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Sinossi

In questa tesi si è studiato l’insorgere di eventi critici in un semplice modello neurale del tipo
Integrate and Fire, basato su processi dinamici stocastici markoviani definiti su una rete. Il segnale
neurale elettrico è stato modellato da un flusso di particelle. Si è concentrata l’attenzione sulla fase
transiente del sistema, cercando di identificare fenomeni simili alla sincronizzazione neurale, la quale
può essere considerata un evento critico. Sono state studiate reti particolarmente semplici, trovando
che il modello proposto ha la capacità di produrre effetti "a cascata" nell’attività neurale, dovuti a
Self Organized Criticality (auto organizzazione del sistema in stati instabili); questi effetti non vengono
invece osservati in Random Walks sulle stesse reti. Si è visto che un piccolo stimolo random è capace
di generare nell’attività della rete delle fluttuazioni notevoli, in particolar modo se il sistema si trova in
una fase al limite dell’equilibrio. I picchi di attività così rilevati sono stati interpretati come valanghe
di segnale neurale, fenomeno riconducibile alla sincronizzazione.
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Abstract

In this thesis critical events have been studied for a simple Integrate and Fire Neuron model based
on Markov Stochastic Dynamical Systems on a Network. The electrical neuronal signal is here modelled
as a flow of particles. The attention has been focussed on the transient phases of the system, searching
for phenomena similar to neuron synchronization, which can be considered a critical event. Very simple
Networks have been studied, finding that the proposed model has the capability to produce cascade
effects in the neural activity, due to self organized criticality, that are not observed in a Random Walk
Dynamics on the same Network. A small random stimulus has been found capable to generate notably
large fluctuations in the activity of the network, especially if the systems is at the edge of the equilibrium.
These peaks of activity are interpreted as avalanches of neuronal signals.
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Introduction

The study of Complex Systems has a wide range of applications, from physics to biology, including
social sciences. [1] [2] The behaviour of a Complex System is influenced by two factors: its basic
components and the network of relationships that regulates their interaction. It is a matter of fact that
a very small perturbation of a Complex System may change the macroscopic state of the system itself.
An important and fascinating field of study that benefits from Complex Systems is Neuroscience, as
the neural system is considered a paradigmatic example of Complex Systems. A neural system can be
modelled as a Neural Network [8]; the study of these objects is not an easy task, because both the
neurons and their interactions are extremely complicated. Biologically accurate models of the neuron
and of its synaptic connections are usually dropped in favour of simpler models, such as Integrate and
Fire (IF) networks. [6] [7]

Many works have been carried on this subject, by introducing a large variety of different IF models.
[7] A widely studied IF model, for example, is the Integrate and Fire oscillator model [11]. It has been
shown that with this model it is easy that neurons synchronize, i.e. that close neurons fire consequentially
in a small time interval.

In this thesis I develop a simple Integrate and Fire Network model (see Sec. 4.2.1), which defines
the dynamic of a set of homogeneous neurons whose connections are determined by a graph. I study
its transient phases, searching for similar phenomena as the above mentioned synchronization. Even
if the studied graph are very simple, the model is complex enough to present a substantial number of
these critical events. In particular a small random stimulus can generate notably large fluctuations in
the activity of the network: these peaks of activity are interpreted as avalanches of inter-neural signals,
especially if the system is on the edge of equilibrium.

To tackle complex system’s modelling it is possible to take advantage from Stochastic Dynamical
Systems theory [3] (see Chapter 1). These models introduce an effective description of the microscopic
dynamics and of the microscopic interactions. This is obtained by means of Stochastic Processes (meso-
scopic models), and it reduces the complexity of the system by taking into account the dynamics of
relevant mesoscopic or macroscopic observables for the considered phenomenon.

I focussed my attention on a particular subset of Stochastic Dynamical Systems: discrete Markov
Chains [15]. From these, I derive a form of Master Equation, and then I evaluate its time-continuous
limit. I recall Fokker-Planck Equation and the connection between Stochastic Models and Dissipative
Models, given by the Fluctuation Dissipation Theorem. [5]

In chapter 2 I give a definition of Random Dynamical Network (RDN). This definition is needed
because there are several ways to model a Stochastic Dynamical System on a graph, and therefore it
is necessary to specify the function of the graph’s elements whit respect to the stochastic dynamics.
This model is at the base of the Integrate and Fire Networks further considered in this dissertation,
and consists of a Markov Chain on a graph. The N nodes of the graph represents the states of the
system, while the weight of the (directed) links gives the transitions probabilities. We can consider then
a single system as a single particle moving on the nodes of the graph. This particle can occupy a certain
state at a certain time, according to the Markov Chain whose Transition Matrix is associated to the
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graph’s Weights Matrix. We can then study the properties of M non interacting identical systems as
the Random Walks of M particles on this graphs.

In Sec. 3.2 it is shown how it is possible to relate the existence of an internal potential for a graph
to the condition of detailed balance for a RDN.

In order to describe systems with a dissipation term and a stimulus (stimulated network) it has been
introduced an external reservoir, i.e. it has been added to the graph one node connected to every other
node. Particles are sent to the reservoir with transition probability d (dissipation rate) and re-injected
on the network with rate SR (see Sec. 3.4).

In Sec. 4.1 is reported a fast review of Integrate and Fire models, and in Sec. 4.2.1 I propose a IF
network model based on a RDN. I name these RDNs tRDN s (threshold Random Dynamical Networks),
for their main feature is the introduction of a threshold interaction between the particles. Two possible
models have been studied: all firing and threshold firing. If the number of particles in a node is larger
than the threshold θ, in the first case all the node’s particles can leave it, while in the second case exactly
θ particles can leave it. It is then shown that an all firing tRDN has a higher probability to have empty
nodes than a threshold firing tRDN. Moreover, these models have a reservoir node to study the effects
on macroscopic observables of an external stimulus.

As to better understand critical events, I studied two SandPile models: the Cellular-Automata
SandPile model and the Abelian SandPile model. These models shares with tRDNs many features, and
can then be used as a reference.

The graphs of the tRDNs analysed in this work are very simple, i.e. squared toroidal 2D lattices with
uniform connectivities. Such simple models are close both to IF and SandPile models, and are sufficient
to examine how a small perturbation on the network’s neurons can affect the collective behaviour.

In Sec. 4.5.1 I give a measure for the Network Activity, related to the threshold, and I define an
activity peak. I then analyse the properties of these peaks in order to characterize critical events, as
large and long fluctuations of the network activity.

By comparing the results obtained from a tRDN and a Random Walk on the same graphs, I identify
a control parameter, λ = SR

Nd (that is, the average number of particles per node), and the range of this
parameter that generates an interesting number of avalanches.

The above mentioned results have been obtained from simulations of tRDNs done using an original
C++ program, ROnDINE, that I developed during this work. In Appendix A are reported its main
features.
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Chapter 1

Dynamical Systems

Dynamical Systems (DSs) are models used to describe physical systems evolving in time.[3] [1]
The leading idea is that this physical system described by the DS assumes at time t a state x(t)

belonging to a set of possible states {xi}, and that the evolution of the system, i.e. its passage from a
state xi to another one xj in a certain time, is defined by a phase flow, a group of evolution operators.

A Dynamical System consists therefore on a set of possible states (a state space with an invariant
measure, or phase space in physics), and of an phase flow.

Given an initial state x(0), and a certain time T , the system evolves and assumes a series of states
x(t)0≤t≤T , which is known as its trajectory in the phase space. A single trajectory, given an initial state,
corresponds to a single realization of the dynamical system.

What a physicist would like to do is to be able to predict what state will the physical system assume,
at a given time T , given an initial state x(0); the "main job" of physics as a predictive science, then,
should be to model physical systems by using proper DSs; in other words, to find the most appropriate
evolution operators for the system we want to describe.

The classic and deterministic point of view assumes that, if we perfectly know the state of the system
and if we know every internal and external interaction, we can model its behaviour by using Newtons’
Laws and then perfectly determine the trajectory of the system, which will be unique – being the evolu-
tion operator a differential operator on R2d. However, it is impossible to have such a perfect knowledge
of any system; Laplace remarked this fact by writing of an "infinitely intelligent mathematician" [4]
capable of this, which is nowadays known as Laplace’s Daemon. This observation tells us that, even
if the the hypothesis to have a classical and perfectly deterministic world holds, we cannot predict its
evolution perfectly.

Our ignorance about the physical system we want to model using a DS can be listed in two categories:

1. Inability to know perfectly the initial state of the system

2. Inability to know perfectly the processes that influence the system evolution

In the first case, we can refer to two different state indetermination that can occur in physics: the
measurement error, that holds for any system, and the indetermination principle of quantum
mechanical systems. In the second case, we could be ignorant about the physics events driving the
processes, or we could be unable to treat mathematically all the interactions.

Anyway, not being a Laplace’s Demon doesn’t stops us from modelling physical systems with DSs.
For example, we can model the possible evolution of a system whose initial state is affected by a
measurement error by propagating this error during the system’s evolution. Error propagation works
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properly if the evolution of the system does not make the measurement error on the initial state explode,
increasing with an exponential law: this is the case of chaotic systems.

The introduction of Statistical Mechanics (SM) and the intrinsic indetermination found in quantum
systems obliged physicists to surpass Laplace’s point of view, and in general to review the idea of
prediction itself.

In a SM picture, we model a system composed of a large number of particles. We know how single
particles evolve in time, and we might also know how these particles interact. The limit we have is
that we don’t know the exact state of the system; however, we know something about it, such as its
probability distribution, which allows us to compute an average, representative, state, and the respective
fluctuations. It is then impossible to perform predictions on the exact state of such a system, but we
can compute average values of certain observables and their fluctuations.

This is justified in SM because the average behaviour of the microscopical system drives the macro-
scopic observables; these latter are what is actually measured in a physical experiment, and so they are
what we are we interested in.

Another problem arises when we deal with interacting particles in SM: the effective interaction can
often be very difficult. The hypothesis assumed to approximate these interactions is the Mean Field
hypothesis, which essentially states that a single particle is not subject to the interaction with every
other particle in the system, but only to a mean field produced by it nearest neighbour. This mean field
is usually a smooth function, chosen as simple to treat as possible.[14]

The main issue appears when the Mean Field hypothesis does not hold. In this case, we are dealing
with a Complex System. We can define a Complex System as a system whose behaviour crucially
depends on its details. These kind of systems are very difficult to be studied analytically, because of the
critical dependence from their details and our ignorance about these details themselves. As a solution,
we introduce randomness in the evolution operator, which is model of our ignorance about the "real"
evolution of the system.

At this point, it is impossible to make prediction as the one intended by Laplace. We can however
compute a probabilistic evolution, and then perform probabilistic predictions.
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1.1 Markov Chains

Markov chains are the most widely used models for many stochastic processes. Their applications
ranges from engineering (queue theory) and simulations (Gibbs Sampling, Markov chain Monte Carlo),
to finance, human behaviour, and often occurs in chemistry’s and physics’ models.[15]

Obviously, Markov Chains (or Markov Processes, or Markov Systems), do not represent all the
possible RDSs; a general formulation for RDS, (given in Section 1, in 1.2.2 ) allows many other kinds of
systems to exist, an to be studied. Nevertheless, Markov Processes constitute a wide subset of RDSs,
large enough to make their study complicated and extremely relevant. To add to generic Markov Chains
stronger constraints, or hypothesis, is a common procedure: this allows a simpler study on simpler
systems. An important category of these simpler Markov Systems is represented by those processes that
can be expressed in term of a Master Equation[26]. Among these processes, it is possible to identify
another particular class of random processes, i.e. Diffusion Processes [27] [25], usually expressed in
terms of the Fokker-Plank Equation. [24] Master Equation and Fokker-Planck equation describe very
particular and constrained situations; their importance is due to the possibility to be solved analytically.

The vast majority of Markov Processes cannot be expressed in terms of Fokker-Plank Equation nor
in terms of Master Equation: in this situations, it is required to develop new instruments to face them.
Some of those instruments can be borrowed from the theory of Fokker-Planck and Master Equations,
as analogies.

1.1.1 Informal Description

A Markov Process operates on a system living in a given state-space, and evolves it throughout time.
This general definition holds for any evolving system, or general dynamic system. What characterizes
a Markov Process is its transition matrix (or stochastic matrix ), that serves as a "one-step evolution
operator".

Given an initial state s(t), the next state s(t + ∆t) is computed by the transition matrix. The
elements of the transition matrix, Mij , defines the probability for the system to evolve from the state j
to the state i. A state, in a Markov Process, is then not represented by a deterministic entity defining
the exact state the system is, but by a probability vector, or distribution, which gives the probability of
the system to occupy any state. The elements of the transition matrix are named transition rates.

The most important element of this kind of evolution, for a stochastic system, is hidden in the mean-
ing of the transition matrix : this operator computes the new probability vector from the immediately
previous one, and with no other information. Because of this feature, a Markov Process is a memoryless
process: it evolves with no information about its previous states.

1.1.2 Formal Description

The formal description reported here is the one given by J. R. Norris in his book Markov Chains [15].

Let us suppose we have a system whose states are represented by the countable state-space I, i ∈ I,
and let us suppose we have a measure on I, λ = (λi, i ∈ I) | λi ≥ 0 ∀ i and

∑
i∈I λi = 1, i.e. a

probability distribution.
We will work with a probability space (Ω,F ,P), with a random variable X with values in I, i.e. a

function X : Ω→ I.
If we set λi = P (X = i) = P ({ω | X(ω) = i}) , then λ defines the probability distribution of X.
Thus X models a random state which takes the value i with probability λi.
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The transition rate is given by the matrix M = (Mij : i, j ∈ I), known as the Transition Matrix
of the process, which is a stochastic matrix. Every row (Mij : j ∈ I) is a distribution: M has to be
positive and row-normalized with L1 norm to 1:

N∑
i=1

Mij = 1 ∀ j = 1, 2...N

the elements of the Transition Matrix gives the transition rates, being Mij the probability for the
system to evolve from state j to state i.

Discrete Markov Chain

The discrete-time version of Markov Chains is the simplest model to treat and to describe.
(Xn)n≥0 is a Markov chain with initial distribution λ and transition matrix M if:

1. X0 has distribution λ:
P (X0 = i) = λi

2. for n ≥ 0, the conditional probability to observe Xn+1 knowing the past history X0 = i0, X1 = i1
... Xn = in, has distribution (Mij : j ∈ I) and is independent from X0,...,Xn−1. This can be
written as

P (Xn+1 = in+i | X0 = i0, X1 = i1, ... Xn−1 = in−1, Xn = in) = Min+1 in

Shortly, we say that (Xn)n≥0 is Markov(λ,M).
It can be shown that any discrete-time random process (Xn)0≤n≤N is Markov(λ,M) if and only if

∀ i0, ..., in ∈ I we have that P (X0 = i0, X1 = i1, ..., Xn = in) = MiN iN−1
· MiN−1 iN−2

· · · Mi1 i2 ·
Mi0 i1 · λi0

Markov property is a direct consequence of this proposition and of the above given definition of a
Markov Chain: in a Markov Process, future is independent of past given the present. Markov Processes
are thus memoryless: their evolution depends only on the present state.

Homogeneous Markov Chains

If the transition matrix does not depend on time, the Markov Chain is said to be homogenous. This
property is also known as time homogeneity, and is related to the fact that the evolution proceeds with
the fixed time-step ∆t.

Transition Matrix and Probability Vectors

If we have a finite number N of possible states i ∈ I, we regard distributions and measures λ as
N -vectors ~λ, and the transition matrix M is an N × N matrix. By applying n times the stochastic
matrix M, what we are doing is to multiply the matrix by itself n times.

