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Introduction

Jordan algebras first appeared in a 1933 paper by P. Jordan on the foun-

dations of quantum mechanics. The classification of simple finite-dimensional

Jordan algebras over an algebraically closed field of characteristic different from

two was obtained by Albert, [1], in 1947 but a much easier proof of this clas-

sification was given in the 60’s, thanks to the discovery of the Tits-Kantor-

Koecher (TKK) construction, [10] [5] [7]. This is based on the observation that

if g = g−1⊕ g0⊕ g1 is a Lie algebra with a short Z-grading and f lies in g1, then

the formula

a • b = [[a, f ], b]

defines a structure of a Jordan algebra on g−1. This leads to a bijective corre-

spondence between simple unital Jordan algebras and simple Lie algebras with

an sl2-triple {f, h, e} whose semisimple element h, with eigenvalues 0,−1, 1,

defines a short grading of g.

Over the years the TKK construction has revealed more and more relevant,

due to its many generalizations.

The first natural generalization is to Jordan triple systems, whose algebraic

study was initiated by K. Meyberg in 1969. A Jordan triple system is a 3-algebra

whose product { · , · , · } satisfies the following identities:

{x, y, z} = {z, y, x}

{u, v, {x, y, z}} = {{u, v, x}, y, z} − {x, {v, u, y}, z}+ [x, y, [u, v, z]]

Another natural generalization is to superalgebras: using the TKK construc-

tion V. Kac, [4], obtained in 1977 the classification of simple finite-dimensional

Jordan superalgebras over a field of characteristic zero, from the classification

of simple finite-dimensional Lie superalgebras. More recently, the same ideas

were generalized by N. Cantarini and V. Kac, [2], in order to establish the equi-

valence of the category of unital linearly compact Jordan superalgebras and the

category of linearly compact Lie superalgebras with a short subalgebra. This
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equivalence lead to the classification of infinite-dimensional linearly compact

simple Jordan superalgebras.

At the same time, J. Palmkvist, [8] [9], studied how to extend the TKK

construction to the so-called Kantor triple systems. These are a class of triple

systems including Jordan triple systems. In this case a Z-graded Lie algebra of

length 5, g = g−2 + g−1 + g0 + g1 + g2, is associated to a Kantor triple system.

This construction is undoubtedly more complicated, both from a conceptual

and a technical point of view. It is worth mentioning that in the latest years

triple systems have found several applications to different branches of physics,

in particular to 3-dimensional supersymmetric gauge theories. For this reason

the physicists community has shown great interest in these algebraic structures.

The thesis is divided into three chapters. In the first chapter the preliminary

material on Jordan and Z-graded Lie algebras is presented. The second chapter

is dedicated to the Tits-Kantor-Koecher construction which is described in all

details. In the third chapter the generalization of the TKK construction to triple

systems is given. Also in this case, all details are provided. In Chapter 3, some

examples are given, namely, the TKK construction is described in the case of

g = sl2, sl4 and sp4 (with short gradings induced by sl2-triples).



Introduzione

Le algebre di Jordan fanno la loro prima apparizione nel 1933 in un artico-

lo di P. Jordan sui fondamenti della meccanica quantistica. La classificazione

delle algebre di Jordan semplici finito dimensionali su un campo algebricamente

chiuso di caratteristica diversa da due viene ottenuta da Albert, [1], nel 1947

ma una dimostrazione meno complicata di questa classificazione viene data solo

negli anni sessanta grazie alla scoperta della costruzione di Tits-Kantor-Koecher

(TKK), [10] [5] [7].

Essa si basa sull’osservazione che se g = g−1 ⊕ g0 ⊕ g1 è un’algebra di Lie con

una Z-graduazione corta ed f appartiene a g1, allora il prodotto

a • b = [[a, f ], b]

definisce una struttura di algebra di Jordan su g−1. Ne deriva una corrispon-

denza biunivoca tra algebre di Jordan semplici con unità e algebre di Lie con

una sl2-tripla {f, h, e} il cui elemento semisemplice h, con autovalori 0,−1, 1,

definisce una Z-graduazione corta su g.

Nel corso degli anni la costruzione TKK si è rivelata sempre più importante,

grazie alle sue molteplici generalizzazioni.

Una prima naturale generalizzazione è ai Jordan triple systems, il cui studio

viene cominciato da K. Meyberg nel 1969. Un Jordan triple system è una

3-algebra il cui prodotto { · , · , · } soddisfa le seguenti relazioni:

{x, y, z} = {z, y, x}

{u, v, {x, y, z}} = {{u, v, x}, y, z} − {x, {v, u, y}, z}+ [x, y, [u, v, z]]

Un’altra generalizzazione è alle superalgebre: usando la costruzione TKK V.

Kac, [4], ottiene nel 1977 la classificazione delle superalgebre di Jordan semplici

finito dimensionali su un campo di caratteristica zero, tramite la classificazione

delle superalgebre di Lie semplici di dimensione finita. Di recente, generaliz-

zando la stessa idea N. Cantarini e V. Kac, [2], dimostrano l’equivalenza tra la
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categoria delle superalgebre di Jordan unitarie linearmente compatte e la catego-

ria delle superalgebre di Lie linearmente compatte con una Z-graduazione corta.

Grazie a questa equivalenza viene ottenuta la classificazione delle superalgebre

di Jordan semplici linearmente compatte infinito dimensionali.

Contemporaneamente, J. Palmkvist, [8] [9], estende la costruzione TKK ai

Kantor triple systems. Questi ultimi costituiscono una classe di triple systems

contenente i Jordan triple systems. In questo caso viene associata ad un Kantor

triple system un’algebra di Lie Z-graduata di lunghezza 5, g = g−2 +g−1 +g0 +

g1 + g2. Nel caso dei Kantor triple systems la costruzione si rivela senza dubbio

più complicata, sia concettualmente che tecnicamente.

Vale la pena di sottolineare che negli ultimi anni i triple systems hanno

trovato numerose applicazioni a branche diverse della fisica, in particolare alle

teorie di gauge tridimensionali supersimmetriche. Per questo motivo la comunità

fisica ha rivolto un grande interesse a queste stutture algebriche.

La tesi si divide in tre capitoli. Nel primo vengono introdotti definizioni ed

esempi di algebre di Jordan e di algebre di Lie Z-graduate. Il secondo capitolo

è dedicato alla costruzione di Tits-Kantor-Koecher descritta in ogni dettaglio.

Nel terzo capitolo la costruzione TKK viene estesa ai triple systems. Anche in

questo caso vengono forniti tutti i dettagli. Inoltre, nel terzo capitolo vengono

trattati gli esempi g = sl2, sl4 e sp4 (con Z-graduazione corta indotta da una

sl2-tripla).
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Chapter 1

Preliminary notions on

algebras

1.1 Jordan algebras and Lie algebras

In what follows we will denote by F the base field. We will always assume

char F = 0.

Definition 1.1 (Algebra). An algebra (A, · ) is an F-vector space A with a

product, i.e., a bilinear map

· : A×A→ A.

We will say that A is associative if the product satisfies the following relation

(x · y) · z = x · (y · z) (1.1)

Definition 1.2 (Jordan algebra). A Jordan algebra is an algebra (A, · ) whose

product satisfies the following axioms:

x · y = y · x (commutativity)

(x2 · y) · x− x2 · (y · x) = 0 (Jordan identity)
(1.2)

Definition 1.3 (Lie algebra). A Lie algebra is an algebra (A , [ , ] ) whose

product satisfies the following axioms:

[x, y] = −[y.x] (anticommutativity)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity)
(1.3)

Example 1.1.1. Let (A, · ) be an associative algebra.

Then:
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10 1. Preliminary notions

a) A+ = (A, •), where x • y = 1
2 (x · y + y · x), is a Jordan algebra.

Indeed • is commutative and it satisfies the Jordan identity since · is

associative:

(x2 • y) • x− x2 • (y • x) =
1

2
(
1

2
(x2 · y+ y · x2) · x+ x · 1

2
(x2 · y+ y · x2))−

−1

2
(x2 · 1

2
(x · y + y · x) +

1

2
(x · y + y · x) · x2) =

=
1

4
(x2 · y · x+ y · x3 + x3 · y + x · y · x2)−

−1

4
(x3 · y + x2 · y · x+ x · y · x2 + y · x3) = 0

b) A− = (A, [ , ]) where [x, y] = 1
2 (x · y − y · x) is a Lie algebra.

The product [ , ] is anti-commutative and satisfies the Jacobi identity.

Indeed:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] =
1

2
(x · 1

2
(y · z− z · y)− 1

2
(y · z− z · y) ·x)+

+
1

2
(y· 1

2
(z ·x−x·z)− 1

2
(z ·x−x·z)·y)+

1

2
(z · 1

2
(x·y−y·x)− 1

2
(x·y−y·x)·z) =

=
1

4
(x · y · z − x · z · y − y · z · x+ z · y · x)+

+
1

4
(y · z · x− y · x · z − z · x · y + x · z · y)+

+
1

4
(z · x · y − z · y · x− x · y · z + y · x · z) = 0

Definition 1.4 (gl(V )). Let (End(V ), ◦ ) be the associative algebra of en-

domorphisms of the vector space V , with product given by the composition of

endomorphisms. We set gl(V ) = End(V )−, i.e. gl(V ) is the Lie algebra ob-

tained from End(V ) as shown in Example 1.1.1 (b. If the dimension of V is n

we will use gln(F) ∼= gl(V ).

Definition 1.5 (gl(V )+). Let (End(V ), ◦ ) be the associative algebra of en-

domorphism of the vector space V . We define gl(V )+ = End(V )+ to be the

Jordan algebra obtained from End(V ) as shown in Example 1.1.1 (a. If the

dimension of V is n we will use gln(F)+ ∼= gl(V )+.

Definition 1.6 (Subalgebras, Ideals and Simple algebras). Let (A, · ) be an

algebra. A subalgebra B of A is a subspace of A which is closed under multipli-

cation, i.e. B ·B ⊆ B. An ideal I of A is a subspace of A which is closed under

multiplication by A, i.e. A · I ⊆ I, I ·A ⊆ I. An algebra A is simple if it has no

proper ideal, i.e. the only ideals of A are 0 and A itself.
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Example 1.1.2 (sl2(F)). We denote by sl2(F) the simple Lie subalgebra of

gl2(F) given by the elements of trace 0.

Note that

sl2(F) =< f, h, e >,

where f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
, e =

(
0 1

0 0

)
.

We have [e, f ] = h, [h, f ] = −2f and [h, e] = 2e.

Example 1.1.3 (Bn(β,F)). Let β be a non-degenerate symmetric bilinear form

on V and suppose dim(V ) = n. We denote by Bn(β,F) the following, simple,

Jordan subalgebra of gln(F)+

Bn(β,F)) = {a ∈ gln(F)+|β(a(x), y) = β(x, a(y)),∀x, y ∈ V }.

Example 1.1.4 (B2(σ,F)). Let x = (x1, x2)t, y = (y1, y2)t ∈ F2 and σ(x, y) =

x1y2 + x2y1. Then

B2(σ,F)) =< F, Id, E >,

where F =

(
0 0

1 0

)
, Id =

(
1 0

0 1

)
, e =

(
0 1

0 0

)
.

We have Id•Id = Id, Id•E = E, Id•F = F , F •E = 1
2Id and E•E = F •F = 0.

Definition 1.7 (Morphism of algebras). A morphism of algebras

φ : (A, · ) → (A′, ·′ ) is a linear map φ : A → A′ of vector spaces such that

φ(x · y) = φ(x) ·′ φ(y). A bijective morphism is called an isomorphism.

In the case of unital algebras we will suppose that the morphism sends unit

to unit, i.e. φ(e) = e′.

