modality Axioms

In this section we first summarize how the says operator is used in access
control logics, and then we discuss which properties are desirable for this
operator and which are not by presenting several key axioms that have been
mainly studied in [2].

The access control logic we propose aims at distributed scenarios. Thus,
to express delegation among principals, it is centered, like the access control
logic of [21,22], on formulas such as “A says ψ” where A represents a princi-
pal, ψ represents a statement (a request, a delegation of authority, or some
other utterance), and says is a modality. Note that it is possible to derive
that A says ψ even when A does not directly utter ψ. For example, when
the principal A is a user and one of its programs includes ψ in a message,
then we may have A says ψ, if the program has been delegated by A. In
this case, A says ψ means that A has caused ψ to be said, that ψ has been
said on A’s behalf, or that A supports ψ.

We assume that such assertions are used by a reference monitor in charge
of making access control decisions for resources, like o. The reference monitor
may have the policy that a particular principal A is authorized to perform
Do(o). This policy may be represented by the formula: (A says Do(o)) →
Do(o), which expresses that A controls Do(o). Similarly, a request for
the operation on o from a principal B may be represented by the formula:
B says Do(o). The goal of the reference monitor is to prove (or check)
that these two formulas imply Do(o), and grant access if it succeeds. While
proving Do(o) the reference monitor does not need that the principal B
controls Do(o). Rather it may exploit relations between A and B and some
other facts. For example, it may knows that B has been delegated by A and
thus, that B speaks for A as concerns Do(o), in formulas:

(B says Do(o)) → (A says Do(o))

This simple example does not show the subtleties arising from the formal-
ization of the says operator, since expressing simple properties like control-
ling a resource or speaking for another principal may imply less desirable
properties, leading to security risks, or even to inconsistent or degenerate
logic systems [2].

Despite the pervasive employment of the says operator in several logics
for access control, only recently in [2] different axiomatizations of the says
have been studied and proposed. The objective is to explore the formal
consequences and the security interpretations of several possible axiomati-
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zations, and thus to help in identifying logics that are sufficiently strong but
not inconsistent, degenerate, or otherwise unreasonable.

Following we present the relevant axioms underlined in [2] notice that
some of them are second-order due to a quantification over formulas. In
Section 5 we will show how, by exploiting the multimodal approach of FSL,
we can translate them as first-order constraints on the kripke semantics. We
write �AX as an abbreviation for A says X, where X ranges over formulas.

1. B speaks for A (notation B ⇒ A):

∀X[�BX → �AX].

This is the fundamental relation among principals in access control logics.
If B ⇒ A, from the fact that principal B says something means that the
reference monitor [20] can believe that principal A says the same thing.
This relation serves to form chains of responsibility: a program may
speak for a user, much like a key may speak for its owner, much like a
channel may speak for its remote end-point.

2. Restricted speaks for

∀X[α(X) ∧ �BX → �AX]

where α(X) be any formula and X a new variable.

Restriction of “speaks for” is similar to the one [20] introduces. In par-
ticular, if α(X) = ϕ → X, then the above formula would refer to B
speaks for A on all consequences of ϕ [1].

3. A controls ψ, for some sepcified formula ψ

�Aψ → ψ

Intuitively it represents the direct control of A over a resource ψ. In this
view it is desirable not to have a principal which controls all formulas,
that is why we do not employ the universal quantifier.

4. Hand-off axiom

�A∀X[�BX → �AX] → ∀X[�BX → �AX]

or more briefly:

�A(B ⇒ A) → (B ⇒ A)



Fibred Security Language 399

Hand-off states that whenever A says that B speaks for A, then B does
indeed speaks for A. This axiom allows every principal to decide which
principals speak on its behalf, since it controls the delegation to other
principals.

Sometimes this axiom follows from logic rules as in [2], sometimes it
is assumed as an axiom. Note that the general axiom is too powerful,
and thus risky for security: for example when A represents a group: if
A controls (B ⇒ A) then any member of A can add members to A.
Thus, for instance, [3] does not adopt this axiom.

5. Unit

∀X[X → �AX]

Unit is stronger than the necessitation rule. In classical logic (but not
intuitionistic), adopting Unit implies that each principal either always
says the truth or it says false: (A → B) ∨ (B → A). In the first case A
speaks for any other principal, in the latter any other speaks for A. The
policies described by this kind of systems are too manicheist.

6. Escalation

∀X[�AX → X ∨ �AY ]

Escalation is not considered as a desirable property. It amounts to “if
A says ψ then ψ orA says anything”: from A says ψ, if ψ is not the
case, may follow a statement “much falser” than ψ. As an example of its
riskiness, consider that from (A controls ψ) ∧ (B controls ψ) it allows
to infer that if A says B says ψ then ψ follows. If the logic is not able
to avoid escalation, the only cumbersome solution is to make A avoid
saying that B says ψ unless he really wishes to say ψ. Thus we must be
careful that it does not follow from other properties (like from Unit in
classical logic).

According to [2] in classical logic, Unit implies Escalation. If we leave
out Unit we can rely on intermediate systems between the basic modal logic
and Escalation. For instance, one may require the standard axiom C4 from
modal logic (�A�AX → �AX) without obtaining Escalation. However,
these intermediate systems appear quite limited in their support of delega-
tion and related concepts.

In trying to have an expressing logic without Escalation as a theorem,
intuitionism seems to be the right semantics to employ. In fact, Abadi in
[2] propose a logic (CDD) based on second-order intuitionistic semantics
in order to have a sufficiently expressive logic without having dangerous
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consequences like Escalation. In Section 4.2 we present predicate FSL which
extends CDD expressiveness without using a second-order semantics.

3. The Fibred Security Language

From the expressivity point of view, FSL aims to extend previous logics
for access control by introducing joint responsibility between principals and
groups of principals as first-class citizen described by means of first-order
formulas.

Although these properties are employed in general languages to describe
policies [5], FSL is the first logical approach which embodies these features
within a coherent semantical formalization of the well-known says operator.

In FSL, we enrich first-order logic with formulas of the kind

{x}ϕ(x) says ψ (I)

where {x}ϕ(x) is a set-binding operator which represents the group com-
posed by all the principals that satisfy ϕ(x), says is a modal binary operator
and ψ is a general formula.

Intuitively, we read Formula I as: “The group composed by all the prin-
cipals that satisfy ϕ(x) supports ψ”.

In FSL is then possible to let principals jointly (as a group) support a
statement, which is a desirable feature in several access control models as
underlined in [5].

Previous approaches are limited in the representation of principals, in [21]
principals are propositional atoms distributed in a lattice-based structure
which can be combined with classical meet and join operators, in [7,17] a
formula can be supported by at most one principal and it is not possible
to make a group of principals jointly support a formula. In [22] groups of
principals can be described by propositional atoms but their employment is
limited to static and dynamic thresholds.

The proposed view on access control logics offers a general methodology
to define policies and freedom in crafting logics. In fact we can let ϕ(x)
and ψ belong to two different languages Lp and Le as language of principals
and security expressions respectively which refers to two different systems
(semantics).

For instance we can think of formulas in Lp be SQL queries and formulas
in Le be Delegation Logic [22] expressions.

In order to formally specify how to evaluate expressions like I, we formal-
ize the says modality by using the fibring methodology [13] which, depending
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on the chosen languages (and systems), provides a formal tool to combine
logics in a common framework which is coherent and does not collapse.

In this paper, to show the full expressiveness of our approach, we decide
to make Lp = Le = L, where L is a classical first order language, whereas the
relying system S is intuitionistic modal logic1; this is predicate FSL formally
presented in Section 4.2. This approach offers us to iterate the says modality
and to have extremely complex formulas in which free variables are shared
between different levels of nesting of the says. In fact, in Formula I, ϕ(x) and
ψ can share variables and ϕ may include occurrences of the says operator.

In the following we discuss the epressivity power of FSL by means of ex-
amples, for a complete formalization of the framework we refer to Section 4.