Vectorial representation for finite-state Markov Chains

If we have a finite number N of states i ∈ I we can represent the probability distribution of a Markov
Process at a given time n as a vector. We will then refer to λ as ~λ

If we consider the Markov(~λ0,M) (initial distribution is λ0) process, we write the probability distri-
bution at time n as ~λn .
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Then, the evolution of the system reads:

~λ1 = M~λ0

~λn = Mn~λ0

The stationary distribution ~λst (if it exists) is defined as by:

~λst = M~λst (1.1)

In terms of linear algebra, equation (1.1) is an eigenvalue equation for the matrix M, with eigenstate
~λst and eigenvalue 1. Moreover, all the other eigenvectors have eigenvalues in (−1, 1) ⊂ R

It is possible to show that a certain class of Markov Processes, i.e. irreducible homogeneous Markov
Chains, always allow the existence of one, and only one, stationary (or steady) distribution. Irreducibility
of a Markov Chain means that the matrix M cannot be reduced to a diagonal block matrix. If the Markov
Chain is made of K separated block, then there will be K eigenvectors satisfying equation (1.1), and
eigenvalue 1 will have multiplicity K.
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1.2 Deterministic and Random Dynamical Systems

Dynamics studies collections of self-mappings of some space. Those collections usually forms a
measurable (semi)group T, endowed with its σ-algebra T (more often the Borel σ-algebra B(T)). This
(semi)group is what we use to call time [3]

This general ideas holds both for Deterministic and Random dynamical systems. Time is usually
represented by R (continuous time) or Z (discrete time), or a one-sided version of these additive groups,
such as R+ or Z+.

We generally study Measurable Dynamical Systems, intended as families of measurable self-
mappings of a measurable space X, labeled with time T.

This family can be written as (θ(t))t∈T and must satisfy the

Flow (or semi-flow) property: θ(s+ t) = θ(s) ◦ θ(t) ∀ s, t ∈ T (◦ means composition).
Moreover, if "time is not passing", the system must not evolve: (identity map): θ(0) = idΩ =

identity on Ω.
These properties are also known as one-parameter semi group properties, being θ : T 7→ X.

1.2.1 Deterministic Dynamical Systems (DDs)

Dynamical Systems (DSs) can be described in terms of flows: in this case the maps θ(t) represents
the flow, which is usually described as Φt1t0 . Given an initial state for the system, x0 ∈ X, the evolution
(on a time step t) is given by

xt1 = Φt1t0(xt0) with t0 < t1 ∈ T .

If this is a deterministic process, we have a DDS.
We can relax the condition t0 < t1 given that a mapping has to be invertible: if t0 > t1 we will have

the "reverse dynamics"

xt1 = Φt1t0(xt0) = (Φt0t1)−1(xt0) with t0 > t1 ∈ T .

If the flow does not depend on the initial state xt, it is invariant under time translations; these
systems are said to be time-homogeneous.

In this situation, we can use a lighter notation by just writing

xt = Φt(x0) with t ∈ T+

where x0 is the initial state. In this case the reverse dynamics reads

x−t = Φ−t(x0) = (Φt)−1(x0) .

If we have a discrete system, with time T = Z+, we can describe systems with with evolution
independent from time in terms of recurrences. We can state that a single step in the discrete-time
system performs an evolution of ∆t. In the most general case, we have

xt1 = Φt1t0(xt0) with t1, t2 inZ+

If we have a time-homogeneous DS (the evolution is independent from t) and being time discrete,
we can express the 1-step evolution of the system from xt0 to xt0+1 as Φ∆t, the elementary evolution.
This is the general mapping that evolves a state in the immediate successive one, and because of the
time-homogeneity we can write the general evolution from xt0 to xt1 as
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xt1 = Φt1t0(xt0) = (Φ∆t)t1−t0(xt0)

To express the general evolution after k evolution steps, we write:

xk = (Φ∆t)k(x0) = Φk∆t(x0) with k ∈ Z+

1.2.2 Random DSs
When we turn from deterministic to random dynamical system, we must introduce a stochastic

component somewhere in the process. What usually is done is to define the RDS mapping on a probability
space. Roughly, when we perform the evolution, we wont’ apply just one predetermined mapping, but
we will have a collection of possible mapping to choose among. Each mapping of the collection has a
given probability to be selected and applied.

Let us consider a probability space Ω and time T = R. ω is a random event in Ω, ω ∈ Ω.
As we defined the phase flow, thus, we can define the stochastic phase flow:

Φts(x, ω), with t, s ∈ Rn , ω ∈ Ω (probability space)

With the mapping ω → Φω measurable.
We then require, for any fixed random event ω, to satisfy the flow property :

Φtu ◦ Φus = Φts s ≤ u ≤ t

along with the identity map: Φtt(x) = x.
If s < t, we have that Φts = (Φst )

−1.
Since in this framework we are working in probability spaces, an important role is played by the

expectation values of states and observables on the states.
An important property that RDSs satisfy is that the expectation value of the stochastic phase flow,

E(Φts(x, ω)) = Φ̄(t−s)(x)

is a deterministic phase flow ; it must then satisfy the flow property:

Φ̄t(x) ◦ Φ̄s(x) = Φ̄(t+s)(x) Φ̄0(x) = x

We can set a condition to define Stationary Random Processes. As for Stationary Processes, Sta-
tionary Random Processes do not depend on the origin of time, being invariant for time translation.
This can be formalized by requiring that

∀ ω ∈ Ω, ∀ u ∈ T ∃ ωu ∈ Ω | ωu = Tuω ∧ Φt+us+u(x, ω) = Φts(x, ωu)

where T is a measurable Map, not depending on s nor on t, which preserves the probability measure
in Ω,

P(A) = P(Tu(A)) with A ⊆ Ω

RDSs can be continuous or discrete in time as DDSs.
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1.3 Markov Processes and Markov Property in RDSs

The beforehand given definition of a Markov Chain is an example of Random Dynamical System.
I gave a discrete-time description, but the continuous Markov Chain can be easily defined and studied
too [15].

From now on will continue to use the discrete-time model.
We can define a subset of RDSs, named Markov Processes, which can be described in terms of

Markov Chains.
Markov Processes are basically RDSs with no memory. In simple terms, it means that the evolution

of the system from time t to time t + ∆t only depends on the state of the system at time t, and not
from what happened before this moment.

This property has no particular meaning on DDs, because these systems realize one and only one
trajectory (given an initial state with infinite precision).

In RDSs, we can have several different possibilities for a trajectory, because the event driving it is
random and unknown; what is known is the probability to realize a particular event. Given a state xt,
the state at xt+∆t is not known until the random event is realized. In this situation, the history of the
system, i.e. the sequence of the states that brought the system at the actual state xt, could affect the
subsequent evolution by affecting the realizations of the random event.

In Markovian Processes, we require this to not happen: the expectation value of xt+∆t does not
depend on the previous states. We say that the history of the system does not affect the evolution, or
that the system has no memory.

This lack of memory is known as Markov Property (see Sec 1.1.2).

1.3.1 Markov Chains

In terms of RDSs, we can state that Markov Chains are RDSs satisfying Markov Property and
Stationary Process Property.

It is possible to prove that [15][3] any kind of RDSs with Markov Property and Stationary Process
Property is a Markov Chain.

Then, we can relate the Transition Matrix and state representation, introduced for Discrete Markov
Chains, to the flow operators.

The general RDS evolves from an initial state xt to xs as:

xs = Φst (xt, ω)

Being the process stationary, the operator Φ does not depend on s or t, but only on s− t:

xs = Φs−t(xt, ω)

If we are working with discrete time, T = Z+, we have a discrete time-interval ∆t, s− t = k∆t, and
then

xs = Φk∆t(xt, ω)

and, because the process is stationary, we can reduce

Φk∆t(x, ω) = (Φ∆t)k(x, ω)

Given the initial state of the system x0, we can compute any subsequent state after k steps:

xk = (Φ∆t)k(x, ω)
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To understand better this notation we must recall what a stochastic phase flow is. The operator
Φts(x, ω) can be seen as a collection of possible operator among which, throughout the random variable
ω(t) ∈ Ω, the effective evolution is chosen.

Provided this, we can easily connect the stochastic flow phase operator to the Transition Matrix.
We consider not any more the single state at the time t, x(t), but the collection of all the possible

states {xi}i. From this, we define a state vector ~s(t), being it of finite or infinite dimension, as it
follows:

si(t) =

{
1 if x(t) = xi

0 otherwise

We then define the probability vector, ~p(t), as the vector where the i-th entry gives the proba-
bility for the system to be in the state xi at time t. Being a probability vector, it must be normalized
(with norm L1) to 1, and positive-valued. If we know the state of the system, xj , then we have that
pj(t) = 1 = sj(t), and pi(t) = 0 = si(t) for i 6= j.

Let us now give two important hypotheses:

1. Time is discrete (T = Z+), and a time-step is equal to ∆t

2. In a single time-step the system performs one "movement" from one state to another one, according
to the transition matrix M. These movements are determined by the Exchange Operator A(t):.

si(t+ ∆t) =

N∑
j=1

Aij(t)sj(t) (1.2)

A(t) is a single realization of the evolution process. The matrix M represents then the average
of the Exchange Operator: 〈Aij〉 = Mij A single realization is randomly generated from the
Transition Matrix M (defined in Sec. 1.1.2) by using these rules: for every row i of A(t), we
select a state/column j among all the possible states to be setted to be 1, with probability Mij .
In order to transform state vectors in state vectors, its entries must be only 1 or 0, and row-wise
normalized to 1:

Aij(t) ∈ {0; 1}
N∑
i=1

Aij(t) = 1

With these hypotheses, we have fixed the time scale of the system at ∆t. Because of this, it is
more appropriate for the Transition Matrix to depend on this time-scale, i.e. M∆t. This means that if
we want to consider the evolution of a system at different time scales, the matrix M(∆t) changes; in
particular, if we want to perform the limit lim∆t→0, we must pay attention to preserve the flow property
M(0) = I.

The Transition Matrix transforms probability vectors:

~p(t+ ∆t) = M(∆t)~p(t)

And, as we have seen in section 1.1, we have that

~p(t+ k∆t) = M(∆t)k~p(t)
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If we want to perform more than 1 evolution step, say k, we must generate k exchange operators
A(t), A(t+ ∆t) ... A(t+ (k − 1)∆t), and apply them as

~s(t+ k∆t) = A(t+ (k − 1)∆t)A(t+ (k − 2)∆t)...A(t)~s(t)

A stationary probability vector, or stationary distribution, is what in section 1.1 has been named
stationary state. This latter name may be misleading, since it does not refer on the state of the system,
but on its probability distribution. The system can change its state, but if it is in a stationary condition,
the probability distribution does not change as the system evolves.
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1.4 Non interacting Many Particles Systems

Assuming that we have more than one realization of the same Markov Process concurrently occurring,
with discrete time T = Z+ for practice, we may consider a single realization as a single "particle": we
want then to study the "Global System" composed by M particles.

Since all the particles behave the same way, we can say that they are identical. If the particles have
no label, we say they are indistinguishable.

This is a typical set up of a Statistical Mechanics’ system.
It is possible to relate a RDS to a Statistical Ensemble, given that it satisfies some constraints.

If we have M identical particles on N possible states, we can define the Global State Vector at a
given time as the sum of all the State Vectors of each particle:

~s(t) =

M∑
m=1

~s(m, t) (1.3)

Being M and N fixed, we have that

N∑
i=0

~si(t) = M

where ~s(m, t) is the state of the system/particle m at time t.
We can define the Particle Distribution as

~ρ(t) =
~s(t)

M

Each single particle changes its state (in a time-step ∆t) according to the same Transition Matrix
M(∆t).

In general, the evolution of the global state vector reads

~s(t+ ∆t) =

M∑
m=1

~s(m, t+ ∆t) =

M∑
m=1

A(m, t)~s(m, t)

where A(m, t) is the exchange operator randomly generated from M(∆t) for the single particle m
at time t.

If the particles are not interacting, we can consider the evolution of each particle independently
and calculate ~s(t+ ∆t) as

si(t+ ∆t) =

M∑
m=1

N∑
j=1

Aij(m, t)sj(m, t)

At this point we can define the Global Exchange Operator as

Āij(t) :=
1

sj(t)

M∑
m=1

Aij(m, t)sj(m, t) (if sj(t) 6= 0) (1.4)

and rewrite the evolution of the global system as

si(t+ ∆t) =

N∑
j=1

Āij(t)sj(t) (1.5)
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From its definition, Ā(t) must satisfy the following properties:

Āij(t) ∈ [0, 1] ⊂ R
N∑
i=1

Āij(t) = 1 〈Āij〉 = Mij(∆t)

where 〈Āij〉 denotes the average value that can take Āij , and it is related to the Transition Matrix
M(∆t).

From (1.5), we calculate the variation si(t)− si(t+ ∆t) as:

si(t+ ∆t)− si(t) =

N∑
j=1

Āij(t)sj(t)− si(t)

=

N∑
j=1

Āij(t)sj(t)−
N∑
j=1

Āji(t)si(t)

(1.6)

⇒ si(t+ ∆t)− si(t) =

N∑
j=1

(
Āij(t)sj(t)︸ ︷︷ ︸− Āji(t)si(t)︸ ︷︷ ︸

)
incoming flux outgoing flux

We can then identify an incoming and an outgoing flux of particles on the state i.
Using the vector notation, we have

~s(t+ ∆t) − ~s(t) = Ā(t)~s(t) − ~s(t) =

( Ā(t) − IN ) ~s(t) = : ∆~s(t+ ∆t)

At this point, by using the properties of Ā(t), we can write the average dynamics from (1.6) as it
follows:

〈si(t+ ∆t)〉 − 〈si(t)〉 =

N∑
j=1

Mij(∆t)〈sj(t0)〉 −
N∑
j=1

Mji(∆t)〈si(t)〉

And using the vector notation:

〈~s(t+ ∆t)〉 − 〈~s(t)〉 = M(∆t) 〈~s(t)〉 − 〈~s(t)〉 =

( M(∆t) − IN ) 〈~s(t)〉 = : 〈∆~s 〉(t+ ∆t)
(1.7)

1.4.1 Stationary Condition
As said before, the stationary distribution for a single Markov memoryless system (in this case,

particle) m, ~pstat(m) , which is given by

~pstat(m) | M(∆t)~pstat(m) = ~pstat(m)

The probability to find particle in the i-th state is given by the i-th component of ~pstat.
Therefore ~pstat defines an invariant probability measure for the single particle stochastic dy-

namics. If pi,stat is the same for every state i, every state is equivalent. If pi,stat vary with respect to
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the state i considered, it means that some states have more probabilities to be occupied by the single
particle than the others.

If all the M particles are non-interacting, we can search for a global stationary distribution, by
requiring to satisfy a stationary condition – i.e. that the probability to find any particle in a certain
state is determined only by the state itself. In other words, in a stationary condition the M particles
are indistinguishable, and the global state does not depend from the initial condition of the system.

Thus, a global system with N single-particle states andM indistinguishable non interactng particles,
the probability of the global system to realize a given global state ~̃s reads:

p(~̃s, t) = M !

N∏
i=1

ps̃ii,stat
s̃i!

(1.8)

which is amultinomial distribution. The average number of particles in state i is given by 〈si〉 = pi,stat
and it has variance var(si) = Mpi,stat(1− pi,stat).

1.4.2 Local balance
Let ~ei be the vector that represent a single particle being in the state i (since particles are indis-

tinguishable, I drop the previous notation specifying the m-th particle). We can write an elementary
particle exchange from j to i on the state ~s as ~s + ~ei − ~ej ; these two states are said to be connected,
since they follow each other.

