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We study the scaling behavior of particle densities for Lévy walks whose transition length r is coupled with the
transition time t as |r| ∝ tα with an exponent α > 0. The transition-time distribution behaves as ψ(t) ∝ t−1−β

with β > 0. For 1 < β < 2α and α � 1, particle displacements are characterized by a finite transition time and
confinement to |r| < tα while the marginal distribution of transition lengths is heavy tailed. These characteristics
give rise to the existence of two scaling forms for the particle density, one that is valid at particle displacements
|r| � tα and one at |r| � tα . As a consequence, the Lévy walk displays strong anomalous diffusion in the sense
that the average absolute moments 〈|r|q〉 scale as tqν(q) with ν(q) piecewise linear above and below a critical
value qc. We derive explicit expressions for the scaling forms of the particle densities and determine the scaling
of the average absolute moments. We find that 〈|r|q〉 ∝ tqα/β for q < qc = β/α and 〈|r|q〉 ∝ t1+αq−β for q > qc.
These results give insight into the possible origins of strong anomalous diffusion and anomalous behaviors in
disordered systems in general.
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I. INTRODUCTION

Lévy walk dynamics of anomalous diffusion have been
observed for transport in disordered systems as diverse as the
transmission of light through optical media [1], dispersion in
fluid turbulence [2], animal foraging behaviors [3], transport
in strongly correlated velocity fields [4], dispersion in het-
erogeneous porous media [5], and dispersion in intermittent
maps [6]; see also the recent review by Zaburdaev et al. [7].
Lévy walks can be seen as coupled continuous-time random
walks (CTRWs) [8,9] characterized by heavy-tailed marginal
distributions of the spatial transition length and transition time.

The coupling between transition length r and time t for
a particle that moves with constant speed v between turning
points is given by the kinematic relationship r = vt . The speed
v may change randomly at the turning points [10,11]. This
linear coupling model between transition length and times has
been intensely studied in the literature [7,10–12] in terms of the
first-passage times and displacement statistics. Recently it was
found [11] that under certain conditions the spatial density is
characterized by two scaling forms. One describes the bulk
density for |r| � vt , while the other characterizes the tail
behavior at vt . These two scaling forms explain the occurrence
of strong anomalous diffusion in the linearly coupled Lévy
walk.

A system can be characterized as exhibiting strong anoma-
lous diffusion if the average absolute moments 〈|r|q〉 scale
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as tqν(q) with ν(2) > 1/2 and ν(q) not a linear function of
q [13]. This characteristic precludes the density from having
a single scaling form, as is the case for an uncoupled CTRW
characterized by a heavy-tailed (power-law) transition-time
distribution ψ(t) [14]. For the linearly coupled Lévy walk,
anomalous diffusion is strong and the exponent ν(q) is a
piecewise linear function of q. For q smaller than some critical
value of qc = β, the exponent qν(q) = q/β, while for q > qc,
it behaves as qν(q) = 1 + q − β [11,14].

Here we consider the Lévy walk characterized by the
nonlinear coupling [15–18]

|r| = tα (1)

with α > 0. Both r and t are understood to be dimensionless.
This coupling model has been studied in terms of the scaling
of the mean-square displacement 〈r(t)2〉 [16]. However, the
scaling forms and scaling function for the spatial densities
have not been known so far [7]. These scaling forms provide
a complete characterization of the average transport behavior.
Specifically, they allow one to determine the behavior of the
average absolute moments 〈|r(t)|n〉 and thus characterize the
nature of anomalous diffusion.

