
Reactive Security for Smart Grids
Using Models@run.time-Based

Simulation and Reasoning

Thomas Hartmann, Francois Fouquet, Jacques Klein, Gregory Nain, and Yves
Le Traon

Interdisciplinary Centre for Security, Reliability and Trust (SnT)
University of Luxembourg

{thomas.hartmann,francois.fouquet,jacques.klein,gregory.nain,

yves.letraon}@uni.lu

http://wwwen.uni.lu/snt

Abstract. Smart grids leverage modern information and communica-
tion technology to offer new perspectives to electricity consumers, pro-
ducers, and distributors. However, these new possibilities also increase
the complexity of the grid and make it more prone to failures. Moreover,
new advanced features like remotely disconnecting meters create new vul-
nerabilities and make smart grids an attractive target for cyber attackers.
We claim that, due to the nature of smart grids, unforeseen attacks and
failures cannot be effectively countered relying solely on proactive secu-
rity techniques. We believe that a reactive and corrective approach can
offer a long-term solution and is able to both minimize the impact of
attacks and to deal with unforeseen failures. In this paper we present
a novel approach combining a Models@run.time-based simulation and
reasoning engine with reactive security techniques to intelligently moni-
tor and continuously adapt the smart grid to varying conditions in near
real-time.

Keywords: Models@run.time, Reactive security, Reasoning engine, Smart
grid, Model-driven engineering, Meta-modeling

1 Introduction

The vision of the smart grid promises to significantly increase the efficiency and
reliability of the electricity grid and to seamlessly integrate micro generations
and renewable energies. New services for electricity consumers, producers, and
distributors will be created. One big step to turn this vision into reality is to use
modern ICT to enable a two-way communication between customer devices and
smart grid providers. On the one hand this facilitates advanced new features like
remotely reading usage information from a meter or controlling devices through
remote commands. On the other hand these new abilities make the smart grid
more complex, making it inevitably more prone to failures, and more vulnerable
to attacks. This introduces new challenges. Moreover, advanced features like

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31199252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 T. Hartmann, F. Fouquet, J. Klein, G. Nain, Y. Le Traon

remotely disconnecting smart meters, makes the smart grid a valuable target for
cyber attackers. Exploited vulnerabilities can result in the takeover of devices
by an attacker, which can subsequently lead to serious crises as city blackouts.
In particular, with a view to the rising cybercrime and given the importance
of the electricity grid, it is essential to effectively protect it against attacks and
failures.

Considering the complexity of smart grids and the fact that security tech-
niques must dynamically evolve and improve over time to face future attacks and
failures, we claim that proactive security techniques (like encryption, network-,
and protocol security), although very useful, are not sufficient as a stand-alone
approach. Instead, it must be anticipated that not all attacks and failures can be
successfully prevented using proactive measures. We believe that, besides proac-
tive security measures, a reactive and corrective security approach for smart
grids is essential for at least two main reasons. First, it allows to deal with at-
tacks and failures by monitoring and continuously adapting the smart grid to
varying conditions like attacks, failures, and potential dangers —which together
we refer to as events— in near real-time. Second, reactive security techniques
allow to minimize the global impact of successful local attacks and failures. In
this paper we present a novel approach combining a Models@run.time-based
reasoning engine with reactive security techniques for smart grids. We mainly
want to address security issues related to the stability and availability of the
smart grid. By using an abstract model of state and behaviour of physical smart
grid elements, a reasoning engine can simulate and explore potential actions on
how to react to an event. For example, when an intrusion into a smart meter
is detected, the reasoning engine could react by remotely deactivating the com-
munication module of this smart meter to isolate it in order to avoid cascading
failures (like reading potentially corrupted data from it). The models are used at
runtime to monitor the smart grid with the intention of filling the gap between
software models and the physical grid. Based on the Models@run.time paradigm
the reasoning engine can simulate, explore, and evaluate different protection ac-
tions and their impacts in near real-time before the most appropriate ones (to
secure and stabilize the grid) can be selected and applied to the real system.

The rest of this paper is organized as follows. Section 2 briefly introduces the
background of this work: smart grids, Models@run.time, and reactive security.
Section 3 details our Models@run.time-based simulation and reasoning engine
and section 4 presents numbers from a real implementation of this approach.
The related work is discussed in section 5. Finally, section 6 gives an outlook on
future work before this paper concludes in section 7.

