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Abstract

L’interazione in maniera sicura e compliante è una caratteristica sempre più richi-
esta per i sistemi robotici. La modellazione di sistemi eseguita tramite l’uso dei
sistemi port-Hamiltoninani permette di comprendere cosa avviene a livello ener-
getico durante l’interazione e aiuta nella progettazinoe di un controllore tale che
il comportamento del sistema controllato sia passivo e sicuro durante essa. Ciò
sfocia nel cosiddetto Controllore Intrinsicamente Passivo (IPC). Dal momento che
questo controllo impone la rigidezza desiderata al sistema controllato, è possibile,
tra le altre cose, replicare il comportamento del dispositivo RCC (Centro Remoto
di Complianza) e di migliorarlo in modo tale che durante l’azione di peg-in-hole il
buco sia meno sollecitato dal robot.

Interaction with the environment in a safety and compliant way is more often
a capacity required to a robotic system. Modeling systems with port-Hamiltonian
frameworks allows to understand what happens during this interaction in an ener-
getic way and helps to design a controller such that the behaviour of the controlled
system is passive and safety during interaction. This leads to the so called Intrinsi-

cally Passive Controller (IPC). Since this is a control that imposes a desired stiffness
to the controlled plant, it is also possible to replicate the behavior of an RCC (Re-
mote Center of Compliance) device and to improve it, such that during peg-in-hole

tasks the hole is less stressed by the robot.
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Introduction

This work was suggested to me by Professor Lorenzo Marconi and Professor Ste-
fano Stramigioli. The issue that I tried to solve is the interaction between a con-
trolled system and surrounding environment and to verify the validity of the solu-
tion, applying it to the KUKA LWR 4+ robotic arm.
It is well known that interaction rises the real problem of which variable has to be
controlled in order to achieve the desired behavior. Indeed, a velocity control is
good in case of free motion, while in case of interaction (coupling with environ-
ment) maybe it would be better to control the force applied instead of the velocity.
The interaction problem arises from this duality.
The most known technique to solve the problem is the one invented by Neville
Hogan, called impedance control. Anyway, it is difficult to interpret in a physical
way this type of control. An energetic approach is necessary, in order to model
and interpret what really happens during interaction of two physical systems. The
port-Hamiltonian framework allows us to have such an approach which, combined
with bond-graph formalism (Appendix B), fully explains interconnection between
systems. It turns out that systems are completely characterized by the energy that
they have in a certain instant. Then, it has to be used a control technique based
on this framework and approach, so that it works on the energy of the system that
has to be controlled. Concerning this, the most important concept of the presented
work is the one of passivity, always linked to energy. Developing and applying it
to the controller, it is possible to ALWAYS achieve a desired passive behavior with
respect to ANY passive environment. This leads to what Prof. Stramigioli calls
Intrinsically Passive Controller (IPC) [11].

The path of this thesis is the following. First, an explanation of the so called
Skew Theory is given in Chapter 1. This theory is necessary to understand the
geometry that is behind robots. Some used geometric elements are defined and ex-
plained in Appendix A. It will be shown the link between the workspace of a robot
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and Lie Group, and all the things that follows from this. In Chapter 2 Hamiltonian
and port-Hamiltonian system are introduced. Chapter 3 explains the Passivity
Theory and the concept of energy shaping, from which control by interconnec-
tion and finally the IPC will follow. In Chapter 4 the bond-graph model of the
KUKA LWR 4+ is built and explained, as well as the FRI library, which is neces-
sary to comunicate with the arm. In Chapter 5 the implementation of the control
technique found in Chapter 3 is applied to the KUKA LWR 4+ arm. Finally, in
Chaplter 6 an analysis of the replication of an RCC device is done, showing some
improvement about the stress applied to the hole in the classic task peg-in-hole.
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Chapter 1

Screw Theory

The Screw theory, developed by Sir Robert Stawell Ball in 1876, provides a mathe-
matical formulation for the geometry of lines which is central to rigid body dynam-
ics, where lines form the screw axes of spatial movement and the lines of action of
forces. Since it is widely used in robotic applications, it is the base of this work.
Then, in this chapter a full explanation of its main concepts and properties is given,
starting from the basic geometrical definition of euclidean space. Furthermore, the
affinity of each object to a particular vector space and algebra is given in order to
understand the equivalence to Lie groups and algebras (Appendix A).