In the next section we provide basic relations for the Lévy
walk, which form the starting point for the derivation of
the scaling forms for the particle densities in Sec. III. The
analytical results are corroborated by numerical random-walk
particle-tracking simulations. Section IV uses these results to
determine the scaling of the average absolute moments. A
summary is given and conclusions are made in Sec. V.
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II. LÉVY WALKS

We consider the (d = 1)-dimensional CTRW

rn+1 = rn + ρn, tn+1 = tn + τn. (2)

The Lévy walk [15] couples the independent and identically
distributed random space and time increments ρn and τn

according to (1). They are characterized by the joint density
function of transition length and times

ψ(ρ,τ ) = 1
2δ(|ρ| − τα)ψ(τ ), (3)

where ψ(τ ) is the distribution density of transition times τn.
The joint density ψ(ρ,τ ) and the transition-time density are
distinguished by their arguments without ambiguity. Thus, the
marginal density ψr (ρ) of transition length ρn reads

ψr (ρ) = 1

2α
|ρ|1/α−1ψ(|ρ|1/α). (4)

The CTRW (2) determines the particle positions r(t) at time
t as

r(t) = rnt
, nt = min(n|tn � t), (5)

where the renewal process nt counts the number of steps
needed to arrive at time t . Note that (5) considers the CTRW (2)
in the waiting-time interpretation; τn is interpreted as the
waiting time of a particle at a turning point rn, which is assumed
to be much longer than the time to make a transition to the next
turning point.

Note that in the case α � 1 in (1) we have

|rn| � tαn (6)

as a result of the monotonicity of the norm. Thus, the particle
positions r(t) � tα and, accordingly, the particle densities have
a sharp cutoff at tα . For α < 1, this is not the case. This property
has an important impact on the nature of diffusion for values
of α above or below 1 and the scaling properties of the particle
densities as studied in detail below.

We consider a heavy-tailed transition-time density that
behaves as

ψ(τ ) ∝ τ−1−β (7)

for τ � 1 and β > 0. This gives for the marginal density ψr (ρ)
of transition length the heavy-tailed distribution

ψr (ρ) ∝ |ρ|−1−γ , γ = β

α
. (8)

Note that the uncoupled CTRW characterized by ψ(ρ,τ ) =
ψr (ρ)ψ(τ ) shows Lévy flightlike behavior for 0 < γ < 2 in
the sense that the moments 〈|r(t)|q〉 for q > γ do not exist (see
also Ref. [7]). Here the coupling of transition length and time,
and the resulting confinement (6) of the particle trajectory
guarantee that all trajectory moments exist. The numerical
random-walk simulations employed below to determine the
particle densities use the explicit transition-time density

ψ(τ ) = βτ−1−βγ (1 + β,τ ), (9)

where γ (a,x) is the lower incomplete gamma function [19].
This distribution decreases as the power law (7) for τ � 1 and
goes toward β/(1 + β) for τ � 1.

The objective of this paper is to study the spatial aspects
of the Lévy walk. In general, the particle density for the
CTRW (2) is defined in terms of the particle trajectories
r(t) = rnt

as

p(r,t) = 〈δ(r − rnt
)〉. (10)

The evolution of (10) is governed by the system of equa-
tions [9]

p(r,t) =
∫ t

0
dt ′R(r,t ′)

∫ ∞

t−t ′
dτψ(τ ), (11)

R(r,t) = δ(t)δ(r) +
∫

dr ′R(r ′,t ′)ψ(r − r ′,t − t ′), (12)

where we set the initial particle positions r0 = 0; R(r,t)drdt

denotes the probability that a particle is in [r,r + dr] and
[t,t + dt]. This system of equations can be easily solved after
performing a Fourier-Laplace transform. The particle density
then reads [16]

p(k,λ) = 1 − ψ(λ)

λ

1

1 − ψ(k,λ)
, (13)

which is the starting point for the analysis presented in the next
section. The Laplace transform in time is defined in Ref. [19]
and the Laplace variable here is denoted by λ. For the Fourier
transform and its inverse, we adopt the definition

p(k,t) =
∫

dr exp(ikr)p(r,t), (14)

p(r,t) =
∫

dk

2π
exp(−ikr)p(k,t), (15)

where k is the wave number. Fourier and Laplace transformed
quantities in the following are identified by their arguments.

III. SCALING FORMS

In order to derive scaling forms for the particle density
p(r,t), we start from its Fourier-Laplace transform (13), which
is quantified in terms of the Laplace transform ψ(λ) of the
transition-time density and the Fourier-Laplace transform of
the joined density ψ(k,λ). The Fourier-Laplace transform
transform of ψ(ρ,τ ) given by (3) can be written as

ψ(k,λ) =
∫ ∞

0
dt exp(−λt) cos(|k|tα)ψ(t). (16)

We can write (16) in the form

ψ(k,λ) = ψ(λ) +
∫ ∞

0
dt exp(−λt)[cos(|k|tα) − 1]ψ(t).