2 Background

2.1 Smart Grid

Today’s electricity grid was designed for the demand of the 20th century where
power generation was centralized and electricity was delivered from utilities to
customers in a strictly one-way direction. This changes with the integration of



Reactive Security for Smart Grids 3

micro generations and renewable energies where electricity can be exchanged in
both directions. Energy produced from private windmills, for example, can be
sold to providers in times of high demand. Furthermore, electric vehicles could
help to balance load by delaying their charge cycles or even transferring elec-
tricity back to the grid in peak times, as proposed in [21] and [10]. Modern
ICT is applied to automate and control the electricity grid by enabling a two-
way communication between customer devices and grid providers. This makes
it possible to remotely read (consumption) data from meters and, what is more
important, send commands to devices. This modernization of the electricity grid
to meet the demands of the 21th century and especially it’s distributed control
ability is referred to as the smart grid future by Farhangi [15]. Bruno et al. [7]
propose that a distributed control of smart grids can significantly improve its
stability by locally smoothing the energy consumption. Among smart grid de-
vices, smart meters are the cornerstones of the new infrastructure. While their
initial task was mainly automated meter reading (AMR) [15], in future scenarios
they tend to become highly interconnected and control other devices —like gas
meters and micro generation devices— to build a so called advanced metering
infrastructure (AMI) [15]. Electricity grids are typically controlled by SCADA
(Supervisory Control and Data Acquisition) systems which control electricity
production and delivery in real-time. These systems ensure the global stability
of the grid by performing dynamic load balancing of electricity production, de-
pending on customer consumption. SCADA systems have strong constraints con-
cerning latency to ensure resilience of the grid in case of over-usage, as described
by Aim et al. [1]. A challenge when designing smart grid infrastructures [7] is the
coordination of SCADA systems and new communication networks across smart
meters. SCADA systems typically focus on electricity production and delivery
management, while smart meters and the smart grid network focuses on local
consumption optimization and management.

2.2 Models@run.time

The smart grid aims to become a self-adaptive and self-healing system. Such sys-
tems usually need to analyze their surrounding environment and internal state in
order to continuously adapt themselves to varying conditions. Therefore, building
an appropriate abstraction model, which reflects the current context of the sys-
tem is of key importance. Over the past few years, an emerging paradigm called
Models@run.time [6], [27] proposes to use models both at design and runtime in
order to support self-adaptive and intelligent systems. At design-time, following
the Model-Driven Engineering (MDE) paradigm [22], models support the design
and implementation of the system. The same (or similar) models are then em-
bedded at runtime in order to support the reasoning processes of self-adaptive
and intelligent systems. The idea behind this is that models offer a simpler, safer
and cheaper [30] means to reason. In addition to the static structure of a system
it is also possible to include the dynamic behavior in the model [29] to create a
so-called executable model. The dynamic behavior of a system can be expressed
using several paradigms such as stochastic queuing theory [36] or finite state



4 T. Hartmann, F. Fouquet, J. Klein, G. Nain, Y. Le Traon

automata [9]. State machines [32] are a well known semantic to express behavior
in terms of states and transitions, which are triggered in reaction to events.

2.3 Reactive Security

Reactive security follows the idea that it is nearly impossible to proactively
prevent all kind of possible attacks and failures. Instead, it must be taken into
account that techniques used for cybercrime will continuously evolve and —
in some cases— outperform previously installed proactive security techniques.
Whereas proactive security has to predict future attacks, which is very hard,
reactive security has to minimize the effect of attacks, e.g. by learning from
the past, which is in many cases easier [2]. Reactive security approaches aim to
prevent attacks by intelligently monitoring and early reacting to changes [31],
or to minimize the global effect of successful attacks. For example, a denial of
service (DoS) or distributed denial of service (DDoS) attack on a smart grid
concentrator can be countered reactively by dynamically putting the attackers
on blacklists.

3 Models@run.time-Based Simulation and Reasoning

3.1 General Approach

We propose a reactive security approach for smart grids. As smart grids are
becoming more and more complex and techniques used for cybercrime will con-
tinuously evolve, we believe that effective protection mechanisms for smart grids
must be able to react dynamically to successfully counter attacks and failures.
Thus smart grids need the ability to continuously adapt themselves in order to
react to various events. Therefore, they need to analyze their surrounding en-
vironment and internal state. We suggest using an abstract model of state and
behaviour of physical smart grid components. Based on the Models@run.time
paradigm this model reflects the internal state of the smart grid and is contin-
uously updated with state information of the physical smart grid components.
It is a common approach for self-adaptive systems to regularly sample and store
the context of the system in order to back the reasoning algorithms up with
historical data. That the Models@run.time approach is suitable for large dis-
tributed and self-adaptive systems has, for example, been shown in [27, 28]. The
model is used at runtime to simulate and explore different actions to react to
events in real-time. The model, which represents the state of the smart grid at
the time of an event, can be cloned to simulate several reactions on independent
models. This happens in near real-time. Based on results of different simulations,
appropriate corrective actions can be derived and either suggested for manual
application or automatically applied to the real system. The basic concept of
our Models@run.time-based reasoning engine is illustrated in figure 1.