1.1 Euclidean Space

An Euclidean Space is a space of free vectors E with an extra structure, called inner

product, that is a quadratic form and it defined as:

⟨, ⟩ : E∗ × E∗ → R; (v, ω) 7→ ⟨v, ω⟩ (1.1)

With the inner product it is possible to define differents operations:

Definition 1.1.1. Norm (distance)

∥ · ∥: E∗ → R; v 7→
√
⟨v, v⟩ (1.2)

Definition 1.1.2. Orthogonality of v, ω ∈ E∗

v ⊥ ω⇐⇒ ⟨v, ω⟩ = 0 (1.3)
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1.1. Euclidean Space

Definition 1.1.3. Angle bewteen vectors v, ω ∈ E∗

cos v∠ω :=
⟨v, ω⟩

∥ v ∥ · ∥ ω ∥ (1.4)

The Euclidean Space of interest in this thesis is the 3-dimensional E (3), whose
set of free vector is denoted as E∗(3).
It is convenient to identify a coordinates system (or coordinates frame, to uniquely
determine the position of a point or other element on E (3):

Ψo := (0, e1, e2, e3) ∈ E (3) × E∗(3) × E∗(3) × E∗(3)

A coordinate system is ortho-normal iff

• ∥ ei ∥= 1 ∀i (unit vectors);

• ⟨ei, e j⟩ = 0 ∀i , j (orthogonality);

Either for points and vectors, their coordinates are real number:

• For p ∈ E (point) xi = ⟨(p − o), ei⟩ i = 1, 2, 3

• For v ∈ E∗ (vector) xi = ⟨v, ei⟩ i = 1, 2, 3

Usually the coordinates vectors are indicated as x̂ := e1, ŷ := e2, ẑ := e3. Then it is
possible to define a coordinates mapping on a coordinate system Ψi = (oi, x̂i, ŷi, ẑi)
as:

ψi : E (3)→ R3; p 7→


⟨(p − oi), x̂i⟩
⟨(p − oi), ŷi⟩
⟨(p − oi), ẑi⟩

 (1.5)

Definition 1.1.4. Change of coordinates Given two coordinates frames Ψ1 and Ψ2

the following mapping is called change of coordinates between Ψ1 and Ψ2:

R3
ψ−1

1→ E (3)
ψ2→R3; p1 7→ p 7→ p2 (1.6)

that lead to an expression like:

p2 = (ψ2oψ−1
1 )(p1) (1.7)
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Chapter 1. Screw Theory

Definition 1.1.5. Vector product The vector product ∧ is an operator defined as

∧ : E∗(3) × E∗(3)→ E∗(3); (v, ω) 7→ v ∧ ω (1.8)

such that satisfies the following properties:

• ⟨(a ∧ b), a⟩ = 0 ∀a, b ∈ E∗(3);

• ⟨(a ∧ b), b⟩ = 0 ∀a, b ∈ E∗(3);

• ∥ a ∧ b ∥=∥ a ∥∥ b ∥ sin a∠b.

Defining the operator ˜ such that:

˜ : R3 → R3×3; x =


x1

x2

x3

 7→ y := x̃ =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (1.9)

This equivalence hold:

v ∧ ω = ṽω (1.10)

1.2 3D Rotations

The point p of the figure to the right expressed in
the two diffrent frames Ψ1 and Ψ2 is:

x̂1

ŷ1

ẑ1

p

x̂2

ŷ2

ẑ2

p1 =


x1

y1

z1

 = ψ1(p) =


⟨(p − o1), x̂1⟩
⟨(p − o1), ŷ1⟩
⟨(p − o1), ẑ1⟩

 ; p2 =


x2

y2

z2

 = ψ2(p) =


⟨(p − o2), x̂2⟩
⟨(p − o2), ŷ2⟩
⟨(p − o2), ẑ2⟩


(1.11)
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1.2. 3D Rotations

ore equivalently (p− oi) = xi x̂i + yiŷi + ziẑi with xi, yi, zi ∈ R and x̂i, ŷi, ẑi ∈ E∗(3).
Since o1 = o2, using the expression of (p − o1) in the ones of p2, it turns out:

p2 =


x2

y2

z2

 = ψ2(p) =


⟨x1 x̂1 + y1ŷ1 + z1ẑ1, x̂2⟩
⟨x1 x̂1 + y1ŷ1 + z1ẑ1, ŷ2⟩
⟨x1 x̂1 + y1ŷ1 + z1ẑ1, ẑ2⟩

 =

x1⟨x̂1, x̂2⟩ + y1⟨ŷ1, x̂2⟩ + z1⟨ẑ1, x̂2⟩
x1⟨x̂1, ŷ2⟩ + y1⟨ŷ1, ŷ2⟩ + z1⟨ẑ1, ŷ2⟩
x1⟨x̂1, ẑ2⟩ + y1⟨ŷ1, ẑ2⟩ + z1⟨ẑ1, ẑ2⟩


(1.12)

Then a relation between the elements of p2 and p1 can be found:

p2 =


x2

y2

z2

 =

⟨x̂1, x̂2⟩ ⟨ŷ1, x̂2⟩ ⟨ẑ1, x̂2⟩
⟨x̂1, ŷ2⟩ ⟨ŷ1, ŷ2⟩ ⟨ẑ1, ŷ2⟩
⟨x̂1, ẑ2⟩ ⟨ŷ1, ẑ2⟩ ⟨ẑ1, ẑ2⟩



x1

y1

z1

 = R2
1 p1 (1.13)

where the matrix R2
1 is a matrix that maps the coordinates of p in Ψ1 in Ψ2 and its

called rotation matrix. Each rotation matrix satisfies the following proprieties:

• det(R j
i ) = 1

• Ri
j = (R j

i )
−1 = (R j

i )
T

• the columns and rows vector of R j
i have length 1 and they are orthogonal

A square matrix R ∈ R3×3 such that R−1 = RT is called orthonormal. The group
of orthonormal matrices with determinant 1 is called Special Orthonormal Group

of R3 and indicated as:

S O(3) := {R ∈ R3×3; R−1 = RT , det R = 1} (1.14)

Furthermore, if R(t) ∈ S O(3) is a differentiable function of time, ṘRT and RT Ṙ are
skew-symmetric and belong to so(3) defined as:

so(3) := {ω̃ ∈ R3×3; −ω̃ = ω̃T } (1.15)

This means that ∃ω1, ω2 ∈ R3 such that ω̃1 = ṘRt and ω̃2 = RT Ṙ. ωi ∈ R3 is the
vector of the angular velocities around the three axes.
Is it possible to demonstrate that so(3) is a Lie algebra.

Given the n rotation matrices R2
1,R

3
2, . . . ,R

n
n−1 ∈ S O(3) it is possible to calculate
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Chapter 1. Screw Theory

the rotational matrix Rn
1 using the ”chain rule”:

Rn
1 = Rn

n−1Rn−1
n−2 . . .R

3
2R2

1 (1.16)

Then S O(3) is a Group, since the associative property holds in it and it can be
found an identity element (the identity matrix I3×3) with which the identity property
and inverse property hold too.

Furthermore, it is a Lie group. Infact, being (R, Ṙ) ∈ TS O(3) and Ṙ ∈ TRS O(3)

• (LR−1)(R, Ṙ) = (R−1R,R−1Ṙ) = (I, ω̃L)→ ω̃L ∈ TIS O(3) := so(3)

• (RR−1)(R, Ṙ) = (RR−1, ṘR−1) = (I, ω̃R)→ ω̃R ∈ TIS O(3) := so(3)

This is quite important because it is then possible to talk about motion ωwithout
knowing the pos R of an object.

Since so(3) define the space of all the angular velocities ω its dual space so∗(3)
defines all the vectors τ ∈ R3 that represent the torques. Furthermore, the dual
product of ω and τ is:

⟨τ|ω⟩ := P ∈ R (1.17)

where P is a real number and its physical meaning is the Power.

1.3 General motion

If in the previous figure the origins of the two frames Ψ1 and Ψ2 do not coincide a
term must be added in the Equation (1.12). This term is the vector o2

1 representing
the position of the origin of frame Ψ1 with respect to the frame Ψ2. Then, the
mapping of the point p between the two frames leads to the following equation:

p2 = R2
1 p1 + o2

1 (1.18)

The change of coordinates for general motor is:

ψ joψ−1
i : R3 → R3; pi 7→ R j

i pi + o j
i (1.19)

where R j
i ∈ S O(3) and o j

i ∈ R3.
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1.3. General motion

1.3.1 Homogeneous matrix

It would be useful to apply the ”chain rule” that holds between rotation matrices
also in the case of general motion. To do so, it is first necessary to express the
general point p in projective coordinates:

p :=


px

py

pz

→ P :=


px

py

pz

1

 (1.20)

Since pi 7→ R j
i pi + o j

i , it follows that the change of coordinates for P is:

Pi 7→
 R j

i o j
i

01×3 1

 Pi = H j
i Pi (1.21)

where H j
i is called Homogeneous transformation matrix.

It is then possible to apply the chain rule such that:

Hn
1 = Hn

n−1 . . .H
3
2 H2

1 (1.22)

The inverse of an homogeneous matrix is:

H1
2 = (H2

1)−1 =

(R2
1)T −(R2

1)T o2
1

01×3 1

 (1.23)

The set of all the homogeneous matrices is called Special euclidean group of
order 3:

S E(3) :=


 R o

01×3 1

 s.t R ∈ S O(3), o ∈ R3

 (1.24)

Furthermore, S E(3) is a Lie group as S O(3) and if H(t) ∈ S E(3) is a differen-
tiable function of time ḢH−1 and H−1Ḣ belong to se(3) where:

se(3) :=


ω̃ v

0 0

 s.t ω̃ ∈ so(3), v ∈ R3

 (1.25)

se(3) is a Lie algebra and its elements of se(3) are called twists and usually are

8



Chapter 1. Screw Theory

indicated a T̃ . Furthermore, they identify a six dimensional vector T such that

T :=

ωv
 =⇒ T̃ =

ω̃ v

0 0

 (1.26)

1.4 Twists

Twists are phisically interpreted as the generalization of velocities of a rigid body.
Consider two bodies on which two frames i and j are attached. Consider then a
third frame k. A twist describe the velocity of the frame (and so the body) i with
respect to the frame j expressed in k and is written as:

T k, j
i

Furthermore (Eq. 1.25),

T̃ j, j
i = Ḣ j

i Hi
j (1.27)

T̃ i, j
i = Hi

jḢ
j
i . (1.28)

and then

Ḣ j
i = T̃ j, j

i H j
i (1.29)

Ḣ j
i = H j

i T̃ i, j
i (1.30)

that corresponds to the different choice of left or right translation. Consider a point
p fixed in Ψi.