The formula {x}ϕ(x) is used to select the set of principals making the
assertion says. To select a single principal whose name is A we write:

{x}(x = A) says s

The following formula means that the group of users asks to delete file1:

{x}user(x) says delete(file1)

Since ϕ(x) and ψ can share variables, we can put restrictions on the
variables occurring in ψ. E.g., the set of all users who all own file(s) y asks
to delete the file(s) y.

α(y) = {x}(user(x) ∧ own(x, y)) says delete(y)

However, the formula above is satisfactory only in the particular situation
where we are talking about the set of all users who assert says at once as a
group (committee).

We can as well express that each member of a set identified by a formula
can assert says separately. E.g., each user deletes individually the files he
owns:

∀x(user(x) ∧ own(x, y)) → {z}(z = x) says delete(y)

Note that the latter formula usually implies the former but not vice versa2.

1To see why intuitionistic logic is preferred over classical we refer to Section 2.
2In fact, it could be sensible to have situations in which, if all the members of a group

say something then the whole group says it but not vice versa, formally

∀t(ϕ(t) → t says ψ) → {x}ϕ(x) says ψ

For instance, a committee may approve a paper that not all of its members would have
accepted.
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Operations on principals

We can express the fact that two principals A and B together says s:

{x}(x = A ∨ x = B) says s

which corresponds to

{A,B} says s

If we want to express that the intersection of two different kind of prin-
cipals (T1,T2) says ψ:

∃x(T1(x) ∧ T2(x)) → {y}(y = x) says ψ

For instance, T1 could be club member and T2 adult.

In this view we can also have negation in selecting principals:

{x}(x �= A) says s

Variables over principals

The possibility to have variables which range over principals allows first of
all attribute-based (as opposed to identity-based) authorization as in [7].
Attribute-based authorization enables collaboration between parties whose
identities are initially unknown to each other. The authority to assert that a
subject holds an attribute (such as being a student) may then be delegated
to other parties, who in turn may be characterized by attributes rather than
identity. In the example below, a shop gives a discount to students. The
authority over the student attribute is delegated to holders of the university
attribute, and authority over the university attribute is delegated to known
principal, the Board of Education (BE).

Shop says x is entitled to discount if x is a student.

Shop says (student(x) → {y}(x = y) controls discount)

Shop says x can say z is a student if x is a university

Shop says (university(x) → {y}(x = y) controls student(z))

Shop says that the Board of Education can say x is a university

Shop says (BE controls university(x))
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We may have more complicated policies involving more that two princi-
pals, like in the following example [22].

{y}(y = A) says ((({y}(y = C) says fraudulent(x))∧
{y}(y = D) says expert(C)) → fraudulent(x))

Since ϕ in {x}ϕ(x) says ψ can be any formula, it can contain even oc-
currences of the says operator. This allows to refer to principals who made
previous assertions of the says operator. For example, we can express the
following: the members of the board who said to write a file they own, ask
to delete it.

In symbols

{x}[{u}member-board(u) says ((member-board(x)∧
file-owner(y, x)) → write(y))] says delete(y)

Like in [7] delegation can be restricted to principals respecting some
requirements: Fileserver is a trusted principal who delegates file reading
authorizations only to the owners of files:

∀x own(x, y) → (Fileserver says ({z}(z = x) says read(y) →
Fileserver says read(y)))

Variables over principals allow width-bounded delegation. Suppose A
wants to delegate authority over is a friend fact to Bob. She does not care
about the length of the delegation chain, but she requires every delegator
in the chain to satisfy some property, e.g. to possess an email address.
Principals with the is a delegator attribute are authorized by A to assert
is a friend facts, and to transitively re-delegate this attribute, but only
amongst principals with a matching email address.

A says x can say y is a friend if x is a delegator

A says ((delegator(x) → ({y}(x = y) says friend(z))) → friend(z)

A says B is a delegator

A says delegator(B)

A says x can say y is a delegator if x is a delegator, y possesses email.

A says ((delegator(x) ∧ has-email(y)) →
({w}(w = x) controls delegator(y)))

As with depth-bounded delegation, this property cannot be enforced in
SPKI/SDSI, DL or XrML.
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Restrictions on says

Some authors restrict ⇒ to a set of propositions [19] P ⇒T Q means that
the proposition s in P says s → Q says s must belong to T .

We can put some restrictions on the variables:

({x}(user(x) ∧ owns(x, y)) says delete(y)) →
({z}(super-user(z)) says delete(y)

Moreover we can use the following to restrict the scope of speaks for:

α(X) ∧ �BX → �AX

If α(X) = ϕ → X then B speaks for A only on consequences of ϕ.
The restricted speaks for is strictly related with delegation, if for instance
B ⇒T A we say that B is delegated by A on T . If we want to limit the
delegation chain to one step such that we do not permit B to delegate another
principal C on T , we add the following constraint:

(C ⇒T B ⇒T A) → (C = B)

Separation of duties

One of the main concerns in security is the separation of duties: for ex-
ample the principal(s) signing an order cannot be the same principals who
approve it:

¬({x}({y}(x = y) says sign(project)) says

approving(project))

In this formula we exploit the possibility to define the principal in terms
of the says operator.

As noticed in [7] separation of duties requires using negation. For in-
stance, in FSL we can express the following: “A member m of the Program
Committee can not accept a paper P1 in which one of its authors says that
he has published a paper with him after 2007”

¬({m}[PC(m) ∧ {y}author of(y, P1) says ∃p(paper(p) ∧
author of(m, p) ∧ author of(y, p) ∧ year(p) ≥ 2007)] says accept(P1))
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Roles

When roles are considered, it emerges the question whether we consider roles
types or instances. We distinguish here among roles instances which can be
principals by themselves or properties of other principals. So a sentence like
“A, who plays a role x of type R, says ψ” becomes:

∀x(x = A ∧ role-played-by(x, y) ∧ R(y)) →
{z}(z = y) says ψ

As concerns hierarchies, if we have:

∀x super-user(x) → user(x)

then we may want to express the following constraint

∀x super-user(x) → ({z}(x = z) says s) →
(∀x user(x) → ({z}(x = z) says s)

In [3] if A says something in a role, then it is true that he is playing a role.
However, he admits that there should be some requirements to play a role.

For instance, we require that a super-user is a technician:

∀x super-user(x) → technician(x)

then we can say

∀x (x = A ∧ super-user(x)) → ({z}(x = z) says s)

but there can be no super-user x if A is not a technician.
Parameterized roles can add significant expressiveness to a role-based

system and reduce the number of roles [7,16,24]. If we model roles as in-
stances they can have attributes. For instance the example in [7] “NHS3 says
x can access health record of patient if x is a treating clinician of patient”
can be modeled as:

(clinician-role(x) ∧ patient(p) ∧ record(r, p) ∧ treats(x, p)) →
({w}(w = x) says access(r) → NHS says access(r)))

In FSL, we can model the operator used to represent a principal A in
the role B (A | B) in [3] in the following way.

(A | B) says s ≡ A says (B says s)

In order to match the predicate role-played-by with the above definition
we can add the following (where x is a role):

∀x, y role-played-by(x, y) → ((x says s) → y says ({z}(z = x) says s))

3National Health Service.
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Discretionary access control

Discretionary access control allows users to pass on their access rights to
other users at their own discretion. For instance we can express: “FileServer
says user can say x can access resource if user can access resource”[7]

∀x user(x) ∧ user(z) → (Fileserver says

{w}({y}(w = y = x) controls access(u)) controls

{t}(t = z) controls access(u))

Groups

In FSL you have to possibility to express how the set {x|ϕ(x) holds} says
what it says, e.g. If ϕ(x) = (x = A1) ∨ (x = A2) ∨ (x = A3) then if at least
one of {Ai} says ψ is enough for the group to say ψ we add:

{x}ϕ(x) says ψ ↔
∨

1≤i≤3

{x}(x = Ai) says ψ.