Definition 1.8 (Z-Graded algebra). An algebra (A, ·) is called Z-graded if:

A =
⊕
i∈Z

Ai Ai ·Aj ⊆ Ai+j (1.4)

with Ai subspaces of A. We will say that a Z-graded algebra is shortly graded

if Ai = 0 ∀i such that |i| > 1 :

A = A−1 ⊕A0 ⊕A1 (1.5)

We will say that a Z-graded algebra is 5-graded if Ai = 0 ∀i such that |i| > 2 :

A = A−2 ⊕A−1 ⊕A0 ⊕A1 ⊕A2 (1.6)

Remark 1. If g is a simple graded Lie algebra we have [g−1, g1] = g0.
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Definition 1.9 (Graded involution). Let g =
⊕

i∈Z gi be a Z-graded Lie alge-

bra. A graded involution τ is an automorphism of g such that τ(τ(g)) = g, ∀g ∈
g and τ(gi) = g−i.

Definition 1.10. An sl2-triple is an isomorphic copy of the Lie algebra sl2.

Definition 1.11. Let g be a shortly graded Lie algebra. The grading is said to

be induced by an sl2-triple {f, h, e} if

[h, g] = −g ⇐⇒ g ∈ g−1, [h, g] = 0 ⇐⇒ g ∈ g0, [h, g] = g ⇐⇒ g ∈ g1.

Definition 1.12 (Lie algebra module). Let (A, [ , ] ) be a Lie algebra and let V

be a vector space. V is an A-module if there is a bilinear operation . : A×V →
V such that

[a, b].v = a.(b.v)− b.(a.v) ∀a, b ∈ A, v ∈ V.

Definition 1.13 (Submodule). A subspace W of an A-module V is an A −
submodule of V if A.w ∈ W ∀w ∈ W . V is said irreducible if it has no proper

submodule.



Chapter 2

The Tits-Kantor-Koecher

construction

In this chapter we will show a way to ’embed’ a Jordan algebra into a Lie

algebra via the so-called Tits-Kantor-Koecher construction, [10], [5], [7].

We start from a Jordan algebra J in order to obtain a Lie algebra Lie(J) con-

taining J.

2.1 A construction of shortly graded Lie alge-

bras

In this section we will show how a triple of vector fields (h; a, b) can be turned

into a shortly graded Lie Algebra g = g−1 ⊕ g0 ⊕ g1.

Let us consider a shortly-graded vector space a⊕ h⊕ b where

(1) h is a Lie algebra ;

(2) a and b are h-modules;

(3) there exists a bilinear map � : a× b→ h.

Definition 2.1. Let (h; a, b) be a triple of spaces satisfying (1), (2) and (3).

We define on L = a ⊕ h ⊕ b the following product: for x1 = a1 + h1 + b1,

x2 = a2 + h2 + b2 ∈ L we set [x1, x2] = a+ h+ b with

h = [h1, h2] + a1�b2 − a2�b1; a = h1.a2 − h2.a1; b = h1.b2 − h2.b1; (2.1)

where [h1, h2] is the product of h. We will use the notation [ , ] for both the

product in h and in L since the restriction of the latter to h× h coincides with

the first.

13



14 2. The Tits-Kantor-Koecher construction

Remark 2. If h ∈ h, a ∈ a, b ∈ b, we have [h, a] = −[a, h] = h.a, [h, b] =

−[b, h] = h.b and [a, b] = −[b, a] = a�b, so that L is anti-commutative. The

following inclusions follow from Definition 2.1

[h, h] ⊆ h; [h, a] ⊆ a; [h, b] ⊆ b; [a, a] = [b, b] = 0; [a, b] = a�b ⊆ h (2.2)

Therefore (L, [ , ]) is a shortly graded algebra.

Theorem 2.1.1. Let (h; a, b) satisfies conditions (1), (2) and (3). Then L =

a ⊕ h ⊕ b, as in Definition 2.1, is a Lie algebra if and only if the following

relations hold:

[h, a�b] = h.a�b+ a�h.b (2.3)

(a1�b).a2 = (a2�b).a1, (a�b1).b2 = (a�b2).b1 (2.4)

for h ∈ h, a, a1, a2 ∈ a and b, b1, b2 ∈ b.

Proof. By Remark 2 we know that (L, [ , ]) is anti-commutative. Therefore

we shall prove that the product [ , ] satisfies the Jacobi identity if and only if

relations (2.3) and (2.4) hold.

For this purpose we introduce the jacobian

J(x1, x2, x3) = [x1, [x2, x3]] + [x2, [x3, x1]] + [x3, [x1, x2]]

for x1, x2, x3 ∈ L.

We have

J(x1, x1, x2) = [x1, [x1, x2]] + [x1, [x2, x1]] + [x2, [x1, x1]] =

= [x1, [x1, x2]]− [x1, [x1, x2]] = 0,

and the same holds for J(x1, x2, x1) and J(x2, x1, x1), thus J vanishes if two

arguments coincide. This imply, thanks to the linearity of the jacobian,

J(x1, x2, x3) + J(x2, x1, x3) = J(x1 + x2, x2 + x1, x3) = 0

therefore J is antisymmetric with respect to the first two variables and we can

show similarly that it is antisymmetric with respect to any two variables.

Now J(h, h, h) = 0 since h is a Lie algebra. Besides

J(h, a, a) = [h, [a, a]] + [a, [a, h]] + [a, [h, a]] = 0

since, by Remark 2, [h, a] ⊆ a and [a, a] = 0. In a similar way we obtain

J(h, b, b) = J(a, a, a) = J(b, b, b) = 0.
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For h1, h2 ∈ h, a ∈ a, we have:

J(h1, h2, a) = h1.h2.a − h2.h1.a − [h1, h2].a = 0, since a and b are h-modules,

hence J(h, h, a) = 0 and similarly J(h, h, b) = 0. Now we note that for h ∈ h,

a ∈ a, b ∈ b

J(h, a, b) = [h, a�b]− a�h.b− h.a�b

J(a1, a2, b) = −(a2�b).a1 + (a1�b).a2 J(b1, b2, a) = (a�b2).b1 − (a�b1).b2.

Therefore J(L,L,L) = 0 if and only if (2.3) and (2.4) hold.

Remark 3. Condition (2.3) is satisfied by every h ∈ h if it is satisfied by a set

of Lie-generators of h.

2.1.1 Ideals of L

Let πh (resp. πa, πb) be the projection of L onto h (resp. a, b).

Proposition 2.1.2. Let M be an ideal of L. Then

M̃ = πaM⊕ πhM⊕ πbM

is an ideal of L.

Conversely, for any ideal h0 of h and h-submodules a0 ⊆ a, b0 ⊆ b satisfying

h0a ⊂ a0, h0b ⊂ b0, a0�b ⊂ h0, a�b0 ⊂ h0, (2.5)

M0 = a0 ⊕ h0 ⊕ b0 is an ideal of L.

Proof. Let M be an ideal of L. We have

[πhm,h] = πh[m,h] ⊆ πhm,
[πam,h] = πa[m,h] ⊆ πam, [πbm,h] = πb[m,h] ⊆ πhm

(2.6)

for all m ∈ M, h ∈ h. Thus πhM is an ideal of h, and both πaM and πbM

are h-submodules.

Moreover, if m = h′ + a′ + b′ ∈M, a ∈ a and b ∈ b, then

[m, a+ b] = (a�b′ − a′�b) + h′.a+ h′.b .

As a consequence the following inclusions hold

[(πhM), a] ⊆ πaM [(πhM), b] ⊆ πbM

[(πaM), b] ⊆ πhM [(πbM), a] ⊆ πhM
(2.7)

This, together with (2.6), proves that M̃ = πaM ⊕ πhM ⊕ πbM is an ideal

of L.

Conversely, if h0, a0, b0 satisfy relations (2.5), their direct sum is, by definition

of product on L, an ideal.
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Remark 4. If M is an ideal of L we always have M ⊆ M̃.

Definition 2.2. Let M be an ideal of L. We say that M is split if

M = M̃ = πaM⊕ πhM⊕ πbM.

In what follows we will be interested in triples (h; a, b) satisfying, in addition

of properties (1),(2) and (3), some of the following conditions:

(i) ∃h0 ∈ h such that h0.a = a, h0.b = −b and [h0, h] = 0 for all a ∈ a, b ∈ b

and h ∈ h;

(ii) the map � admits only trivial annihilators, i.e. if a�b = 0,∀b ∈ b then

a = 0 and if a�b = 0,∀a ∈ a then b = 0;

(iii) h.a = 0 or h.b = 0 for some h ∈ h implies h = 0;

(iv) h is generated, as an algebra, by the subspace a�b.

Lemma 2.1.3. Let (h; a, b) be a triple satisfying condition (i). Then any ideal

of L is split.

Proof. Let h0 ∈ h be an element as in (i) and let M be an ideal of L. For any

x = a+ h+ b ∈M, we have [h0, x] = [h0, a] + [h0, h] + [h0, b] = a− b ∈M since

M is an ideal and [h0, x+ a− b] = 2a ∈M, meaning that πaM ⊆M. Applying

h0 to x − a ∈ M we get πbM ⊆ M so that we can conclude that πhM ⊆ M

too. This ends the proof because M̃ = πaM⊕ πhM⊕ πbM ⊆M together with

Remark 4.

Proposition 2.1.4. Let (h; a, b) be a triple satisfying conditions (i) and (ii). If

h is simple then L is simple.

Proof. Let M 6= 0 be an ideal of L. By (ii) we must have πhM 6= 0. In fact,

suppose πhM = 0, then we should have, by (2.7), (πaM)�b ⊆ πhM = 0 but by

(ii) this would mean πaM = 0 and similarly we would have πbM = 0 leading to

M̃ = 0, a contradiction since M is different from 0.

By hypothesis h is simple, so it must be πhM = h. From (2.7) we get h.a ⊆ πaM
and h.b ⊆ πbM. Due to (i) there exists an element h0 ∈ h such that h0.a =

a, h0.b = −b and [h0, h] = 0, hence h.a = a and h.b = b.

Summing up we have shown that πaM = a, πhM = h, πbM = b, hence, by

Lemma 2.1.3, M = M̃ = L, i.e. the only ideal of L different from 0 is L

itself.

We will now prove the main result about the ideals of L, namely:
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Theorem 2.1.5. Let (h; a, b) be a triple satisfying (i)-(iv). If a and b are

irreducible h-modules then L is simple.

Proof. Let M be an ideal of L. Then, by (2.6), πaM is an h-submodule of a so

it is either 0 or a.

Suppose πaM = 0. By (2.7) it must be (πhM).a = 0 hence, by condition (iii),

πhM = 0. As we showed in the proof of Proposition 2.1.4, if condition (ii) is

satisfied then πhM = 0 implies πaM = πbM = 0. This being the case, it would

be M = 0. In the same way πbM = 0 leads to M = 0.

We are left with the case πaM = a and πbM = b. Again from relation (2.7)

we have a�b ⊆ πhM hence, by (iv), we can conclude πhM = h since πhM is a

subalgebra of h. This leads to M = L.

2.2 The Tits-Kantor-Koecher construction

Let J be an algebra. For an element a ∈ J we denote by La the left multi-

plication by a.

Definition 2.3. Let J be a Jordan algebra. We will denote by h(J) the Lie

subalgebra of gl(J) generated by La with a ∈ J:

h(J) = L(J) + [L(J), L(J)] + · · · .

Remark 5. Here we denote by L(J) the span of the La’s with a ∈ J. Note that

(αLa + βLb)(c) = Lαa+βb(c).

Proposition 2.2.1. Let J be a unital Jordan algebra. Then

h(J) = L(J)⊕ [L(J), L(J)].