The goal is twofold: first to prevent attacks and failures by intelligently mon-
itoring and continuously adjusting the smart grid and second to minimize the



Reactive Security for Smart Grids 5

Models@run.time 
Reasoning Engine

Model 
(current)

Smart Grid 
System

Data Storage

Simulation

runs

updates

uses

reads

stores
reads

adapts

Fig. 1. Models@run.time-based reasoning engine

global impact of (successful) attacks and failures. The key thing to note is that
our reasoning engine works reactive. It always searches for appropriate counter-
measures to dynamically react to an event. Typical events, which we target to
counter with our approach, are:

– Intrusion detection: It doesn’t matter whether the attack is detected by
our reasoning engine or by another tool (specific attacks might be best de-
tected in specific layers by specific tools). The proposed reasoning engine is
particularly suitable to detect attacks by identifying deviations from nor-
mal behaviour, usually called anomaly-based detection [4]. For instance, by
continuously monitoring state information, state flapping (state oscillating
between two configurations) of devices can be detected. By continuously
monitoring network traffic and checking against the expected traffic, attacks
like flooding an entity (smart meter, concentrator) with messages can be de-
tected. Also, by monitoring sender and receiver of messages, suspicious mes-
sages can be identified. For example, a meter request to send consumption
data to a device to which the corresponding meter is not logically registered
to, is suspicious. Another example for a potentially suspicious behaviour
would be if a large number of smart meters in one area receive the command
to shut the electricity down (even if the command is send by a trusted entity).
In addition to anomaly-based intrusion detection the proposed reasoning en-
gine can be feed with data from other tools, e.g. specification-based intrusion
detection systems [5], [4] or signature-based intrusion detection systems [4].
All this data can be aggregated and analyzed by the reasoning engine and
used to derive appropriate counter-measures. For example, the communica-
tion module of affected smart grid devices, like smart meters, can be remotely
deactivated to isolate it in order to avoid cascading failures. Another strat-
egy would be to blacklist the device so that other devices no longer exchange
messages with potentially corrupted devices.

– Electrical load: Based on the current load, combined with historical data
(e.g. last 20 Monday evenings) the reasoning engine can predict how the load
will likely develop and if a critical limit could be exceed. Besides creating



6 T. Hartmann, F. Fouquet, J. Klein, G. Nain, Y. Le Traon

alarm messages, this information can be used to delay/encourage electric
cars to charge. Similarly, the voltage level can be monitored and predicted
to decide if local production units must be connected/disconnected.

– Communication network traffic: Based on the knowledge of the used
protocols, the network technologies, and historical data the reasoning engine
can simulate and evaluate the number of messages required for an action and
thus predict the network load. This information can be used to delay actions
(like sending consumption data) to keep the overall network load below a
critical value.

– DoS/DDoS: DoS and DDoS attacks can be detected by the reasoning en-
gine, e.g. by monitoring the network traffic and state information of attacked
components. Potential attackers could be automatically added to a blacklist.
Or, in case of an affected concentrator the reasoning engine could deactivate
it and initiate that connected smart meters reconnect to other concentrators.

– Frequency of disturbances: In complex and distributed systems, like
smart grids, it is normal that from time to time minor disturbances (like
meters are temporarily not reachable) occur. By monitoring disturbances
over time the reasoning engine can detect an unusual high frequency, which
can indicate security problems.

– State changes: A frequent change of state (like repeated unsuccessful reg-
ister intents) often indicates security issues of smart meters. Such problems
can be detected by the reasoning engine and can for instance cause to deac-
tivate the communication module of the concerning meters.

The counter-measures found by the reasoning engine can be either automati-
cally applied to the real system or only proposed for a manual validation. It is
conceivable that counter-measures first must be manually validated and then,
based on this validation, the reasoning engine can automatically improve itself
by learning from these decisions. For example, if a counter-measure for a certain
event has been manually validated and confirmed for automatic execution, the
reasoning engine can apply this solution in the future automatically. If a manual
validation indicates that the proposed counter-measure is not appropriate, the
reasoning engine can learn which counter-measure should be used instead (i.e.
the counter-measure which is manually selected instead the one automatically
proposed). Also, for reasons of safety, counter-measures with a very big impact
on the grid may be only applied after a manual validation and confirmation.