P j = H j
i Pi

Ṗ j = Ḣ j
i Pi

Then, depending on align (1.30):

Ṗ j = T̃ j, j
i H j

i Pi or Ṗ j = H j
i T̃ i, j

i Pi (1.31)

1.4.1 Geometric interpretation of Twists

Theorem 1.4.1. Mozzi’s theorem Any rigid body motion can be expressed as a

9



1.4. Twists

r

λ

Ψi

ω

r ∧ ω

Figure 1.1. Skew representation of a twist

rotation around an axis and a translation along the same axis (Figure 1.1):

T :=

 ω

r ∧ ω

︸  ︷︷  ︸
rotation

+ λ

0
ω

︸︷︷︸
translation

(1.32)

Furthermore, it is possible to calculate the values of r and λ starting from ω and v:

r =
ω ∧ v
∥ ω ∥2

and λ =
ωT v
∥ ω ∥2

(1.33)

1.4.2 Change of coordinates for Twists

From align (1.28):

T̃ j, j
i = H j

i T̃ i, j
i Hi

j (1.34)

ω̃ j, j
i v j, j

i

0 0

 = R j
i p j

i

0 1

 ω̃i, j
i vi, j

i

0 0

 Ri
j −Ri

j p
i
j

0 1

 (1.35)

that is equal to:

T̃ j, j
i =

ω̃ j, j
i v j, j

i

0 0

 = (R j
iω

i, j
i )̃ p̃ j

i R
j
iω

i, j
i + R j

i v
i, j
i

0 0

 = H j
i T̃ i, j

i Hi
j (1.36)
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Chapter 1. Screw Theory

The same change of coordinate for twist in vector form is:

T j, j
i =

w j, j
i

v j, j
i

 =  R j
i 0

p̃ j
i R

j
i R j

i

 wi, j
i

vi, j
i

 = AdH j
i
T i, j

i (1.37)

The matrix AdH j
i

is called Adjoin matrix of the homogeneous matrix H j
i .

1.4.3 Exponential map

From align (1.30):

Ḣi
j = T̃ j, j

i Hi
j (1.38)

If T̃ j, j
i is constant, the solution of the previous differential align is:

H j
i (t) = eT̃ j, j

i tH j
i (0) (1.39)

So, this exponential map is:

e : se(3)→ S E(3); T̃ 7→ eT̃ (1.40)

1.4.4 Direct Kinematic

A unit twist is a Twist in one of the two following forms:

T̂ =

ω̂•
 or T̂ =

0v̂
 (1.41)

where ω̂ and v̂ are unit vectors and are called unit twists.
A one degree of fredom kinematic pair or joint constrains the relative motion

between two objects a, b with a unit twist.

T j,b
a = T̂ j,b

a q, q ∈ R (1.42)

where q is the joint position (linear or angular) and T̂ j,b
a is a constant unit twist if Ψ j

is fixed either in a or b. Then, the exponential map between two frames i and j is:

H j
i (t) = e

˜̂T j, j
i tH j

i (0) (1.43)

11



1.5. Wrenches

H j
i (q j) = e

˜̂T j, j
i q j H j

i (0) (1.44)

Consider now a robotic manipulator with a serial structure of n 1-dof joints and
n links, each with a frame i attached on it. The chain rule says that the position of
the end effector (link n) with respect to the inertial frame 0is given by:

H0
n = H0

1 H1
2 . . .H

n−1
n (1.45)

Since all the joints are 1-dof kinematic pairs, using the previous aligns:

H0
n(q1, q2, . . . , qn) = e

˜̂T 0,0
1 q1 H0

1(0)︸       ︷︷       ︸
H0

1 (q1)

e
˜̂T 1,1
2 q2 H1

2(0)︸       ︷︷       ︸
H1

2 (q2)

. . . e
˜̂T n−1,n.1
n qn Hn−1

n (0)︸             ︷︷             ︸
Hn−1

n (qn)

(1.46)

that after several calculus leads to the Brockett’s product of exponentials formula
(Direct kinematic):

H0
n(q1, q2, . . . , qn) = e

˜̂T 0,0
1 q1e

˜̂T 1,1
2 q2 H1

2(0) . . . e
˜̂T n−1,n.1
n qn H0

n(0) (1.47)

1.5 Wrenches

The expression of Power P in the mechanical translational domain is:

P = Fv ∈ R (1.48)

where v is the column vector of linear velocities and F is the row vector of forces.
In the skew theory a Twist a six dimensional column vector that is the generalization
of velocities. Then a 6 six dimensional row vector representing the generalized
forces is called Wrench:

W =
(
τ F

)
(1.49)

Where τ is a 3 dimensional row vector representing torques and F a 3 dimen-
sional row vector representing forces. Then, the power is given by:

P = WT = τω + f v (1.50)

In the last expression W and T must be expressed in the same coordinate system.
To specify in which coordinate system a wrench is expressed the number of the
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Chapter 1. Screw Theory

frame is added as a superscript, like W j. The tilde representation of a wrench is:

W̃ =

 f̃ τT

0 0

 (1.51)

Geometrically a wrench W is a linear map of a twist T in R:

W : se(3)→ R; W(T ) = WT (1.52)

This is (Appendix A) the same definition of the dual product. It follows that
wrenches are the DUAL of twist and, then, W ∈ se∗(3). Wrenches are co-vectors
and not vectors.