(17)

For λ � 1 and n − 1 < β < n, ψ(λ) can be approximated up
to order λβ by ψ(λ) ≈ ψa(λ) with

ψa(λ) = 1 +
n−1∑
i=1

(−1)iaiλ
i + (−1)naβλβ, (18)

where the coefficients ai and aβ are positive constants [20].
Notice that for n > 1, a1 = τm = 〈τ 〉 is equal to the mean
transition time. The approximation (18) of the transition-time
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probability density function (PDF) (9) and the corresponding
coefficients ai and aβ are derived in Appendix A 1.

In order to derive scaling forms for the particle densities,
we distinguish the two cases of weak and strong coupling
between the space and time increments. The weak coupling
is characterized by γ > 2 in (8), or equivalently β > 2α,
which means that the marginal transition length distribution (8)
has finite mean and variance. The strong-coupling case is
characterized by a broad distribution of transition length,
which corresponds to β < 2α.

A. Weak coupling β > 2α

For weak coupling transport is dispersive as discussed
in Ref. [16]. For completeness, we briefly summarize the
behavior of the particle densities in the weakly coupled limit.
For β > 1, the mean transition time τm = 〈τ 〉 < ∞ is finite
and the central limit theorem predicts normal transport.

The range 0 < β < 1 implies that α < 1/2. This means
that particle displacements have an open range. The Laplace
transform of the transition-time density here is given by (18)
as

ψa(λ) = 1 − aβλβ. (19)

We consider now the range |r| � tα while t � 1, which
corresponds to kλ−α � 1 while λ � 1. In this limit, we can
expand (17) as

ψ(k,λ) = 1 − aβλβ − 〈τ 2α〉
2

k2 + · · · , (20)

where the dots denote subleading contributions. Notice that
〈τ 2α〉 < ∞ because β > 2α. Thus, in this limit, we obtain for
the Fourier-Laplace transform (13) of the particle density

p(k,λ) ≈ 1

λ

1

1 + a−1
β 〈τ 2α〉k2λ−β

. (21)

The inverse Fourier-Laplace transform of this expression can
be written as

p(r,t) ≈
∫ ∞

−∞

dk

2π

∫ κ+∞

κ−i∞

dλ

2πi

1

λ

exp(λt − ikr)

1 + a−1
β 〈τ 2α〉k2λ−β

. (22)

Rescaling λt → λ and ktβ/2 → k gives the single scaling form

p(r,t) ≈ t−β/2f0

( |r|
tβ/2

)
. (23)

The scaling function decreases exponentially fast for |r| �
tβ/2.

B. Strong coupling β < 2α

In the following, we focus on the more interesting case β <

2α, which implies that 0 < γ < 2 in (8). This means that the
marginal density of transition lengths is heavy tailed. For k �
1, the Fourier transform of the spatial transition density (8) can
then be approximated as [7]

ψr (k) = 1 − cγ |k|γ + · · · , (24)

where the dots denote subleading contributions. The constant
cγ > 0 is a constant determined by the specific shape of the
transition length PDF ψr (ρ) (see also Appendix A 2).

In order to derive scaling forms for the particle density, we
write (17) in the form

ψ(k,λ)

= ψ(λ) + λ−1
∫ ∞

0
dt exp(−t)[cos(|k|λ−αtα) − 1]ψ(tλ−1).