In a stationary condition the particle distribution satisfies a local continuity equation (or local
balance), since it does not change between two connected states. The variation of the average current
of particles between two nodes i and j is 0. Therefore we have that

N∑
k=1

siMki(∆t)p(~s) =

N∑
j=1

(sj + 1)Mij(∆t)p(~s + ~ei − ~ej) (1.9)

which can be verified by putting in p(~s) and p(~s + ~ei − ~ej) according to (1.8).

1.4.3 Detailed Balance
Some particular systems, in a stationary condition, satisfy a stronger equation for the average current

of particles, named detailed balance. In this case not only the variation of the average current between
two nodes is 0, but the average current itself is null.

1.4.4 Evolution Probability
We can compute the probability for the global system to be in state ~s(t) at time t + ∆t as the

probability it has to evolve to it from any other state ~s − ∆~s, by performing a variation of state ∆~s.
This can be written as

p(~s, t+ ∆t) =
∑
∆~s

M∆~s(∆t) p(~s−∆~s, t) (1.10)

1.4.5 Continuous time limit to Master Equation
From a generic discrete Markov system as the one seen above, we want now to pass to a description

in terms of Master Equation with continuous time. We need then to perform a continuous time limit,
and in order to do that we need to assume the following asymptotic expansion for the Transition Matrix:
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Mij(∆t) = δij + M̂ij∆t+ o(∆t) with
∑
j 6=i

M̂ij + M̂ii = 0 (1.11)

The latter means that the diagonal of the new matrix M̂ has to be negative. This definition allows to
compute the evolution on the limit lim∆t→0 preserving the flow property, that requires M(∆t = 0) = I.

This expansion assumes that only one particle moves in the (very small) time ∆t.
We compute the variation of probability from (1.10) as

p(~s, t+ ∆t)− p(~s, t) =
∑
∆~s

M̂∆~s p(~s−∆~s, t)−
∑
∆~s

M̂∆~s p(~s, t)

From expansion (1.11), this equation means that in the time-step ∆t, for ∆t → 0 there is only one
exchange of particle occurring, since the other exchanges have probability of order O(∆t2) and vanishes.
For very small ∆t, only one particle is moving in the network. This allows us to take the limit

lim
∆t→0

p(~s, t+ ∆t)− p(~s, t)

∆t
= lim

∆t→0

(∑
∆~s

M̂∆~s p(~s−∆~s, t)−
∑
∆~s

M̂∆~s p(~s, t)

)
since ∆~s will be of the type of ~ej − ~ei.
This finally leads to the Master Equation

ṗ(~s, t) =

N∑
i,j=1

M̂ij (sj + 1) p(~s− ~ej + ~ei, t)−
N∑

i,j=1

M̂ji si p(~s) (1.12)

The Master Equation satisfy the following continuity equation

N∑
j=1

M̂ij(sj + 1) pj(sj + 1)pi(si − 1) =

N∑
j=1

M̂ji sj pj(si)pi(sj)

If we consider not the probability distribution, but the density distribution, we can rewrite the
continuity equation in terms of flow of particles in a particular realization of the system. This can be
done if we have a very large number of particles, since

lim
M→∞

~ρi(t) = ~pi(t)

We identify then M̂ijsjρj(t) as the flow of particles going from node j to node i, and, because of the
local balance, we have:

ρ̇i(t) =

N∑
j=1

M̂ijsjρj(t)−
N∑
j=1

M̂jisiρi(t)

1.4.6 Laplacian Matrix

The Master Equation (1.12) can be written in terms of the Laplacian Matrix[16] [18] L:

~̇p(t) = −L ~p(t) with Lij = −M̂jjδjj − M̂ij

The Laplacian Matrix plays in Markov Chains and in the Master Equation the same role of the
Laplacian Operator ∇2, which is fundamental in the description of diffusion processes on R3.
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This matrix, given the properties of M̂, has all the elements outside of the diagonal negative, while
the diagonal is positive.

The Laplacian Matrix is positive-semidefinite, i.e. its eigenvalues are all ≥ 0. The smallest eigenvalue,
λ0, corresponds to 0, and the corresponding eigenvector gives the stationary state of the system; in fact

N∑
j=1

Lijpj,stat = 0

This eigenvector is also the only eigenvector normalized to 1, while the others eigenvectors are
normalized to 0.

If there multiplicity of eigenvalue 0 is larger than one, this means that the Markov Chain is not
irreducible. We will see that on Networks this corresponds to a graph made of two separate components.

It is possible to show that the second smallest eigenvalue λ1 it strictly smaller than 1; it can give us
an esteem of the relaxation time for the system, from a transient state to the stationary state:

||~ρ(t)− ~pstat|| ∝ λ1t (1.13)

which gives for the system a relaxation time scale of

τ ' −ln(λ1)

1.4.7 Fokker-Planck Equation

Fokker-Planck equation [24] is related to the description of diffusion processes, an it particular it has
a strong connection to Stochastic Differential Equations (SDEs) [29]. SDEs describe the evolution of a
physical system perturbed by a white noise, i.e. describes a particular subset of RDSs.

We can write a generic linear monodimensional SDE as:

dx(t) = −µ(x, t)dx(t)dt+ σ(t)dW (t)

The first term represents a deterministic differential equation, while the second term represents the
perturbation due to the a Wiener Process W (t) [27]. Fokker-Planck equation describes the evolution of
the probability distribution of such a system; it also corresponds to the Kolmogorov First Equation or
Backward equation,

ṗ(x, t) = − ∂

∂x
µ(x)p(x, t) +D(x)

∂2

∂x2
p(x, t)

µ is the drift coefficient, and D(x) = σ(x)
2 is named diffusion coefficient. In practice, the second

term is a diffusion term deriving from the stochastic nature of the system. This connection is due to
the Fluctuation Dissipation theorem [5]

In this conditions, the Laplace Operator can be written as

L =
∂

∂x
µ(x)− ∂2

∂x2
D(x)

and allows us to write the evolution of the system as

p(x, t) = e−Ltp(x, 0)
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The Fokker-Plank equation describes then a "simple" diffusion process; it is possible, under certain
conditions, to approximate the Master Equation to such a diffusion process.
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1.5 Creation-Annihilation notation

In the context of Many Particles Systems, it is useful to retrieve (adapting it) a very effective notation
used in second quantization [30], i.e. the Creation - Annihilation notation.

Let us consider a single particle, changing its state according to the transition Matrix M(∆t): a
single step of its evolution was written in section 1.3 as (see (1.2))

si(t+ ∆t) =

N∑
j=1

Aij(t)sj(t)

with A(t) randomly generated from M(∆t).
The operator Aij(t) has been named Exchange Operator, because it changes the state of the particle

from a state j to another state i.
In practice, we can state that the exchange operator removes a particle from a state j and creates

one in state i. This operation does not always happen, but it has a certain probability to be performed,
given by Mij(∆t).

We can then define the operators of distruction ai and creation a†i such as:

ai ~s := ~s(t)− ~ei a†i ~s := ~s(t) + ~ei

Then we can write the "jump" of a single particle from state j to state i (performed from time t to
t+ ∆t) as

~s(t+ ∆t) = ~s(t) + ~ei − ~ej = aja
†
i~s(t)

Obviously, this jump has to be possible, and its realization is governed by the exchange operator,
which is random.

We can rewrite the local continuity equation (1.9) as

N∑
k=1

siMki(∆t)p(~s) =

N∑
j=1

(sj + 1)Mij(∆t)p(aja
†
i~s)

similarly, the Master Equation (1.12) can be written as:

ṗ(~s, t) =

N∑
i,j=1

M̂ij (sj + 1) p(aja
†
i~s, t)−

N∑
i,j=1

M̂ji si p(~s) (1.14)

This suggests the introduction of two operators similar to ai and a
†
i , with the difference that, instead

of operating on the states, they operate on the probability to obtain a certain state.
Such operators, usually written as E†i , Ei, are known as Van Kampen operators [20], and operates

in the following way:

EjE†ip(~s) = p(~s + ~ei − ~ej)

and

EjE†isjp(~s) = (sj − 1)p(~s + ~ei − ~ej)

We can rewrite the Master Equation (1.14) as

27



ṗ(~s, t) =

N∑
i,j=1

M̂ijEjE†i sj p(~s, t)−
N∑

i,j=1

M̂ji si p(~s)
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1.6 Interacting Many Particles Systems

I recall now the definition of a global system of M indistinguishable particles that can assume N
different states.

From (1.3) we defined the global state, and the non interacting global evolution was given by (1.4).
If the particles are interacting, the latter does not hold any more. It is necessary to include the

interacting term in the computation of the new state.

1.6.1 Threshold Interaction

The interaction I introduce is a "threshold" interaction.
This kind of choice is motivated by the Integrate and Fire neural model (see section 4.2) and the

SandPile model (see section 4.3), which I will examine later.
Basically, the particles are allowed to change their state if and only if there is a sufficient number of

particles in the state they are in. To express this mathematically, I use the Heaviside Step Function,
which has been used since the beginning of the Neural Network modelling as activation function([21]).
It is defined as it follow:

Θ(x) =

{
1 if x ≥ 0

0 if x < 0
(1.15)

In this case, the threshold is 0. If we want to set a threshold θ, we use x−θ instead of x as argument
for Θ.

From this, we can write the variation of the state in the global system, as it was described in (1.4),
in the case of a fixed threshold θ (which is the same for every state) :

si(t+ ∆t)− si(t) =

N∑
j=1

Āij(t)sj(t)Θ(sj − θ)−
N∑
j=1

Āji(t)si(t)Θ(si − θ)

We find again an incoming and an outgoing flow, with the difference that now these flows are governed
by both the matrix Ā(t) and the Heaviside function Θ.

Fixed the threshold θ, we can define the Activation Vector ~Θ(t) as the vector having as i-th
component the Heaviside Step Function computed for the state i and the given θ, at time t:

Θi(t) = Θ(si − θ)

We can then compute the variation of the global state in a matrix form (cfr. (1.7))

~s(t+ ∆t)−~s(t) = ( Ā(t) − IN ) ( ~Θ(t) IN )~s(t)

There are then two components regulating the dynamics: the activation vector, that depends on
the state of the global system and determines which particles will actually change their state, and the
transition matrix M, that drives the evolution of the particles allowed to evolved from the activation
vector.

Obviously, the particles cannot be considered indistinguishable any more. It is then not straightfor-
ward to compute an average evolution as we have done in the non-interacting case. What pops out is
that the activation vector plays an important role in the evolution of the global system.

If the number of particles in the global system is larger than Nθ (the average number of particles
per state is larger than θ) we recollect the average evolution of the non-interacting system.
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Threshold-limited Threshold interaction

Another way to define the threshold interaction is the following:

si(t+ ∆t)− si(t) =

N∑
j=1

Āij(t)θΘ(sj − θ)−
N∑
j=1

Āji(t)θΘ(si − θ)

=θ

N∑
j=1

Āij(t)Θ(sj − θ)−
N∑
j=1

Āji(t)Θ(si − θ)

This new definition allows the node to conserve a certain number of particles, and avoids an exchange
of a large quantity of particles.

We can note that, in this case, if the number of particles in the global system is larger than Nθ, i.e.
if the average number of particles per state is larger than θ, the evolution reads:

si(t+ ∆t)− si(t) = θ

which is different from the previous case.
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Chapter 2

RDSs on Graphs: Random Dynamical
Networks (RDNs)

In this thesis I focussed on a particular subset of RDSs, which can be described in terms of Markov
Chains, i.e. RDSs on Graphs.

These systems are characterized by a space of states with a particular "topology", i.e. the one
imposed by the graph itself. This means that many results obtained for systems evolving in topological
spaces such as Rd cannot be applied; as a first immediate consequence, it it not possible to derive a
Fokker-Planck equation for many RDSs on graphs.

It must be pointed out that there are many different ways to set-up a RDS on a graph. For example,
the edges of a graph could be part of the state space or they could just define relationship among the
elements of the state space.

It is then very important to define clearly which characteristic of the graph affects the evolution of
the system, and how.

In this subsection I will recall very briefly some basic definitions and properties of graphs. A simple
and effective description of these objects with a Statistical Mechanics approach is given by Albert-
Barabasi in their well known article "Statistical mechanics of complex networks" [33].

Done that, I will specify how a RDSs can evolve on a graph. I will name these systems as Random
Dynamical Networks.

2.0.2 Graphs

A graph is a set of generic entities, nodes (or vertices), connected among each other by links (also
known as edges).

A graph can be directed or undirected : in the first case, a link represents an oriented relationship
between nodes, while in the second case it is a is symmetrical relation. If not all the links are equivalent,
every link has its specific weight, and we have a weighted graph. We define wij as the weight of the
link connecting the node j to the node i. Usually, the weight is restricted to positive values: wij ≥ 0 ;
if wij = 0 we consider the respective link as non-existing.

The degree of a node i, ki, is defined as the number of links starting from (outgoing) or terminating
on (incoming) it. If the graph is undirected the distinction between incoming and outgoing links is
unnecessary; but if the graph is directed, we can consider separately the degree of incoming links (ki,in)
and that of outgoing links (ki,out), the sum of which gives the ’total’ degree: ki,in+out. In case links
possess also a weight, the degree may be in turn weighed so as to give greater value to most "important"
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links: in this case, we call it strength ( si =
∑
j wij ), where is the weight of the link connecting j to i

. As we defined si, we can similarly define si,in, si,out, etc... in a directed network.
We say a network is connected if there always exist a path (a sequence of links) connecting a selected

node to each other. If a network is not fully connected, then its adjacence matrix can be reduced in
blocks with a proper permutation. The two blocks represents two (or more) distinct networks which
are unable to "talk" each other: i.e., if I obtain two blocks (we can call them network A and network
B) and I select a node from the network A, there is no path that allows me to reach any node in the
network B.

We can define the shortest path connecting two nodes as the path that connects those two nodes
using the minimal number of links. It can be considered as the most efficient way to connect those two
nodes; however, the shortest path could be non-existent (if the network is not fully connected), and it
could be non-unique.

Adjacency Matrix and Weights Matrix

A graph can be represented in several different ways: the most useful is the Adjacency Matrix.
Let us consider a graph G with N nodes. Its adjacency matrix Ad(G) is an N ×N matrix; Ad(G)ij

represents the existence of the link connecting the node j with the node i:

Ad(G)ij :=

{
1 if j is connected to i
0 otherwise.

If in the graph there are no cyclic links (that is, links pointing to the same node they depart from),
then the adjacence matrix has a null diagonal. If the graph is undirected, then the adjacency matrix is
symmetrical.

Given the Adjacency Matrix, if the graph is weighted we can introduce the Weights Matrix

W(G)ij := wij .

We can roughly say that the Adjacency Matrix defines the space we are working in, while the Weights
Matrix defines the dynamics of the systems moving on the graph; I will now explain how and why.

2.0.3 Random Dynamical Networks

ARandom Dynamical Network is a RDS composed byM identical and indistinguishable particles
which evolution is determined by the Weights Matrix of a graph.

For practice, we consider the discrete time case, with time-step ∆t.
Given a graph G with N nodes, we identify each node i of the graph as a single-particle state. As

time passes, the particle will randomly choose a new state according to the Transition Matrix, which
is defined from the Weights Matrix as it follows:

M(G)ij :=
W(G)ij
N∑
i=1

W(G)ij

i.e. the Transition Matrix of a graph corresponds to its Weights Matrix row-wise normalized with
norm L1 to 1 (property required in order to be a probability preserving Transition Matrix, see 1.1.2).