1.5.1 Geometrical interpretation of Wrenches

Theorem 1.5.1. Pinsot’s theorem Any system of forces can be expressed as a pure

linear force along a line plus a pure moment around it (Figure 1.2):

W :=

r ∧ F

F

︸  ︷︷  ︸
f orce

+ λ

F

0

︸︷︷︸
moment

(1.53)

r

λ

Ψi

F

r ∧ F

Figure 1.2. Skew representation of a wrench
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1.5. Wrenches

1.5.2 Change of coordinates for Wrenches

The change of coordinate for twists is expressed in align 1.37. Furhtermore, the
power continuity imposes:

W jT ji
j = W jAdH j

i
T i,i

j = (AdT
H j

i
W j)T T i,i

j = W iT i,i
j (1.54)

That lead to the expression of the change of coordinates for wrenches:

(W i)T = AdT
H j

i
(W j)T (1.55)

A summury of the change of coordinates for twists and wrenches is shown in
Figure 1.3.

Ψi

T i,l
k

W i

Ψ j

T j,l
k

W j

H j
i

AdH j
i

AdT
H j

i

Figure 1.3. Change of coordinates between two frames

1.5.3 The Geometric Jacobian

As for the direct kinematic, it is really useful to know the end effector twist knowing
the joint velocities and to know the joint torques starting from the wrench. Let’s start
with the first task. By definition:

T̃ 0,0
n = Ḣ0

n Hn
0 (1.56)

H0
n = H0

1 H1
2 . . .H

n−1
n (1.57)

14



Chapter 1. Screw Theory

that leads to:

T̃ 0,0
n =

˙(H0
1 H2

1 . . .H
n−1
n )(Hn

n−1Hn−1
n−2 . . .H

1
0)

= Ḣ0
1 H1

0︸︷︷︸
T̃ 0,0

1

+H0
1 Ḣ1

2 H2
1︸︷︷︸

T̃ 1,1
2

H1
0 . . .H

0
n−1 Ḣn−1

n Hn
n−1︸     ︷︷     ︸

T̃ n−1,n−1
n

Hn−1
0

T 0,0
n = T 0,0

1 + AdH0
1
T 1,1

2 + . . . + AdH0
n−1

T n−1,n−1
n

or in a more compact form

T 0,0
n = T 0,0

1 + T 0,1
2 + . . . + T 0,n−1

n (1.58)

This last align says that twists expressed in the same frame can be summed like
scalars. A twist of a 1-dof joint is a unit twist times the velocity of the joint:

T i,i
i+1 = T̂ i,i

i+1q̇i+1 (1.59)

Then, the align (1.58) can be expressed as:

T 0,0
n = J(q)q̇ (1.60)

where

J(q) =
(
T1 T2 . . . Tn

)
Ti : = AdH0

i−1
T̂ i−1,i−1

i

q : = (q1, q2, . . . , qn)T

The matrix J(q) is called geometric jacobian and is the map between the joint
velocities space and the cartesian twist space. It follows also that:

τ = (τ1, τ2, . . . , τn)T = JT (q)(Wn)T (1.61)
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Chapter 2

Port-Hamiltonian Systems

The theory of port-Hamiltonian systems provides a framework for the geometric
description of network models of physical systems. It turns out that port-based net-
work models of physical systems immediately lend themselves to a Hamiltonian
description. Then, it offers a systematic framework for analysis, control and simu-
lation of complex physical systems. This chapter will briefly introduce this theory.

2.1 Port-Hamiltonian systems

A classical Hamiltonian system is a mathematical formalism to describe the evolu-
tion equations of a physical system. It is completely described by a scalar function
H(q, p) called Hamiltonian that represents the total energy of the system, where
q = (q1, . . . , qn)T is the vector of the generalized coordinates for the mechanical
system with n degrees of freedom and p = (p1, . . . , pn)T is the vector of the gener-
alized momenta. The standard Hamiltonian equations are:

q̇ =
∂H
∂p

(q, p)