(25)

For small λ � 1, we approximate ψ(tλ−1) ≈ a0t
−1−βλβ−1 in

order to obtain

ψ(k,λ) ≈ ψa(λ) + λβF (|k|λ−α), (26)

where ψa(λ) is defined by (18) and a0 is a constant that depends
on the specific choice of ψ(t); see Appendix A 1 for the explicit
expressions for ψa(λ) and the coefficient a0 for the transition-
time PDF (9). The function F (k) is defined by

F (k) ≡ a0

∫ ∞

0
dt exp(−t)[cos(ktα) − 1]t−1−β. (27)

All the derivatives of F (k) with respect to k exist due to the
condition α > β/2. In the limit k � 1, we have

F (k) = −c2k
2 + · · · . (28)

The dots denote subleading contributions of order k4.
Note that setting λ = 0 in ψ(k,λ) gives the Fourier

transform ψr (k) of the marginal density (8), which can be
approximated by (24). This implies that F (|k|λ−α) behaves
for finite k and in the limit λ → 0 as

F (|k|λ−α) ≈ −cγ |k|γ λ−β. (29)

Using (26) for λ � 1, the Fourier-Laplace transform of the
spatial density can now be written in the form

p(k,λ) ≈ 1 − ψa(λ)

λ

1

1 − ψa(λ) − λβF (|k|λ−α)
. (30)

This expression is the basis for the derivation of the scaling
forms of the spatial density p(r,t) for different ranges of β > 0
presented in the following.

We distinguish two cases. First, we consider α � 1, which
corresponds to a compact displacement range because of
|r(t)| � tα as indicated by (6). Second, we study the case
α < 1 for which the displacement range is open.

1. Compact displacement range α � 1

We distinguish between the β ranges 0 < β < 1 and β > 2.
In the first case, the mean transition time τm is not finite. In
the second case τm < ∞. This has an impact on the scaling
behavior as detailed below.

a. Infinite mean transition time 0 < β < 1. In this β range
the Laplace transform ψ(λ) of the transition-time density can
be approximated by (19). Inserting (19) into (30), we obtain for
the Fourier-Laplace transform p(k,λ) of the particle density

p(k,λ) ≈ 1

λ

1

1 − a−1
β F (|k|λ−α)

. (31)

As above, we write down the inverse Fourier and Laplace
transforms of this expression as

p(k,λ) ≈
∫ ∞

−∞

dk

2π

∫ κ+∞

κ−i∞

dλ

2πi

1

λ

exp(λt − ikr)

1 − a−1
β F (|k|λ−α)

. (32)
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Rescaling λt → λ and ktα → k gives the single scaling form

p(r,t) ≈ t−αf1

( |r|
tα

)
, (33)

with f1(r) a scaling function that is discussed below. Note
that this scaling form is also valid in the case of an open
displacement range for α < 1.

In order to derive explicit expressions for the scaling
function f1(r) we first consider the bulk density at |r| � tα ,
which corresponds to |k|λ−α � 1. In this limit, we can
approximate (31) as

p(k,λ) ≈ aβ

cγ

λ−1(|k|λ−α)−β/α, (34)

where we used (29) and set γ = β/α. The inverse Fourier-
Laplace transform gives for the scaling function f1(r) the
explicit expression

f1(r) ∝ rβ/α−1. (35)

The density is cut off here at |r| = tα as indicated by (6).
We can identify the form of this cutoff by considering the case
|k|λ−α ∼ 1, which corresponds to |r| ∼ tα . In this case, we
approximate (31) by

p(k,λ) ≈ λ−1 + a−1
β λ−1F (|k|λ−α). (36)

The inverse Fourier-Laplace transform of the expression on
the right-hand side of (36) can be performed explicitly by
using (27). This gives for the scaling function f1(r) for |r| > 0

f1(r) = a0

2aβα(β)
(1 − r1/α)βr−1−β/αH (1 − r), (37)

with H (r) the Heaviside step function (see also Appendix B).
Figure 1 shows particle densities obtained by numerical

random-walk particle-tracking simulations based on (2). The
densities are rescaled to highlight the general scaling form (33),
which is confirmed for t � 1. The solid lines illustrate the
explicit expressions (35) and (37) for the scaling function

10-4
10-2
100
102
104
106
108

1010

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

tα
p(

r, 
t)

r / tα

FIG. 1. Particle densities p(r,t) at times (from top to bottom)
t = 102, 103, and 104 for α = 2 and β = 1/4. The symbols denote
random-walk simulations using 106 particles and the solid lines
denote the scaling forms (solid) (35) and (dashed) (37).