Proof. First we show that the sum L(J) + [L(J), L(J)] is direct.

Let T ∈ L(J) ∩ [L(J), L(J)]. Then T = La = [Lb, Lc],

for some a, b, c ∈ J. By applying T to the unit e of J, we obtain

T (e) = La(e) = [Lb, Lc](e)⇒ a = bc− cb = 0, i.e. T = 0

In order to prove that every higher-order commutator of elements in L(J)

is a sum of elements of L(J) and [L(J), L(J)] we will show that if J is a Jordan

algebra then the following relations hold:

[La, Lbc] + [Lb, Lca] + [Lc, Lab] = 0. (2.8)

In fact, if J satisfies 2.8, then J satisfies also equation

[[La, Lb], Lc] = L[La,Lb](c) (2.9)



18 2. The Tits-Kantor-Koecher construction

The left-hand side of equation (2.9) applied to an element d ∈ J reads

a(b(cd))− b(a(cd))− c(a(bd)) + c(b(ad)). (2.10)

Equation (2.8) is equivalent to:

a((bc)d) = (bc)(ad)− b((ac)d) + (ac)(bd)− c((ab)d) + (ab)(cd). (2.11)

Thanks to commutativity, a((bc)d) = a(d(cb)), hence if we swap b and d in

(2.11) and insert the result in (2.10), we get:

(dc)(ab)− d((ac)b) + (ac)(bd)− c((ad)b) + (ad)(cb)−
−b(a(cd))− c(a(bd)) + c(b(ad)) =

= −b(a(cd))− c(a(bd)) + (ad)(cb) + (ac)(bd) + (dc)(ab)− d((ac)b).

(2.12)

Once again, the first term of the right-hand side of equation (2.12) is the left-

hand side of equation (2.10) under the permutation a→ b, b→ c, c→ d, d→ a,

hence

−(cd)(ba) + c((bd)a)− (bd)(ca) + d((bc)a)− (bc)(da)−
−c(a(bd)) + (ad)(cb) + (ac)(bd) + (dc)(ab)− d((ac)b) =

= (a(bc))d− (b(ac))d = L[La,Lb](c)(d).

(2.13)

In order to prove equation (2.8) we linearize the Jordan identity.

Let a, b, c, d ∈ J. Then, taking x = a+ b, y = d in the Jordan identity and using

the commutativity of the product, we get

0 = (a+ b)((a+ b)2d)− (a+ b)2((a+ b)d) =

= a(a2d) + a(b2d) + 2a((ab)d) + b(a2d) + b(b2d) + 2b((ab)d)−

−a2(ad)− b2(ad)− 2(ab)(ad)− a2(bd)− b2(bd)− 2(ab)(bd)

(2.14)

Setting x = a− b, y = d in the Jordan identity, we have

0 = (a− b)((a− b)2d)− (a− b)2((a− b)d) =

= a(a2d) + a(b2d)− 2a((ab)d)− b(a2d)− b(b2d) + 2b((ab)d)−

−a2(ad)− b2(ad) + 2(ab)(ad) + a2(bd) + b2(bd)− 2(ab)(bd)

(2.15)

Taking into account equations (2.14) and (2.15) we find

0 = 4a((ab)d) + 2b(a2d)− 4(ab)(ad)− 2a2(bd). (2.16)
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By taking a = a+ c and a = a− c in (2.16) we have the two equations

0 = 4(a+ c)(((a+ c)b)d) + 2b((a+ c)2d)−
−4((a+ c)b)((a+ c)d)− 2(a+ c)2(bd) =

= 4( a((ab)d) + a((cb)d) + c((ab)d) + c((cb)d) )+

+2( b(a2d) + 2b((ac)d) + b(c2d) )−
−4( (ab)(ad) + (ab)(cd) + (cb)(ad) + (cb)(cd) )−
−2( a2(bd) + 2(ac)(bd) + c2(bd) )

0 = 4(a− c)(((a− c)b)d) + 2b((a− c)2d)−
−4((a− c)b)((a− c)d)− 2(a− c)2(bd) =

= 4( a((ab)d)− a((cb)d)− ((ab)d) + c((cb)d) )+

+2( b(a2d)− 2b((ac)d) + b(c2d) )−
−4( (ab)(ad)− (ab)(cd)− (cb)(ad) + (cb)(cd) )−
−2( a2(bd)− 2(ac)(bd) + c2(bd) )

(2.17)

Hence, subtracting the second equation from the first of (2.17),

0 = a((bc)d)− (bc)(ad) + b((ac)d)− (ac)(bd) + c((ab)d)− (ab)(cd) (2.18)

which is exactly equation (2.8) applied to the element d.

Summing up, equation (2.8) is satisfied, thus equation (2.9) is satisfied too.

Now, equation (2.9) implies that

[[L(J), L(J)], L(J)] ⊆ L(J).

Due to the Jacobi identity we have

[[L(J), L(J)], [L(J), L(J)]] ⊆ [[[L(J), L(J)], L(J)], L(J)] ⊆ [L(J), L(J)].

By an analogous argument every higher-order commutator of elements of L(J)

is an element of either L(J) or [L(J), L(J)].

Thanks to Proposition 2.2.1 we can extend the identity map of L(J) to an

antiautomorphism ∗ : h(J)→ h(J) by setting T ∗ = −T for T ∈ [L(J), L(J)].

We recall that an antiautomorphism of an algebra A is an automorphism A such

that φ(xy) = φ(y)φ(x).

Definition 2.4. Let J be a Jordan algebra and let J be an isomorphic copy of

J. We define

Lie(J) = J⊕ h(J)⊕ J

where T ∈ h(J) acts on a ∈ J via T.a = T (a) and on ā ∈ J as T.ā = −T ∗(a).

We also define the following map � : J× J→ h(J),

a�b̄ = 2(Lab + [La, Lb]). (2.19)
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Lemma 2.2.2. Let J be a Jordan algebra and let Lie(J) be as in Definition 2.4.

Then the algebra Lie(J) satisfies conditions (1),(2) and (3) of Section 2.1.

Moreover, Lie(J) is a Lie algebra.

Proof. Conditions (1) and (3) are obviously satisfied since h(J) is a Lie algebra

and the map � is bilinear. In order to show that J is an h(J)-module we compute

[La, Lb].c = La(Lbc)− Lb(Lac) = La.(Lb.c)− La.(Lb.c),

similarly,

[La, Lb].c̄ = La(−Lb(c))− Lb(−Lac) =

= La(Lbc)− Lb(Lac) = La.(Lb.c̄)− La.(Lb.c̄),

and J is an h(J)-module too.

In order to prove the second part of the lemma we use Theorem 2.1.1. Indeed

h(J) is a Lie algebra. We have:

1
2 (a1�b̄).a2 = (a1b)a2 + a1(ba2)− b(a1a2)
1
2 (a2�b̄).a1 = (a2b)a1 + a2(ba1)− b(a2a1)

1
2 (a�b̄1).b̄2 = −(ab1)b2 + a(b1b2)− b1(ab2)
1
2 (a�b̄2).b̄1 = −(ab2)b1 + a(b2b1)− b2(ab1)

where we have exploited the fundamental fact that [La, Lb]
∗ = −[La, Lb]. Ap-

plying the commutativity of J and reordering properly we see that conditions

(2.4) are satisfied by J.

Furthermore, condition (2.3) follows from (2.8) and (2.9) which are satisfied by

any Jordan algebra hence by J. Indeed:

1
2 ( [La, b�c̄]− (La.b)�c̄− b�(La.c̄) ) =

= [La, Lbc] + [La, [Lb, Lc]]−
−L((ab)c)− [Lab, Lc] + L(b(ac)) + [Lb, Lac] =

= [La, Lbc] + [Lb, Lac] + [Lc, Lab]+

+[La, [Lb, Lc]]− L([La, Lb].c) = 0.

This ends the proof.

Proposition 2.2.3. Let J be a Jordan algebra with unit element e. Then con-

ditions (i)-(iv) of Section 2.1 are satisfied by Lie(J).

Proof. Condition (i) is satisfied with h0 = L(e). Obviously L(e).a = a,

L(e).b̄ = −b̄ and [L(e), T ] = 0, ∀a ∈ J, b̄ ∈ J̄ and T ∈ h(J).

To prove (ii), suppose a�b̄ = 0, ∀a ∈ J, then also e�b̄ = 2Lb = 0 hence b = 0.

Moreover a�b̄ = 0, ∀b̄ ∈ J implies a = 0.
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Condition (iii) is a consequence of the fact that each h ∈ h(J) is a linear trans-

formation.

Finally, we have a�ē = 2La and the elements La, with a ∈ J, generate h(J),

hence (iv) is satisfied.

Remark 6. For any subset m ⊆ J, (resp. m ⊆ J), m is an h(J)-submodule of J

if and only if m is an ideal of J, (resp. J).

Let m be an h(J)-submodule of J. Then we have T.m ⊆ m for all T ∈ h(J),

thus, since the La’s generate h(J), m is an ideal of J.

Theorem 2.2.4 (Tits-Kantor-Koecher construction). Let J be a unital Jordan

algebra. Lie(J) is simple if and only if J is simple.

Proof. Let J be simple. Thanks to Remark 6 this implies that J is

h(J)-irreducible and, by Proposition 2.2.3, we may apply Theorem 2.1.5. There-

fore Lie(J) is simple.

Conversely, let Lie(J) be simple. Suppose that there exists an ideal of J, m ⊆ J

such that m 6= 0, J. We define

Lie(m) = m⊕ h(m)⊕m,

where h(m) is the ideal of h(J) generated by L(m),

h(m) = L(m) + [L(m), L(J)] + · · · .

We have m�J ⊂ Lie(m) and J�m ⊂ Lie(m), so that relations (2.5) are satisfied,

hence Lie(m) is an ideal of Lie(J).

Since m 6= 0, J, Lie(m) 6= 0, Lie(J) which is absurd.

Remark 7. If J is a Jordan algebra with unit 1 then the grading of Lie(J) is

induced by the sl2-triple given by < 1, L1, 1̄ >.

An isomorphism between the Lie algebra < 1, L1, 1̄ > and sl2(F) =< f, h, e >

is given by φ(1) = −f, φ(L1) = 1
2h, φ(1̄) = −e.

Moreover [−L1, x] = −x, [−L1, x̄] = x̄ and [−L1, T ] = 0 for x ∈ Lie(J)−1,

T ∈ Lie(J)0, x̄ ∈ Lie(J)1.
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Chapter 3

Lie algebras and triple

systems

In this chapter we will extend the Tits-Kantor-Koecher construction to Jor-

dan triple systems and Kantor triple systems.

3.1 Triple Systems

Definition 3.1 (Triple system). A triple system is a vector space A together

with a triple product, i.e. a trilinear map

( · , · , · ) : A×A×A→ A

(x, y, z)→ (xyz).

Definition 3.2. Let S be a triple system. We define, for every x, y ∈ S, the

linear operator < x, y > : S → S by setting

< x, y > (z) = (xzy)− (yzx).

Definition 3.3. Let g be a Z-graded Lie algebra with graded involution τ . We

call (g−1, ( , , )), with product

(xyz) = [[x, τ(y)], z], (3.1)

the triple system derived from g.