As for the Adjacency Matrix, if the graph is undirected the Transition Matrix is symmetrical. How-
ever, this is not a frequent situation: in general, we will deal with directed graph.
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It is straightforward that with this definition we are also defining a class of equivalence for graphs,
since the same Transition Matrix can be obtained from many different Weights Matrices.

We will only consider graphs with fixed edges and fixed weights, i.e. the graph structure does not
depend on time.

With this definition, provided that at each time step ∆t the single particle makes 1! movement among
the nodes of the graph, we state that the single particle evolves throughout a Homogeneous Markov
Process as the systems described on section 1.3.1.

A Random Dynamical Network (abbreviated in RDN) is then defined as the global system of
M particles moving on the graph G according to the Transition Matrix generated by its Weights Matrix.

Given this picture, it should be more clear now why the Adjacency Matrix of G determines the
topology of the RDSs, since it defines which states are connected; the Weights Matrix, by defining the
Transition Rates, determines the dynamics of the system. On the same topology (defined by Ad(G) we
can define infinite different dynamics thought the weights of the links, and every different dynamics will
give different properties.

It is important to note that if the graph is connected, then the Markov Chain associated is an
irreducible chain: I will mainly work with this kind of graphs.
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Chapter 3

Random Walks on Networks

If we consider a single particle moving on the Network, we can recall the results and the notation
used in section 1.3; we just change our dictionary by calling a state as a node and the Global State as
the Network State; the evolution of the single particle can be understood as a Random Walk [22]
on the Graph.

The difference between the classical Random Walk and a Random Walk on a Network is due
to the underlying topology: the first one is usually defined on RN , a topological space with all the
properties of the case, and allows some important operations such as the continuous-space limit; on a
graph, this cannot be always done.

A particular class of graphs that can be connected to spaces as RN are lattices, from which we
can obtain RN with a proper limit. If we are instead considering a generic graph, it is quite probable
to encounter a small world graph [33], which breaks the continuity properties required to pass to a
continuous representation.

To support the theory of the next subsections, I will report some result obtained from the Random
Dynamical Network Simulator ROnDINE I developed for this thesis. The programs features are
described in Appendix A.
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3.1 Stationary Distribution

As we said previously, if we haveM non-interacting particles moving in the network, in a stationary
state their probability distribution will be given by the multinomial distribution written in equation (1.8).

Each node i has probability pi,stat to be occupied by a particle, and this will give the mean density
of particles on it. I recall that the stationary state vector of the system corresponds to the eigenvector of
M(∆t) having eigenvalue 1 (L1 normalized to 1): this eigenvector can also be named first eigenvector,
being it the one with the largest eigenvalue [15].

In the case of a graph, the stationary distribution is given by the first eigenvector of its Transition
Matrix M(G).

As said in section 1.2.2, the stationary distribution gives us an invariant probability measure. We
can make every node equivalent by rescaling its particle distribution by the corresponding element of
the first eigenvector: in this way, each rescaled particle distribution will have mean 1 and variance
proportional to M−2.

In figure 3.1 we can see this relation arise from the two simulation cases.

Figure 3.1: Variance of particle distribution in a steady condition w.r.t. M , number of particles in
the network. Two cases are shown, both 10x10 notes toridal lattices, in a care with non-wighted links,
in another case with randomly weighted links. In any case, the transition matrix does not affect this
behaviour.
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3.2 Detailed Balance and Internal Potential Energy

An important property for Markov Processes is detailed balance (see section 1.4.3).
This property guarantees that there are no circular currents in the network, which could lead to

non-physical situations.
To assure detailed balance, we can set on the network an Internal Potential Energy, i.e. we

assign to each node i a certain potential energy Vi and, given an adjaceny matrix for the graph G, we
compute the weight of the link from node i to node j as

Wij(G) := e−
Vi−Vj

2T (3.1)

where T plays the role of the temperature of the system, and it is clear that larger is the temperature,
more agitated is the system and then more probable are the exchanges of particles between the nodes.

In practice, the transition matrix will be

Mij(G) ∝ e−
Vi−Vj

2T (3.2)

I a stationary condition with detailed balance, we have that

Mji(G)pi,stat = Mij(G)pj,stat

i.e. the currents on the links connecting nodes i and j are the same; it can be rewritten as

Mji(G)

Mij(G)
=
pj,stat
pi,stat

with the weight defined in (3.2), we can note that the elements of the first eigenvector (pj,stat) are
indeed given by

pi,stat ∝ e−
Vi
2T

It must be noted that this definition requires at least that the existence of a link from node i to j
implies the existence of the link from node j to i; in practice, the adjacency matrix Ad(G) has to be
symmetrical.

The effective value of pi,stat depends also on the connectivity of the node, which determines its
accessibility.

37



3.3 Relaxing Times and multi-timescale systems

As seen in section 1.4.6, we can write a Master Equation in terms of the laplacian matrix, and we
can see that the system evolves according to

p(x, t) = e−Ltp(x, 0)

The Laplacian Matrix can be defined for graphs too, as

L(G) = D(G)−W(G)

where the matrix D(G) is defined as

Dij(G) := δij
∑
j 6=i

Wij

i.e. is the diagonal matrix of the nodes’ (weighted) degree.
The evolution of the probability distribution can be intended as a limit for the evolution of the

particle distribution of the graph. The Laplacian properties are the same even if it is written for the
evolution on a graph, provided that it is an approximation of the effective evolution because of the
limited number of particles and the fixed time-evolution scale.

Thus the relaxing times (known also as mixing times) are related to the second eigenvalue of L.

3.3.1 Mixing times in Artificial Clustered Networks

Since the time evolution of the system is governed by the second eigenvalue of the Laplacian, it is
interesting to analyse the relaxing times of systems having particular properties in its eigenvalues.

In some cases the third, fourth ... eigenvalues of the Laplacian could be extremely close to the
second.

This happens when the graph is made of a set of components weakly linked each other. The exchanges
of particles inside one of these components has a relaxation time (which, in the paradigm of Markov
Processes, is known asmixing time) much smaller than that of the whole network, because the exchange
of particles among the components is improbable with respect to the internal one.

We can build artificially such kind of networks by setting a proper potential to each node.

Artificial Clustered Network

An ad-hoc built Artificial Clustered Network can be generate as it follows: we imagine to have Kext

external components, each of which is composed of Kint internal components.
Each external component is composed by Kint internal components, which which are Erdos-Reny

Random Graphs [23] with K nodes connection probability pc . Each node of every cluster has potential
Vint = 0.

Then we connect the internal components throughout a bridge of nodes, as long as we prefer. For
practice, I will consider only one node. These bridges have potential Vb,int > 0. In this way, the passage
of a particle from a cluster to another will be less probable than a movement inside the cluster. I
thus generate Kint(Kint − 1) bridges, and use a single bridge to connect two clusters of the internal
component, by linking each node to the given bridge with a probability pb,int

A single external component, then, will be composed of KKint+Kint(Kint−1) nodes (if we assume
that the bridges have only one node). All the components are equivalent.
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Now, we connect these external components with the same procedure, generating Kext(Kext − 1)
external bridges with potential Vb,ext > Vb,int. The external bridges have probability to connect to the
internal component’s nodes pb,ext. The nodes of the external brides does not link to the nodes of the
internal brides.

With this construction, we have clearly defined the parameters that drives the dynamics: Vb,ext,
Vb,int, pb,ext,pi,int and pc; among with the number of components. If we fix the number of components
and the connection probability, we can tune the eigenvalues (and then the mixing times).

As an example, I consider the case of 2 clusters of K = 10 nodes, with pb,ext = pi,int = pc = 1,
two components, and one-node bridges Vb,ext = 10 and Vb,int = 5. We will have then 40 internal nodes
connected by 3 bridges, 2 internal and 1 external.

The potential setted on the external bridges will characterize λ1, and the internal bridges will char-
acterize λ2 and λ3.

From the computation of such eigenvalues, we obtain:

λ1 = 0.999265 λ2 = λ3 = 0.990227

If we compute1 a single component of the network, i.e. two fully connected clusters of 10 nodes
connected with a one-node bridge with potential Vb,int = 5 we obtain as its second eigenvalue λ5

1

λ5
1 = 0.990962 ' λ2 = λ3 = 0.990227

the difference is due to the existence of the external bridges in the whole network.
If we instead consider two fully connected clusters of 21 nodes with a one-node bridge with potential

Vb,ext = 10, i.e. a network where the mixing times is due only to the external bridge potential, we obtain
as its second eigenvalue λ10

1

λ10
1 = 0.999663 ' λ1 = 0.999265

which is a bit larger than λ1 because of the eliminated internal bridge.
We can see the effect of these two mixing times in the artificial clustered network by computing

the distance ||~ρ(t)− ~pstat|| (see eq. (1.13)) in a simulation of a Random Walk in such a network using
ROnDINE.

In order to put the system as far as possible from the stationary condition, I use as initial state
~ρ(0) = (1, 0, 0, ..., 0), i.e. I put all the particles in one node (belonging to the cluster, not on a bridge).

In Fig is shown he distance of the system’s particle distribution from the stationary distribution
(red points) as time evolves. The green line and the blue line represents two exponential decays with
τ = −ln(λ1) and τ = −ln(λ5

1). As expected, we first have a relaxation in the inner cluster, characterised
by λ5

1, and for a larger value of t λ1 becomes dominant. We can justify this behaviour by considering that
the initial state is totally asymmetric, and because the external components of the network are weakly
connected, we can approximate the relaxation for the first time steps with the relaxation expected by
the isolated component, i.e. with τ = −ln(λ5

1).
We can relate the transition of particles between two clusters to Kramer’s Rate Theory [31]. This

theory predicts the transition rate of a particle stochastically perturbed from a finite potential well to
another one, separated by a potential ∆V . In this case, the transition probability is proportional to
e∆V .

1computation have been made using ROnDINE’s calculator for eigenvalues and eigenvectors of a graph, which uses
LAPACK’s DGEEV [19] algorithm contained in igraph [12] library
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Figure 3.2: ||~ρ(t) − ~pstat|| for an artificially clustered network, with 2 clusters of K = 10 nodes,
pb,ext = pi,int = pc = 1, two components, and one-node bridges with Vb,ext = 10 and Vb,int = 5. In
order to enhance the transient phase, the initial state is ~ρ(0) = (1, 0, 0, ..., 0). We can clearly see two
decay times: the most predominant (fitted with the green line) is the one due to the second eigenvalue
of the laplacian matrix, while the initial decay can be related to the second and third eigenvectors. In
particular, because of the initial state, we can assume that in the first time steps we have a diffusion
due only to the internal bridge, an we can approximate the respective decay time with τ = −ln(λ5

1).

If we consider an Artificially Clustered Network with pb,ext = pi,int = pc = 1, this relationship is
straightforwardly derived from the definition itself of the bridge’s weights (see eq. (3.1)): the nodes of
the cluster have potential 0, the nodes of the bridges have potential V , then the transition rate from a
cluster to a bridge is proportional to e−V .

If we remove the condition pb,ext = pi,int = pc = 1, then the transition rate can change: less nodes of
the cluster will be connected to the bridge, and we have to consider also the probability that a particle
in the cluster has to reach such a node.
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3.4 Perturbation of M(G): dissipation and stimulus

We want now to connect the network to an external thermostat, which introduces and subtract
particles with a constant rate.

We can to this by adding a node in the network, and by connecting it to the rest of the nodes.
We initially consider the (N + 1)× (N + 1) matrix ˜(M)(G) defined as

˜(M)ij(G) :=

{
Mij if 1 ≤ i, j ≤ N

0 for i, j = N + 1

This matrix describes the initial graph G with the addition of an isolated node. Being composed of
two unconnected components, its leading eigenvalue will have multiplicity 1.

We then connect the isolated node, which will be the thermostat, or reservoir. In order to have a
dissipation, we set ˜(M)ij(G) as it follows:

˜(M)ij(G) :=

{
Mij

1−d if i, j 1 ≤ i, j ≤ N

d for i, j = N + 1

where d is the dissipation term, 0 < d < 1. With this definition each particle in the network has
probability do be dissipated d.

This matrix obviously has as stationary state the vector ~eN+1, because every particle will, even if in
a long time, reach the reservoir.

We then have two different choices to introduce the stimulus. We may want to stimulate one fixed
node, or we may want to stimulate a random node for each time step, distributing randomly the stimulus.
Morevoer, we may stimulate more nodes concurrently. This will change the dynamics of the system,
and I will explore it in section 4.5.

What I want to point out here is that we fix the number of average outgoing particles from the
reservoir in a single time-step, to be 〈Pres〉 = SR. The fluctuations are due to the quantization of
particles.

Being the d the probability to dissipate one particle in a time step and SR the probability to inject a
particle in a time step, we can easily recover the average number of particles in the network 〈Pn〉 when
this is in equilibrium with the reservoir from differential equation

d〈Pn〉
dt

= SR dt− d dt = 0

Which is satisfied for

〈Pn〉 =
SR

d

Given this, even if the reservoir and the network are in equilibrium this does not mean that the
network is in a stationary condition; the continuous stimulus due to the reservoir could sensibly affect
the state of the network.

I will investigate some properties of such stimulated random dynamical networks, in the specific case
of a non linear dynamics due to the introduction of a threshold term.
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Chapter 4

Non-Linear RDN and critical
phenomena

There are several ways to introduce a non linearity in our system. As said before, I decided to use a
threshold interaction (see section 1.6), which is a typical characteristic of a series of models producing
critical events [2].

I start with a consideration on non interacting systems, such as Random Walks on Networks. In
this case, after a long enough evolution, the state of the network reaches a particle distribution that
satisfies the multinomial distribution computed from the stationary state of the system. Once in this
stationary situation, the fluctuations of the particle distribution are related to M−1/2, being M the
number of particles; many arguments of Statistical Mechanics apply and it is possible to compute many
observables of the system with smaller fluctuations as bigger it is the number of particles, and to take
the thermodynamic limit.

These systems are ergodic - which means that the observables computed averaging over long time
evolution gives the same value as the observables computed over many contemporary evolutions of a
single system. Moreover, they are strongly ergodic: the "long time evolution" required to perform a
good average computation on the system is not particularly long.

Once we inserted an interaction between the particles on a network, or in general between Stochastic
Systems, as we have seen in section 1.4 it becomes difficult to compute the average state and its
distribution.

What is more common, when analysing this kind on processes, is to study the distribution of the
fluctuations of some observable: the result usually shows that critical phenomena, i.e. events that in
a non-interacting situation were very improbable, becomes much more probable.

If we can roughly say that in a non interacting system the "driving" distribution is a multinomial
distribution, which leads to Poisson distributions or Gaussian distribution, in the interacting case this
is not true.

Thus, if in a RandomWalk we expect the distributions to have exponential-like tails (which is the case
of the family of Binomial, Poissonian and Gaussian distribution), the interacting case usually presents
distributions with fat tails.

The idea to use a threshold as interaction is inspired from several models, in particular the SandPile
model and many neural dynamics models.

The SandPile model can be considered a toy model, simple in its formulation but with a very inter-
esting variety of results: nevertheless, it is not as simple to study as its simple formulation may suggest.
It is very useful and evocative in order to understand what an avalanche is, and to model it in the
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simplest way. I will then use this model as a support for mine, which however wants to be closer to
another kind of models, Neural Models.

I will begin with a description of the simplest Neural Models proposed in the last century; then I will
propose a very simple Integrate and Fire model [6] strictly related to the RDNs previously presented. I
will then analyse the SandPile models and relate them to my model..

At last, I will analyse the results obtained from the simulations performed using ROnDINE and
compare them with the expected results.
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4.1 Neural Models

Neural Models constitute a big class of models, varying from the Rosenblatt’s Perceptron [21] to the
more biologically accurate Hodgkin and Huxley’s Neuron [32].