ṗ = −∂H
∂q

(q, p) + F (2.1)

where the input F is the vector of the external generalized forces. The state space
of Eq. (2.1) (q, p) is called phase state. The energy balance is immediatly derived:

d
dt

H =
∂T H
∂q

(q, p)q̇ +
∂T H
∂p

(q, p)ṗ =
∂T H
∂p

(q, p)F = q̇T F (2.2)

that express the conservation of energy (the variation of the total energy is equal to
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Chapter 2. Port-Hamiltonian Systems

the work). Due to the energy balance, the output of the system is f = q̇ (vector of
generalized velocities).
A more general form of the system (2.1) is:

q̇ =
∂H
∂p

(q, p),

ṗ = −∂H
∂q

(q, p) + B(q)e, e ∈ Rm (2.3)

f = BT (q)
∂H
∂p

(q, p), f ∈ Rm

with B(q)e denoting the generalized forces resulting from the input e ∈ Rm. e and
f are two dual variables. This means that they belongs to two dual vector spaces.
Furthermore they represent the power port of the system.

Definition 2.1.1. Power Port A power port is defined as P = F ×E where F is the
flow vector space and E = F ∗ is the effort vector space. Given f ∈ F and e ∈ E,
the product ⟨ f , e⟩ is called the power traversing the power port.

If m < n the system is called underactuated. Similary to the previous system,
the power balance of system (2.3)

dH
dt

(q, p) = eT f (2.4)

A further generalization is to consider the system described in local coordinates:

ẋ = J(x)
∂H
∂x

(x) + g(x)e, x ∈ X, e ∈ Rm

f = gT (x)
∂H
∂x

(x), f ∈ Rm (2.5)

where J(x) is an n × n matrix with entries depending on x, which is assumed to
be skew-symmetric, and x = (x1, . . . , xn) are the local n-dimensional state-space
manifold X. Because of skew-symmetry of J the energy balance dH

dt (x) = eT f

holds. The system (2.5) is a port-Hamiltonian system with structure matrix J,
input matrix g(x) and Hamiltonian H.

2.2 Dirac Structure

The dynamics of a system are determined by the storage elements in bond-graph
representation as well as the resistive elements, while the geometric structure results
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2.2. Dirac Structure

from the generalized junction structure of the bond-graph. These interconnections
usually give rise to algebraic constraints between the state space variables of the
sub-systems; thus leading to implicit systems. Therefore it is important to extend
the framework of port-Hamiltonian systems to the context of implicit systems, that
are systems with algebraic constraints. The formalization of the geometric func-
tion of the generalized junction as a Dirac structure is the key to define an implicit

port-Hamiltonian system, together with the formalization of the concept of a power-
conserving interconnection and the generalization of the notion of a structure matrix
J(x) as encountered before.

Consider a vector space F and its dual F ∗ and the dual product (Def. A.1.10,
Sec. A.1).

Definition 2.2.1. Dirac Structure A Dirac structure on F is a subspaceD ⊂ F ×
F ∗ such that

• ⟨e| f ⟩ = 0, for all ( f , e) ∈ D,

• dimD = dimF

Where the first property correspond to the power-conservation and expresses the
fact that the total power entering (or leaving) a Dirac structure is zero.

Definition 2.2.2. Bi-linear form Related to the definition of power, there exist a
canonically defined bi-linear form≪ ·, · ≫ on the space F × F ∗, defined as:

≪ ( f a, ea), ( f b, eb) ≫:= ⟨ea| f b⟩ + ⟨eb| f a⟩ (2.6)

with ( f a, ea), ( f b, eb) ∈ F × F ∗.

The bi-linear form is indefinite (≪ ( f a, ea), ( f b, eb) ≫ can be positive or neg-
ative) but is not non-degenerate ( ≪ ( f a, ea), ( f b, eb) ≫= 0 for all ( f a, ea) implies
that ( f b, eb) = 0. A fundamental definition follows:

Definition 2.2.3. Constant Dirac structure A constant Dirac structure on F is a
subspaceD ⊂ F × F ∗ such that

D = D⊥ (2.7)

where ⊥ denotes the orthogonal complement with respect to the bi-linear form
≪ ·, · ≫.
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Chapter 2. Port-Hamiltonian Systems

From this last definition it follows that the dimension of any Dirac structure D
on an n-dimensional linear space is equal to n. Furthermore, considering ( f , e) ∈ D,
by Definition (2.6)

0 = ⟨( f , e), ( f , e)⟩F×F ∗ = 2⟨e| f ⟩ (2.8)

Thus for all ( f , e) ∈ D. It follows that a Dirac structureD on F defines a power-
conserving relation between the power variables ( f , e) ∈ F × F ∗, which moreover
has maximal dimension.

For systems which have 3-D mechanical components (that are of interest in this
thesis), the Dirac structure is modulated by the geometric variables: the state space
S O(3) is a manifold and the flow fS = −ẋ correspondig to the energy-storage are
elements of the tangent space TxS O(3) at the state x ∈ S O(3), while the efforts eS

are elements of the co-tangent space T ∗xS O(3). This Dirac structures often arises
as a result of kinematic constraints. Since often this constraints are configuration
dependent the Dirac structure become modulated by the configuration variables.
Note that bond-graph’s junction elements correspond to Dirac structures.