Lemma 3.1.1. Let g be a Z-graded Lie algebra with graded involution τ and

let (g−1, ( , , )) be the triple system derived from g. Then, for x, y, z ∈ g−1, we

have:

< x, y > (z) = [[x, y], τ(z)]. (3.2)

23
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Proof. Since [ , ] satisfies the Jacobi identity we have

< x, y > (z) = [[x, τ(z)], y]− [[y, τ(z)], x] = [[x, τ(z)], y] + [[τ(z), y], x] =

= −[[y, x], τ(z)] = [[x, y], τ(z)]

Definition 3.4 (Lie triple system). A Lie triple system is a triple system

(L, [, , ]) satisfying the following properties:

[x, y, z] = −[y, x, z] (Anticommutativity)

[x, y, z] + [y, z, x] + [z, x, y] = 0 (Generalized Jacobi identity)

[u, v, [x, y, z]] = [[u, v, x], y, z]+

+[x, [u, v, y], z] + [x, y, [u, v, z]] (Principal identity.)

(3.3)

Definition 3.5 (Jordan triple system). A Jordan triple system is a triple system

(J, {, , }) whose triple product satisfies the following properties:

{x, y, z} = {z, y, x} (Commutativity)

{u, v, {x, y, z}} = {{u, v, x}, y, z}+
−{x, {v, u, y}, z}+ {x, y, {u, v, z}} (Principal identity)

(3.4)

Definition 3.6 (Kantor triple system). A Kantor triple system is a triple sys-

tem (K, { , , }) whose triple product satisfies the following properties:

{u, v, {x, y, z}} = {{u, v, x}, y, z}+
−{x, {v, u, y}, z}+ {x, y, {u, v, z}} (Principal identity)

<< u, v > (x), y >=< {y, x, u}, v > − < {y, x, v}, u > (Auxiliar identity)

(3.5)

Remark 8. By definition any Jordan triple system is a Kantor triple system

with trivial auxiliary identity.

Example 3.1.1. Let L be a Lie algebra. Then L endowed with triple product

defined by

[x, y, z] = [[x, y], z]

is a Lie triple system.

Indeed the anticommutativity and the generalized Jacobi identity are satisfied

since [ , ] is a Lie product. Moreover

[u, v, [x, y, z]] = [ [u, v], [[x, y], z] ] = −[[[x, y], z], [u, v]] =

= [[z, [u, v]], [x, y]] + [[[u, v], [x, y]], z] = [[x, y], [[u, v], z]]− [[[x, y], [u, v]], z] =
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= [x, y, [u, v, z]] + [[[y, [u, v]], x], z] + [[[[u, v], x], y], z] =

= [x, y, [u, v, z]] + [[x, [[u, v], y]], z] + [[[[u, v], x], y], z] =

= [x, y, [u, v, z]] + [x, [u, v, y], z] + [[u, v, x], y, z].

Example 3.1.2. Let J be a Jordan algebra. Then L(J) =< La; a ∈ J > is a

Lie triple system with triple product defined by [La, Lb, Lc] = [[La, Lb], Lc].

This is a consequence of equation 2.9, which proves that L(J) is closed under

triple product, and Example 3.1.1.

Example 3.1.3. Let g be a shortly graded Lie algebra with graded involution

τ . Then g−1 with triple product

{x, y, z} = [[x, τ(y)], z]

is a Jordan triple system.

Since [ , ] is a Lie product and [g−1, g−1] = 0, we have

{x, z, y} − {y, z, x} =< x, z > (y) = [[x, z], τ(y)] = 0.

Furthermore

{u, v, {x, y, z}} = [ [u, τ(v)], [[x, τ(y)], z] ] = −[[[x, τ(y)], z], [u, τ(v)]] =

= [[z, [u, τ(v)]], [x, τ(y)]] + [[[u, τ(v)], [x, τ(y)]], z] =

= [[x, τ(y)], [[u, τ(v)], z]]− [[[x, τ(y)], [u, τ(v)]], z] =

= {x, y, {u, v, z}}+ [[[τ(y), [u, τ(v)]], x], z] + [[[[u, τ(v)], x], τ(y)], z] =

= {x, y, {u, v, z}} − [[x, [[τ(v), u], τ(y)]], z] + [[[[u, τ(v)], x], τ(y)], z] =

= {x, y, {u, v, z}} − [[x, τ( [[v, τ(u)], y]], z] ) + [[[[u, τ(v)], x], τ(y)], z] =

= {x, y, {u, v, z}}+ {x, {v, u, y}, z}+ {{u, v, x}, y, z}.

Example 3.1.4. Let g be a 5-graded Lie algebra with graded involution τ .

Then g−1 with triple product

{x, y, z} = [[x, τ(y)], z]

is a Kantor triple system.

From Example 3.1.3 we know that g−1 satisfies the principal identity. Thus, we

just need to verify the auxiliary identity.

Thanks to Lemma 3.1.1, we have

<< u, v > (x), y >= [[[u, v], τ(x)], y] = −[[τ(x), y], [u, v]]− [[y, [u, v]], τ(x)].
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Since g is 5-graded we have [y, [u, v]] ∈ g−3 = 0, hence

<< u, v > (x), y >= −[[τ(x), y], [u, v]] = [[u, v], [τ(x), y]] =

= −[[v, [τ(x), y]], u]− [[[τ(x), y], u], v] = [[[y, τ(x)], u], v]− [[[y, τ(x)], v], u] =

=< {y, x, u}, v > − < {y, x, v}, u > .

Remark 9. Let g be as in Example 3.1.3. We make g1 a Jordan triple system

by setting

{x, y, z}τ = [[x, τ(y)], z],

for all x, y, z ∈ g1. This Jordan triple system is related to the one defined on

g−1 by

{x, y, z}τ = τ( {τ(x), τ(y), τ(z)} ).

3.1.1 Universal Lie algebras

Definition 3.7 (Operators of order p on U). Let U be a vector space and

let us consider a map f : U → U . We call the map f an operator of order

p ≥ 1 whenever there exists a p-linear and symmetric map F : Up → U , i.e.

F (u1, u2, . . . , up) = F (uσ(1), uσ(2), . . . , uσ(p)) for any permutation σ, such that

f(u) = F (u, . . . , u).

If f is constant then it is said to be of order 0.

Let f be an operator of order p and g an operator of order q. We define f�g

the operator of order p+ q − 1.

(f�g)(u) = pF (g(u), u, . . . , u) =

= F (g(u), u, . . . , u) + F (u, g(u), u, . . . , u) + · · ·+ F (u, . . . , u, g(u)) =

= (F�G)(u, . . . , u)

In the case f is of order 0 we have f�g := 0.

We denote by Tk(U) the vector space of operators of order k + 1 if k ≥ −1 and

for k < −1 we set Tk(U) = 0.

Definition 3.8 (Operators of order p on V ⊕W ). Let V,W be vector spaces

and let f : V ⊕W → V ⊕W . We call the map f an operator of order p if:

there exists a map F = FV +FW , with FV : V p
V
V ⊕W pVW → V a (pVV + pVW )-

linear map and FW : V p
W
V ⊕W pWW →W a (pWV + pWW )-linear map such that

pVV + 2pVW = p+ 1 and pWV + 2pWW = p+ 2.



3.1 Triple systems 27

If f is constant then it is said to be of order −2.

Let f be an operator of order p and g an operator of order q. We define f�g

the operator of order p+ q.

(f�g)(v, w) = (f�g)V (v, w) + (f�g)W (v, w),

(f�g)V (v, w) =

= FV (gV (v), v, . . . , v, w, . . . , w) + FV (v, gV (v), . . . , v, w, . . . , w) + · · ·

· · ·+ FV (v, v, . . . , gV (v), w, . . . , w)+

+FV (v, . . . , v, gW (w), w, . . . , w) + FV (v, . . . , v, w, gW (w), . . . , w) + · · ·

FV (v, . . . , v, w,w, . . . , gW (w)),

(f�g)W (v, w) =

= FW (gV (v), v, . . . , v, w, . . . , w) + FW (v, gV (v), . . . , v, w, . . . , w) + · · ·

· · ·+ FW (v, v, . . . , gV (v), w, . . . , w)+

+FW (v, . . . , v, gW (w), w, . . . , w) + FW (v, . . . , v, w, gW (w), . . . , w) + · · ·

FW (v, . . . , v, w,w, . . . , gW (w)).

In the case f is constant we set f�g := 0.

We denote by Tk(V,W ) the vector space of operators of order k if k ≥ −2. For

k < −2 we set Tk(V,W ) = 0.

Definition 3.9 (Universal Lie algebra). Let U be a vector space. We define

the universal Lie algebra T (U) of U the Z-graded Lie algebra

T (U) =
⊕
k≥−1

Tk(U)

with product defined by

[f, g] = f�g − g�f.

Let V,W be a pair of vector spaces. We define the universal Lie algebra

T (V,W ) of V ⊕W the Z-graded Lie algebra

T (V,W ) =
⊕
k≥−2

Tk(V,W )

with product

[f, g] = f�g − g�f.
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Definition 3.10 (Realization of g). Let g be a Lie algebra and U, V,W vec-

tor spaces. A realization of g on U , respectively V ⊕W , is a homomorphism

φ : g→ T (U), respectively φ : g→ T (V,W ).

Notice that if all elements are mapped to linear operators then φ is a represen-

tation of g.

More details about the construction of T (V,W ) can be found in [9].

3.2 The Meyberg Theorem

We shall now reverse the Tits-Kantor-Koecher construction we described in

Section 2.2.

Theorem 3.2.1 (Meyberg’s theorem). Let g be a shortly graded Lie algebra

with graded involution τ and let w ∈ g−1. Then g−1 with product defined by

xy = {x,w, y} = [[x, τ(w)], y]

is a Jordan algebra. We shall denote this algebra by Jw(g).

Proof. Let x, y, z ∈ g−1 and let f, g, h ∈ g1. We define [x, g, y] = [[x, g], y] ∈ g−1

and [g, x, h] = [[g, x], h] ∈ g1. Notice that whenever g = τ(w) we have xy =

{x,w, y} = [x, g, y].

In Example 3.1.3 we showed that (g−1, { , , }) is a Jordan triple system, hence

xy = {x,w, y} = {y, w, x} = yx.

Moreover, the product [ , , ] satisfies the principal identity:

[x, f, [y, g, z]]− [y, g, [x, f, z]] = [[x, f, y], g, z]− [y, [f, x, g], z], (3.6)

[f, x, [g, y, h]]− [g, y, [f, x, h]] = [[f, x, g], y, h]− [g, [x, f, y], h]. (3.7)

If we take y = x, g = f in equation (3.6) and g = f, y = x in equation

(3.7), we get:

[[x, f, x], f, z] = [x, [f, x, f ], z], (3.8)

[[f, x, f ], x, h] = [f, [x, f, x], h]. (3.9)

Now, if we exchange x, f and y, g in equation (3.6), we get

[y, g, [x, f, z]]− [x, f, [y, g, z]] = [[y, g, x], f, z]− [x, [g, y, f ], z]. (3.10)

If we sum equations (3.6) and (3.10) we obtain:

0 = [x, f, [y, g, z]]− [y, g, [x, f, z]] + [y, g, [x, f, z]]− [x, f, [y, g, z]] =

= [[x, f, y], g, z]− [y, [f, x, g], z] + [[y, g, x], f, z]− [x, [g, y, f ], z].
(3.11)
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Using equations (3.8) and (3.9), if we exchange g with [g, x, g] and take

f = g, y = x, equation (3.11) implies the following:

0 = [[x, g, x], [g, x, g], z]− [x, [g, x, [g, x, g]], z]+

+[[x, [g, x, g], x], g, z]− [x, [[g, x, g], x, g], z] =

= [[x, g, x], [g, x, g], z] + [[x, [g, x, g], x], g, z]− 2[x, [[g, x, g], x, g], z] =

= [[x, g, x], [g, x, g], z] + [[[x, g, x, ]g, x], g, z]− 2[x, [[g, x, g], x, g], z].