f1(r). Note that (37) merely captures the sharp cutoff,
while (35) describes the power-law decrease at large times.

b. Finite mean transition time β > 1. In this β range,
ψa(λ) is given by (18) for n = 2α�, where the upper braces
denote the ceiling function. The particle density then can be
approximated as

p(k,λ) ≈ τm

τmλ + Gβ(λ) − λβF (|k|λ−α)
, (38)

where we define Gβ(λ) = 1 − ψa(λ) − λτm; F (k) is defined
in (27). Recall that τm = 〈τ 〉 is the mean transition time.

Again recall that we consider the case α � 1, which implies
that |r(t)| � tα; this means that the density is cut off at tα .
We explore now the behaviors of p(r,t) at |r| � tα and for
distances close to the cutoff |r| � tα .

In the limit λ � 1 and |k|λ−α � 1, which corresponds to
|r| � tα while t � 1, we use expression (29) in order to obtain
the following approximation for p(k,λ):

p(k,λ) ≈ τm

τmλ + cγ |k|γ . (39)

Its inverse Laplace transform gives

p(k,t) ≈ exp(−cγ |k|γ t/τm), (40)

which is the Fourier representation of the symmetric Lévy
stable density with the stability parameter γ and the scale
parameter cγ /τm. Thus, we obtain for the bulk density p(r,t)
at |r| � tα the scaling behavior

p(r,t) ≈ t−1/γ Kγ

(
r

t1/γ

)
, (41)

where Kγ (r) is the symmetric Lévy stable density. Recall that
γ = β/α.

We now consider the scaling of p(r,t) at large times in the
vicinity of the sharp cut off |r| � tα . This corresponds to λ � 1
while |k|λ−α is of order 1. Thus, we can approximate (38) as

p(k,λ) ≈ 1

λ

[
1 − Gβ(λ)

λτm

]
+ λβ−2

τm

F (|k|λ−α). (42)

Note that Gβ(λ)/λ is of order λβ−1 for 1 < β < 2 and of order
λ for β > 2. The inverse Fourier-Laplace transform of (42)
gives for |r| �= 0 the scaling form

p(r,t) ≈ t1−α−βf2

( |r|
tα

)
, (43)

which can be checked by inspection. Appendix B derives the
following explicit expression for the scaling function f2(r):

f2(r) = a0

ατm

(1 − r1/α)r−1−γ H (1 − r). (44)

Note that for r � 1, the scaling function f2(r) displays the
same power-law behavior proportional to r−1−γ as the Levy
stable density in (41).

Figure 2 illustrates particle densities obtained from random-
walk particle-tracking simulations using (2). The top figure
emphasizes the scaling form (41) by scaling the data according
by tα/β . The middle figure shows the same data set rescaled
according to (43) in order to demonstrate the scaling form.
The solid line depicts the scaling function (44). The bottom
figure illustrates the scaling form (43) for different values of β.
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FIG. 2. The top and middle plots show particle densities p(r,t) for
α = 2 and β = 5/2 at (from left to right) times t = 102 and 103. The
symbols denote the data from the random-walk simulations using 107

particles and the lines the scaling forms (dashed) (41) and (solid) (43).
Note that the crossover between the two scaling forms is marked by
r = rc(t) ∼ tα/β . The bottom panel shows article densities p(r,t) at
time t = 102 for α = 2 and (from top to bottom) β = 7/2, 5/2,
and 3/2.

The crossover between the two scaling forms (41) and (43) is
marked by the distance |rc| ∝ t1/γ , which is the scale on which
the Levy stable density (41) crosses over from the plateau to
the power-law decay r−1−γ , as illustrated in the top figure in

Fig. 2. This behavior and the existence of two scaling forms,
one for the bulk density and one for the tails is in line with the
observations in Ref. [11], who considered the linearly coupled
Lévy walk, this means here α = 1.