2.3 Implicit port-Hamiltonian systems

The general representation of a port-Hamiltonian system is shown in Figure 2.1.
The port entering the Dirac structure are divided in two parts. There are two inter-

nal ports, corresponding to the energy-storage port (denoted as S) and the energy-
dissipation port (denoted as R), and two external ports, that are, the C port, accessi-
ble for the control action, and the I port that represent the interaction of the sistem
with the environment.

2.3.1 Energy storage port

The port variables of this port are denoted as ( fS , eS ). They interconnect the Dirac
sturcture with the energy storage element defined by a finite dimensional manifold
X with coordinates x and an Hamilotinan function H : X → R that represent the
energy of the element. The flow variables of this element are the rate ẋ of the energy
variables x. Then, the energy variables of the element are co-energy variables ∂H

∂x (x),
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2.3. Implicit port-Hamiltonian systems

D

R (resistive)

S (storage) C (control)

I (interaction)

Figure 2.1. Implicit port-Hamiltonian System

given by the energy balance:

d
dt

H =
⟨∂H
∂x

(x)|ẋ
⟩
=
∂T H
∂x

(x)ẋ (2.9)

Setting

fS = −ẋ

eS =
∂H
∂x

(x) (2.10)

(that corresponds to a 0-junction) the interconnection between the energy storage
element and the Dirac structure is done. Hence the energy balance of Eq. 2.9 can
also be written as:

d
dt

H =
∂T H
∂x

(x)ẋ = −eT
S fS (2.11)

2.3.2 Resistive port

This port includes all the energy dissipation effects of the system and its port vari-
ables are ( fR, eR). These port variables are determined on a static resistive relation
R, generally of the form:

R( fR, eR) = 0, (2.12)
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Chapter 2. Port-Hamiltonian Systems

with the property that for all ( fR, eR)

⟨eR| fR⟩ ≤ 0 (2.13)

In many cases the resistive relation is linear. This means that the port variables
has to satisfy a linear relation of the form:

R f fR + ReeR = 0. (2.14)

If there are no external port, the Dirac structure of the port-Hamiltonian system
satisfy the relation eT

S fS + eT
R fR = 0 that leads to

d
dt

H = −eT
S fS = eT

R fR ≤ 0. (2.15)

2.3.3 External ports

The variables of the external port C are denoted as ( fC, eC) while the ones of the
external port I are denoted as ( fI , eI). Considering also these two ports, the power
balance is:

eT
S fS + eT

R fR + eT
C fC + eT

I fI = 0. (2.16)

where eT
S fS can be substitutes with − d

dt H and then:

d
dt

H = eT
R fR + eT

C fC + eT
I fI (2.17)

2.3.4 port-Hamiltonian dynamics

THe port-Hamiltonian system with state spaceX, hamiltonian H and corresponding
to the structure just explained (comprehensive of the Dirac structure D and the
power ports S,R,C,I is denoted by Σ = (X,H,R,C,I,D).
The dynamic of this port-Hamiltonian system is given considering the constraints
imposed to the port variables by the Dirac structure

( fS , eS , fR, eR, fC, eC, fI, eI , ) ∈ D (2.18)
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2.4. Explicit port-Hamiltonian systems

and substituting in these relation the equations (2.10). This lead to the implicit

dynamics:

(−ẋ(t),
∂H
∂x

(x(t)), fR(t), eR(t), fC(t), eC(t), fI(t), eI(t)) ∈ D (2.19)

with fR(t) and eR(t) satisfying the Equation (2.12).

2.4 Explicit port-Hamiltonian systems

Definition 2.4.1. Input-state-output dynamical system An input-state-output dy-
namical system is defined as a 5-tuple Σ = (R,U,Y,X,B f ) where R represent the
time axis,U is the input signal space,Y is the output signal space, X the state space
and B f ⊆ (U ×Y,XR) the full behavior.

An explicit port-Hamiltonian systems is an input-state-output continuous time
dynamical system where:

• X is an n dimensional manifold representing the state space; the states are
energy variables;

• U is the input vector space and the input is a power conjugate variable;

• Y = U is the output vector space and the output is the power variable dual to
the input;

• B f is the full behavior of the system represented by:

ẋ = [J(x) − R(x)]
∂H
∂x

(x) + g(x)u,

y = gT (x)
∂H
∂x

(x) (2.20)

where u,y are the variables of the port C. J(x) is a skew-symmetric matrix and
R(x) = RT (x) ≥ 0 is the resistive structure resulting from R(x) = gT

R(x)R̃gR(x) for
some linear relation fR = −R̃eR, with gR the input matrix of the resistive port. The
underling Dirac structure of the system is given by the graph of the skew-symmetric
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linear map 
−J(x) −gR(x) −g(x)
gR(x) 0 0
g(x) 0 0

 . (2.21)
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Intrinsically Passive Control