(3.12)

To summarize, we have:

2[x, [[g, x, g], x, g], z] = [[x, g, x], [g, x, g], z] + [[[x, g, x, ]g, x], g, z]. (3.13)

Next, we set x = [y, g, y], f = g in equation (3.6) and equation (3.13), hence

2[[y, g, y], g, [y, g, z]]− 2[y, g, [[y, g, y], g, z]] =

= 2[[[y, g, y], g, y], g, z]− 2[y, [g, [y, g, y], g], z] =

= 2[[[y, g, y], g, y], g, z]− [[y, g, y], [g, y, g], z] + [[[y, g, y, ]g, y], g, z] =

= [[[y, g, y], g, y], g, z]− [[y, g, y], [g, y, g], z].

(3.14)

By setting x = y, f = g and replacing y with [y, g, y] in equation (3.6) we have

[y, g, [[y, g, y], g, z]]− [[y, g, y], g, [y, g, z]] =

= [[[y, g, y], g, y], g, z]− [[y, g, y], [g, y, g], z].
(3.15)

Finally, taking the difference between equations (3.14) and (3.15)

3[[y, g, y], g, [y, g, z]]− 3[y, g, [[y, g, y], g, z]] = 0. (3.16)

Since equation (3.16) yields for every y, z ∈ g−1 and g ∈ g1,

we obtain

y2(yz) = y(y2z).

Corollary 3.2.2. Let J be a Jordan algebra with unit e. Then J 1
2 e

(Lie(J)) = J.

Proof. Let J be a Jordan algebra with unit e. From Meyberg’s theorem we

already know that J ∼= J 1
2 e

(Lie(J)) as vector spaces.

Let x, y ∈ J, denote by [ , ] the product in Lie(J) defined in 2.4 and by { , } the

product in J 1
2 e

(Lie(J)). Recall that Lie(J) has the graded involution given by

τ(x) = x̄. We have

{x, y} = [[x,
1

2
ē], y] = [

1

2
(x�ē), y] = [Lxe + [Lx, Le], y] = Lx(y) = xy.
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Corollary 3.2.3. Let g be a simple shortly graded Lie algebras with grading

induced by an sl2-triple {f, h, e}. Suppose that τ is a graded involution of g.

Then g is isomorphic to Lie(Jτ(e)(g)).

An isomorphism is given by

g1 τ(y) → ȳ

φ : g0 [x, τ(y)] → 2(Lxy + [Lx, Ly])

g−1 x → x

(3.17)

Proof. Let g be a Lie algebra satisfying the hypotheses. Then Jτ(e)(g) = J is a

Jordan algebra with unit f . Indeed, if x ∈ g−1, in J we have

xf = fx = [[f, e], x] = [[f, e], x] = −[h, x] = x,

due to Definition 1.11. Hence, we can apply the Tits-Kantor-Koecher construc-

tion to J.

Now we show that φ is a Lie algebra homomorphism. By Definition 2.4, we

have

φ([g−1, g−1]) = [φ(g−1), φ(g−1)] = 0, φ([g1, g1]) = [φ(g1), φ(g1)] = 0

and, for any x, y ∈ g−1,

[φ(x), φ(τ(y))] = [x, ȳ] = 2(Lxy + [Lx, Ly]) = φ([x, τ(y)]).

Since g is simple, we have [g−1, g1] = g0. We use this property in order to extend

φ to the whole g. This extension is well defined. Indeed, let x, x′, y, y′ ∈ g−1

and [x, y] = [x′, y′]. Then, for any z ∈ g−1, we have

[φ([x, τ(y)]), φ(z)] = 2(Lxy(z) + [Lx, Ly](z))

[φ([x′, τ(y′)]), φ(z)] = 2(Lx′y′(z) + [Lx′ , Ly′ ](z))

which implies

Lxy(f) + [Lx, Ly](f) = Lx′y′(f) + [Lx′ , Ly′ ](f)

and, since [Lx, Ly](f) = [Lx′ , Ly′ ](f) = 0,

Lxy(f) = xy = x′y′ = Lx′y′(e).

Thus, if [g, f ] = [g′, f ′] we have Lgf = Lg′f ′ and, consequently, [Lx, Ly] =

[Lx′ , Ly′ ]. Using the Jacobi identity we obtain the remaining necessary relations.

This proves that φ is a homomorphism.

Since g is simple and φ 6= 0, φ is injective. Finally, in order to show that φ
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is surjective, it is sufficient to show that φ(g0) = Lie(J)0. This follows from

the relation φ([f, τ(x)]) = 2Lx ∈ Lie(J)0 and the fact that the Lx’s generate

Lie(J)0. This completes the proof.

Remark 10. Let g be as in Corollary 3.2.3. Then φ sends {f, h, e}, the sl2-triple

of g, to {f, Lf , f̄} the sl2-triple of Lie(Jτ(e)(g)) which induces its grading.

Theorem 3.2.4. There is a bijective correspondence between isomorphism classes

of simple unital Jordan algebras and isomorphism classes of simple shortly

graded Lie algebras with grading induced by an sl2-triple {f, h, e} and a graded

involution.

Proof. Let J be a simple Jordan algebra with unit 1. Then, by Theorem 2.2.4,

Lie(J) is simple. Moreover {1, L1,
1
2 1̄} is an sl2-triple in Lie(J) inducing its

grading.

Conversely, if g is a simple shortly graded Lie algebra with sl2-triple {f, h, e},
Jf (g) is a unital Jordan algebra. Since, by Corollary 3.2.3, Lie(Jf (g)) is simple

we have that Jf (g) is simple, due to Theorem 2.2.4.

Example 3.2.1. Let g = sl2(F) described in Example 1.1.2. We give g the

grading defined by

g =< f > ⊕ < h > ⊕ < e >= g−1 ⊕ g0 ⊕ g1.

Notice that g has a graded involution τ given by matrix transposition with

negative sign, τ(f) = −f t = −e, τ(h) = −ht = −h.

The algebra J− 1
2 f

(sl2(F)) is (< f >, · ) with product

f · f = [[f,
1

2
e], f ] = −1

2
[h, f ] = f.

This describes completely the algebra J− 1
2 f

(sl2(F)) which is isomorphic to the

algebra gl+1 ' F described in Definition 1.5.

Example 3.2.2. Let g = sl3(F). We give g the grading defined by

g =< f21, f2 > ⊕ < f1, h1, h2, e1 > ⊕ < e2, e12 >,

where

f21 =


0 0 0

0 0 0

1 0 0

 , f2 =


0 0 0

0 0 0

0 1 0

 , f1 =


0 0 0

1 0 0

0 0 0

 ,
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h1 =


1 0 0

0 −1 0

0 0 0

 , h2 =


0 0 0

0 1 0

0 0 −1

 ,

e1 =


0 1 0

0 0 0

0 0 0

 , e2 =


0 0 0

0 0 1

0 0 0

 , e12 =


0 0 1

0 0 0

0 0 0

 ,

is the standard basis of sl3(F). The graded involution is again τ(x) = −xt.
In this case we can construct the corresponding Jordan algebra through two

different, linearly independent, elements, f2 and f21.

• (f2): The algebra J− 1
2 f2

(sl3(F)) is (< f21, f2 >, ·2 ) where the product ·2
is given by

f2 ·2 f2 = [[f2,
1

2
e2], f2] =

1

2
[−h2, f2] = 2f2,

f2 ·2 f21 = [[f2,
1

2
e2], f21] =

1

2
[−h2, f21] = f21,

f21 ·2 f21 = [[f21,
1

2
e2], f21] =

1

2
[−f1, f21] = 0.

• (f21): The algebra J− 1
2 f21

(sl3(F)) is (< f21, f2 >, ·21 ) and

f2 ·21 f2 = [[f2,
1

2
e12], f2] =

1

2
[−e1, f2] = 0,

f2 ·21 f21 = [[f2,
1

2
e12], f21] =

1

2
[−e1, f21] = f2,

f21 ·21 f21 = [[f21,
1

2
e12], f21] =

1

2
[−(h1 + h2), f21] = 2f21.

The two algebras just built are isomorphic. An isomorphism

φ : J− 1
2 f2

(sl3(F))→ J− 1
2 f21

(sl3(F))

is given by φ(f2) = f21, φ(f21) = f2. Note that these two algebras are not

simple. We have that, < f2 > is an ideal of J− 1
2 f21

(sl3(F)).

This does not contradict Theorem 3.2.4 since the grading of sl3 that we are

considering is not induced by an sl2-triple. In fact, if we take h = 1
3h1 + 2

3h2

we have [h, f2] = −f2 and [h, f21] = −f21 but there are no elements e, f with

e ∈ g1 and f ∈ g−1 such that [e, f ] = h.

Suppose such elements exist, then f = af2 + bf21, e = ce2 + de12 and

[af2 + bf21, ce2 + de12] =
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= ac[f2, e2] + ad[f2, e12] + bc[f21, e2] + bd[f21, e12] =

= −( ach2 + ade1 + bcf1 + bd(h1 + h2) ) =
1

3
h1 +

2

3
h2,

which imply ad = 0 and bc = 0. If a = 0, b = 0 then we should have

−bd(h1 + h2) =
1

3
h1 +

2

3
h2

a contradiction. Similarly, the other cases lead to a contradiction. Thus such

elements e, f cannot exist.

Let us consider the algebra Jf (sl3(F)) with product ·f where f is a generic

element of g−1, set f = λf2 + µf21 with λ, µ 6= 0.

Since [[x, τ(f)], y] is linear in f we have

f2 ·f f2 = 2λf2, f2 ·f f21 = λf21 + µf2, f21 ·f f21 = 2µf21.

Then < (µf2 − λf21) > is a proper ideal of Jf (sl3(F)). We have

f2 · (µf2 − λf21) = 2λµf2 − λ2f21 − λµf2 = λ(µf2 − λf21)

f21 · (µf2 − λf21) = λµf21 + µ2f2 − 2µ2f21 = −µ(µf2 − λf21).

This computation shows that Jf (sl3(F)) is not simple for any f ∈ g−1, according

to Theorem 3.2.4. This result is consistent with the fact that sl3 has no short

grading induced by an sl2-triple (see, for example, [2]).

Example 3.2.3 (sl4(F)). Let g = sl4. We give g the following grading

< f321, f32, f21, f2 > + < f1, f3, h1, h2, h3, e1, e3 > + < e2, e12, e23, e123 >

where

f321 =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 , f32 =


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

 , f21 =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 ,

f3 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 , f2 =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 , f1 =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 ,
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h1 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 , h2 =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 , h3 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

 ,

ei = f ti , eij = f tji and e123 = f t321. On g we take the graded involution given

by x→ −xt.
This grading of sl4 is induced by the sl2-triple

{f = f32 + f21, h =
1

2
(h1 + 2h2 + h3), e =

1

2
(e12 + e23)}.

Let J = Jf (g) = (< f, f32− f21, f2, f321 >, · ). We have that J is isomorphic to

gl+2 introduced in Definition 1.5.

An isomorphism is given by φ(f) = Id,

φ(f32 − f21) =

(
1 0

0 −1

)
, φ(f2) =

(
0 0

1 0

)
, φ(f321) =

(
0 1

0 0

)
.

This comes directly from the multiplication rules in J, i.e.:

f · v = v, (f32 − f21) · (f32 − f21) = f,

(f32 − f21) · f2 = 0 , (f32 − f21) · f321 = 0,

f2 · f2 = 0, f2 · f321 = f,

f321 · f321 = 0.