2. Open displacement range α < 1

Unlike for α � 1, here the density is not sharply cut
off at the maximum absolute displacement |r| = tα . As a
consequence, the particle densities are characterized by a
single scaling form, whose Fourier-Laplace transforms can by
found in Ref. [16]. For completeness we discuss them briefly
in the following.

a. Infinite mean transition time 0 < β < 1. We have seen
in the previous section that for the range 0 < β < 1, the
particle density has the scaling form (33). The scaling function
here is different. For t � 1 and |r| > tα , which corresponds
to λ � 1 and kλ−α , we obtain by using (28) in (31) the
approximation [16]

p(k,λ) ≈ 1

λ

1

1 + a−1
β c2(kλ−α)2

. (45)

This means that p(r,t) decreases exponentially fast for
|r| � tα .

b. Finite mean transition time β > 1. In order to derive the
scaling form for the case with finite mean transition time, we
use (28) in (38), which gives for the Fourier-Laplace transform
of the particle density [16]

p(k,λ) ≈ λ−1

1 + λβ−2α−1c2k2/τm

. (46)

The inverse Fourier-Laplace transform immediately gives the
dispersive scaling form

p(r,t) ≈ t−νf3

( |r|
tν

)
, ν = (1 + 2α − β)/2. (47)

The scaling function decreases exponentially fast for |r| � tν .

IV. AVERAGE ABSOLUTE MOMENTS

The average absolute moments are defined by

〈|r(t)|q〉 =
∫

dr|r|qp(r,t). (48)

The scaling forms presented in the previous section allow for
the systematic study of the behavior of the average absolute
moments of all orders q.

A. Weak coupling β > 2α

For β > 1, this means for τm < ∞ that the central limit
theorem implies normal diffusive transport and the average
absolute moments scale as

〈|r(t)|q〉 ∝ tq/2. (49)

For 0 < β < 1, we obtain, by using the scaling form (23)
in (48), the scaling for the absolute displacement moments

〈|r(t)|q〉 ∝ tqβ/2, (50)

which is of course the same as for an uncoupled CTRW. For
weak coupling, anomalous diffusion is weak.
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B. Strong coupling β < 2α

We found in Sec. III that there is a single scaling form for the
particle density for 0 < β < 1. Thus, anomalous diffusion is
also weak and the average absolute moments scale ballistically
as

〈|r(t)|q〉 ∝ tqα, (51)

where we used (33) in (48).
For β > 1 and an open displacement range, this means

for α < 1, the particle density is characterized by the single
scaling form (47). Using this expression in (48), we obtain the
dispersive scaling

〈|r(t)|q〉 ∝ tqν/2, ν = (1 + 2α − β)/2. (52)

Anomalous diffusion is also weak.
This is very different for a compact displacement range α �

1 and a finite mean transition time τm < ∞, which means for
β > 1. As discussed in Sec. III, in this case the particle density
is characterized by two scaling forms: one that describes the
bulk density and one that describes the behavior close to the
sharp cutoff at |r| = tα .

We use now the scaling forms (41) for |r| < rc(t) and (43)
for |r| > rc(t) in the definition (48) of the average absolute
moments. This yields, after rescaling the integration variables,
the expression

〈|r(t)|q〉 = tq/γ 2
∫ 1

0
dr|r|qKγ (r)

+ t1+qα−β

∫ ∞

0
dr|r|qf2(r). (53)

This means that for q < β/α the first term dominates and we
have the scaling

〈|r(t)|q〉 ∝ tqα/β, (54)

where we used that γ = β/α. For q = γ = β/α both con-
tributions are equally important such that 〈|r(t)|β/α〉 ∝ t . For

β

α

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5

normal diffusion

〈|r(t)|q〉 ∼ tq/2

tqα/β  for q < β/α
t1+qα-β  for q > β/α

strong anomalous diffusion

weak anomalous diffusion

ballistic tqαdispersive

dispersive

tqβ/2

t(1+2α-β)q/2

FIG. 3. (Color online) Illustration of the diffusion regimes de-
pending on the coupling exponent α and the exponent β of the
heavy-tailed transition-time distribution.

q > β/α the second term dominates such that

〈|r(t)|q〉 ∝ t1+αq−β. (55)

Thus, anomalous diffusion is strong according to [13]. Figure 3
illustrates the α and β regions of normal, weak anomalous, and
strong anomalous diffusion.