This represents the fact that each principal in the group can speak for
the whole group. We can as well express that every group has a spokesman
(maybe several ones dependent on issues), that one cannot be a spokesman
for two different groups and that a group controlling an issue cannot control
issues inconsistent with the definition of the group. We can define groups
using what they say as part of the definition, put restriction on what they
further say or control.

1. Every group has a spokesman.
This is an axiom schema in ϕ. Let spoke(ϕ, y) be

spoke(ϕ, y) = (∀X[{x}ϕ(x) says X ↔
{x}(x = y) says X])

We then take the axiom as ∃y spoke (ϕ, y).

2. One cannot be a spokesman for two different groups.

∀y[ spoke (ϕ1, y) ∧ spoke (ϕ2, y) →
∀x[ϕ1(x) ↔ ϕ2(x)]]

3. A group cannot control issues inconsistent with the definition of the group

� ϕ ∧ ψ → ⊥

� [({x}ϕ(x) says ψ) → ψ] → ⊥
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4. A group says ψ iff someone in the role of Board says ψ

{x}ϕ(x) says ψ ↔
∨
i

{x}(x = Ai)|Board says ψ.

5. A group says ψ iff someone with property P says ψ

{x}ϕ(x) says ψ ↔ (
∨
i

{x}(x = Ai) ∧ P (x)) says ψ.

The following additional axiom expresses that the group identified by
the extension of {x}ϕ(x) says ψ if at least two members says ψ:

{x}(
∨

i x = Ai) says ψ ↔∨
i�=j[{x}(x = Ai) says ψ ∧ {x}(x = Aj) says Aj]

More generally, majority voting in {x}ϕ(x) says ψ, is just an axiom.

{x}ϕ(x) says ψ ↔
∨
i

{x}ϕi(x) says ψ

where ϕi(x) are all formulas (∀xϕi(x) → ϕ(x)) defining majorities in the set
{x}ϕ(x).

Majority vote is an example of threshold-constrained trust SPKI/SDSI
[11]. The concept of k-of-n threshold subjects means that at least k out of n
given principals must sign a request and it is used to provide a fault tolerance
mechanism. RTT has the language construct of “threshold structures” for
similar purposes [39]. As in SecPAL [7] there is no need for a dedicated
threshold construct, because threshold constraints can be expressed directly.

4. The basic system FSL

This section introduces our basic system FSL step by step from a semantical
point of view. First, in Section 4.1 we introduce modalities indexed by
propositional atoms, then we take into account classical and intuitionistic
models for the propositional setting and finally, in Section 4.2, we give a
fibred semantics for modalities indexed by first-order formulas.

The FSL system can be defined with any logic L as a Fibred Security

System based on L. We will motivate the language for the cases of L =
classical logic and L = intuitionistic logic.

Basically adding the says connective to a system is like adding many
modalities. So to explain and motivate FSL technically we need to begin
with examining options for adding modalities to L.
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4.1. Adding modalities

We start by adding modalities to classical propositional logic. We are go-
ing to do it in a special way. The reader is invited to closely watch us
step-by-step,

Our approach is semantic.
Let S be a nonempty set of possible worlds. For every subset U ⊆ S

consider a binary relation RU ⊆ S × S.
This defines a multimodal logic, containing at most 2S modalities �U ,

U ⊆ S. The models are of the form (S,RU , t0, h), U ⊆ S. In this view,
if U = {t|t � ϕU} for some ϕU we get a modal logic with modalities indexed
by formulas of itself. This requires now a formal definition.

Definition 4.1 (Language). Consider (classical or intuitionistic) proposi-
tional logic with the connectives ∧,∨,→,¬ and a binary connective �ϕψ,
where ϕ and ψ are formulas.4 The usual definition of wff is adopted.

Definition 4.2. We define classical Kripke models for this language.

1. A model has the form

m = (S,RU , t0, h), U ⊆ S

where for each U ⊆ S,RU is a binary relation on S. t0 ∈ S is the actual
world and h is an assignment, giving for each atomic q a subset h(q) ⊆ S.

2. We can extend h to all formulas by structural induction:

• h(q) is already defined, for q atomic

• h(A ∧ B) = h(A) ∩ h(B)

• h(¬A) = S − h(A)

• h(A → B) = (S − h(A)) ∪ h(B)

• h(A ∨ B) = h(A) ∪ h(B)

• h(�ϕψ) = {t| for all s (tRh(ϕ)s → s ∈ h(ψ))}

3. m � A iff t0 ∈ h(A).

Let us now do the same for intuitionistic logic. Here it becomes more
interesting. An intuitionistic Kripke model has the form

m = (S,≤, t0, h),

4There are many such connectives, e.g. ϕ says ψ,ϕ > ψ (conditional), ©(ϕ/ψ) relative
obligation, etc. The semantics given to it will determine its nature.
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where (S,≤) is a partially ordered set, t0 ∈ S and h is an assignment to the
atoms such that h(q) ⊆ S. We require that h(q) is a closed set, namely

x ∈ h(q) and x ≤ y ⇒ y ∈ h(q)

Let D be a set, we can add for each U ⊆ D a binary relation RU on S. This
semantically defines an intuitionistic modality, �U .

In intuitionistic models we require the following condition to hold for
each formula A, i.e. we want h(A) to be closed:

x ∈ h(A) and x ≤ y ⇒ y ∈ h(A)

This condition holds for A atomic and propagates over the intuitionistic
connectives ∧,∨,→,¬,⊥. To ensure that it propagates over �U as well, we
need an additional condition on RU . To see what this condition is supposed
to be, assume t � �UA. This means that

∀y(tRUy ⇒ y � A)

Let t ≤ s. If s �� �UA, then for some z such that sRUz we have z �� A.
This situation will be impossible if we require

t ≤ s ∧ sRUz ⇒ tRUz (∗)

Put differently, if we use the notation:

R′
U (x) = {y|xRUy}

then
x ≤ x′ ⇒ R′

U (x) ⊇ R′
U (x′) (∗)

We now want to concentrate on what happens if U is defined by a for-
mula ϕU , i.e. U = h(ϕU ). This will work only if U is closed

• t ∈ U ∧ t ≤ s ⇒ s ∈ U .

So from now on, we talk about modalities associated with closed subsets of S.
We can now define our language. This is the same as defined in Defini-

tion 4.1. We now define the semantics.

Definition 4.3. A model has the form

m = (S,≤, RU , t0, h), U ⊆ S

where (S,≤) is a partial order, t0 ∈ S, and each U ⊆ S is a closed set and so
is h(q) for atomic q. RU satisfies condition (*) above. We define the notion
t � A for a wff by induction, and then define

h(A) = {t|t � A}
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So let’s define �:

• t � q iff t ∈ h(q)

• t � A ∧ B iff t � A and t � B

• t � A ∨ B iff t � A or t � B

• t � A → B iff for all s, t ≤ s and s � A imply s � B

• t � ¬A iff for all s, t ≤ s implies s �� A

• t �� ⊥

• t � �ϕψ iff for all s such that tRh(ϕ)s we have s � ψ. We assume by
induction that h(ϕ) is known.

• m � A iff t0 � A.

It is our intention to read �ϕψ as ϕ says ψ.

4.2. Predicate FSL

Intuitively, a predicate FSL fibred model is represented by a set of mod-
els linked together by means of a fibring function, every model has an as-
sociated domain D of elements together with a set of formulas that are
true in it. In the FSL meta-model, the evaluation of the generic formula
α = {x}ϕ(x) says ψ is carried out in two steps, first evaluating ϕ and then
ψ in two different models. Suppose m1 is our (first order) starting model
in which we identify U ⊆ D as the set of all the elements that satisfy ϕ.
Once we have U we can access one or more worlds depending on the fibring

function f : P(D) → P(M) which goes from sets of elements in domain D
to sets of models. At this point, for every model mi ∈ f(U) we must check
that ψ is true, if this is the case then α is true in the meta-model.