Some of the most used (and in some case, simplest) models are listed in the Integrate and Fire
models family [6], originally proposed by Lapique in 1907 [34]. These models basically defines the
behaviour of a single neuron as an integrator of electric signal, while doesn’t specify their connection.
There are several ways to define a Neural Network of IF neurons, and in order to do that is is necessary
to specify at least three features:

• If and how the fired signal changes when it travels to another neuron throughout a synapses

• If the response of two a neurons to the same stimulus can be different (i.e., if they have different
threshold potentials)

• If the signals can be only excitatory or also inhibitory

A typical example of a IF network model are integrate-and-fire oscillators [7]. In this particular
situation, the activity of a neuron has a certain rhythm, making it similar to an oscillator. [11] These
systems are a matter of interest in biological models because the can represent a wide range of other
biological systems, such as muscle cells. Many studies have focussed on study these simple models on
simple networks, such as lattices, observing the effect of synchronization. Two neurons are said to be
synchronous if they are firing almost at the same time; this can happen if the transmission time is
notably smaller than the recharging time. Neurons in practice synchronise their activity, and generate a
macroscopic pulse. This pulse can be intended as an avalanche of signal, and such avalanches have been
observed in real systems, being them acknowledged as the basis of neural systems functioning.[2] The
objective of this thesis is to analyse fluctuations of a very simple IF Network based on RDNs, searching
for similar phenomena, being them observed in several other different types of IF networks [9] [10]. In
particular, am interested in the properties exhibited from a static neural network, i.e. a neural network
that is not learning. I require this also because in a RDN model a graph cannot graphs.

In the following section I will give a fast review of Integrate and Fire neuron models, in order to
understand better the successively proposed model and make comparisons.

4.1.1 Integrate-and-fire models
Integrate and Fire models (IF) assumes that neurons communicate throughout an electrical current,

which travels via synapses and reaches the neuron’s core: here, the neuron works as an electrical RC
circuit, made up of a parallel capacitor and resistor, which represents the electrical properties of the
neuron’s cellular membrane.

The neuron is treated as an "integration" device: it receives input currents from his neighbours,
and it sums them. When (and if) the sum (integral) of the received "stimuli" becomes larger than the
neuron’s threshold, the neuron "fires" and transmits a current to its synapses according to its inner
potential, gained in the integration process.

Modern models can be explicated in this way: [35]

C
dV (t)

dt
= Il(V ) + Is(V, t) + Ie(t)

Where

• Is is the synaptic current (a noisy-current that is always present in the synapses) ;
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• Ie is the external current (directly injected in the neuron, i.e. the input current, or stimulus);

• Il is the leak current ;

• C is the membrane capacitance.

A threshold Vth is present in the neuron: when the membrane potentialV (t) reaches the threshold
value, it fires, and it resets its potential to its rest value Vr.

The model described above is known to be the general Integrate and Fire model.
The main variants of this model are:

• SIF, simplest integrate and fire model, has no leaky Il. If there are no inputs or noisy currents
(Ie = 0 and Is = 0), the neuron will never change its state.

• LIF, leaky integrate and fire model, which has a leaky current set to Il = g(V − VL), (where VL
is the resting potential VL = −70mV ). Such a model is also named "forgetful" model, because
the leaky current tends to pull the membrane potential to VL, vanishing in time the effects of the
integration.

Both these variants can be expressed in one general formula for the membrane potential:

τm
dV (t)

dt
= f(V ) + Is(V, t) + Ie(t)

Where taum = C, is the membrane time constant, g (if present) is absorbed by the currents, and
f(V ) = 0 for SIF model, f(V ) = −V for the LIF model. As said before, when V (t) reachers the
threshold Vth, the neuron fires and resets its potential to Vr

Some literature defines the PIF[36] (perfect integrate and fire) model as a SIF model without stochas-
tic current noise: this is the most basic IF model possible.

In this case, the membrane equation reduces to:

τm
dV (t)

dt
= Ie(t)

when V (t) ≥ Vth fire, and V (t)→ Vr
Described how the core of a single neuron (the membrane) works, we must define two other features:

how the neuron relaxes to Vr once he has fired, and how the fired stimulus propagates throughout the
synapses.

When we move from the single neuron to a whole network of interconnected neurons, there is another
thing that must be taken in account, synaptic weights. When a spike travels from a neuron to another
one throughout a synapse, the latter modifies the intensity of the stimulus: this modification can occur
in several ways.
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4.2 RDN modeling IFl

The model I propose is similar to an IF model, but as a very simplified version.

4.2.1 Simple Model Description

This model consists in a Random Dynamical Network with threshold (tRND), connected to an
external reservoir (see section 3.4) which both serves as a basin for the dissipated particles and as a
stimulator.

Each node in the network has a fixed threshold θ. Once the number of particles in a node becomes
greater than the threshold, it fires the particles out, and distribute them among its neighbours according
to the graph’s transition matrix. The number of particles fired from the network can be θ (as described
in section 1.6 ) (threshold firing) or it could be si, i.e. all the particles it has (all firing). This
possibility defines two variations of the model.

We require the stimulus to not be larger than the threshold. In order to avoid this, it is distributed
among a sufficient number of nodes, randomly chosen.

For example, if we fix the stimulus to be 11, and the threshold 4, at each time step 11÷ 4 = 3 nodes
are randomly chosen in the network, and the 11 particles are randomly distributed among these nodes.

4.2.2 Comparison with IF models

With respect to IF models, the model I propose has some differences.
First of all, the model I simulate is a discrete model: instead of the integration of a continuous

current, I have the sum of discrete particles; moreover, firing is instantaneous.
In any case, we can set this analogy:

• A node in the RDN is a neuron: more precisely, it is the neuron cellular membrane where
potential/current accumulates.

• The links of the graph corresponds to the synapses connecting the neuronal cellular membranes.
Connections are directed: an edge from node i to node j allows a spike produced from node i to
travel to node j.

• The current analysed can be thought in terms of current of particles.

• The membrane potential is intended as the sum of particles in the neuron. The threshold thus
defines when the neuron will spike.

• The threshold θ is the same for every node

• The number of particles that the neuron spikes may vary. Here I distinguish between two sub-
models: all-firing and over-threshold firing.

• Fired particles travel throughout the outgoing links of the neuron, and moves as they do in non-
interacting RDN. Thus, we can consider edges’ weights as synaptic weights; this automatically
excludes the possibility to have inhibitory synapses: there can be only excitatory stimuli (particles
can be sent to other neurons, but not taken. A neuron can loose particles only if it fires them or
dissipate the.).

• Since the graphs we use are static, we have no synapitc pasticisty in this model.

• synapsis are 100% efficent in signal transmission.
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• there is no synaptic noise.

• the introduction of the reservoir, and then of the dissipation term, means I’m considering a leaky
noise model.
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4.3 The SandPile Model

The SandPile Model[38][39] (SPM)is a toy model used to investigate self-organized criticality in
complex systems.[38][2].

The basic idea of SPM is the following: we have a pile of sand, and we add a grain of sand at a
random point. The more sand we add, the more we bring the system close to the edge of stability. At
a certain point, the add of a single grain of sand will make the system activate: the friction will be not
able any more to maintain the system in its state, and it will result in a small toppling. If only a small
part of the system was unstable, the toppling stops; but if a larger part of the system is at the edge
of stability, the few grains moved by that single toppling can generate many new topplings, and in this
way create an avalanche. Once the system is activated, it continues to topple until it reaches a new
stability.

This degree of stability, in real sandpiles, is determined by a critical slope for the pile ϑc (which
depends on the quality of the - dry - sand used). If we start with a sandpile with a slope smaller than
ϑc, the response of the system will be weak: maybe local topplings may happen, but they are mostly
isolated. On the contrary, with a slope larger than ϑc, big events can happen – with the formation of
big avalanches. With such a slope our system is on the edge of stability, which allows the system to
show this behaviour.

In 1987 Bak, Tang and Wiesenfeld[40] noted that the construction of a sandpile from zero on a finite
table brings the system in a critical state. The fact that this critical state, at the boundary between
stability and instability, is built by the system itself is a typical example of self organized criticality.

The system being in this critical state shows correlations much larger than what is the lenght scale
of the interaction in an equilibrium situation. This means that a small signal can propagate towards all
the system, even if an equilibrium condition this can not happen. This is a behaviour similar to what
happens during a phase-state transition, and we can identify the system being at the edge of stability
as being at the edge of a phase transition.

This means that we can observe these critical phenomena in equilibrium systems only with a certain
fine-tuned set of parameters for he system.

4.3.1 Cellular-Automata SandPile model

The simplest SandPile model has been proposed by Bak, Tang and Wiesenfeld[40] and is based
on a cellular-automata, an extremely simple DS on a 2D-lattice with a finite number of nodes and
discrete-time evolution.

Each node (or site) of the lattice has a state, i.e. the number of particles on it. A toppling-threshold
zcis fixed, usually 4. The dynamic reads as it follows: at each time ∆t, a particle is added to the
system ad a random site. If the site reaches the threshold value, it topples and distribute its particles
among its neighbours. If one of the neighbours reached or surpassed the threshold, it topples too. If a
toppling-node is on the edge of the lattice (the lattice is not toroidal), then it "dissipate" one particle
(two if it is in a corner). In a single ∆t the system relaxes, by resolving all the possible toppling: the
new state is then a stable state, and the next particle can be added.

Thus, the relaxation is much faster than the particle adding time.
What we are interested in are events involving many toppling, or aavalanches. We can measure an

avalanche by its length s, i.e. the number of sites it has activated during its "fall". These kind of events
happen very often in this kind of systems, and the probability to have avalanches show a power-law like
distribution.
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4.3.2 Abelian Sand Pile Model

This model is more general than the cellular automata, since it assumes that the dynamics is hap-
pening not in a simple lattice but in a more complicated graph.

Suppose we have graph G with N nodes, adjacency matrix Ad(G) and weight matrix W(G), and
we distribute a certain number of particles among all the nodes (this is a setup very similar to a RDN).

The dynamics is driven by a N ×N integer matrix, L(G), that is very close to a Laplacian Matrix.
L(G) has the following properties:

• Lii(G) > 0 ∀i

• Lij(G) ≤ 0 ∀i 6= j

•
∑
j Lij(G) ≥ 0 ∀i, except for at least one site i such that

∑
j Lij(G) > 0, a dissipative site.

Moreover, we want that the dissipative site is reachable from every other site; and guarantees that
the avalanches do not continue forever.

Thus, at each time step ∆t we randomly chose a site, and we increase its number of particle by one
(similarly to what the source did in section 3.4).

If a node has a number of particles grater than a certain threshold, it topples, and loses a number of
particles equal to the number of nodes it is connected to (if it has enough). The basic dynamics reads:

if si > zc,i ⇒ ∀j sj −→ sj − Lij(G)

(note that the number of particles in j is increasing, since Lij(G) must be positive defined.)
The threshold is here different from node to node, and it can be setted to be zc,i = −Lii(G).

The matrix Lij(G), as it is defined, is very similar to a laplacian matrix, a part from the fact that it
has to be an integer matrix and for the existence of (at least) one purely dissipative node that deletes
particles – while the evolution given from a laplacian matrix preserves the number of particles in the
network.

Avalanches can be characterized by their size, i.e. the number of sites that have toppled in the single
event. The relative frequency of events size has a distribution cha characterized by a long power law
tail, limited by the lattice’s size L.

Abelian property

These models satisfy an Abelian property, based on the fact that the order used to add K particles
to the net does not affect the final state.

We use in here situation too a creation-annihilation paradigm, by defining the operator â†i as the
operator that adds a particle to the site i.

If we have a certain (stable) configuration of the network, ~s(t), and we add a particle to the system
in the node i, we will write the new state as ~s(t+ ∆t) = â†i~s(t).

It is possible to demonstrate that the operators â†i and â
†
j commute, i.e.

â†j â
†
i~s(t) = â†i â

†
j~s(t)

In case the addition of a particle to a node generates a toppling, it can be expressed in terms of there
operators as it follows:
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âLiii =
∏
j 6=i

â
Lij
j

These operators are the generators of a finite abelian semi-group subject to 4.3.2.
With these models the structure of the graphs becomes relevant to determine how large can be an

avalanche.
The response of the system to small perturbations can be measured by the probability that, added a

single particle ad a certain site, another site at distance r is affected from it. This can be measured by
the two-point correlation function Gij(r), which can be used to characterize the length of avalanches.

4.3.3 Comparison with tRDN model
The evolution of a SandPile model is similar to the tRDN model. The main difference is the relaxing

time scale. In a SandPile model, the systems relaxes to a stable configuration, by dissipating a certain
number of particles that can change; while on tRDN model the particles are added in the network
continuously, and continuously dissipated, with a source rate S and a dissipation rate d. Moreover, in
a SandPile model usually only one node (or the edge of a lattice) dissipates, while in the tRDN model
every node has the same probability to dissipate a particle.

However, these features are required to have a model close to IF model, in particular leaky IF.
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4.4 Summary of the models

In table 4.1 I report a Summary of the above described models, with their main characteristics.

Threshold Produced Signal Stimulus Dissipation

RW No si(t) No No

Stimulated RW No si(t) rate SR,
randomly
distributed

d, constant for ev-
ery node

IFl model different for
every neuron

the charged current
is fired (depends on
the model)

not specified constant for every
neuron

SandPile model
(2D lattice)

4 4 grains Yes, small
and rare

only on the edges

SandPile model
(Graph)

outgoing de-
gree of the
node

1 grain for neigh-
bour

Yes, small
and rare

Yes, in at least one
node

fire-all tRDN θ = const (4) si(t) rate SR,
randomly
distributed

d, constant for ev-
ery node

threshold firing
tRDN

θ = const (4) θ rate SR,
randomly
distributed

d, constant for ev-
ery node

Table 4.1: Main characteristics of the models presented so far: Random Walk on Network (see Sec. 3),
stimulated Random Walk on Network (see Sec. 3.4), Integrate and Fire model (see Sec. 4.2), Cellular
Automata (or 2D lattice) SandPile Model (see Sec (4.3.1), Abelian SandPile Model (or SandPile model
on a Graph) (see Sec. 4.3.2 ), fire-all tRDN (see Sec.s 1.6.1 and 4.2.1) and threshold-firing tRDN (see
Sec.s 1.6.1) and 4.2.1)
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4.5 Fluctuations in lattice tRDN

I analyse now the behaviour of a tRDN.
I recall the fact that a tRDN is not only a RDN with a threshold dynamics, but it also has a reservoir

node that furnish the stimulus to the network and collects the dissipated particles.
As seen in section 3.4, the ratio between the source rate S and the dissipation d gives the average

number of particles in the network 〈Pn〉.
Fixed a dissipation d, then, we can change 〈Pn〉 by tuning S. This will also change the average

number of particles per node, with respect to the network analysed.
In this thesis I focused in analysing very simple networks, such as toroidal lattices with uniform

connectivities, as to understand the basic properties of tRDNs and their fluctuation behaviour. In
this model, I set the threshold to be θ = 4, being 4 the degree of each node. In this way the proposed
model ha the same threshold a lattice SandPile model usually has (see section 4.3 ).

4.5.1 Activation of a network

I focussed my attention on the activation of the network, because of affinities to neuronal activity
and sand pile topplings.

In terms of neural networks, a neuron is active when it fires; similarly, a site on a SandPile model is
active when it topples, sending particles to its neighbours.

I define then, in a tRDN, an active node as a node that is losing particles.
The activation of the network at time t A(t) is defined as the average number of active nodes in the

network at time t.
If there is a reservoir, the activity of this node is not considered, since it is external to the network.