V. SUMMARY AND CONCLUSIONS

We studied the spatial characteristics of Lévy walks that
are characterized by a general nonlinear coupling between
transition length and time through |r| = tα with α > 0.
The transition times are characterized by the heavy-tailed
distribution ψ(t) ∝ t−1−β with β > 0. We do not consider
the marginal cases of integer β, which give rise to logarithmic
terms in the average absolute displacements.

The spatial characteristics of anomalous diffusion are
studied in terms of the scaling forms of the particle densities
and average absolute displacements. It has been previously
found [11,14] that the Lévy walk for α = 1, which means
linear coupling, and 1 < β < 2 exhibits strong anomalous
diffusion. This property has been traced back to the existence
of two scaling forms of the particle density, one of which
is valid for short displacement and the other one describes
the density for long particle excursions. For low orders q

of the moments 〈|r|q〉 of the absolute displacement, the center
of the particle density dominates the dispersion behavior, while
for increasing q weight is shifted towards the tails and the
second scaling form dominates the dispersion behavior.

We determined the scaling forms of the particle density
for general α > 0 and β > 0. For 0 < β < 1 and β > 2α

transport is dispersive [16], which means that 〈|r|q〉 ∝ tqβ/2.
In this region, the transition length and time are only weakly
coupled. In fact, the marginal density of transition lengths
is characterized by a finite variance. The particle density is
characterized by a single scaling form, which is of the same
type as the one for an uncoupled CTRW.

In the strongly coupled case (β < 2α) the marginal density
ψr (r) is heavy tailed and characterized by the exponent
γ = β/α < 2. Nevertheless, for 0 < β < 1 and for an open
displacement range (α < 1) we obtain a single scaling form
for the particle density. For 0 < β < 1, diffusion is dominated
by a long spatial transition characterized by a large transition
time. This gives rise to ballistic behavior and consequently
the particle density is characterized by a single scaling form.
For α < 1 the coupling is not strong enough to confine the
displacements. In both cases anomalous diffusion is weak.

Strong anomalous diffusion is only observed in the param-
eter region 1 < β < 2α and a compact displacement range
(α � 1). This means that the Lévy walk here is characterized
by a finite mean transition time τm < ∞ and confinement to
|r(t)| � tα . These properties give rise to the existence of two
scaling forms for the particle density. The bulk of the density
is characterized by a Lévy stable distribution of order β/α,
which reflects the fact the marginal distribution of transition
lengths is heavy tailed. At large distances, however, the particle
displacements and thus densities are cut off due to the strong
coupling of transition lengths and times. The cutoff behavior
on the characteristic scale tα is characterized by the scaling
form p(r,t) ∼ t1−α−βf2(|r|/tα). For α > 1 we observe strong
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anomalous diffusion in parameter ranges of β for which both
the mean and variance of the transition time are finite. Even
though a mean transition time and its variance exist, meaning
that the temporal transitions may be characterized by a single
scale, the CTRW cannot be decoupled. These results shed
light on anomalous diffusive behaviors observed in disordered
systems and the possible origins of strong anomalous diffusion.

ACKNOWLEDGMENTS

M.D. acknowledges the funding from the European Re-
search Council through the project MHetScale (Grant Agree-
ment No. 617511). The authors thank two anonymous referees
for their comments and criticism.

APPENDIX A: ASYMPTOTIC EXPANSIONS

1. Transition-time density

We detail here the expansion (18) of the Laplace transform
of (9) for λ � 1. First, we notice that (9) can be written as

ψ(τ ) =
∫ ∞

1
dxβx−1−β exp(−τ/x)

x
. (A1)

The Laplace transform of the latter reads

ψ(λ) =
∫ ∞

1
dxβx−1−β 1

1 + λx
. (A2)

For n − 1 < β < n, we expand the integrand using the
geometric sum as

ψ(λ) = 1 +
n−1∑
j=1

(−1)j λjβ

∫ ∞

1
dxxj−1−β

+ (−1)nλββ

∫ ∞

1
dx

λn−βxn−1−β

1 + λx
. (A3)