One risk of our Models@run.time-based simulation and reasoning engine is
that the model could not correctly reflect the state of the real system. This could
for example be due to the fact that the model has not been updated since the
last important state change of the smart grid system. This is known as eventually
consistent [35]. In general, a model can always only reflect a partial view of a
real system. This is a general problem that self-adaptive and intelligent systems
face and has to be taken into account by the reasoning engine.



Reactive Security for Smart Grids 7

3.2 Smart Grid and Behaviour Model

Topology Model Our model for smart grids consists of different components:
smart meters, repeaters, concentrators, SCADA systems, and a central control
system and reflects how these components are connected. The basic structure of
our model is inspired by the smart grid configuration currently deployed in Lux-
embourg [20], as we work in close collaboration with Creos Luxembourg S.A1 on
cyber security for smart grids. Figure 2 shows a simplified topology of the smart
grid components described with our model. Each smart meter is connected to a
concentrator, either directly or via one or several repeaters, and each concentra-
tor in turn is connected to the central system. One or several SCADA systems
are used to monitor and control the physical smart grid processes. The proposed

Central System SCADA

Concentrator 1 Concentrator i...

Smart meter 1 Repeater k... Smart meter m... Smart meter n...

direct 
control 

and 
monitoring

Models@run
time 

Reasoning 
Engine

Model

Smart 
Grid 

Topology

Finite 
State 

Machines

propose/apply action

administration

update 
model 
state

event

Smart meter l

Fig. 2. Topology model

reasoning engine operates on top of a model representation of this structure.

FSM Model for Behaviour In order to model the behaviour of our struc-
tural smart grid components (smart meter, repeater, concentrator, central sys-
tem, SCADA) we use Finite State Machines (FSM). The suitability of FSMs to
model and simulate behaviour has been shown in [17, 32]. Each message sent to
a component can be interpreted as an event for the corresponding FSM and can
trigger a state change. Figure 3 shows a simplified representation how a typical
smart grid process can be simulated using FSMs. For the sake of simplicity, all
states which are not necessary for the example are omitted. It shows how a smart
meter registers to a concentrator after starting up.

The initial state of each smart meter and concentrator is inactive. Lets now
assume concentrator 1 and concentrator 2 are in state active and smart meter 1

1 Creos Luxembourg S.A is the main grid operator in Luxembourg



8 T. Hartmann, F. Fouquet, J. Klein, G. Nain, Y. Le Traon

inactive active

activate

deactivate

Concentrator 1

inactive active

activate

deactivate

Concentrator 2

inactive registering

register

deactivate

Smart meter 1

active

register

registered

transition
state

FSM message

step 3:
 register

step 2: 
register acknowledge

step 1:
register broadcast

step 2:
register acknowledge

step 1: 
register broadcast

deactivate

inactive registering

register

deactivate

Smart meter 2

active

register

registered
deactivate

Fig. 3. FSM scenario for registering smart meters

and smart meter 2 are in state inactive. When switching a smart meter on, it tries
to register itself to a concentrator and enters the state registering. As illustrated
in the figure, smart meter 1 broadcasts its registering intent to all reachable
concentrators (step 1). Upon receiving this message the reached concentrators
send acknowledge or deny messages back to smart meter 1 (step 2). Based on
criteria such as signal strength and number of hops to the central system, smart
meter 1 decides to register to concentrator 1. It then sends a corresponding
register confirmation back to concentrator 1 (step 3). Depending on the real
smart gird implementation (e.g. used protocols) this behaviour may vary. Again,
the described protocol is inspired by the smart grid deployment in Luxembourg.
By additionally taking the average size and payload of messages into account,
even the impact of the network load can be simulated and evaluated.

This simple example illustrates how we simulate typical smart grid processes
using FSMs to model the behavior of smart grid components. Another example
is to simulate the effects of a deactivated communication link (or electricity link)
of a concentrator; thus how many smart meters are affected, how long it will take
until all of them are registered again, and so on.