The fact that in the same expression we evaluate different sub-formulas
in different models is the core idea of the fibring methodology [13]. Think
about a group of administrators that have to set up security policies for their
company. From a semantical point of view, if we want to check if ψ holds in
the depicted configuration by the administrators, we must

1. Identify all the admins (all the elements that satisfy admin(x)).

2. Access the model that all the admins as a group have depicted.

3. Check in that model if ψ is true or false
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Let L denote classical or intuitionistic predicate logic.5 We assume the
usual notions of variables, predicates, connectives ∧,∨,→,¬, quantifiers ∀,∃
and the notions of free and bound variables.

Let L+ be L together with two special symbols:

• A binary (modality), says

• A set-binding operator {x}ϕ(x) meaning the set of all x such that ϕ(x)

Note that semantically at the appropriate context {x}ϕ(x) can behave like
∀xϕ(x) and sometimes in other contexts, we will use it as a set.

Definition 4.4. The language FSL has the following expressions:

1. All formulas of L+ are level 0 formulas of FSL.

2. If ϕ(x) and ψ are formulas of L+ then α = {x}ϕ(x) says ψ are level 1
‘atomic’ formulas of FSL. If (x, x1, . . . , xn) are free in ϕ and y1, . . . , ym

are free in ψ then {x1, . . . , xn, y1, . . . , ym} are free in α. The variable x
in ϕ gets bound by {x}. The formula of level 1 are obtained by closure
under the connectives and quantifiers of L+.

3. Let ϕ(x) and ψ be FSL formulas of levels r1 and r2 respectively, then α =
{x}ϕ says ψ is an ‘atomic’ formula of FSL of level r = max(r1, r2) + 1.

4. Formulas of level n are closed under classical logic connectives and quan-
tifiers of all ‘atoms’ of level m ≤ n.

Definition 4.5 (FSL classical fibred model of level n).

1. Any classical model with domain D is a FSL model of level 0.

2. Let m be a classical model of level 0 with domain D and let for each
subset U ⊆ D, fn(U) be a family of models of level n (with domain D).
Then (m, fn) is a model of level n + 1.

Definition 4.6 (Classical satisfaction for FSL). We define satisfaction of
formulas of level n in classical models of level n′ ≥ n as follows.

First observe that any formula of level n is built up from atomic pred-
icates of level 0 as well as ‘atomic’ formulas of the form α = 〈{x}ϕ(x)〉ψ,
where ϕ and ψ are of lower level.

We therefore first have to say how we evaluate (m, fn) � α.
We assume by induction that we know how to check satisfaction in m of

any ϕ(x), which is of level ≤ n.

5Classical predicate logic and intuitionistic predicate logic have the same language. The
difference is in the proof theory and in the semantics.
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f(UE(y))

f(UB)
m3:

m2:

D

m1: UB

UE(y)

D

Figure 1.

We can therefore identify the set U = {d ∈ D | m � ϕ(d)}.
Let m′ ∈ fn(U). We can now evaluate m′ � ψ, since ψ is of level ≤ n−1.
So we say

(m, fn) � α iff for all m′ ∈ fn(U), we have m′ � ψ.

We need to add that if we encounter the need to evaluate m � {x}β(x),
then we regard {x}β(x) as ∀xβ(x).

Example 4.7. Figure 1 is a model for

α(y) = {x}[{u}B(u) says (B(x) → A(x, y))] says F (y)

In Figure 1, m1 is a single model in f1(UB) and m3 is a single model in
f1(UE(y)), as defined later.

The set UB is the extension of {x}B(x) in m1.
To calculate the set of pairs (x, y) such that E(x, y) = {u}B(u) says

(B(x) → A(x, y)) holds in m1, we need to go to m2 in f(UB) and check
whether B(x) → A(x, y) holds in m2, x, y are free variables so we check the
value under fixed assignment.

We now look at E(y) = {x}E(x, y) for y fixed, we collect all elements d
in D such that m2 � B(d) → A(d, y). Call this set UE(y).

To check α(y) = {x}E(x, y) says F (y) in m1 we have to check whether
F (y) holds in m3.
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We now define intuitionistic models for FSL. This will give semantics for
the intuitionistic language.

Definition 4.8. We start with intuitionistic Kripke models which we as-
sume for simplicity have a constant domain. The model m has the form
(S,≤, t0, h,D) where D is the domain and (S,≤, t0) is a partial order with
first point t0 and h is an assignment function giving for each t ∈ S and each
m-place atomic predicate P a subset h(t, P ) ⊆ Dm such that t1 ≤ t2 ⇒
h(t1, P ) ⊆ h(t2, P )

We let h(P ) denote the function λt h(t, P ). For t ∈ S let

St = {s | t ≤ s}
h(t, P ) = h(P ) � St

≤t=≤� St

Where � represents the standard domain restriction.
Let mt = (St,≤t, t, ht,D).
Note that a formula ϕ holds at m = (S,≤, t0, h,D) iff t0 � ϕ according

to the usual Kripke model definition of satisfaction.

1. A model of level 0 is any model m: m = (S,≤, t0, h,D).

2. Suppose we have defined the notion of models of level m ≤ n, (based on
the domain D).

We now define the notion of a model of level n + 1
Let m be a model of level 0 with domain D. We need to consider not only

m but also all the models mt = (St,≤t, t, ht,D), for t ∈ S. The definitions
will be given simultaneously for all of them.

By an intuitionistic ‘subset’ of D in (S,≤, t0, h,D), we mean a function d

giving for each t ∈ S, a subset d(t) ⊆ D such that t1 ≤ t2 ⇒ d(t1) ⊆ d(t2).
Let fn

t be a function associating with each dt and t ∈ S a family fn
t (dt)

of level n models, such that t1 ≤ t2 ⇒ fn
t1

(dt1) ⊇ fn
t2

(dt2). Then (mt, ft) is a
model of level n + 1 where dt = d � St.

Definition 4.9 (Satisfaction in fibred intuitionistic models). We define sat-
isfaction of formulas of level n in models of level n′ ≥ n as follows.

Let (mt, f
n
t ) be a level n model. Let α = {x}ϕ(x) says ψ is of level n.

We assume we know how to check satisfaction of ϕ(x) in any of these models.
We can assume that

dt = {x ∈ D | t � ϕ(x) in (mt, f
n
t )}

is defined. Then t � α iff for all models m′
t in fn

t (dt) we have m′
t � ψ.
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5. Kripke Models for Axioms

In this section we show one advantage in employing the multimodal seman-
tics. First, we translate the most important second-order axioms appeared
in [2] to first-order constraints on the kripke models. Then discuss models in
which we have desirable security axioms like Unit and C4, but not necessary
Escalation.

Example 5.1 (Two intuitionistic modalities). Let us examine the case of
two intuitionistic modalities in more detail, call them �A and �B and their
accessibility relations RA and RB . So our Kripke model has the form
(S,≤, RA, RB , t0, h). We know for µ = A or µ = B that we have in
the model

t ≤ s ∧ sRµz → tRµz. (∗)

What other conditions can we impose on �µ?

1. The axiom Unit X → �µX
corresponds to the condition

xRµy → x ≤ y (∗1)

2. The axiom C4 �A�Ax → �A

corresponds to the condition, for finite models6

xRAy ∧ yRAz → zRAy

3. The axiom speaks-for �BX → �AX
corresponds to the condition

xRAy → xRBy (∗2)

4. Note that �BX → �AX is taken in (*2) as an axiom schema. If we want
to have t � ∀X(�BX → �AX) i.e. we want �Bϕ → �Aϕ to hold at the
point t ∈ S for all wff ϕ, we need to require (*2) to hold above t, i.e.

∀x, y(t ≤ x ∧ xRAy → xRBy) (∗3)t

5. Consider now an axiom called hand-off A to B.

�A(∀X(�BX → �AX)) → ∀X(�BX → �AX)

6For infinite models, C4 gives you density of the accessibility relationship.
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This axiom has a second order propositional quantifier in it.
The antecedent of the axiom wants �A(∀X�BX → �AX)) to hold at t0.
This means in view of (3) above that (∗4a) needs to hold

∀t(t0RAt → (∗3)t) (∗4a)

The axiom says that if the antecedent holds at t0 so does the conse-
quent, i.e.

t0 � ∀X(�BX → �AX).