(3.18)

Example 3.2.4 (sp4(F)). Let g = sp4. We give g the following grading

< p21, p22, p11 > + < h1, e12, e21, h2 > + < n11, n22, n12 >

where

p21 =


0 0 0 0

0 0 0 0

0 1 0 0

1 0 0 0

 , p22 =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 , p11 =


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

 ,

h1 =


1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

 , e12 =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 −1 0

 ,
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e21 =


0 1 0 0

0 0 0 0

0 0 0 −1

0 0 0 0

 , h2 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

 ,

n11 =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 , n22 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , n12 =


0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

 .

The map x→ −xt is again a graded involution of g.

Let us take the elements h = 1
2 (h1+h2), f = p21, e = 1

2n12. Simple calculations

show that < f, h, e > is an sl2-triple, hence the algebra J−τ−1(e)(g) = J− 1
2p21

(g)

is unital.

Let J = J− 1
2p21

(g) = (< p21, p22, p11 >, · ). We have

p21 · p21 = [[p21,
1
2n12], p21] = − 1

2 [h1 + h2, p21] = p21

p21 · p22 = − 1
2 [h1 + h2, p22] = p22

p21 · p11 = − 1
2 [h1 + h2, p11] = p11

p22 · p22 = [[p22,
1
2n12], p22] = − 1

2 [e12, p22] = 0

p22 · p11 = − 1
2 [e12, p11] = 1

2p21

p11 · p11 = [[p11,
1
2n12], p11] = − 1

2 [e21, p11] = 0.

(3.19)

It is straight forward that p21 is the unit of J.

According to Theorem 3.2.4 J is simple. In fact, suppose I 6= J is an ideal and

let I 3 v, v = ap21 + bp22 + cp11. Then

(((v · p22) · p22) · p11) = (((( ap21 + bp22 + cp11 ) · p22) · p22) · p11) =

= ((( ap22 +
1

2
cp21 ) · p22) · p11) =

1

4
cp22 · p11 =

1

8
cp21 ∈ I,

this implies c = 0, otherwise we would have p21 ∈ I and I = J which is absurd,

since we have set I 6= J. Thus v = ap21 + bp22. Then (v · p22) · 4p11 = bp21 ∈ I
implies b = 0, and v = ap21. This leads to v = 0, which means that J is simple.

The Jordan algebra J−τ−1(e)(g) is isomorphic to the algebra B2(σ,F) = B2

introduced in Example 1.1.4.

B2 =< Id,E, F >⊆ gl+2 .

An isomorphism is given by

φ(p21) = Id, φ(p22) = E, φ(p11) = F.
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3.3 Lie algebras and Jordan triple systems

Proposition 3.3.1. Let g be a shortly graded Lie algebra with graded involution

τ . Then J(g) the triple system derived from g is a Jordan triple system.

Proof. The proof of this proposition is given by Example 3.1.3.

Definition 3.11. Let ( J , ( , , ) ) be a Jordan triple system and let a, b ∈ J .

We denote by ua, sab, ũa the operators of J defined by:

ua(x) = a,

sab(x) = (abx),

ũa(x) = − 1
2 (xax).

(3.20)

Theorem 3.3.2. Let ( J , ( , , ) ) be a Jordan triple system. Then

Lie(J) =< ua > ⊕ < sab > ⊕ < ũa >

with commutator defined as in Definition 3.9, is a shortly graded Lie subalgebra

of T (J).

We will call Lie(J) the Lie algebra associated to the Jordan triple system J .

Proof. In order to prove the theorem we need to show that [Lie(J)i, Lie(J)j ] ⊆
Lie(J)i+j . In particular, we will have that, for any a, b, c, d, x ∈ J

[sab, scd] = s(abc)d − sc(dab), [sab, uc] = u(abc),

[sab, ũc] = −ũ(bac), [ua, ũb] = sab,

[ua, ub] = 0, [ũa, ũb] = 0.

(3.21)

Let a, b, c, d, x ∈ J . Then

[ua, ub] = ua ◦ ub − ub ◦ ua = 0

since ua and ub are both order 0 operators.

Moreover, since the principal identity is satisfied and the product is commutative

in the first and third variable, we have:

2[ũa, ũb](x) = 4Ũa(ũb(x), x)− 4Ũb(ũa(x), x) =

= ((xbx)ax)− ((xax)bx) = (xa(xbx))− (xb(xax)) =

= ((xax)bx)− (x(axb)x)− (xb(xax)) = −(x(axb)x),

4[ũa, ũb](x) = 2[ũa, ũb]− 2[ũb, ũa] =

= −(x(axb)x) +−(x(bxa)x) = 0;

[sab, scd](x) = sab(scd(x))− scd(sab(x)) =

= (ab(cdx))− (cd(abx)) = ((abc)dx)− (c(bad)x) =

= s(abc)d(x)− sc(dab)(x);
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[sab, uc](x) = sab(uc(x)) =

= (abc) = u(abc)(x);

[sab, ũc](x) = sab(ũc(x))− 2Ũc(sab(x), x) =

= − 1
2 (ab(xcx)) + ((abx)cx) =

= −( 1
2 (ab(xcx))− 1

2 ((abx)cx)− 1
2 (xc(abx)) ) =

= − 1
2 (x(bac)x) = ũbac;

[ua, ũb](x) = −2Ũb(ua(x), x) =

= (abx) = sab(x).

Corollary 3.3.3. Let g be a shortly graded simple Lie algebra with graded in-

volution τ and let J = J(g) be the Jordan triple system derived from g.

Then g is isomorphic to Lie(J(g)). Moreover, an isomorphism is given by

g1 τ(a) → ũa

φ : g0 [a, τ(b)] → [ua, ũb]

g−1 a → ua

(3.22)

for a, b ∈ g−1. We call φ : g→ T (g−1) the conformal realization of g on g−1.

Proof. The map φ is well defined. If [a, τ(b)] = [c, τ(d)] then

(sab − s(cd))(x) = (abx)− (cdx) = [[a, τ(b)], x]− [[c, τ(d)], x] =

= [([a, τ(b)]− [c, τ(d)]), x] = 0.

Next, we show that the map φ is a homomorphism. Let a, b, c, d ∈ g−1. Since

[a, b] = 0 and [τ(a), τ(b)] = 0 we just need to show

φ([[a, τ(b)], c]) = [sab, uc] = u(abc),

φ([[a, τ(b)], τ(c)]) = [sab, ũc] = −ũ(bac),
φ([[a, τ(b)], [c, τ(d)]]) = s(abc)d − sc(dab).

(3.23)

The first equation follows directly from the fact that in Lie(J(g)) we have

[[a, τ(b)], c] = (abc).

Furthermore, for the same reason,

φ([[a, τ(b)], τ(c)]) = −φ([[τ(b), a], τ(c)]) = −φ(τ([[b, τ(a)], c])) = −ũbac.

We are then left to prove the third relation: using the fact that [ , ] is a Lie

product we obtain

φ([[a, τ(b)], [c, τ(d)]]) = −φ([[c, τ(d)], ([a, τ(b)])]) =
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= φ([[τ(d), ([a, τ(b)])], c]) + φ([[([a, τ(b)]), c], τ(d)]) =

= [u(abc), ũd]− φ([c, τ([d, [τ(a), b]]]) =

= s(abc)d − [uc, φ(τ([[b, τ(a)], d])] =

= s(abc)d − sc(dab).

Thus φ is a homomorphism of Lie algebras. It must be injective since g is simple

and Ker(φ) 6= g is an ideal, thus it must be Ker(φ) = 0. Since Lie(J(g)) is

spanned by the operators ua, sab, ũa, φ is also surjective.

3.4 Lie algebras and Kantor triple systems

Proposition 3.4.1. Let g be a 5-graded Lie algebra with graded involution τ .

Then K(g) the triple system derived from g is a Kantor triple system.

Proof. Example 3.1.4 shows that g−1, with the derived triple product, satisfies

both the identities of equation (3.6).

Definition 3.12. Let ( K , ( , , ) ) be a Kantor triple system, let

L = span{< u, v >, u, v ∈ K} and let a, b ∈ K. We define the following families

of operators of K ⊕ L:

kab(x+X) = 2 < a, b >,

ua(x+X) = a+ < a, x >,

sab(x+X) = (abx)− < a,X(b) >,

ũa(x+X) = − 1
2 (xax)− 1

2X(a)+

+ 1
6 < (xax), x > − 1

2 < X(a), x >,

k̃ab(x+X) = − 1
6 (x < a, b > (x)x)− 1

2X(< a, b > (x))+

+ 1
12 < (x < a, b > (x)x), x > + 1

2 < X(a), X(b) >,

(3.24)

for x ∈ K and X ∈ L.

Theorem 3.4.2. Let ( K , ( , , ) ) be a Kantor triple system and let L =

span{< u, v >, u, v ∈ K}. Then

Lie(K) =< kab > ⊕ < ua > ⊕ < sab > ⊕ < ũa > ⊕ < k̃ab >

with commutator defined as in Definition 3.9 is a 5-graded Lie subalgebra of

T (K,L).

We will call Lie(K) the Lie algebra associated to the Kantor triple system K.
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Proof. In order to prove the theorem we need to show that for any a, b, c, d, x ∈
K and X ∈ L we have

[kab, kcd] = 0, [kab, uc] = 0,

[kab, ũc] = u<a,b>c, [kab, k̃cd] = s<a,b>(c)d − s<a,b>(d)c,

[ua, ub] = kab, [ua, ũb] = sab,

[ua, k̃cd] = −ũ<c,d>(a), [sab, kcd] = k<c,d>(b)a,

[sab, uc] = u(abc), [sab, scd] = s(abc)d − sc(dab),
[sab, ũc] = −ũ(bac), [sab, k̃cd] = −k̃<c,d>(a)b,

[ũa, ũb] = k̃ab, [ũa, k̃cd] = [k̃ab, k̃cd] = 0.

(3.25)

It is immediate, by Definition 3.9, that

[kab, kcd] = 0

and

[kab, uc] = 0

since kab is constant, uc is constant with respect to K and the fact that kab

is L-valued.

Besides, it follows from the definition that:

[kab, ũc](x+X) =< a, b > (c)+ << a, b > (c), x >= u<a,b>c(x+X),

[ua, ub](x+X) =< a, b > − < b, a >= 2 < a, b >= kab(x+X)

and

[sab, kcd](x+X) = − < a,< c, d > (b) >= k<c,d>(b)a(x+X)

Before we show the next identity, we first need to verify

< a, b > (< c, d > (x)) = (< a, b > (c)dx)− (< a, b > (d)cx). (3.26)

Due to the principal identity, the auxiliar identity and the definition of < , >,

we have

< a, b > (< c, d > (x))− (< a, b > (c)dx) + (< a, b > (d)cx) =

= (a(cxd)b)− (a(dxc)b)− (b(cxd)a) + (b(dxc)a)−
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−(< a, b > (c)dx) + (< a, b > (d)cx) =

= ((xca)db)− (xc(adb)) + (ad(xcb))−

−((xda)cb) + (xd(acb))− (ac(xdb))−

−((xcb)da) + (xc(bda))− (bd(xca))+

+((xdb)ca)− (xd(bca)) + (bc(xda))−

−(< a, b > (c)dx) + (< a, b > (d)cx) =

=< (xca), b > (d)− < (xda), b > (c)− < (xcb), a > (d)+ < (xdb), a > (c)+

+(xd < a, b > (c))− (xc < a, b > (d))− (< a, b > (c)dx) + (< a, b > (d)cx) =

=< (xca), b > (d)− < (xcb), a > (d)− << a, b > (c), x > (d)−

− < (xda), b > (c)+ < (xdb), a > (c)+ << a, b > (d), x > (c) = 0.

Thanks to equation (3.26), it is easy to calculate

[kab, k̃cd](x+X) =< a, b > ( < c, d > (x) )−

− < < a, b > (c), X(d) > − < X(c), < a, b > (d) >=

= ( < a, b > (c) d x )− < < a, b > (c), X(d) > −

−( < a, b > (d) c x )+ < < a, b > (d), X(c) >

= s<a,b>(c)d − s<a,b>(d)c.