3.3 Reasoning Engine Scope

Through observing and dynamically reacting our Models@run.time-based rea-
soning engine aims to support the smart grid to become self-adaptive and thus



Reactive Security for Smart Grids 9

self-healing. Intelligent and self-adaptive software systems need to analyze both
their surrounding environments and their internal state in order to continuously
adapt themselves to changing conditions. Therefore, building an appropriate
model, to reflect the current context of such systems is of key importance. The
model of our reasoning engine focuses on the basic state, structure, and behav-
ior of physical smart grid components. This means that our model reflects if a
smart meter is active or not, that a smart meter can receive commands, and
that this may change the current state. It also covers knowledge of how these
components are interconnected and thereby how certain actions cascade. For ex-
ample the model contains the necessary information about which smart meters
are affected if a concentrator fails. We do not intend to duplicate the complete
runtime system, but intend to build an appropriate abstraction containing the
relevant parts of the system. It aggregates and combines information collected
from different layers. This means our model is not limited only to application
oriented layers but can also take information of lower layers (e.g. data bases,
network traffic) into account. However, it is not the goal of our model to reflect
detailed physical processes like the control of electricity production and delivery
management. Our smart grid model contains only knowledge which will be used
by our reasoning engine to simulate and explore potential actions on how to
react to attacks, failures, and potential problems (like local electrical overload)
Moreover, we do not intend to replace any existing control systems, like SCADA
systems, or security systems. Instead, our proposed reasoning engine comple-
ments such systems by aggregating their information to build an appropriate
context model.

3.4 Searching Appropriate Counter-Measures

In order to derive appropriate counter-measures to face an event, our reasoning
engine must be able to evaluate and compare different actions. Each action can
potentially change the state of the model. The goal of the reasoning engine is
to propose actions which lead to an improvement of the overall model state.
First of all, this requires knowledge about what actions are applicable to face
an event. This is domain knowledge and is in form of rules integrated in the
knowledge base of our reasoning engine. Second, it requires evaluation functions
for our model to compare different states.

Counter-Actions are the reactions of our reasoning engine in order to counter
events. Examples for events and appropriate counter-actions are:

– Smart meter intrusion detection: deactivate communication module of the
smart meter to isolate it and avoid additional damage.

– Disconnected smart meter (customers’ electricity is off): send command to
restart the electricity link.

– High/low local electric load level: delay/encourage charging of electric cars.
– High/low local voltage level: disconnect/connect local production units (where

possible).



10 T. Hartmann, F. Fouquet, J. Klein, G. Nain, Y. Le Traon

Evaluation Functions to evaluate a model we use a set of rules, which are
part of the domain knowledge and added to the knowledge base of our reasoning
engine. For instance, such a rule is that disconnected (electricity for a customer
is down) smart meters are worse than connected ones or that the local electrical
load should not exceed (or fall below) a certain value for a longer period of
time. Further examples are: Smart meters which are regularly not reachable or
have weak connections to their data concentrators lead to a worse state. This
applies also for smart meters in error states and especially for smart meters
where intrusions are detected. The combination of all rules allows to calculate
an overall score for the model. This score in turn is used to compare model
states. For example, a failure of a data concentrator leads to a decreasing model
state. This failure affects all smart meters connected to this data concentrator
since they can no longer communicate with the failed data concentrator, further
decreasing the model state. One conceivable reaction could be to connect the
smart meters to an alternative data concentrator. Each smart meter which is
connected again to a data concentrator increases the model state. By comparing
scores of models it can be evaluated if actions improve or downgrad a model
state.

Selection the goal of the reasoning engine is to find (and select) appropriate
counter-reactions to face an event. The procedure is as follows: from a set of
possible counter-reactions (knowledge base), the reasoning engine simulates the
(independent) application of different actions using the model and evaluates
which actions are the most appropriate ones (leads to the best model state). It
is important to notice that the simulation and selection of the counter-reactions
happen in near real-time. As a first approach we implemented a greedy [33]
algorithm. But other algorithms which are not limited to search local optimums
but also consider steps before and after the current, might be far more useful
and are subject to study in future work.

3.5 Scalability

Since smart grids can consist of a huge number of components the scalabil-
ity of our approach is very important. Operations to navigate or manipulate our
model at runtime must be very efficient in terms of time and space. Therefore, we
are working on a Models@run.time framework, called Kevoree Modeling Frame-
work [16], which is specifically designed for this purpose. It is also conceivable
to split the smart grid model into sub-models and distribute the reasoning over
multiple nodes. An appropriate strategy is to split the model accordingly to the
topology of the grid, such as deploying one instance of the reasoning engine on
each data concentrator. Each of these local reasoning engines can then monitor
one part or region of the smart grid. The information of the local reasoning
engines can be combined on a global level.