We know the condition for that to hold is (∗3)t0 . Thus the condition for
Hand-off A to B is

∀t[t0RAt → (∗3)t] → (∗3)t0 (∗4)

The important point to note is that although the axiom is second order
(has ∀X in it both in the antecedent and consequence), the condition on
the model is first order7.

6. Concerning Escalation:

�AX → X ∨ �A⊥

its condition is
∃y(xRAy) → xRAx (∗5)

To check whether we can have hand-off from A to B without escalation
for A, for some choice of RA and RB , we need to check whether we can
have (*4) without having (*5), for some wise choice of RA and RB.

7. Consider a Kripke model (S,≤, t0) which is nonending and dense, i.e.

• ∀x∃y(x � y)

• ∀xy(x � y → ∃z(x � z � y))

In this model let
xRAy be x � y
xRBy be x ≤ y.

We have here that (∗3)t holds for any t because it says

∀xy(t ≤ x ∧ x � y → x ≤ y)

Therefore (*4) also holds. This is hand-off from A to B.
However, escalation does not hold because

∃y(x � y) → x � x

is false.

7Notice that we use first-order but we get a language more expressive than CDD[2]
which is second-order.
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Definition 5.2. Let (S,≤, t0, h) be a Kripke model. By a modal function E

we mean a function giving to each point t ∈ S a set of points E(t) such that

1. t � s for all s ∈ E(t).

2. t1 ≤ t2 → E(t1) ≤ E(t2) where E(t1) ≤ E(t2) means ∀x ∈ E(t2)∃y ∈
E(t1)(y ≤ x).

3. x ∈ E(t) ∧ x ≤ y → y ∈ E(t)

The intention is that t |= �ψ iff for all s ∈ E(s), s |= ψ. The conditions on
E(t) ensure that the axiom (Unit) A → �A holds.

Definition 5.3. (S,≤, t0,E) is E-dense iff the following holds:

• If x ∈ E(t), then for some y, y ∈ E(t) ∧ x ∈ E(y) 8.

In the following, in order to show the existence of dense systems, we
present some representative kripke models.

Example 5.4 (Dense Kripke Models). Let (T,<) be a dense order, for ex-
ample it can be the rational numbers with usual ordering of “smaller than”.
We construct two modal models out of (T,<) by adding two different pos-
sible sets E for it.

1. Let f be an increasing function such that

(a) x < f(x)

(b) x < y → f(x) < f(y)

For each t, let Ef (t) be

Ef (t) = {s | f(t) < s}

For example we can take f(t) = t + 1

2. For each t, let

E2(t) = {s | t < s}

Let m1 be the model (T,<,Ef ) and m2 be the model (T,<,E2)

Theorem 5.5. The C4 axiom ��A → �A fails in m1 and holds in m2.

8Notice that this corresponds to axiom C4 ��A → �A
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t

f(t)

f(f(t))

Figure 2.

Proof. Consider Figure 2. First we show that C4 holds in m2.
Assume t |= ��A. We show t |= �A, let t < s, show s |= A. Choose

y such that t < y < s, then since t |= ��A, we have y |= �A and hence
s |= A.

We now show density C4 fails in m1.
Consider Figure 2 and let A hold from after f(f(t)). Then t |= ��A,

since f(t) |= �A.
However, t �|= �A, because there are points y such that f(t) < y < ff(t)

and at such points, y �|= A.

The model m2 is very simple, it satisfies the axiom A ∨ �(B → A).
We want a general model of density which has no additional commitments.
For this purpose we combine the models m1 and m2 in a certain way.

Example 5.6 (Special Model). We construct a special model that will satisfy
C4. We start with the model m1 of Example 5.4. This model does not satisfy
C4 but it is also not dense. So we correct this by combining it with m2,
add points and make it dense. Our starting point is the model (T,<, f) of
example 5.4. The problem is illustrated in Figure 3, the point y between f(t)
and ff(t) is not reachable by any wff of the form ��A but it is reached by
�A. So by making true from f(f(t)) and A false at y, we get that ��A = �
but �A =⊥.

What we need is another copy of the linear order (T,<, f) leading side-
ways from t to y, as shown in the Figure 3. Call the main linear order
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t

f(t)

y

f(f(t))

Another dense
copy T(t,y)

Figure 3.

(T,<, f). Then we can call the copy running from t to y by (T(t,y), <(t,y), f(t,y))
which is an identical copy but we have many such pairs (t, y) and we need
to keep good accounting.

Now in T(t,y), we have the same problem. We will have points t1, y1 such
that f(t,y)(t1) < y1 < f(t,y)(f(t,y)(t1)). So we need another copy of (T,<, t) to
go from t1 to y1, as in Figure 4. We call this copy T(t,y)(t1 ,y1). This process
can continue a countable numbers of times for any pairs (t,y). At the end
we get a dense order satisfying C4, without any additional specific axioms
holding.

However if we want to do the job in one step we need to take for T(t,y) a
model which has no problems at all with density, namely the model m2. If
we do that then some additional axioms will hold but we get a simple and
quick construction. So let’s go for it.

We said (T,<) can be the rational numbers with the usual ordering. It
helps us to actually take the rationals and make f more specific. So let
f(t) = t + 1, for each pair of points (t, y) such that t < f(t) = t + 1 < y let
g(t, y) = (f(t) + y)/2 = (t + 1 + y)/2

Then we have the situation in Figure 5. Let us extract from the partic-
ulars of (T,<) and regard it as a dense linear ordering without a first and
without a last element. Viewed as such let us call it τ = (T,<, f). We let
τ∗ be (T,<, f ,g) where g satisfies abstractly the following properties:

• t < f(t) < y implies f(t) < g(t, y) < y

• f(t) < y1 < y2 implies g(t, y1) < g(t, y2)
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t

f(t)
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f(f(t))

t1

f(t,y)(t1)

y1

f(t,y)f(t,y)(t1)

Figure 4.

Later on we would want copies of τ and τ∗ to be used in various con-
texts. We write τ1 = (Ti, <i, fi) to indicate the i − th isomorphic copy of τ .
Similarly τ∗

i .
Now, with each pair (t, y) such that f(t) < y, let

T(t,y) = {(t, y, z) | t < z < g(t, y)

and define <(t,y) on T(t,y) by

(t, y, z) <(t,y) (t, y, z′) iff z < z′

In the abstract we can take a copy τ(t,y) of τ instead of the specific T(t,y).
Now let our new model (S,R) have as set of worlds S and relation R

defined as follows.

• S = T ∪
⋃

f(t)<y T(t,y)

• R is the transitive closure of R1, which is the union of the following four
components

1. < on T

2. <(t,y) on T(t,y), for t < y

3. {(t, (t, y, z)) | z ∈ T(t,y)}

4. {((t, y, z),g(t, y)) | z ∈ T(t,y)}

Figure 6 explains the ordering. The direction of the upward arrow gives
the order. To turn (S,R) into a modal model we need to define E(t), for
any t ∈ S
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t

f(t)

g(t, y)

y

Figure 5.

1. E(t,y,z), for z ∈ T(t,y) is defined as

E(t, y, z) = {s | (t, y, z)Rs}

In Figure 6, E(t, y, z) are all points above (t, y, z) in T(t,y) and then
the point g(t, y) in T and all points above it in T .

2. E(t), for t ∈ T is defined as the transitive R closure of all points in
T above f(t) as well as all points in T(t,y) for any f(t) < y

for (t ∈ T ),E(t) =
⋃

f(t)<y

T(t,y) ∪ {z ∈ T | f(t) < z}

Note that any x ∈ T such that t < x < f(t) is not in E(t), nor is any
(x, y, z) ∈ T(x,y), for any f(x) < y. This completes the definition of
the model m = (S,R,E)

Theorem 5.7 (Density of the special model). The special model of Example

5.4 satisfies the density condition of Definition 5.3.