Rescaling λx → x in the last integral gives

ψ(λ) = 1 +
n−1∑
j=1

(−1)j λjβ

∫ ∞

1
dxxj−1−β

+ (−1)nλββ

∫ ∞

0
dx

xn−1−β

1 + x
+ · · · , (A4)

where the dots denote subleading contributions. Thus, the
coefficients aj and aβ in (18) are given by

aj = β

∫ ∞

1
dxxj−1−β = β

β − j
, (A5)

aβ = β

∫ ∞

0
dx

xn−1−β

1 + x
= βB(n − β,1 + β − n), (A6)

where B(α,β) is the Beta function [19]. Furthermore, the
constant a0 that determines the asymptotic behavior of ψ(τ )
for τ � 1 is given by

a0 = β(1 + β). (A7)

2. Transition length density

We detail here the expansion of the Fourier transform of (8)
for the specific transition-time PDF (9). The transition length

PDF ψr (ρ) is obtained by inserting (9) into (8) as

ψr (ρ) = β

2α
|ρ|−1−γ γ (1 + β,|ρ|1/α). (A8)

For |ρ| � 1, it can be approximated by

ψr (ρ) = β(1 + β)

2α
|ρ|−1−γ . (A9)

The Fourier transform of ψr (ρ) can be approximated by

ψr (k) ≈ β

α

∫ r0

0
dr cos(kr)r−1−γ γ (1 + β,r1/α)

+ β(1 + β)

α

∫ ∞

r0

dr cos(kr)r−1−γ , (A10)

where r0 � 1. For 0 < γ < 1 partial integration of the second
integral on the right-hand side gives for |k| � 1 in leading
order

ψr (k) ≈ 1 − (1 − γ )(1 + β) sin

[
(1 − γ )π

2

]
|k|γ . (A11)

For 1 < γ < 2, two integrations by parts and considering
|k| � 1 gives in leading order

ψr (k) ≈ 1 − (2 − γ )(1 + β) cos[(2 − γ )π/2]

γ − 1
|k|γ .

(A12)

These expressions define the constant cγ .

APPENDIX B: SCALING FUNCTIONS

The scaling function (37) can be obtained by the inverse
Fourier-Laplace transform of g1(k,λ) = λ−1F (|k|λ−α). Using
the explicit form (27) of F (k), we can write after rescaling the
integration variable

g1(k,λ) = a0λ
−1−β

∫ ∞

0
dt exp(−λt)[cos(ktα) − 1]t−1−β.

(B1)

The inverse Fourier transform gives immediately

g1(r,λ) = a0λ
−1−β

∫ ∞

0
dt exp(−λt)

[
1
2δ(|r|−tα)−δ(r)

]
t−1−β.

(B2)

We consider the case |r| > 0 and disregard the second term in
square brackets. Performing now the inverse Laplace transform
gives the expression

g1(r,t) = a0

∫ t

0
dt ′

(t − t ′)β

2(1 + β)
δ(|r| − t ′α)t ′−1−β

. (B3)

Executing the integral gives the expression

g1(r,t) = a0
(t − |r|1/α)β

2α(1 + β)
|r|−1−β/αH (tα − |r|), (B4)

which yields the scaling function (37).
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The derivation of the scaling function (43) is analogous. We
consider the inverse Fourier-Laplace transform of g2(k,λ) =
λβ−2F (|k|λ−α). Using (27) and again rescaling the integration
variable gives the expression

g2(k,λ) = a0λ
−2

∫ ∞

0
dt exp(−λt)[cos(ktα) − 1]t−1−β.

(B5)

Performing the inverse Fourier and Laplace transforms, we
obtain, by using the same steps as above,

g2(r,t) = a0

2

∫ t

0
dt ′(t − t ′)δ(|r| − t ′α)t ′−1−β

. (B6)

The remaining integration gives

g2(r,t) = a0

2α
(t − |r|1/α)|r|−1−β/αH (tα − |r|), (B7)

which yields the scaling function (44).
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