Reactive Security for Smart Grids 11

4 Case Study Luxembourg

4.1 Scenario

We have implemented a concrete smart gird model based on the approach dis-
cussed in section 3. The smart grid test deployment in Luxembourg, which is
currently deployed by our industrial partner Creos S.A., is the template for our
abstract model. The topology of our model primarily consists of: Smart meters,
data concentrators, physical cables, consumption and production data, GPS lo-
cation data of devices, logical communication connections, and routing tables.
Overall, the concrete model of our case study includes around 250 nodes (smart
meters, data concentrators), 30 physical cables, and 25.000 consumption data
sets per day. We currently cross compile our model as well as our simulation and
reasoning engine for the Java Virtual Machine [19] and for JavaScript [11]. For
our scenario the model, simulation, and reasoning engine are small and efficient
enough to be executed entirely in a web browser running on a standard laptop
(MacBook Pro i5 2.4 Ghz, 16 GB RAM).

4.2 Example: Malicious Shutdown Commands

In this example we implemented a detection and protection reaction for poten-
tially malicious shutdown commands. The reasoning engine monitors the state
of entities (smart meters, repeaters, concentrators, central system) and detects if
a striking number of entities (more than 10% in a region) are remotely shutdown
within a certain time range. The sender of the malicious shutdown commands
is added to a blacklist by the reasoning engine to avoid that additional entities
in this region will be affected. We implemented a greedy algorithm to detect
entities, which are shutdown, and to automatically start them again. A corre-
sponding model evaluation function rates an entity, which is shutdown worse
than an entity which is started and the counter-measure is to restart and con-
nect the concerned entity again. If an entity cannot be connected again (e.g. a
smart meter can only be connected if a repeater or concentrator is available) the
algorithm proceeds and tries the next entity and so forth. The algorithm stops
if either all entities are started and connected again, or if none of the remaining
entities, which are shutdown can be started and connected. The algorithm is
executed in the range of milliseconds to a few seconds (in the worst case that
all meters and concentrators are shutdown). This is what we consider near real-
time. Since it is conceivable that a large number of entities are intentionally
shutdown, e.g. for maintenance, it is possible to deactivate this detection (or
only the reaction) for shutdown commands in the reasoning engine. This con-
crete example demonstrates the feasibility of near real-time reactive security at
the range of a city.

4.3 Example: Electric Load Prediction

Based on our discussed approach and model we have implemented an electric
load prediction. The idea is to predict if the electric load value in a region —



12 T. Hartmann, F. Fouquet, J. Klein, G. Nain, Y. Le Traon

in our case study around 50 smart meters— will likely exceed a critical value.
If that is the case, the maximum allowed consumption for the corresponding
meters can temporally be reduced by our reasoning engine to avoid an electric
overload. Since an electrical grid usually can maintain an overload for a few
seconds or minutes [8] the reasoning engine has to react within this time range.
The reasoning process consists of an electrical load prediction for a specific point
of the grid (one smart meter). Both the current electric load and past values (the
consumption history of one month) at this meter as well as from the surrounding
meters are taken into consideration. This prediction is continuously performed on
a few dozen grid points and a linear regression of the average electric load values
of the meters (over a certain period of time) is computed. The complete reasoning
process for our case study is computed within a time range of a few seconds.
Again, the example demonstrates the feasibility of near real-time reactions of
our reasoning engine.

5 Related Work

Cyber security is a major concern of smart grids. Therefore, a lot of work is
paying attention to this topic. An analysis of security threats and challenges in
smart grids can be found in [26], [23], [13]. This work indicates the importance
of smart grid security and privacy and shows significant weaknesses and attack
points of smart grids. Many other authors like [4], [34], [12] focus their studies
on smart meter security: intrusion detection systems, redundant meter read-
ing, and privacy. Others, like Zhao et al. [37] focus their work on cryptography
and a secure authenticated key exchange for smart grids. The above-mentioned
work discusses important proactive security measures to improve security and
privacy in smart grids. Unlike this work, our approach focuses on reactive secu-
rity techniques, which we believe can complement proactive security measures
to improve security in smart grids. In particular we intend to improve the self-
healing aspect of smart grids. An interesting approach based on game-theoretic
models for reactive security in general (not connected to smart grids in specific)
is presented in [2]. Learning based game-theoretic techniques could be interest-
ing for our reasoning engine to find appropriate counter-measures to face events
and can be explored in future work. Godfrey et al. [18] suggest to use simu-
lation techniques for an analysis of complex smart grid control schemes. This
work focuses mainly on the exact simulation (incl. latency) of control messages.
Kundur et al. [24] also use simulation techniques to study the potential severity
of physical impacts of cyber attacks. A combination of hardware and software
for a detailed simulation of a smart grid is presented in [25]. Their so-called
SmartGridLab aims to provide researchers with a platform to conveniently and
efficiently compare different smart grid designs. Just as the above-mentioned
work, our approach suggests to use simulation techniques. In contrary to this
work, we do not intend to simulate a complete smart grid one-to-one. Instead,
we aim to dynamically counter attacks, failures, and potential dangers by simu-
lating and evaluating different protection reactions in near real-time. Therefore,