I remark, moreover, that the threshold dynamics does not apply to particles arriving or departing from
the node; which basically means that the dissipation and the stimulus are not influenced by the thresh-
old – as it is in the presented modes above.

It is straightforward that with this definition a Random Walk on a Network has A(t) = 1 ∀ t,
provided that there is at least one particle in each node.

If we want to compare the dynamics of Random Walks on Networks with a tRDN, we cannot use
this definition, but it is necessary to slightly review it.

We note that in a tRDN the nodes activate if and only if there are at least θ particles in the node.
We can then define the activation of a tRDN with threshold θ as the average number of nodes having
at least θ particles at the given time:

Aθ(t) :=
1

N

N∑
i=1

Θ(si(t)− θ)

(see equation (1.15)). Then, we will compare a tRDN with threshold θ with a Random Walk on the
same network by using Aθ(t).

4.5.2 Mean Activation analysis

Given a stimulated tRDN with 〈Pn〉 much larger than θN , we have seen that we basically recollect
the dynamics of Random Walk. In the case of a fire-all tRDN, this will be the same behaviour of a
Random Walk with 〈Pn〉 particles in the network, while in the threshold firing they will be θN . This
assertion holds less if the elements of the transition matrix are very inhomogeneous; however, in the
simple case of a 2D toroidal lattice, it is straightforward.
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We can see from the evaluation of Aθ(t) how this phase transition occurs.
In a non interacting situation, the probability to have k particles in a node is given by the Poissonian

distribution

P (si = k) =
eλλk

k!

where λ is the probability to find a single particle in a node, and being the network I am working
with uniform toroidal lattices it is the same for every node; in a stimulated RDN it can be computed as
λ = 〈Pn〉

N

Then the average number of active nodes, provided that we have an average number of particles on
the network 〈Pn〉, is computed by

P (si ≥ θ) = 1−
θ−1∑
k=1

e
〈Pn〉
N ( 〈Pn〉N )k

k!

With θ = 4, we have

P (si ≥ 4) = 1− e
〈Pn〉
N

(
〈Pn〉
N

+
( 〈Pn〉N )2

2
+

( 〈Pn〉N )3

6

)
(4.1)

The mean activation of a a Random Walk on a stimulated Network shoud coincide with this expres-
sion; while the one computed for a tRDN should differ, because of the different dynamics.

Case: 10 x 10 uniform toroidal lattice

In Figure 4.1 I report the values obtained for the average activation function 〈A4(t)〉 in a series of
simulations performed with ROnDINE.

The mean values are computed on 50000 time-steps, after other 50000 time steps of system evolution
that guarantees the relaxation of the system to a stationary (or similar to stationary, in the case of the
tRDN) condition.

Three curves are shown in Figure 4.1, representing the dependance of 〈A4(t)〉 with the mean value
of particles in a node (λ). The first one, in red, is obtained from a threshold-limited tRDN (θ = 4), the
second (green) for a Random Walk in a stimulated Network in the same set up, while the third (blue)
is the expected value computed using the expression (4.1) .

As expected the second and the third curves are almost superimposed, while the first one differ. In
particular, it can be seen that it differs more in the range of λ < 2.5 . This suggest us a window where
it is more interesting to investigate.

An interesting and notably different behaviour can be seen in in Figure 4.2, where the same curve is
reported for the all-fire tRDN. The activity of the network stops at a value that is slightly grater than
0.5.

In this case, the network reaches a particular kind of state, that we can name chessboard -like: only
half of the nodes are occupied, while the rest are empty; occupied and empty nodes success each other
like in a chess board (see Figure 4.3 ). This chessboard is slightly imperfect due to the injection of
particles of the stimulus; being the stimulus big, it stimulates more than one node (up to 3 in the case
reported) with 4 particle: the effect is a bit enlargement of the network’s mean activity.

This is a very peculiar behaviour and it is due to the network. In particular, this phenomena arises
in small lattices with a even number of nodes. The mechanism is intuitive: at a certain point, a firing
node is surrounded by charged nodes, i.e. nodes with 3 particles. The central nodes fires, and it becomes
empty; since it fires on average one particle to each neighbour, its neighbourhood, at the successive time
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Figure 4.1: Average Network activation 〈A4〉 for a stimulated 10x10 toroidal lattice. Parameters used
are: d = 0.05, SR vary. In the x axis is reported the average number of particles per node produced by
different SR. Three curves are shown: the first is obtained from a threshold-limited tRDN (θ = 4), the
second for a Random Walk on a stimulated Network in the same set up, while the third is the expected
value computed using the expression (4.1). Average values obtained from 5ffl104 time-steps, in a relaxed
condition.

step, will fire too. In this way, the 4 neighbours will become empty, and the central node will be charged
again. If the network is small enough, this type of dynamics can easily propagate, and, being the number
of nodes in the lattice even, it stabilizes. If the number of nodes is even, at the borders this effect does
not propagate, because the nodes are in a counter-phase. Such a dynamic can activate all the network
with a chessboard-like particle distribution just if 〈Pn〉 > θN/2; if the dissipation rate is small and the
source rate big enough (but not too big, or it risks to activate too many nodes at the same time), the
network "prefers" this behaviour, because of its higher lever of order to any other one possible in such
conditions.

In the threshold-limited case, this doesn’t happen because the limitation on the fired particles does
not allow the node to become empty as frequently as in the fire-all case.

As it can be see, f the mean activity for the stimulated tRDNs tends to 0 as 〈Pn〉 → 0.
If 〈Pn〉 << θ, the tRDN becomes almost inactive, because the small probability to have nodes

sufficiently charged. We can just see some rare spike in Aθ(t), due to some locally firing node, which is
unable to propagate its signal being it surrounded by almost empty nodes.

55



Figure 4.2: Average Network activation 〈A4〉 for a stimulated 10x10 toroidal lattice. Parameters used
are: d = 0.05, SR vary. In the x axis is reported the average number of particles per node produced
by different SR. Three curves are shown: the first is obtained from a fire-all tRDN (θ = 4), while the
second is the expected value computed using the expression (4.1). The blue line indicates the value of
〈A4〉 = 0.5. Average values obtained from 5 · 104 time-steps, in a relaxed condition.

Figure 4.4 shows the average Network activation 〈A4〉 for lower value of λ, computed with d = 0.005.
Even if around λ = 2 the curve seemed approaching faster to 0 in the tRDN case than in the Random
Walk case, the behaviour is different.

This is due to the fact that in the tRDNs it is more possible to have nodes with more than θ particles
because of the threshold itself, that allows the nodes to charge. In the Random Walk, the continuous
distribution of particles among the nodes reduces notably this probability.

Figure 4.5 shows the curve of 〈A4〉 for a threshold-firing tRDN with a larger range of λ, compared
to the expected values for a Random Walk on the same graph.

Case: 11 x 11 uniform toroidal lattice

In this set up the chessboard effect is highly reduced, as it can be seen by the third curve in Figure
4.6, because of the uneven number of nodes on the lattice’s edges. The mechanism that produces
the chessboard-like distribution is inhibited thus, but not totally suppressed: we can have small local
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chessboard-like zones.
Also in this case the Random Walk (blue line in Fig. 4.6. ) reproduces the expected values, while

the stimulated tRDN differ, especially for very low and very high values of λ.

4.5.3 Avalanches and fluctuations measures
As we have seen in SandPile models, the interesting events occurring are avalanches. As we have

seen previously, even if the average activation of a tRDN differs from its stimulated RDN counterpart,
this does not give us any information about those critical events.

At this point, we must define what an avalanche is.
In the SandPile model an avalanche was considered as a toppling; at a certain point the toppling

started and a certain number of sites topples; such a number of sites constitute the dimension of the
avalanche. In these models it is possible to evaluate the dimension of the avalanche because the toppling
time is much smaller than the interval that occurs from one stimulus to the other one: indeed, while a
toppling is occurring, it is not possible to add any grain of sand to the pile, but it is necessary to wait
that the system has relaxed.

In the stimulated tRDN model, on the contrary, the stimulus is continuous in time. In this way,
it is possible that while an avalanche is occurring, there are also a certain number of local topplings
occurring. The activation is then filled by a noise due to the stimulus.

We need then to define what in such a system an avalanche is.
An avalanche can basically product two effects: on one hand, it can activate in a very small time a

very large number of nodes; on the other, it can also activate a restricted number of nodes for a very
long time, propagating. In both cases we must have that Aθ(t) > 〈Aθ(t)〉; but this condition is not
sufficient, because even the fluctuations due to the stimulus brings the activation over its average value.

We can then set a limit, ` for Aθ(t) − 〈Aθ〉, in order to state that any value of Aθ(t) > 〈Aθ〉+ `
constitutes a big fluctuation, or an improbable event, or the beginning of an avalanche.

Every time we have Aθ(t) > 〈Aθ〉+ `, we say we have a peak, labeled i, Pi.
Such events are not forbidden in Random Walks, but they are very improbable.
What we expect from a stimulated tRDN these critical events occur with a higher frequency.
A reasonable choice for ` is to set it as a multiple of the standard deviation of Aθ(t), σAθ .
I setted the limit to be ` = 2.5 σAθ , since it has worked well in the following data analysis.

It is a reasonable limit, since we expect in the linear case that the mean activation has gaussian-like
distribution, and in this case it is unlikely to have Aθ(t) > 〈Aθ〉 2.5 σAθ

The sole computation of the global time spent over the limit for the activation function, however,
doesn’t give us a measure of the dimension of the avalanche. Since what we are searching fore are big
avalanche, we need to compute other quantities to enhance this property.

I evaluated then the distribution of two quantities: the consecutive time Aθ(t) spends over the limit
and the integral subtended it.

Consecutive time over the limit

With this measure I calculate the frequency of the system to have Aθ(t) > 〈Aθ〉 + ` for a certain
consecutive time.

This measure express the idea that an avalanche must, in any case, generate fluctuation in the
activation that is much larger than the average fluctuation, persisting for a reasonable long time (i.e.
the avalanche propagates).

For the i-th peak Pi, which surpasses the given limit at time ti,enter up to time ti,exit we define then

t`(Pi) := ti,exit − ti,enter
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I expect to register, in a stimulated tRDN, more persisting fluctuations than in a Random Walk.

Integral subtended to A4(t) and the limit

With this measure I want to esteem the dimension of the avalanche. I calculate the area subtended
by the activation of the network and limited by `, as:

I`(i) =

ti,exit∫
ti,enter

Aθ(t)− (〈Aθ〉+ `)

This measure express the idea that an avalanche must, activate for a certain time a certain (large)
number of nodes. In this way, high and narrow peaks have the same weight of less high, but larger,
peaks.

Also in this case, I expect to have a larger probability to activate many nodes in a tRDN rather than
in a Random Walk.

Hitting times

In Markov Chains [15] a Hitting Time of a subset I TI of the State Space {Xn}n is defined as

TI := inf{ n ≥ 0 : Xn ∈ I}.

it is in practice the minimum time in which the system reaches a certain state in the subset I.
We can then consider the subset I = {~s(t) | Aθ(~s(t)) > 〈Aθ〉+ `}
and evaluate the distribution of the hitting times of such set; in particular, I analyse the difference

tj,enter − ti,enter where Pi and Pj are two consecutive peaks (tj,enter > ti,enter):

h`(j) := tj,enter − tj−1,enter with Pj immediatly consecutive to Pj−1

4.5.4 Avalanches and fluctuations analysis

I report here the results obtained from simulations ran using ROnDINE simulating 2D lattice tRDNs
and the corresponding Random Walks.

I focussed in analysing the threshold firing case, in order to avoid effects such as the chessboard -
distribution shown in Sec. 4.5.2, due to the high regularity of the system analysed, being it a small
lattice.

As noted in section 4.5.2, the most interesting window to analyse is defined by λ = 〈Pn〉/N <∼ 2.5.
If λ ' 0, the activity of the network is almost 0, and the small variations are only due to local firing;
this regime is not particularly interesting.

I analyse then simulation performed using 1 ≤ λ ≤ 3. In this range, I expect to see a notably
difference in the fluctuations behaviour than from the stimulated tRDN and the respective Random
Walk.

Case: 10 x 10 uniform toroidal lattice

I report here the results obtained from the above mentioned measures t`(Pi), I`(i) and h`(j), in
a stimulated 10 x 10 uniform toroidal lattice, obtained from a series of simulations performed with
ROnDINE.
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As in Sec. 4.5.2, the mean values and the histograms are computed on 50000 time-steps, after other
50000 time steps. Histograms then represents the probability of events of a certain dimension (it depends
from the measure done). Networks have dissipation d = 0.005 and source-rate varying, in order to have
different values for λ.

The possibility to have an avalanche is then represented by the height of the columns in the tails of
the histograms.

Figure 4.7 reports the distribution of I`(i) obtained for a threshold-firing tRDN and the respective
Random Walk. Results for λ = 2 and λ = 2.4 are reported.

As it can be seen, in the case of the tRDN with λ = 2 the probability of a large event is much larger
than in the case of a Random Walk. Also with λ = 2.4 we can note the difference of probability to
have such events, but it is notably smaller than in the previous case: we are very close to the change of
regime noted in Sec. 4.5.2 for λ > 2.5.

Figure 4.8 shows the distribution obtained for t`(Pi) and Figure 4.9 the distribution for the hitting
times h`(j). These Figures confirms what has been said above.

Case: 100 x 100 uniform toroidal lattice

I replicated the same experiment by increasing the number of nodes in the lattice, from N = 100 to
N = 104, by using a 100 x 100 toroidal lattice.

Mean values and the histograms are computed on 50000 time-steps, after other 50000 time steps.
Networks have dissipation d = 5 · 10−4 and source-rate varying, in order to have different values for λ.

Figure ?? reports the distribution of I`(i) obtained for a threshold-firing tRDN and the respective
Random Walk. Results for λ = 2 and λ = 2.4 are reported.