Using the auxiliar identity, we get

[sab, uc](x+X) = (abc)− < a,< c, x > (b) > − < c, (abx) >=

= (abc)+ << c, x > (b), a >=

= (abc)+ < (abc), x > − < (abx), c > + < (abx), c >=

= u(abc)(x+X).

We have:

[ua, ũb](x+X) =< a,−1

2
(xbx)− 1

2
X(b) > +

+
1

2
(abx) +

1

2
(xba) +

1

2
< a, x > (b)−
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−1

6
< (abx), x > −1

6
< (xba), x > −1

6
< (xbx), a > +

+
1

2
<< a, x > (b), x > +

1

2
< X(b), a >=

=
1

2
(abx) +

1

2
(xba) +

1

2
(abx)− 1

2
(xba)−

−1

6
< (abx), x > −1

6
< (xba), x > −1

6
< (xbx), a > +

+
1

2
<< a, x > (b), x > +

1

2
< X(b), a > −1

2
< a, (xbx) > −1

2
< a,X(b) >=

= (abx)− 1

2
< a,X(b) > +

+
3

6
<< a, x > (b), x > −1

6
< (abx), x > −1

6
< (xba), x > +

2

6
< (xbx), a >=

= sab(x+X)+

+
3

6
<< a, x > (b), x > −1

6
< (abx), x > −1

6
< (xba), x > +

2

6
< (xbx), a >,

hence, we need to prove

3 << a, x > (b), x >=

< (abx), x > + < (xba), x > −2 < (xbx), a > .
(3.27)

Using the auxiliar identity we get

3 << a, x > (b), x >= 2 << a, x > (b), x > + << a, x > (b), x >=

= 2 < (xba), x > −2 < (xbx), a > + < (abx), x > − < (xba), x >=

=< (abx), x > + < (xba), x > −2 < (xbx), a > .

Thus [ua, ũb] = sab.

We have

[sab, ũc](x+X) = (ab( −1

2
(xcx)− 1

2
X(c) ))−

− < a,
1

6
< (xcx), x > (b)− 1

2
< X(c), x > (b) > +

+
1

2
((abx)cx) +

1

2
(xc(abx))− 1

2
< a,X(b) > (c)−

−1

6
< ((abx)cx), x > −1

6
< (xc(abx)), x > −1

6
< (xcx), (abx) > −

−1

2
<< a,X(b) > (c), x > +

1

2
< X(c), (abx) >=
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= 1
2 ( −(ab(xcx)) + ((abx)cx) + (xc(abx)) )+

− 1
2 < a,X(b) > (c)− 1

2 (abX(c))−

− 1
6 < ((abx)cx), x > − 1

6 < (xc(abx)), x > −

− 1
6 < (xcx), (abx) > − 1

6 < a,< (xcx), x > (b) > +

+ 1
2 < a,< X(c), x > (b) > −

− 1
2 << a,X(b) > (c), x > + 1

2 < X(c), (abx) > .

(3.28)

In order to show that equation (3.28) gives exactly −ũbac we calculate:

− < a,< u, v > (b) > (c)− ( a b (< u, v > (c)) ) =

=<< u, v > (b), a > (c)− (ab(ucv)) + (ab(vcu)) =

=< (abu), v > (c)− < (abv), u > (c)− (ab(ucv)) + (ab(vcu)) =

= ((abu)cv)− (vc(abu))− ((abv)cu) + (uc(abv))− (ab(ucv)) + (ab(vcu)) =

= −(ab(ucv)) + ((abu)cv) + (uc(abv))+

+(ab(vcu))− ((abv)cu)− (vc(abu)) =

(u(bac)v)− (v(bac)u) =< u, v > (bac),

since X ∈ L is a linear combination of the < u, v >’s, we have just proved

that

− 1

2
< a,X(b) > (c)− 1

2
(abX(c)) =

1

2
X(bac); (3.29)

Besides we have

− < (xcx), (abx) > − < a,< (xcx), x > (b) >=

=<< (xcx), x > (b), a > − < (xcx), (abx) >=

=< (ab(xcx)), x > − < (abx), (xcx) > − < (xcx), (abx) >=

=< (ab(xcx)), x >,

thus

−1

6
< ((abx)cx), x > −1

6
< (xc(abx)), x > −

−1

6
< (xcx), (abx) > −1

6
< a,< (xcx), x > (b) >=

= −1

6
< ((abx)cx), x > −1

6
< (xc(abx)), x > +

1

6
< (ab(xcx)), x >=
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= −1

6
< (x(bac)x), x >; (3.30)

finally, we have

< a,< X(c), x > (b) > − << a,X(b) > (c), x > + < X(c), (abx) >=

=< a,< X(c), x > (b) > − << a,X(b) > (c), x > −

− < (abx), X(c) > + < (abX(c)), x > − < (abX(c)), x >=

=< a,< X(c), x > (b) > − << a,X(b) > (c), x > −

− << x,X(c) > (b), a > − < (abX(c)), x >=

= − << a,X(b) > (c), x > − < (abX(c)), x > +

+ << X(c), x > (b), a > + < a,< X(c), x > (b) >=

=< ( − < a,X(b) > (c)− (abX(c)) ), x >,

using equation (3.29) we get

< a,< X(c), x > (b) > − << a,X(b) > (c), x > + < X(c), (abx) >=

=< X(bac), x > .
(3.31)

If we use equations (3.29),(3.30) and (3.31) in equation (3.28) and apply the

principal identity to the first three terms of equation (3.28) we obtain

[sab, ũc](x+X) = (3.28) =

=
1

2
(x(bac)x) +

1

2
X((bac))− 1

6
< (x(bac)x), x > +

1

2
< X((bac)), x >=

= −ũ(bac).

Now we prove

[ũa, ũb] = k̃ab. (3.32)

We have

[ũa, ũb](x+X) =

= −1

2
(( −1

2
(xbx)− 1

2
X(b) )ax)−
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−1

2
(xa( −1

2
(xbx)− 1

2
X(b) ))−

−1

2
( +

1

6
< (xbx), x > −1

2
< X(b), x > )(a)+

+
1

6
< (( −1

2
(xbx)− 1

2
X(b) )ax), x > +

+
1

6
< (xa( −1

2
(xbx)− 1

2
X(b) )), x > +

+
1

6
< (xax), ( −1

2
(xbx)− 1

2
X(b) ) > −

−1

2
< ( +

1

6
< (xbx), x > −1

2
< X(b), x > )(a), x > −

−1

2
< X(a), ( −1

2
(xbx)− 1

2
X(b) ) > +

+
1

2
(( −1

2
(xax)− 1

2
X(a) )bx)+

+
1

2
(xb( −1

2
(xax)− 1

2
X(a) ))+

+
1

2
( +

1

6
< (xax), x > −1

2
< X(a), x > )(b)−

−1

6
< (( −1

2
(xax)− 1

2
X(a) )bx), x > −

−1

6
< (xb( −1

2
(xax)− 1

2
X(a) )), x > −

−1

6
< (xbx), ( −1

2
(xax)− 1

2
X(a) ) > +

+
1

2
< ( +

1

6
< (xax), x > −1

2
< X(a), x > )(b), x > +

+
1

2
< X(b), ( −1

2
(xax)− 1

2
X(a) ) >=

=
1

4
((xbx)ax) +

1

4
(X(b)ax)+

+
1

4
(xa(xbx)) +

1

4
(xaX(b))−

− 1

12
< (xbx), x > (a) +

1

4
< X(b), x > (a)−

− 1

12
< ((xbx)ax), x > − 1

12
< (X(b)ax), x > −

− 1

12
< (xa(xbx)), x > − 1

12
< (xaX(b)), x > −

− 1

12
< (xax), (xbx) > − 1

12
< (xax), X(b) > −

− 1

12
<< (xbx), x > (a), x > +

1

12
<< X(b), x > (a), x > +
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+
1

4
< X(a), (xbx) > +

1

4
< X(a), X(b) > −

−1

4
((xax)bx)− 1

4
(X(a)bx)−

−1

4
(xb(xax))− 1

4
(xbX(a))+

+
1

12
< (xax), x > (b)− 1

4
< X(a), x > (b)+

+
1

12
< ((xax)bx), x > +

1

12
< (X(a)bx), x > +

+
1

12
< (xb(xax)), x > +

1

12
< (xbX(a)), x > +

+
1

12
< (xbx), (xax) > +

1

12
< (xbx), X(a) > +

+
1

12
<< (xax), x > (b), x > − 1

12
<< X(a), x > (b), x > −

−1

4
< X(b), (xax) > −1

4
< X(b), X(a) >=

= 1
4 ((xbx)ax) + 1

4 (xa(xbx))− 1
12 < (xbx), x > (a)−

− 1
4 ((xax)bx)− 1

4 (xb(xax)) + 1
12 < (xax), x > (b)+

(3.33)

+ 1
4 < X(b), x > (a) + 1

4 (X(b)ax) + 1
4 (xaX(b))−

− 1
4 < X(a), x > (b)− 1

4 (xbX(a))− 1
4 (X(a)bx)−

(3.34)

− 1
12 < ((xbx)ax), x > − 1

12 < (xa(xbx)), x > +

+ 1
12 < ((xax)bx), x > + 1

12 < (xb(xax)), x > +

+ 1
12 < (xbx), (xax) > + 1

12 << (xax), x > (b), x > −
− 1

12 < (xax), (xbx) > − 1
12 << (xbx), x > (a), x > −

(3.35)

− 1
12 < (X(b)ax), x > − 1

12 < (xaX(b)), x > +

+ 1
12 < (X(a)bx), x > + 1

12 < (xbX(a)), x > +

− 1
4 < X(b), (xax) > − 1

12 < (xax), X(b) > +

+ 1
4 < X(a), (xbx) > + 1

12 < (xbx), X(a) > +

+ 1
12 << X(a), x > (b), x > − 1

12 << X(b), x > (a), x > +

(3.36)

+ 1
4 < X(a), X(b) > − 1

4 < X(b), X(a) > . (3.37)

In order to prove equation (3.32), we verify the two following identities,

which will be quite useful:

((xbx)ax) + 2(xa(xbx))− ((xax)bx)− 2(xb(xax)) = (x < b, a > (x)x), (3.38)
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(< x, y > (b)az)− (< x, y > (a)bz) =

= (x < a, b > (y)z)− (y < a, b > (x)z),
(3.39)

< < u, v > (a) , < x, y > (b) >=

=< (x < a, b > (y)u), v > − < (y < a, b > (x)u), v > +

+ < (y < a, b > (x)u), v > − < (x < a, b > (y)v), u >,

(3.40)

for any u, v, x, y, z ∈ K.

Using the principal identity, we obtain

((xbx)ax) + 2(xa(xbx))− ((xax)bx)− 2(xb(xax)) =

= ((xbx)ax) + (xa(xbx)) + (xa(xbx))−

−((xax)bx)− (xb(xax))− (xb(xax)) =

= (xb(xax)) + (x(bxa)x) + (xa(xbx))−

−(xa(xbx))− (x(axb)x)− (xb(xax)) =

= (x(bxa)x)− (x(axb)x) = (x < b, a > (x)x),

hence (3.38) holds.

By the same argument, we have

(< x, y > (b)az)− (< x, y > (a)bz) =

= ((xby)az)− ((ybx)az)− ((xay)bz) + ((yax)bz) =

= (xb(yaz)) + (y(bxa)z))− (ya(xbz))−

−(yb(xaz))− (x(bya)z)) + (xa(ybz))−

−(xa(ybz))− (y(axb)z)) + (yb(xaz))−

+(ya(xbz)) + (x(ayb)z))− (xb(yaz)) =

= (x(ayb)z))− (x(bya)z))− (y(axb)z)) + (y(bxa)z) =

= (x < a, b > (y)z))− (y < a, b > (x)z)),

and (3.39) holds too.