Reactive Security for Smart Grids 13

we use a model abstraction of a smart grid at runtime to be able to perform dif-
ferent simulations in real-time and finally to decide how to react. Baumeister [3]
presents an exhaustive literature review specifically on smart grid cyber security.
A more general survey on smart grid technologies, which also includes a review
of smart grid cyber security literature, can be found in [14]. To the best of our
knowledge there is no related work combining Models@run.time techniques and
a reasoning engine to a reactive security approach for smart grids.

6 Future Work

In future work we will explore more complex algorithms, like genetic [33] or
game-theoretic [2] ones, to find appropriate counter-measures to face events. Es-
pecially algorithms, which are not limited to search local optimums but also
consider steps before and after the current, will be subject to study. Another ap-
proach we would like to explore is to use techniques and methods from artificial
intelligence in order to learn from previous situations and thus automatically im-
prove our reasoning engine. Furthermore, several functions to evaluate the state
of our model will be investigated. We will implement and simulate more complex
and realistic use cases to continuously evaluate and improve our approach.

7 Conclusion

Ensuring a satisfactory level of security for smart grids is critical and challenging.
We introduced a reactive security approach to face this challenge by both 1) rea-
soning at high level to take the right decision and 2) reacting in near real-time.
Unlike many other works, which mainly focus on proactive security techniques,
our approach is completely reactive. Given the complexity of smart grids, we
believe that a reactive security approach is essential to either entirely prevent,
or at least to minimize the global impact of (successful) attacks and failures.
The novelty of our approach is the combination of a Models@run.time-based
reasoning engine with reactive security techniques to react in near real-time.
Using a lightweight model representation of the physical smart grid elements,
our approach allows to simulate and evaluate different counter-measures in real-
time in order to dynamically protect the smart grid with the most appropriate
ones. We presented an abstract model of the physical smart grid elements and
used FSMs to model the behaviour of the elements. We believe that using Mod-
els@run.time together with a reasoning engine can introduce a new approach of
reactive security for smart grids and can help to develop the electricity grid of
today into a more secure and adaptive smart grid of tomorrow that can verify
and supervise itself.



14 T. Hartmann, F. Fouquet, J. Klein, G. Nain, Y. Le Traon

Acknowledgments

The research leading to this publication is supported by the National Research
Fund Luxembourg (grant 6816126) and Creos Luxembourg S.A. under the SnT-
Creos partnership program.

References

1. S.M. Amin and B.F. Wollenberg. Toward a smart grid: power delivery for the 21st
century. Power and Energy Magazine, IEEE, 3(5):34–41, 2005.

2. A. Barth, B. I. P. Rubinstein, M. Sundararajan, J. C. Mitchell, D. X. Song,
and P. L. Bartlett. A learning-based approach to reactive security. CoRR,
abs/0912.1155, 2009.

3. Todd Baumeister. Literature Review on Smart Grid Cyber Security. Technical Re-
port CSDL-10-10, Department of Information and Computer Sciences, University
of Hawaii, Honolulu, Hawaii 96822, December 2010.

4. R. Berthier, W.H. Sanders, and H. Khurana. Intrusion detection for advanced
metering infrastructures: Requirements and architectural directions. In Smart-
GridComm, pages 350–355, 2010.

5. Robin Berthier and William H. Sanders. Specification-based intrusion detection for
advanced metering infrastructures. In Leon Alkalai, Timothy Tsai, and Tomohiro
Yoneda, editors, PRDC, pages 184–193. IEEE Computer Society, 2011.

6. G. Blair, N. Bencomo, and R.B. France. Models@ run.time. Computer, 42(10):22–
27, 2009.

7. S. Bruno, S. Lamonaca, M.L. Scala, G. Rotondo, and U. Stecchi. Load con-
trol through smart-metering on distribution networks. In PowerTech, 2009 IEEE
Bucharest, pages 1–8, 2009.

8. J. C. Cepeda, D.O. Ramirez, and D.G. Colome. Probabilistic-based overload esti-
mation for real-time smart grid vulnerability assessment. In Transmission and
Distribution: Latin America Conference and Exposition (T D-LA), 2012 Sixth
IEEE/PES, pages 1–8, Sept 2012.

9. Axel Cleeremans, David Servan-Schreiber, and James L McClelland. Finite state
automata and simple recurrent networks. Neural computation, 1(3):372–381, 1989.