Proof. Assume x ∈ E(t), we are looking for a y ∈ E(t) such that x ∈ E(y).
We make a case analysis based on Figure 6:

• case 1: t ∈ T and for some x′ ∈ T we have x ∈ T(x′,u), for f(x′) < u, or
x = x′ In this case any (t, y, z) ∈ T(t,x′) will do the job.

• case 2: t ∈ T and x ∈ T(t,y) then any y ∈ T(t,y) such that tRy ∧ yRx
will do.
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Figure 6.

• case 3: t ∈ T(s,y), then x ∈ E(t) iff tRx and t �= x and so any y such that
tRy ∧ yRx will do

The above exhaust all cases and we get that the model is dense.

Remark 5.8. In models of Definition 5.3 we have Unit and C4 hold but not
necessarily Escalation.

6. FSL using Horn clauses

Many authorization logics rely on Datalog databases to carry out computa-
tion [9]. In [23] it has also been argued that Datalog with constraints could
be seen as the logical foundation for trust management. We reject this view
by underlining that there exist very expressive access control logics that do
not employ Datalog [17,18].

More generally, ordinary logic programs rely on Horn clauses which are
interesting mainly for their computational tractability. We now show that a
fragment of FSL can be seen as an ordinary logic program.

Suppose we want to reason on ACL policies expressed with horn clauses
of the form

b1 ∧ b2 ∧ b3 . . . ∧ bn → h1
9

9Depending on the application, Horn clauses can be propositional or first-order.
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Then we can stick to formulas like

{x}H1(x) says H2 (∗)

where H1 is an horn clause with no free variables in the body, whereas H2
are general Horn clauses. From a semantical perspective, we have that for
each model we have a domain D and a list of horn clauses that are true in
the model. Suppose we want to evaluate (*) in a model m1 with domain D,
H1 is then used to select U ⊆ D

U = {d ∈ D| |= H1(d)}

and H2 is checked to be true in all models mi ∈ f(U).

The previous formula has a structure that is the same as a classical first
order Horn clause, for instance, if we have for a world m:

m |= {x}(
∧
i

ϕi → ϕ(x))

︸ ︷︷ ︸
B1

says (
∧
i

ψj → ψ)

︸ ︷︷ ︸
H1

(II)

which is true iff

∀n (mR{x}H1n → n |=
∧
j

ψj → ψ) (III)

that, translated into a classical first-order formula becomes

∀n (mR{x}B1∗n → [
∧
j

ψ∗
j (n) → ψ∗(n)]) (IV)

Generally if we have t |= ψ(x, y) we can translate this into a pure first-order
formula with ψ∗(t, x, y) where ψ∗(t, x, y) is obtained from ψ(x, y) adding t
as a free variable which represents the world into which ψ(x, y) is forced.
Notice that the equation IV below is an horn clause, in fact by considering
n as a free variable we have

mR{x}B1∗n
∧
j

ψ∗
j (n) → ψ∗(n) (V)

so we can consider FSL formulas of the kind �B1 says H1 as comparable
with an horn clause.
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7. The FSL Methodology

From a methodological perspective, FSL introduces concepts that can be
easily exploited to strengthen existing authentication logics appeared in the
literature. The main aim of this section is to take into account a represen-
tative case study in order to show how the key ideas of the FSL semantics
can be employed to enrich some well-know authentication logics. As already
underlined in Chapter 3, with the FSL methodology we introduce a language
in which formulas have the form:

�ϕψ

in which we identify two (not necessarily different) languages Lp and LE

such that ϕ ∈ Lp and ψ ∈ LE. The meaning of the formula above is that all
the principals in a given domain that satisfy ϕ support ψ.

Now take an authorization logic Q with language LQ, we can extend it
applying the FSL methodology looking at �ϕψ in two different ways:

1. Let ψ ∈ LE = LQ and ψ ∈ Lp where expressions in Lp are classical
first-order formulas used to index principals.

2. We first translate expressions of LQ into predicate FSL language with
the modal operator says such that Lp = Le = LFSL. Where LFSL in
the language used in predicate FSL.

In the following we refer to extensions 1 and 2 as T-extension (Trivial
extension) and C-extension (Complete extension) respectively. Case by case,
depending on the logic that we are studying, it could be sensible to carry out
both extensions. It must be underlined that the extensions are incremental
so a logic extended with the complete methodology is more expressive than
a logic extended with the trivial one.

7.1. The SecPAL case study

In this section we briefly present SecPAL [7] a declarative authorization lan-
guage that strikes a careful balance between syntactic and semantic simplic-
ity, policy expressiveness, and execution efficiency. Then we extend SecPAL
with FSL using the C-extension methodology.

SecPAL’s syntax is close to natural language, and the semantics consists
of just three deduction rules. The language can express many common pol-
icy idioms using constraints, controlled delegation, recursive predicates, and
negated queries. The execution strategy is based on translation to Datalog
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with Constraints, and table-based resolution. In [7] it is proven that the exe-
cution strategy is sound, complete, and always terminates, despite recursion
and negation, as long as simple syntactic conditions are met.

In SecPAL formulas are expressed by mean of assetions of the following
shape:

A says fact if fact1, . . . , factn, c

where A is called the issuer, facts are sentences that state properties on
principals, fact1, . . . , factn are called conditional facts and c is a constraint
of the free variables that appear in the assertion. Assertions are similar
to Horn clauses, with the difference that (1) they are qualified by some
principal A who issues and vouches for the asserted claim; (2) facts are
nested, using the verb phrase can say, by means of which delegation rights
are specified; and (3) variables in the assertion are constrained by c, a first-
order formula that can express e.g. temporal, inequality, path and regular
expression constraints.

SecPAL, in addition to the says operator, has two other constructs: can

say and can act as. Intuitively, the assertion:

Alice says x can say can read(y, file1) if
can read(x, dir), f ile1 ≤ dir,marked confidential(file1) �= Y es

means that Alice delegates a principal x to have the right to let a principal
y read file1 if x has read access to the directory dir which contains file1,
due that file1 is not marked as confidential. In the assertion above the can

say express a delegation property, i.e. y can speak for x on reading file1.
Relating the construct can act as, the following SecPAL assertion:

A says B can act as C

intuitively represents the fact that from A point of view every fact concerning
C also apply to B.

SecPAL semantics

We now describe the formal semantics of SecPAL which consists of three de-
duction rules that directly reflect the intuition suggested by the syntax. This
proof-theoretic approach enhances simplicity and clarity even if in practice
the semantics is not used in the query computation, this is due to the fact
that SecPAL programs are first translated into Datalog and then evaluated10.

10For a complete description of the evaluation process and Datalog translation see [7].
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Let a substitution θ be a function mapping variables to constants and
variables, and let ε be the empty substitution. Substitutions are extended
to constraints, predicates, facts, claims, assertions etc. in the natural way,
and are usually written in postfix notation. We write vars(X) for the set of
free variables occurring in a phrase of syntax X.

Each deduction rule consists of a set of premises and a single consequence
of the form AC,D |= A says fact where vars(fact) = ∅ and the delegation
flag D is 0 or ∞. Intuitively, the deduction relation holds if the consequence
can be derived from the assertion context AC. If D = 0, no instance of the
rule (can say) occurs in the derivation11.

(cond)

(A says if fact1, . . . , factn, c) ∈ AC
AC,D |= A says factiθ for all i ∈ {1 . . . k}
|= cθ vars(factθ) = ∅

AC,∞ |= A says factθ

(can say)

AC,∞ |= A says B can sayD fact
AC,D |= B says fact

AC,∞ |= A says fact

(can act as)

AC,D |= A says B can act asC
AC,D |= A says C verbphrase

AC,D |= A says B verbphrase

Rule (cond) allows the deduction of matching assertions in AC with
all free variables substituted by constants. All conditional facts must be
deducible with the same delegation flag D as in the conclusion. Furthermore,
the substitution must also make the constraint ground and valid.