Due to 3.39 and the auxiliar identity, we have

< < u, v > (a) , < x, y > (b) >=
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=< (< x, y > (b)au), v > − < (< x, y > (b)av), u >=

=< (x < a, b > (y)u), v > − < (y < a, b > (x)u), v > +

+ < (y < a, b > (x)u), v > − < (x < a, b > (y)v), u > .

If we use equation (3.38) in (3.33) we get

1

4
((xbx)ax) +

1

4
(xa(xbx))− 1

12
< (xbx), x > (a)−

−1

4
((xax)bx)− 1

4
(xb(xax)) +

1

12
< (xax), x > (b) =

=
3

12
((xbx)ax) +

3

12
(xa(xbx))− 1

12
((xbx)ax) +

1

12
(xa(xbx))−

− 3

12
((xax)bx)− 3

12
(xb(xax)) +

1

12
((xax)bx)− 1

12
(xb(xax)) =

=
1

6
( ((xbx)ax) + 2(xa(xbx))− ((xax)bx)− 2(xb(xax)) ) =

=
1

6
(x < b, a > (x)x) = −1

6
(x < a, b > (x)x),

which is exactly the first term of k̃ab.

Thanks to equation (3.29), we have

X(bxa) = (X(b)ax)− (xaX(b))− (xbX(a)),

thus, in (3.34), we get

1

4
< X(b), x > (a) +

1

4
(X(b)ax) +

1

4
(xaX(b))−

−1

4
< X(a), x > (b)− 1

4
(xbX(a))− 1

4
(X(a)bx) =

=
1

2
( (X(b)ax)− (X(a)bx) ) =

=
1

2
( (X(b)ax)− (xaX(b))− (xbX(a)) )−

−1

2
( (X(a)bx) + (xbX(a)) + (xaX(b)) ) =

=
1

2
( X(bxa)−X(axb) ) = −1

2
X(< a, b > (x)),

the second term of k̃ab.

Due to equation (3.38) and the auxiliar identity, we have
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(3.35) = − 1

12
< ((xbx)ax), x > − 1

12
< (xa(xbx)), x > +

+
1

12
< ((xax)bx), x > +

1

12
< (xb(xax)), x > +

+
1

12
< (xbx), (xax) > +

1

12
<< (xax), x > (b), x > −

− 1

12
< (xax), (xbx) > − 1

12
<< (xbx), x > (a), x >=

= − 1

12
< ((xbx)ax), x > − 1

12
< (xa(xbx)), x > +

+
1

12
< ((xax)bx), x > +

1

12
< (xb(xax)), x > +

+
1

12
< (xbx), (xax) > +

1

12
< (xb((xax)), x > − 1

12
< (xbx), (xax) > −

− 1

12
< (xax), (xbx) > − 1

12
< (xa(xbx)), x > +

1

12
< (xax), (xbx) >=

= − 1

12
( < ((xbx)ax), x > +2 < (xa(xbx)), x > )+

+
1

12
( < ((xax)bx), x > +2 < (xb(xax)), x > ) =

= − 1

12
< ( ((xbx)ax) + 2(xa(xbx)) ), x > +

+
1

12
< ( ((xax)bx) + 2(xb(xax)) ), x >=

= − 1

12
< (x < b, a > (x)x), x >=

1

12
< (x < a, b > (x)x), x >,

which equals the third summand of k̃ab.

Now, we prove that (3.36) = 0. We have

− 1

12
< (X(b)ax), x > − 1

12
< (xaX(b)), x > +

+
1

12
< (X(a)bx), x > +

1

12
< (xbX(a)), x > +

−1

4
< X(b), (xax) > − 1

12
< (xax), X(b) > +

+
1

4
< X(a), (xbx) > +

1

12
< (xbx), X(a) > +

+
1

12
<< X(a), x > (b), x > − 1

12
<< X(b), x > (a), x >=

= − 1

12
< (X(b)ax), x > − 1

12
< (xaX(b)), x > +
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+
1

12
< (X(a)bx), x > +

1

12
< (xbX(a)), x > +

−1

4
< X(b), (xax) > +

1

4
< X(b), (xax) > +

+
1

4
< X(a), (xbx) > −1

4
< X(a), (xbx) > +

+
1

12
< (X(a)bx), x > +

1

12
< (xbX(a)), x > −

− 1

12
< (X(b)ax), x > +

1

12
< (xaX(b)), x >=

= −1

6
< (X(b)ax), x > +

1

6
< (X(a)bx), x >=

= −1

6
< (X(b)ax)− (X(a)bx), x > .

Since (3.34) = − 1
2X(< a, b > (x)), we obtain

(3.36) = −1

6
< (X(b)ax)− (X(a)bx), x >=

= −1

3
< −1

2
X(< a, b > (x)), x > .

If we suppose X =< u, v >, we get

1

2
< < u, v > (< a, b > (x)), x >=

=
1

2
< (x < a, b > (x)u), v > − < (x < a, b > (x)v), w >,

which is exactly equation (3.40) with x = y, which implies

1

2
< < u, v > (< a, b > (x)), x >=< < u, v > (a) , < x, x > (b) >= 0.

By linearity this leads to

< X(< a, b > (x)), x >= 0

and, thereby, to (3.36) = 0.

Finally, we have that 3.37 is equal to the last term of k̃ab.

Thus, we have proved that [ũa, ũb] = k̃ab.

In order to obtain the remaining non zero commutators we just need to use

the already proved ones and the Jacobi identity.

We have

[sab, k̃cd] = [sab, [ũc, ũd]] = [[ũd, sab], ũc] + [[sab, ũc], ũd] =
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= [ũ(bad), ũc]− [ũ(bac), ũd] = k̃(bad)c − k̃(bac)d.

If we look at the first three terms of k̃ab, by their multi-linearity, we obtain that

they depends linearly on < a, b >, actually this holds true also for the term

< X(a), X(b) >, hence also k̃ab depends linearly on < a, b >, in the sense that

k̃ab = k̃(< a, b >). More generally, we have that < X(a), Y (b) > is a linear

function of < a, b >. Indeed if X =< u, v >, Y =< x, y >, by equation (3.40),

< X(a), Y (b) >= F (< a, b >), for some linear function F , hence, using the

bilinearity of < , >, it holds for any X,Y ∈ L. Thus we have

k̃(bad)c − k̃(bac)d = k̃(< (bad), c >) + k̃(− < (bac), d >) =

= k̃( < (bad), c > − < (bac), d > ) = k̃(< < c, d > (a), d >) = k̃<c,d>(a)d.

Similarly, we get

[ua, k̃cd] = [ua, [ũc, ũd]] = [[ũd, ua], ũc] + [[ua, ũc], ũd] =

= −[s̃ad, ũc] + [s̃ac, ũd] = ũ(dac) − ũ(cad) = −ũ<c,d>(a),

thanks to the linearly dependence of ũa on a.

We also have

[sab, scd] = [sab, [uc, ũd]] = [[ũd, sab], uc] + [[sab, uc], ũd] =

= [ũ(bad), uc] + [u(abc)], ũd] = s(abc)d − sc(bad)

Now, we are ready to show [k̃ab, ũc] = 0. We have

[[k̃ab, ũc], kxy] = −[[ũc, kxy], k̃ab]− [[kxy, k̃ab], ũc] =

= [[u<x,y>(c), k̃ab]− [s<x,y>(a)b − s<x,y>(b)a, ũc] =

= −ũ<a,b>(<x,y>(c)) + ũ(b<x,y>(a)c) − ũ(a<x,y>(b)c =

= −ũ( <a,b>(<x,y>(c))−(b<x,y>(a)c)+(a<x,y>(b)c ).

From the proof of equation (3.34) we have

X(< a, b > (c)) = (X(a)bx)− (X(b)ax). (3.41)

Using (3.41) and (3.39) we get

( < a, b > (< x, y > (c))− (b < x, y > (a)c) + (a < x, y > (b)c ) =

= (< a, b > (x)yc)− (< a, b > (y)xc) + (< a, b > (y)xc)− (< a, b > (x)yc) = 0,
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hence [[k̃ab, ũc], kxy] = 0.

We also have [[k̃ab, ũc], uz] = 0. Indeed

[[k̃ab, ũc], uz] = −[[ũc, uz], k̃ab]− [[uz, k̃ab], ũc] =

= [szc, k̃ab] + [ũ<a,b>(z), ũc] = −k̃<a,b>(z)c + k̃<a,b>(z)c = 0.

Since [[k̃ab, ũc], kxy] = 0 we have

0 = ([k̃ab, ũc]�kx′y)(x+X) = ([k̃ab, ũc])
|x(x, · · · , x, 2 < x′, y >)+

+([k̃ab, ũc])
|X(x, · · · , x, 2 < x′, y >,X) + ([k̃ab, ũc])

|X(x, · · · , x,X, 2 < x′, y >),

if we take X = 2 < x′, y > we get

0 = ([k̃ab, ũc]�kxy)(x+ 2 < x′, y >) = 2[k̃ab, ũc](x+ 2 < x′, y >),

by linearity we get [k̃ab, ũc](x+X) = 0, ∀x ∈ K, X ∈ L.

From [k̃ab, ũc] = 0, we get

[k̃ab, k̃cd] = [k̃ab, [ũc, ũd]] = [[ũd, k̃ab], ũc] + [[k̃ab, ũc], ũd] = 0.

This completes the proof.

Remark 11. If K is the Kantor triple system derived from a simple 5-graded

Lie algebra g with involution τ then K can be identified with g−1 and L with

g−2 via < u, v >= [u, v].

Corollary 3.4.3. Let g be a 5-graded simple Lie algebra with graded involution

τ and let K = K(g) be the Kantor triple system derived from g.

Then g is isomorphic to Lie(K(g)). An isomorphism is given by

g2 [τ(a), τ(b)] → [ũa, ũb] = k̃ab

g1 τ(a) → ũa

φ : g0 [a, τ(b)] → [ua, ũb] = sab

g−1 a → ua

g−2 [a, b] → [ua, ub] = kab

(3.42)

for a, b ∈ g−1. We call φ : g→ T (g−1 ⊕ g−2) the realization of g on g−1 ⊕ g−2.

Proof. First of all we have to show that the map φ is well defined. To do

that, we just need to show sab = scd if [a, τ(b)] = [c, τ(d)] and k̃ab = k̃cd if

[τ(a), τ(b)] = [τ(c), τ(d)].
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Indeed, since, as seen in the proof of Theorem 3.4.2, k̃ab = k̃<a,b> and since

[u, v] =< u, v > in g−2 we get

k̃ab = k̃<a,b> = k̃<c,d> = k̃cd

whenever [τ(a), τ(b)] = [τ(c), τ(d)].

Furthermore, if we have [a, τ(b)] = [c, τ(d)]

sab(x+X) = (abx)− < a,X(b) >= [[a, τ(b)], x]− < a,X(b) >=

= [[c, τ(d)], x]− < a,X(b) > .

If we set X =< u, v >, then we have

< a,X(b) >=< a,< u, v > (b) >= − << u, v > (b), a >=

= − < (abu), v > + < (abv), u >= − < (cdu), v > + < (cdv), u >

which leads to sab = scd. Thus φ is well defined.

The fact that φ is a isomorphism of Lie algebras follows from the Jacobi identity

and the fact that g is simple, all the details are similar to those given in the

proof of Theorem 3.3.3.
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