10. S. Deilami, A.S. Masoum, P.S. Moses, and M. A S Masoum. Real-time coordination
of plug-in electric vehicle charging in smart grids to minimize power losses and
improve voltage profile. Smart Grid, IEEE Transactions on, 2(3):456–467, 2011.

11. ECMA International. Standard ECMA-262 - ECMAScript Language Specification.
5.1 edition, June 2011.

12. C. Efthymiou and G. Kalogridis. Smart grid privacy via anonymization of smart
metering data. In SmartGridComm, pages 238–243, 2010.

13. G. N. Ericsson. Cyber Security and Power System Communication–Essential Parts
of a Smart Grid Infrastructure. IEEE Transactions on Power Delivery, 25(3):1501–
1507, July 2010.

14. Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart grid—the new
and improved power grid: A survey. Communications Surveys Tutorials, IEEE,
14(4):944–980, 2012.

15. H. Farhangi. The path of the smart grid. Power and Energy Magazine, IEEE,
8(1):18–28, 2010.



Reactive Security for Smart Grids 15

16. F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau, and J. Jzquel.
An eclipse modelling framework alternative to meet the models@runtime require-
ments. In R. B. France, J. Kazmeier, R. Breu, and C. Atkinson, editors, MoDELS,
volume 7590 of Lecture Notes in Computer Science, pages 87–101. Springer, 2012.

17. M. Fowler. Domain Specific Languages. Addison-Wesley Prof., 1st edition, 2010.
18. T. Godfrey, S. Mullen, R.C. Dugan, C. Rodine, D.W. Griffith, and N. Golmie.

Modeling smart grid applications with co-simulation. In SmartGridComm, pages
291–296, 2010.

19. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java
Language Specification. California, USA, java se 7 edition, February 2012.

20. Robert Graglia. Smart grid luxembourg, September 2013.
21. Christophe Guille and George Gross. A conceptual framework for the vehicle-to-

grid (V2G) implementation. Energy Policy, 37(11):4379–4390, 2009.
22. Stuart Kent. Model driven engineering. In IFM, 2002.
23. Himanshu Khurana, Mark Hadley, Ning Lu, and Deborah A. Frincke. Smart-grid

security issues. IEEE Security & Privacy, 8(1):81–85, 2010.
24. D. Kundur, Xianyong Feng, Shan Liu, T. Zourntos, and K.L. Butler-Purry. To-

wards a framework for cyber attack impact analysis of the electric smart grid. In
SmartGridComm, pages 244–249, 2010.

25. Gang Lu, D. De, and Wen-Zhan Song. Smartgridlab: A laboratory-based smart
grid testbed. In SmartGridComm, pages 143–148, 2010.

26. Patrick McDaniel and Stephen McLaughlin. Security and privacy challenges in the
smart grid. IEEE Security and Privacy, 7(3):75–77, May 2009.

27. B. Morin, O. Barais, J. Jezequel, F. Fleurey, and A. Solberg. Models@ run.time
to support dynamic adaptation. Computer, 42(10):44–51, 2009.

28. Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jezequel. Taming dy-
namically adaptive systems using models and aspects. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages 122–132, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

29. Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executabil-
ity into object-oriented meta-languages. In Model Driven Engineering Languages
and Systems, pages 264–278. Springer, 2005.

30. Jeff Rothenberg, Lawrence E. Widman, Kenneth A. Loparo, and Norman R.
Nielsen. The nature of modeling. In Artificial Intelligence, Simulation and Model-
ing, 1989.

31. Brent R. Rowe and Michael P. Gallaher. Private sector cyber security investment:
An empirical analysis. In WEIS, 2006.

32. Fred B Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

33. Haleh Vafaie and Ibrahim F. Imam. I.: feature selection methods: Genetic algo-
rithms vs greedy-like search. In In: Proceedings of the International Conference on
Fuzzy and Intelligent Control Systems, 1994.

34. D.P. Varodayan and G.X. Gao. Redundant metering for integrity with information-
theoretic confidentiality. In SmartGridComm, pages 345–349, 2010.

35. Werner Vogels. Eventually consistent. Queue, 6(6):14–19, October 2008.
36. R. W. Wolf. Stochastic modeling and the theory of queues. Printice Hall, 1989.
37. Fangming Zhao, Yoshikazu Hanatani, Yuichi Komano, Ben Smyth, Satoshi Ito, and

Toru Kambayashi. Secure authenticated key exchange with revocation for smart
grid. Innovative Smart Grid Technologies, IEEE PES, 0:1–8, 2012.