Rule (can say) deduces an assertion made by A by combining a can say

assertion made by A and a matching assertion made by B. This rule applies
only if the delegation flag in the conclusion is ∞. The matching assertion
made by B must be proved with the delegation flag D read from A’s can say

assertion. Therefore, if D is 0, then the matching assertion must be proved
without any application of the (can say) rule. If on the other and D is ∞,
then B can redelegate. Note that by nesting the can say0 operator, we can

11So D si a parameter which limits the delegation depth.
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limit the delegation depth. In the following Alice delegates the authority
over is a friend fact to Bob and allows Bob to re-delegate at most one level
further.

Alice says Bob can say0 firend(x)
Alice says Bob can say0 x can say0friend(y)

Rule (can act as) asserts that all facts applicable to C also apply to B,
when B can act as C is derivable. A corollary is that can act as is a transitive
relation.

SecPAL C-extension

We extend SecPAL[7] with FSL using C-extension methodology, first we
translate SecPAL in modal logic and then we enrich the expressiveness of
SecPAL fibring it with FSL.

We argue that SecPAL can be seen as a subset of predicate FSL in which
formulas have the following structure:

�Aψ

where A is a single principal. We look at the says SecPAL constructs as a
modal operator, so that A says ψ becomes �Aψ. More generally, SecPAL
assertions of the kind

A says fact if fact1, . . . , factn, c

are represented as

�Afact1 ∧ . . . ∧ �Afactn ∧ c → �Afact1

We relate the delegation operator “ can say∞”12 to the “speaks for”
relationship, so that we translate

A says B can say∞fact

into
�AB ⇒fact A

�A(B ⇒fact A) → B ⇒fact A

Where the second formula represents hand-off for restricted speaks-for

and it is necessary to prove that the (can say) rule translated into modal
logic is a theorem.

12If D �= ∞, see Section 3 to see how in FSL we can constraint delegation depth.
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We argue that the “canact as” operator is strictly linked with syntactical

substitution of principals. For instance,

A says B can act as C

is translated into �Asubs(B,C)

which intuitively means that for every fact asserted by A about C, A asserts
the same fact about B. In a more formal way we have

�Asubs(B,C) ∧ �Aψ → �Aψ{C/D}

We refer to the translation of SecPAL into a modal flavor as MSecPAL
(Modal SecPAL). Now that we have translated SecPAL primitives into MSec-
PAL which is a subset of FSL, we can show how the rules describing SecPAL
semantics are theorems of MSecPAL translation.

We notice that the (cond) rule can be seen as an application of modus

ponens, for instance take MSec-PAL formula �A(Y → X) which mirrors
a simple assertion in Sec-PAL with just one conditional fact (Y ) and no
constraints. It is clear that the following rule

�A(Y → X) ∧ �AY

�AX

is a theorem of MSec-PAL considering that �A(Y → X) → (�AY → �AX).
Concerning the (can say) rule we have already underlined that with hand-

off for limited speaks for it is possible to have the following as a theorem

�A(B ⇒fact A) ∧ �Bfact

�Afact

For the last rule (can act as) it is straightforward to see that with the
definition of Subs given above the MSec-PAL translation of the rule is a
theorem of the modal logic. We now propose an extension of MSecPAL
called Fibred-MSecPAL (F-MSecPAL) rooted into FSL which introduces
the following properties:

• Generalizing the notion of principal into formulas of a chosen logic. No-
tice that because of our fibred approach the logic identifying principals
could be different from the extended language.

• Variables and predicates can be shared between Lp and Le.

• The says operator can be iterated (e.g. A says B says . . . )
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F-MSecPAL formulas have the following shape:

�{x}ϕ(x)ψ

In which {x}ϕ ∈ Lp and ψ ∈ Le.
We recall that, from a semantical perspective, the {x}ϕ(x) selects a

subset of principals which is used to index a family of MSecPAL models.
In F-MSecPAL, as in FSL, the formula {x}ϕ(x) says ψ stands for the

whole group, identified by the extension of {x}ϕ(x), asserting ψ. If we want
to express that a group asserting fact stands for all members asserting fact

separately, we have to add an ad-hoc axiom:

{x}ϕ(x) says ψ ↔
∧
i

{x}(x = xi) saysψ (∗)

where xi are elements of the extension of {x}ϕ(x).
In F-MSecPAL we can have formulas like

{x}∀y[admin(y) → y says Good(x)] says fact

in which principals are selected through another F-MSecPAL formula (the
fibred approach has been iterated).

8. Conclusion and Future Work

We have presented a logical formalism called FSL based on fibred multi-
modal first-order logic. The proposed framework extends existing logics
for access control by introducing sets of principals described by formulas
as first-class citizen that can jointly support statements. FSL is based on a
general methodology to combine logics and use them within a same language
called fibring [13]. Thanks to the proposed semantics based on multimodal-
ties indexed by first-order formulas, we showed that second-order logics are
not necessary to model common axioms for the says like ‘speaks-for’ or
‘hand-off’.

For instance, in [2] the presented calculus for the proposed (second-order)
access control logic can not be employed in practical theorem proving due
to its complexity. On the contrary, there exists works in which first-order
languages are constrained in order to get nice computational results in the
derivation time [18,22].

We studied how security axioms can be translated into first-order con-
straints on Kripke models by introducing a model-driven study of logics for
access control as underlined in [14].
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As ongoing work, we are formalizing the extension of other well known
logics like DL [22], DEBAC [8] and DKAL [17] with the FSL methodology
and then to translate them into predicate FSL. In this view, FSL can be
studied as a general framework to compare and integrate different logics for
access control.

We are also working in crafting calculi for different fragments of FSL, in
particular we are concentrating on the propositional intuitionistic fragment
and on the more general predicate FSL. Relating the propositional fragment,
we believe that calculi for conditional logics can be adapted to deal with the
says modality, therefore for predicate FSL calculus we plan to use Labelled
Deductive Systems [12].

A. Appendix

A.1. Axiomatisation and completeness of FSL

We prove completeness for FSL with increasing domains and for FSL with
constant domains (FSL and FSLCD). Well-formed formulas (wffs) are de-
fined recursively as follows:

• Atoms of the form P (t1 . . . tn)13 are wffs.

• ⊥ is a wff.

• If α and β are wff, then so are (¬α), (α∧β), (α∨β), (α → β), (∀xα), (∃xα).

• If ϕ(x) and ψ are wff, the so is {x}ϕ(x) says ψ.

A.1.1. Axiom system for predicate FSL

1. All axioms and rules for intuitionistic logic

2. Extensionality axiom:

∀x(ϕ1(x) ↔ ϕ2(x)) →
({x}ϕ1(x) says ψ ↔ {x}ϕ2(x) says ψ)

3. Modality axiom:

�
∧

i αi → β

�
∧

i{x}ϕ says αi → {x}ϕ says β

13where t1 . . . tn are classical first-order terms.
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4. Constant domains axioms14:

(a) ∀y{x}ϕ says β(y) → {x}ϕ says ∀yβ(y)

(b) ∀y(ψ ∨ β(y)) → (ψ → ∀yβ(y))

5. Additional Axioms:
here we put all the axioms we need to craft our logic like the ones in

Section 2

(a) A → {x}ϕ says A

(b) ∀t(ϕ(t) → t says ψ) → {x}ϕ(x) says ψ

A.1.2. Definitions and Lemmas

Definition A.1 (Consistent and Complete Theory). Suppose we have a
theory (∆,Θ) of sentences15.

• (∆,Θ) is consistent, if we do not have for some αi ∈ ∆, βj ∈ Θ

�
∧
i

αi →
∨
j

βj

• (∆,Θ) is complete in the language with variables V iff for all ψ in the
language, we have

ψ ∈ ∆ or ψ ∈ Θ

Definition A.2 (Saturated Theory). A theory (∆,Θ) is saturated in a
language with variables V iff the following holds:

1. (∆,Θ) is consistent

2. ∃xA(x) ∈ ∆, then for some y ∈ V, A(y) ∈ ∆.