Figure 4.11 shows the distribution obtained for t`(Pi).
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Figure 4.3: Screen shot of ROnDINE showing the chessboard-like distribution of particles among node,
on a stimulated 10 x 10 toroidal lattice. On the black background, the coloured squares represents the
nodes, while the grey lines represent the links connecting them. Each node has a saturation level: the
hotter is the colour, the more populated is the node (see Appendix A); where there is a black square, we
have an empty node. On the top you can see a red node, which is the reservoir - in fact, it is connected to
all the other nodes throughout the dissipative links. The other nodes represent the nodes of the lattice,
and, as you can see, they are mostly occupied by particles following a chessboard-like scheme. In this
care the mean activation is a bit larger than 0.5. 60



Figure 4.4: Average Network activation 〈A4〉 for a stimulated 10x10 toroidal lattice. Parameters used
are: d = 0.05, SR vary. The condition are equal to the prefious case (see Figure 4.1), but with lower
values of SR producing lower values of Λ. The different behaviour for λ→ 0 is caused by the possibility,
for the nodes in a tRDN, to charge.
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Figure 4.5: Average Network activation 〈A4〉 for a stimulated 10x10 toroidal lattice. Parameters used
are: d = 0.05, SR vary. The condition are equal to the previous case (see Figure 4.1), with a wider
range for λ
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Figure 4.6: Average Network activation 〈A4〉 for a stimulated 11x11 toroidal lattice. Parameters used
are: d = 0.05, SR vary. In the x axis is reported the average number of particles per node produced by
different SR. Four curves are shown: the first (red) is obtained from a threshold-limited tRDN (θ = 4),
the second (green) from a fire-all tRDN in the same set up, the third (blue) is obtained from a Random
Walk on this network while the last one (purple) is the expected value computed using the expression
(4.1). Average values obtained from 5 · 104 time-steps, in a relaxed condition.
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Figure 4.7: Distribution of I`(i) , ` = 2.5 σAθ , for a 10 x 10 uniform toroidal lattice with dissipation
d = 0.005 and stimulus varying, in order to vary λ (average number of particles per node). In the first
row of the image we have histograms obtained for networks having λ = 2, in the second row λ = 2.4;
the first column reports data obtained from a Random Walk, while the second column shows the data
obtained from a threshold-limited tRDN. As it can be seen, the distributions in second column shows
fatter tails, and in the second row this tails reduced due to the change of regime noted in Sec. Sec. 4.5.2
for λ > 2.5.
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Figure 4.8: Distribution of t`(Pi) , ` = 2.5 σAθ , for a 10 x 10 uniform toroidal lattice wuth dissipation
d = 0.005 and stimulus varying, in order to vary λ (average number of particles per node). In the first
row of the image we have histograms obtained for networks having λ = 2, in the second row λ = 2.4;
the first column reports data obtained from a Random Walk, while the second column shows the data
obtained from a threshold-limited tRDN. As it can be seen, the distributions in second column shows
fatter tails, and in the second row this tails reduced due to the change of regime noted in Sec. Sec. 4.5.2
for λ > 2.5.
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Figure 4.9: Distribution of h`(j) , ` = 2.5 σAθ , for a 10 x 10 uniform toroidal lattice with dissipation
d = 0.005 and stimulus varying, in order to vary λ (average number of particles per node). In the first
row of the image we have histograms obtained for networks having λ = 2, in the second row λ = 2.4;
the first column reports data obtained from a Random Walk, while the second column shows the data
obtained from a threshold-limited tRDN. As it can be seen, the distributions in second column shows
fatter tails, and in the second row this tails reduced due to the change of regime noted in Sec. Sec. 4.5.2
for λ > 2.5.
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Figure 4.10: Distribution of I`(i) , ` = 2.5 σAθ , for a 10 x 10 uniform toroidal lattice with dissipation
d = 0.005 and stimulus varying, in order to vary λ (average number of particles per node). In the first
row of the image we have histograms obtained for networks having λ = 2, in the second row λ = 2.4;
the first column reports data obtained from a Random Walk, while the second column shows the data
obtained from a threshold-limited tRDN. As it can be seen, the distributions in second column shows
fatter tails, and in the second row this tails reduced due to the change of regime noted in Sec. Sec. 4.5.2
for λ > 2.5.
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Figure 4.11: Distribution of t`(Pi) , ` = 2.5 σAθ , for a 10 x 10 uniform toroidal lattice wuth dissipation
d = 0.005 and stimulus varying, in order to vary λ (average number of particles per node). In the first
row of the image we have histograms obtained for networks having λ = 2, in the second row λ = 2.4;
the first column reports data obtained from a Random Walk, while the second column shows the data
obtained from a threshold-limited tRDN. As it can be seen, the distributions in second column shows
fatter tails, and in the second row this tails reduced due to the change of regime noted in Sec. Sec. 4.5.2
for λ > 2.5.
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Chapter 5

Conclusions

A series of models for Stochastic Random Dynamics have been studied, focussing on their fluctua-
tions’ properties, which have been individuated with proper measures for critical events.

In particular Random Dynamical Networks have been defined as Markov Chains on graphs: in the
analogy used, the states corresponded to a node of the graph and the transition rates were given by the
weights matrix of the graph.

In parallel, an original C++ program has been developed, ROnDINE (described in Appendix A)
which has been used to perform the simulations needed and to have a visualization of the simulated
Random Dynamical Networks.

Initially it has been defined a Random Walk on a Network as the movement of a single particle on
a graph, with discrete time; its average behaviour, which also defines the collective behaviour of M
non-interacting particles moving on the same graph, has been studied.

With the introduction of a reservoir in the network by adding one node to the graph and connecting
each node to it, it has been possible define a dissipation term on the system. The reservoir node worked
as a stimulus for the system too, by injecting particles to randomly chosen nodes with a source rate SR.
The average number of particles in the network was therefore given by SR/d.

It has been then defined a simple Integrate and Fire model for Neural Networks, based on the Random
Dynamical Network model. Such model are inspired by both the Integrate and Fire neuronal models an
the SandPile models, whose main feature is the threshold, θ, that allows the particles to escape a node
i only if that node has a number of particles si ≥ θ.

I named these models tRDNs (threshold Random Dynamical Networks), and I defined two variants:
all firing and threshold firing (or threshold-limited firing). In the first model, a node with a number
of particles equal or grater than the threshold fires all its particles in a single time step; in the second
model such a node fire only θ particles. Each model has a reservoir, with a dissipation rate d and a
source rate SR. In this way, I study stimulated tRDNs.

These models are small and simple Neural Networks, and they are statical (i.e. there is no learning):
the weights of the network and the connections does not change in time. The aim of these models
is to analyse the behaviour of IF neurons on given networks’ structure, in order to understand better
their dynamics and the relationships with the graph’s structure. This model can describe both very
simple and very complicated neural networks, depending on the graphs we chose. The comparison with
Random Walks networks on the same graphs can give interesting informations on the model’s behaviour.

Simulations done with the program ROnDINE showed how in particularly regular networks, such as
small toroidal 2D N × N lattices with N even, a tRDN favourites chessboard -like states. This family
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of states is characterized by a particular configuration that, even if it can be artificially created in a
Random Walk network, is very uncommon. Once such a state is reached it is very difficult for the
systems to switch to another one . The threshold-limited tRDN inhibits this behaviour, by reducing the
probability for a node to be empty.

The formation of critical events, or avalanches, has been studied in a tRDN on very simple networks,
such as 2D lattices, in order to understand the model’s behaviour. More precisely, I defined an avalanche
as the activation of a notable number of nodes, where an activated node is a node with at least θ particles
and the network activation at time t given the threshold θ is the mean activation of each node Aθ(t).
The confrontation of this quantity in the case of a tRDN and the respective Random Walk has provided
interesting results: given that the mean network activation 〈Aθ〉 of a Random Walk can be derived from
a Poissonian distribution, it has been possible to compare theoretical values to simulations’ values.

The analysis of 〈Aθ〉 in three cases (all firing tRDN, threshold firing tRDN and a Random Walk
on the same network), allowed to identify λ = SR/d as a leading tuning parameter that defines the
dynamics of the network. For λ ≤ 1 ≤ 3, the behaviour of a tRDN appeared notably different from the
behaviour of a Random Walk.

An activation peak has therefore been defined, with respect to "limit" ` setted as ` = 2.5σAθ , and it
became the centre of the investigations. Three measures have been then defined: the length of a peak
of Aθ(t), the integral of a peak and the hitting time between two peaks (t`(Pi), I`(i) and h`(j).).

I studied then the distributions of these measures, expecting fatter tails in those derived from a
simulation of a tRDN, which are the signal of an avalanche.

The simulations showed in these distributions the results I expected, by confirming that I focussed
the attention in an interesting range for the tuning parameter λ.

The results I obtained from this work gives a background for further investigations on the tRDN
models. Such models, being a mixture of Integrate and Fire neuron models and SandPile model, can
give interesting informations about the behaviour of complex systems, such as neural networks. By
replicating the parallelism between the 2D lattices tRND and the 2D SandPile model to more compli-
cated networks and Abelian Sand Pile models it could be possible to characterize more precisely the
tuning parameters λ, SR and d.

An interesting choice for further investigations is represented by Artificial Clustered Network (see
Sec. 3.3.1) because of their nested structure and the possibility to define properly two evolution time
scales: in such a situation, we can expect also two scales for the avalanche events, which can be tuned
in order to obtain different effects.
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Appendix A

ROnDINE

ROnDINE (which stay for RandOm DynamIcal NEtwoks) is a C++ software for Discrete Stochastic
Dynamics on Networks Simulations. It simulates a RDN (see Chapter 2), performs statistical analysis
of the evolving system and gives a real-time visualizations of their states. ROnDINE needs two third-
party libraries:

• igraph 0.7 [12] ( http://igraph.org/ ) - a library for graphs’ data structures, operations, and
algorithms.

• FLTK 1.3 [13] (http://www.fltk.org/ ) - a graphic library that includes OpenGL library.

ROnDINE’s project name is Laura, in honour of Laura Bassi1, and its repository can be found at
gitHUB https://github.com/ETRu/Laura ).

1from Wikipedia: " Laura Maria Caterina Bassi (31 October 1711 - 20 February 1778) was an Italian physicist and
academic, recognized as the first woman in the world to earn a university chair in a scientific field of studies. She received
a doctoral degree from the University of Bologna in May 1732, the third academic qualification ever bestowed on a woman
by a university, and the first woman to earn a professorship in physics at a university in Europe. She was the first woman
to be offered an official teaching position at a university in Europe." ( https://en.wikipedia.org/wiki/Laura_Bassi ,
retrieved 25 Nov 2015)
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A.1 Installation an General Description

A.1.1 Compatibility
ROnDINE has been developed using OSX 1.9.5 (Mavericks), and tested on Ubuntu 10.4, Kubuntu

14 and Fedora 21. There is no specific reason suggesting its incompatibility with other OSX systems and
LINUX Intel systems, provided that igraph and fllt libraries are correctly installed and linked; however,
its perfect functioning cannot be guaranteed.

A.1.2 Installation
To install ROnDINE it is necessary to install the third party libraries igraph 0.7 and fltk 1.3 . Please

note that igraph 0.7 requires libxml and fltk 1.3 requires libX11.
When installing fltk, please check if OpenGL is enabled. In doubt, configure fltk’s installation using

./configure -enable-gl .
Once the libraries are installed, just run the make command in ROnDINE’s src folder. If it doesn’t

work, check in the makefile and if necessary change If everything works, to run ROnDINE run the
exectuable named "RONDINE", e.g. by typing ./RONDINE .

What does ROnDINE do?
Basically, ROnDINE simulates the evolution of a system composed by N particles moving on a graph,

with Markovian dynamics induced by the Weights Matrix of the graph (see section 2.0.3), showing to
you what is happening and computing a series of measure.
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A.2 ROnDINE’s engine

The core engine of ROnDINE is constituted by the run() and turbo(run) routines. The first one
runs the simulation step by step, passing to the graphic interface the data needed to draw the RDN
and the graphs in the data window, while turborun() runs a long simulation without interacting with
the interface: this allow turborun() to be much f aster than run(), renouncing to graphic visualization.

Both the routines rely on the same algorithm for the computation of the new state of the network.
In a single time step ∆t, for each non empty node i and for each particle of the node allowed to move
(see Sec.s 1.6 and 1.6.1), the arrival node of the particle is computed using a spinning wheel system.

Each node j connected to node i has a transition probability Mji, given by the Weight’s Matrix
of the network. The sum of these probabilities must be 1. We can then assign to each candidate an
interval in [0 : 1]. We number the k candidates from 1 to k, and assign to each candidate the respective

cumulative probability P (n) =
k∑

n=1
Mni . Then, to each candidate it is assigned the interval defined by

In = (P (n− 1), P (n)], with I1 = [0, P (1)].
The program then generates a pseudo-random number between 0 and 1 (using a third part generator,

MT [41]) and search for the interval where the number belongs: in this way, it selects the arrival node.
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A.3 ROnDINE’s interface

As you start ROnDINE, you will see this as its two initial windows (Figure A.1 and A.2):

Figure A.1: ROnDINE’s main window as the program starts.

A.3.1 Main Window
Right in the middle of the Main Window, you can see the representation of the network we are

working on: the default network is a 5× 5 toroidal bidimensional lattice, i.e. a network of 25 nodes.
Each node is connected to the others according to the stochastic matrix M: you can find it printed

on the bash. The element Mij of the stochastic matrix represent the "strength" of the edge connecting
node j to node i. More specifically, the elements Mij represents transition probabilities for the generic
particles moving on the network. If Mij > 0, the edge connecting j to i is drawn as a straight line.

As you can see, as ROnDINE starts the nodes displayed have different coulors: one in red, while the
rest are dark-blue.

The colour of the nodes represents the density of particles in each node. The red node, in the default
network, contains all the particles of the system.

On the bottom of the black frame, you can see a palette (Figure A.3):
the palette shows how the saturation of the displayed nodes changes with respect to the density of

particles in the node, from the minimum (dark blue, empty node) to the maximum (pure red, ll the
system particles in the node).

On the left of Figure A.3 you can see three different possible palettes: standard, sqrt and doublesqrt.
The second and the third options change the standard palette by applying one or two times the sqrt
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Figure A.2: ROnDINE’s data window as the program starts

minumumminumum

maximummaximum

Figure A.3: ROnDINE’s palette and palette settings

function at the hue functions. Those palettes are very useful if you work with low-populated nodes,
e.g. when you have a network with many nodes, or when some node is notably less accessible than the
others. You can change the palette whenever you want.

Now let’s have a look to the left side of ROnDINE’s window.
There are two columns, named Dynamics and Controls.
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Dynamics Settings

TheDynamics column allow you to define the dynamical properties of your system. Given a network
(the default one, or another network), your particles will move accordingly the transition probabilities
given by the stochastic matrix M̂ , which is fully given by the network. However, there are other
parameters of the system, uncorrelated from the network, that you might want to control:

• Particles - the number of total particles moving on the network.

• Source Rate - if the reservoir node is present (see Sec. 3.4), this value defines SR.

• Threshold - this value corresponds actually to θ − 1 wrt the tRDN model (see Sec. 1.6). If it is
setted to 0, we have a Random Walk.

• Contemp. runs - the number of contemporary simulations. When you simulate more than one
contemporary runs, ROnDINE will show you the average of all the systems it is running; it will
as well print the data obtained from the averages of all the contemporary simulations.

• Delta t - the size of the time step (see Sec. 1.4.5) (this parameter is useful only if the P_ii=1/2
option is activated - see below)

• Max time - The maximum number of evolution steps performed

• Stat State - this button computes the linear stationary state (LSS ) 2 of the system and activates
all the functions of ROnDINE subordinated to this computation, e.g. the possibility to display
the linear stationary state on the network. Once the LSS has been computed, the button turns
yellow. You can disable the LSS by pushing it again: this can be useful if you are not interested
in the quantities computed using the LSS, and prefer a faster simulation.

• P_ii=1/2 - This option allows the particles to not move from the node where they are. In fact,
every stochastic matrix M generated by ROnDINE has null diagonal. If the P_ii=1/2 option is
not checked, the particles are forced to leave the node where they are, accordingly to the transition
probabilities given by M. If this option is checked, then every particle has probability 1/2 to not
move; i.e., for every node i, we can say that Pii = 1/2. This does not mean that Mii = 1/2,
because in this way the stochastic normalization would be broken. The particles decides firstly
if it will move or not, and then, according to M, it decides where. All of this applies if Delta t
is setted to 1. For different values, the probability to not move of a particle is actually given by
Pii = ∆t · 1/2 .

• Limit - This option, when the threshold is larger than 0, limits the number of particles leaving a
node to theta (i.e we have a threshold firing tRDN ).

• Initial state - TAS - This round check sets the Total ASymmetric initial state for the systems,
i.e. a state where all particles are stored in a single node. The id of the node (note: nodes counts
from 0 to N − 1) can be setted in the input-text immediately below the round check button.

• Initial state - RAN - This round check sets the RANdom initial state for the system. The N
particles are distributed randomly among the network with the same probability for every node.
The input-text defines the seed for the pseudo-random number generator; in this way, a seed
defines one and only one state. If you want to change the RAN initial state (but maintain the
distribution), you can just change the seed used.