3. ∀xA(x) /∈ ∆, then for some y ∈ V, A(y) /∈ ∆

4. A ∨ B ∈ ∆ iff A ∈ ∆ or B ∈ ∆.

5. If for some βj ∈ Θ

∆ � A ∨ βj ⇒ A ∈ ∆

with A in the language with variables V.

14y not free in ψ or ϕ.
15intuitively, ∆ is the set of formulas that are true in the model and Θ is the set of

formulas that are false in the model.
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Definition A.3 (Constant Domain Theory). A theory (∆,Θ) is said to
be constant domain (CD) theory in language V iff for any ∀xA(x) and any
βj ∈ Θ such that

∆ � ∀xA(x) ∨
∨
j

βj

then for some y

∆ � A(y) ∨
∨
j

βj

Lemma A.4. Assume the CD axiom ∀x(β ∨ A(x) → (β ∨ ∀xA(x))), then

if (∆,Θ) is a consistent CD theory and ∆
′
= ∆ ∪ {α1, . . . , αn}, Θ

′
= Θ ∪

{γ1, . . . , γm} and (∆
′
,Θ

′
) is consistent then (∆

′
,Θ

′
) is a CD theory

Proof. Assume

∆ ∪
∧
i

αi � (
∨
j

βj) ∨ (
∨
j

γj) ∨ ∀xA(x)

we can assume x not in βj ,αj , γj hence

∆ �
∧

i αi → ∀x(
∨

j βj) ∨ (
∨

j γj) ∨ ∀xA(x)

∆ � ∀x(
∧

i αi → (
∨

j βj) ∨ (
∨

j γj) ∨ A(x))

hence for some y

∆ �
∧
i

αi → β ∨ A(y) ∨ γj

hence ∆
′
� β ∨ A(y) ∨ γj

Lemma A.5. Let (∆,Θ) be a saturated theory. Let ∆
′
be

{ψ|({x}ϕ(x) says ψ) ∈ ∆}

Assume
({x}ϕ(x) says β) ∈ Θ

∆
′
� β ∨ ∀xA(x)

then for some y

Θ � β ∨ A(y)

Proof. The proof is by contradiction, suppose it is not the case that

Θ � β ∨ A(y)
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then, for each y there exists a finite ∆
′

y ⊆ ∆
′
such that

�
∧

∆
′

y → β ∨ A(y)

hence, with α ∈ ∆
′

y

�
∧

{x}ϕ(x) says α → {x}ϕ says β ∨ A(y)

hence, for all y
{x}ϕ says β ∨ A(y) ∈ ∆

Since ∆ is saturated we get:

∀y{x}ϕ says (β ∨ A(y)) ∈ ∆

hence
{x}ϕ says ∀y(β ∨ A(y)) ∈ ∆

hence

∀y(β ∨ A(y)) ∈ ∆
′

but then

β ∨ ∀yA(y) ∈ ∆
′

which is a contradiction.

Lemma A.6. Let (∆,Θ) be a consistent CD theory, then (∆,Θ) can be ex-

tended to a saturated theory (∆
′
,Θ

′
) in the same language with ∆ ⊆ ∆

′
and

Θ ⊆ Θ
′

Proof. The proof is by induction on (∆n,Θn) the theory, let ∆o = ∆ and
Θ0 = Θ.

Assume (∆n,Θn) is defined, Θn − Θ is finite and (∆n,Θn) is CD. Let
βn+1 be the (n + 1)th wff of the language. Then either (∆n,Θn ∪ βn+1) is
consistent or is not consistent, if it is consistent let

∆n+1 = ∆n

Θn + 1 = Θn ∪ {β}

If it is inconsistent then (∆n ∪ {β},Θn) must be consistent so let

∆n+1 = ∆n ∪ {β}
Θn + 1 = Θn

In any case (∆n+1,Θn+1) is CD.
Now let (∆,Θ) =

⋃
n(∆n,Θn), this theory is the saturated theory.
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Definition A.7. Let S be the set of all complete theories in the predicate
language FSL. If the logic is CD then all the theories are in the language
with variables V, if the logic is not CD, then assume that each theory leaves
us an infinite number of variables from V not in the theory. We can write
(∆,Θ) as ∆ because for a saturated theory (∆,Θ), we have Θ = {β|∆ � β}.

Define two relations on S

1. (set inclusion) ∆ ⊆ ∆
′

2. For every {x}ϕ(x) let ∆R{x}ϕ(x)∆
′
iff for all ψ such that {x}ϕ says ψ ∈

∆ we have ψ ∈ ∆
′
.

Lemma A.8. Suppose ∆ � α → β, then for some ∆
′
⊇ ∆, ∆

′
� α and

∆′ � β.

Proof. From hypothesis we have

∆ ∪ {α} � β

and ∆ ∪ {α} can be completed to be a saturated theory ∆
′
such that

∆
′

� β

In case of logic CD, this can be done in the same language with variables V.
If the logic is not CD, then since there is an infinite number of variables not
in ∆, ∆

′
can use some of them, still leaving infinitely out of ∆.

Lemma A.9. Assume ∆ � ∀xϕ(x), if the logic is not CD, then for some u not

in the language of ∆, we have ∆ � ϕ(x). ∆ can be extended in a saturated

∆
′

by adding the variable u and more variables such that ∆
′

� ϕ(u), and

still infinitely numbers of variables are not in ∆
′
. If the logic is CD, such

a u is in the logic of ∆ and (∆, {ϕ(u)}) can be extended to a complete and

saturated theory in the same language.

Lemma A.10. Let (∆,Θ) be complete and saturated. Assume {x}ϕ says ψ
is not in Θ. Then

∆0 = {α|{x}ϕ(x) says α ∈ ∆}

does not prove ψ, otherwise

�
∧

αi → ψ

hence

�
∧
i

{x}ϕ(x) says αi → {x}ϕ(x) says ψ
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hence

{x}ϕ(x) says ψ ∈ ∆

Since ∆0 does not prove ψ, and (∆0, {ψ}) is consistent, we can extend

∆0 to a saturated theory (∆
′
,Θ

′
). In case the logic is CD, (∆

′
,Θ

′
) will be

in the same language. Otherwise we use more variables.

Lemma A.11. Properties of the model (S,⊆, R{x}ϕ):

1. ∆1 ⊆ ∆2 and ∆2R{x}ϕΘ then ∆1R{x}ϕΘ

Proof. ∆2R{x}ϕΘ means for every {x}ϕ says ψ ∈ ∆2 we have ψ ∈ Θ.
Since ∆1 ⊆ ∆2 we have for every {x}ϕ says ψ ∈ ∆ we have ψ ∈ Θ.

2. If we add the axiom ∀x(ϕ(x) ↔ ϕ
′
(x)) → ({x}ϕ says ψ ↔ {x}ϕ

′
says ψ)

we get the condition

∆ � ∀x(ϕ(x) ↔ ϕ
′

(x))

implies for all Θ
∆R{x}ϕΘ ↔ ∆R{x}ϕ′Θ

Definition A.12 (Construction of the model). Take (S,⊆, R{x}ϕ(x)) as de-
fined above. For atomic P (x1, . . . , xn) and ∆ ∈ S, let

∆ |= P iff P ∈ ∆

The domain of ∆ is defined by the variables of ∆. If the logic is CD all ∆
will have variables V as domain, otherwise we will have variable domains.

Lemma A.13. For any ψ,∆

∆ |= ψ iff ψ ∈ ∆

Proof. Proof by taking in exam ”→” and ”says”.
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Università di Torino
C.so Svizzera, 185 - 10149 Torino, Italy
guido@di.unito.it

Dov M. Gabbay

Dept. of Computer Science
King’s College London
The Strand, London, WC2A 2LS, UK
and
Dept. of Computer Science
Bar Ilan University
Ramat Gan
Israel
dov.gabbay@kcl.ac.uk

Valerio Genovese

Dept. of Computer Science
Università di Torino
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