2the linear stationary state is here intended as the first eigenvector of the stochastic matrix M, i.e. the vector of
the matrix having eigenvalue 1. See Sec. 3.1
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• Initial State - Stat State - This round check sets the initial state as the LSS. Since we have
discrete particles, the stationary state cannot be exact: this initial state rates generates an initial
state by distributing the particles according to the LSS probability distribution. If the LSS is not
computed, this round check is deactivated.

• Preview - This button displays the initial state chosen on the network.

• Output - Here you can define the name of the output files. By default ROnDINE, when running,
generates from 3 to 7 different output files, each named as myoutNUMBER.txt, there NUMBER
is the index (from 1 to 7) defining the different output files. You can change the name for different
simulations (e.g. newname will generate newnameNUMBER.txt output files). You can also define
a path inside teh folder where is the Project executable; however, ROnDINE cannot create new
folders; if you want to salve your output in a sub-folder you must firstly create it, and then you
can give ROnDINE the path to the folder. For example, you can create a folder named output in
ROnDINE’s folder, and then change myout with output/myout.

Control Settings

The second column allow you to control the time evolution of your system. The button RUN runs
the simulation: you can immediately see that the left column becomes inactive. If you click on the
RUN button again, the simulation stops; however, the left column does not activate. When you have
stopped a simulation with the button RUN, by pushing it again you can continue the simulation from
the last state displayed. Obviously, you cannot change the simulation settings if you want to continue
the simulation you just stopped!

If you want to change the simulation’s settings (thus starting a new simulation, which simulates a
new system), you must push on the CLEAR button. This button resets the simulation to the given
initial state and allow you to change the Dynamics’ settings.

Here there is a fast explanation of the other functions you can find in the Control Settings’ column:

• Ticks - Displays the number of time-steps performed by the simulation.

• RUN - Runs the simulation; it can be stopped by clicking again on it, or by clicking on the
CLEAR button. It will in any case stop when the ticks reaches the value given in maxtime.

• Run Step - Run a single step of the simulation. This allow you to evolve the system for a small
step of time, given in the input-text below. This is very useful if you want to see the evolution
step-by-step, or if you want to check the state of your system after a while.

• CLEAR - Cleans the simulation and allows you to change the Dynamics’ options. Note: this will
not erase you output data: output is not over-written until you run a new simulation (after you
cleared the last one).

• DRAW - Yellow: draws the network; Grey: doesn’t draw the network. Since drawing the network
is an operation that occupy computational resources, if not interested in the visualization you can
just turn off the drawing option. The simulation will be fastest; if you need, you can reactivate
the drawing option when you want.

• Draw Options - Set what to draw, and what palette to use (only for nodes, fluxes palette is fixed.
In particular, you can decide to draw fluxes. Fluxes are displayed as triangular arrows and evaluate
the total flux on the couple of links Lij and Lji (which are two different links); the direction of
the arrow shows where the total flux is actually going (to i or to j), and the saturation indicates
how actually intense is the flux.
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• TURBO RUN - This is an important option. TURBO RUN starts a complete simulation for
the system, from the given initial state, and runs it for maxtime steps. During this simulation
the program is completely busy in the calculations: it does not display anything, nor it is possible
to intetact with it. To the systems, it appears as a non responding program. However, doing so
allows the program to compute the evolution of the system extremely faster than it does normally
(up to 20 - 50 times faster). If the print option is checked, it will also prints out the data. Once
the evolution is completed, ROnDINE will display the last state computed, and will be responding
again.

• T. - This button opens a new dialogue window that allow you to perform a series of TURBO s
by varying the given parameters (see Figure A.4 ). When the dissipation parameter varies, the
network is re-built (see Sec. A.3.3). The details of the Turbo are printed on the console and on
a file named "myout-AAA-T-txt". Each is printed as "myout-dAtBsC-K.txt", where A, b and
C are integers counting the iteration done by changing the respective quantity (d: dissipation, t:
threshold, s: source rate) and K is the output number (see Sec A.3.5).

Figure A.4: ROnDINE’s Turbo Dialogue

Display Options

If the LSS has been calculated, you can decide to display different states on the network: the actual
state, the stationary (LSS) state, or the difference between the actual state and the LSS.

Load / Save State

You can load and save a state to/from a plain text file. The saved file is formatted as it follows: in
the first line an integer N corresponding to the number of nodes of the network, in the second line an
integer corresponding to the number of contemporary runs used, in the following N lines the number of
particles for each node (average number if you used more than one run). The total number of particles
is computed from the sum of the given data. To load a state, you must use a plain text file in the same
format.
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Data

In the first column of the right, you can see the "Data" section.
The big "Data Window" button shows and hide ROnDINE’s data window.
Above this, you can see two check boxes: Print Data and Print Corr., and both set and unset

the possibility to print data on output files. Printing correlations, however, could result in very heavy
files (since there are generalli N2 correlations to print at each time step), and thus the possibility to not
print them has been separated from the rest of the printable data.

Note that when running a Turbo Run, Print Data is automatically checked, while Princ Corr. is
not: you can decide on your own if you desire to produce the correlation’s data or not.

For further informations about how the data are printed, see Sec. A.3.5.

Network Options

This part of the column is devoted to control the network we are working on. As I said bedore, the
network is separated from the dynamics, the network defines the topology there the particles are moving.
There are several different option of networks that can be build using ROnDINE; it is also possible to
load networks, previously saved using ROnDINE or artificially buildt.

• The white text rectangle display the details of the network, such as the type of network and the
number of total nodes.

• Layout - throughout this button you can select different layouts to be used when displaying the
network. The layout algorithms used are those provided by igraph library.

• New Network - this option allows you to build different kinds of networks. I will specify later
what kind of networks ROnDINE can generate, and how the parameters required by the dials
affects their structure.

• Load - Allows to load a Network from a particular formatted file (I named i RONDINEfile. Once
the network is loaded, in the path dislayed above the main frame, you will be able to see where is
stored the RONDINEfile storing the network you are working on.

• Save - Save as - Saves the network (and the actual state) on a RONDINEfile. The option save
is available only if ROnDINE has a path to work on (obtainet through load or save as either.)

• EXIT - this is the button to close ROnDINE.

A.3.2 Data Window
In this window are collected all the on-run informations and graphs available.
On the top right, there is the Draw check-box. When checked, the graphs are drawn.

Density Histogram

This group allows you to have direct informations about the distribution of particles on the network,
and to compute a stop condition for the simulation, based on the LSS. This means that this condition
makes sense if and only if the system is linear.

The data box requires LSS to be computed. This is because the statistics computed rely on the
fluctuations around the LSS.

Once you computed the LSS, you can see that there is an histogram displayed. This histogram is
binned with the following values:
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ρnorm(i) =
n(i)

Nρstat(i)

where n(i) is the number of particles of the node i, N is the total number of particles, ρstat(i) is the
i-th component of the LSS, i.e. the component associated to the node i in the LSS.

If the network is in a stationary state, it is easy to show that the distribution of ρnorm is a Poisson
distribution with mean 1 and variance ∝ N−1/2 .

Above the histogram displayed you can see the actual value of the mean and of the variance of the
distribution.

Using the STOP CONDITION form, you can ask ROnDINE to stop when the histogram reaches
a certain mean and a certain variance: ROnDINE won’t, however, stop the first time it fulfill the stop
condition, but after 10 times the condition is reached.

You can compute the most reasonable stop condition with the apposite button. In this case, ROn-
DINE will compute the average mean and average error on mean required to be sure to have reached
the LSS in the linear dynamics case (i.e., if threshold = 0 and constraint > N .)

Activation

This graph shows the mean activation of the network at each time step. A single node i is active
at the time t if it "shooted" particles to the other nodes.

If the mean activation of the network is 1 at time t, this means that every node in the net has passed
at least one particle to a neighbour node in the time step from t− 1 to t. If the activation is 0.5, only a
half of the network’s nodes is active.

The Ticks to Display box is used to determine how many time steps of the mean activation diagram
will be displayed on the chart. The maximum possible is 10000.

Note: the computation of the activation as described in Sec. 4.5.1 is not yet fully implemented in
the graphic interface. (See Sec. A.3.5 for an explanation)

Activation Histogram

Here the histogram of all the mean activation values registered is displayed.

Fluctuations Histogram

This histogram collects the fluctuations of the mean activations with respect to the average activation,
which is computed by averaging every mean activation value registered from time t = 0 to the actual
time.

A.3.3 Network constructors

The New Network button opens the dialogue window shown in Figure A.5.
Before we explore all the possibilities given by the dialogues, I must explain how is built a particular

ensemble of networks, i.e. networks with potential.

Potential Networks

Some of the networks that ROnDINE can build have an underlying potential. In this kind of networks,
to every node is assigned a potential value. This is similar to the potential you can have in a generic
physical space.
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Let us suppose we have node i with assigned potential Vi. Node i will have a certain number of
neighbours, defined by the network constructor. But what is the weight of the links connecting i to its
neighbour node labeled j (and thus, the transition rates πij and πji)?

This is defined by the following relationship: if node i and j are neighbours (this must be defined
previously), then

πij = e
Vj−Vi

2T

Where T is a "temperature" parameter that can be (and is) set to be T = 1.

A transition matrix built in this way will always satisfy the detailed balance property.

Dissipaton Option

For every possible type of network ROnDINE can build, you can always introduce a dissipation.
In every dialogue there is a dissipation check box, a dissipation input and a Source Node input.
This feature inserts a new node that serves as a reservoir (see Sec. 3.4).

Figure A.5: New Network dialogue window

ROnDINE can generate four different kind of networks.

A.3.4 Lattices

ROnDINE can generate N-dimensional lattices with different properties. Figure A.6 shows the
dialogue that generate lattices networks. As you can see, you can define the Dimension of the network
(1D will be a line, 2D a square lattice, 3D a cube lattice..) and the Side of the lattice.

You can make id toroidal or not by checking the respective checkbox.
You can set three different kind of connectivities:

• Uniform - every link has the same weight

• Random - every link has a random value in [0, 1], with uniform distribution on this interval
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Figure A.6: New Lattice dialogue window

• Use potential - this is for 2D lattice only; it treats the 2D lattice as a discretization of a plane,
defining in this way the neighbours of each node; then the potential used is a double-well potential
on the plane.

The set potential button will allow you to use different kind of potentials. [Developing].

Random

Random networks are created as Erdos-Reny random networks, by setting the respective parameters.
Tou can decide if the connectivities will be all equivalent or you can assign them a random (uniformly
distributed in the [0, 1] interval) value.
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Clustered

This is another kind of potential network.
A clustered network is a network made up of c clusters connected by c(c− 1) bridges. Each bridge is

a linear chain of b nodes. Each cluster is a random Erdos-Reny newtork with N nodes, and connection
probability p. You can set the values ofN and p in the dialogue window, respectively Cluster’s Dimension
and Inter-Connectivity.

We have now M isolated clusters of N nodes. Clusters are hence connected among them by the
bridges. As the names suggest, if a bridge connects the cluster k to the cluster l, not every node of the
bridge is connected to the bridge, but only its extremes. One extreme of the bridge will be connected
to the nodes in the cluster k, and the other extreme of the bridge will be connected do the nodes in
the cluster l. The Intra-Connectivity parameter determine how many nodes of a cluster are connected
to its afferent bridges. This is not a deterministic parameter, but similarly to the Erdos-Reny random
networks constructor it determines a probability to connect to the bridge. For example, if we set the
Intra-Connectivity to 0.5, every node in the clusters will have probability 0.5 to be connected (i.e. to
be a neighbour) of the extremal node of any afferent bridge.

In this way, we have defined the neighbours of each node in the cluster. Thus, we set the potential:
Cluster’s nodes are then equipped with potential V = 0, while bridge’s nodes are equipped with a
potential given by the Well parameter in the constructor.

In Figure A.7 you can see an example of a Clustered Network in its stationary state:

Figure A.7: Example of Clustered Network; on the right are displayed the settings used to build it

2L Clustered

This constructor generate a two-layers Clustered network.
First of all, it generates a Clustered Network. This network is build according to the parameters of

the left column in the dialogue window (Figure A.8). Then, this network is copied C2 times, where C2

is the number of the external clusters you desire. Each external cluster is then linked with the external
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Figure A.8: Dialogue for 2L Clustered Network constructor.

bridges, as it was done with the Erdos-Reny clusters in normal Clustered Networks. The parameters
for the external clusters and bridges are given in the right column.

Figure A.9 shows an example of 2 Layers Clustered Network. As you can see, the inner bridges are
not considered when connecting the external clusters throughout the external bridges.

A.3.5 Outputs

Whenever you run a simulation, using the RUN button or the TURBO RUN button, ROnDINE
generates the output files and, if the Print Data checkbox is checked, prints on it.

ROnDINE will continue to write on the same files, until you use the CLEAR option. This options
does not delete the output data, but tells ROnDINE to replace them with empty files when you run the
new simulation.

Turbo-run automatically clears at its end.
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Figure A.9: Example of 2L Clustered Network, with respective constructor.

As I said previously, ROnDINE generates seven files which name will finish with i.txt where i is the
index of the file.

For example, if I gave to ROnDINE the output name "myout", as it is setted by default, run-
ning a simulation will generate seven files: myout1.txt, myout2.txt, myout3.txt, myout4.txt, myout5.txt,
myout6.txt and myout7.txt.

File 1

At each time step, ROnDINE prints:

t ρ1 ρ2 ... ρN

where t is the index of the time tick, N is the number of nodes (including the pump node, if present)
and ρi is the density of particles on the node i at a time t, averaged on all the contemporary runs.

File 2

This file is written only if the LSS has been computed.
In case of a normal run, at each time ROnDINE prints

t ∆1 ∆2 ... ∆N ∆tot ∆̂ δ

Where:

• ∆i is the standard deviation (on all the contemporary runs) of ρi(run) with respect to ρstat(i)

• ∆tot =
∑N
i=1 ∆i

N

• ∆̂ is the L1 distance between the actual state and the LSS
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• δ is the L1 distance between the actual state and the previous

In case of a Turbo Run, the layout is almost the same. One more quantity is computed, ∆rel:

t ∆1 ∆2 ... ∆N ∆tot ∆rel ∆̂ δ

∆rel is, as ∆tot, a standard deviation, but it is computed using the normalized density,

ρnorm(i) =
n(i)

Nρstat(i)

.

File 3

This file is written only if we have bridges, i.e. we are working on a Clusterd (or 2L Clustered)
Network.

If we have n bridges, at each time step ROnDINE prints:

t fl1 fl2 ... f ln

where φi is the total flux of particles (absolute value) on the i-th bridge.

File 4

This is the only files that is never deleted or overwritten; ROnDINE always appends on it. It is used
to check on the statistical properties of the network.

ROnDINE prints on file 4 only when you push the Print ˆ button in the Data window, located
under the density histogram, and will basically print informations about this histogram:

p N ρ̄norm var(ρnorm)
ρ̄norm
N

where:

• p is the number of particles in the network

• N is the total number of nodes in the network

• ρ̄norm is the average value of the density histogram

• var(ρnorm) is the variance of the density histogram

• ρ̄norm
N should be constant for a fixed network, if the dynamics is linear.

File 5

This file collecys the intensity of the activation of each node, averaged on every contemporary run.
At each time step ROnDINE prints:

t s1 s2 ... sN

where si is the number of particles that note i has lost (and thus, "shooted") from time t1 to t.
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File 6

In this file the correlations are stored; this feature it not fully functioning, and it needs further work.

File 7

This file prints the mean activation ā of the network. At every time step ROnDINE prints:

t ā

The mean activation defined in 4.5.1 has been computed by modifying directly the source code; a
proper integration with the interface will be developed in the near future
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