As shown in Chapter 2, a system represented in an Hamiltonian form is mostly char-
acterized by its Hamiltonian function, that is, the total energy stored in the system.
Furthermore, its dynamics depends on it as well as the dissipation and the inputs of
the system. Then, energy plays a central role in the control of a physical system,
since the stability of the system depends on the shape of the energy. In fact, any
configuration characterized by a (local) minimum of the energy has (local) stable
behavior. The problem arises when the configuration that present the minimum is
not the desired one.
One of the most used technique in control of physical system is the called energy

shaping. In this strategy the controller is saw as a device that exchange energy
with the plant in such a way that the controlled system can be still interpreted as a
dynamical system but with an energy function that as his minimum in the desired
configuration. The design of such a controller using the port-Hamiltonian formal-
ism leads to a precise explaination of all the energetic properties of the system that
can be used for the regulation purpose.
The link between stability and energetic properties of a system is formalized by
means of the passivity theory. This theory allows the so called Passive Based Con-

trols (PCB) and the Intrinsically Passive Control (IPC). In this chapter these topics
are presented, starting with the passivity theory related to port-Hamiltonian systems
and energy-shaping technique and than leading to PCB.
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Chapter 3. Intrinsically Passive Control

3.1 Passivity Theory

Consider an I-S-O dynamical system (Def. 2.4.1) of the form:ẋ = f (x) + g(x)u

y = h(x)
(3.1)

where x ∈ X is the state variable and X is the state space, u ∈ U is the input andU
is an m-dimensional input space and y ∈ Y is the output andY is an m-dimensional
output space. Let w be a real value map defined onU ×Y

w : U ×Y → R; (3.2)

called supply rate and assume that the system has at least one equilibrium configu-
ration in x = 0.

Definition 3.1.1. Dissipative system Let x0 ∈ X be the initial state, that is x0 =

x(t = 0). A system of the form (Eq. 3.1) is said to be dissipative with respect to
the supply rate w if, for all u ∈ U, x0 ∈ X and t ≥ 0 exists a continuous function
V : X → R+ such that the following equation, called dissipation inequality, holds:

V(x(t)) − V(x0) ≤
∫ t

0
w(τ)dτ (3.3)

It is possible to give a physical and energetic interpretation of dissipative system
considering V as the generalized energy of the system and w the generalized power.
Then, the dissipation inequality express the statement that a system is dissipative if
and only if the stored generalized energy at time t, V(x(t)), is at most equal to the
sum of the initially stored energy V(x0) and the total external supplied energy to the
system

∫ t

0
w(τ)dτ in the interval [0, t]. This means that there cannot be any internal

production of energy and the pair (u, y) represents the medium through which the
system can exchange energy.
If the generalized energy of a dissipative system coincides with its energy, its gener-
alized power coincides with its power andU and Y are m-dimensional dual spaces
then the following choice of the supply rate can be made:

w(u(t), y(t)) = ⟨u(t), y(t)⟩ = yT u u ∈ U, y ∈ Y (3.4)

Thus, the supply rate represent the power flow, u and y are flow and effort and the
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3.1. Passivity Theory

pair (u, y) is a power port.

Definition 3.1.2. Passive system A system is passive if it is dissipative with respect
to the supply rate w(u, y) = ⟨u, y⟩ = yT u.

Then, the dissipation equality for a passive system is always

V(x(t)) − V(x0) ≤
∫ t

0
yT (τ)u(τ)dτ (3.5)

So, if u = 0 it follows that:

V̇(x(t)) ≤ yT (t)u(t) ≤ 0 ∀t (3.6)

and if V(x) is positive definite, the equilibrium point x = 0 is Lyapunov stable.

Definition 3.1.3. Lossless system A passive system with storage function V(x) is
lossless if ∀u ∈ U, x0 ∈ X and t ≥ 0

V(x(t)) − V(x0) =
∫ t

0
yT (τ)u(τ)dτ (3.7)

This means that a lossless system stores all the energy provided through the power
port.

Definition 3.1.4. Strictly passive system A strictly passive system is a passive
system with storage function V(x) for which there exists a positive definite function
S : X → R+ such that ∀ u ∈ U, x0 ∈ X and t ≥ 0

V(x(t)) − V(x0) =
∫ t

0
yT (τ)u(τ)dτ −

∫ t

0
S (x(τ)dτ (3.8)

A strictly passive system dissipates part of the energy provided through the power
port. The energy dissipated in an interval [0, t] is equal to

∫ t

0
S (x(τ)dτ.

Referring to the the general system of Eq. (3.1), it is possible to verify its passivity
by means of the non-linear version of Kalman-Yakubovitch-Popov lemma (KPY).
Infact, if there exist a function V : X → R+ with V(0) = 0 such that

L f V(x) ≤ 0 (3.9a)

LgV(x) = hT (x) (3.9b)
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then the system is passive with respect to the storage function V(x). In the previous
equations Lk denotes the Lie derivative with respect to a function k.
Furthermore, L f V(x) represents the dissipation of the system and it is null if the
system is lossless, while LgV(x) represents the power supplied to the system.
Then it is possible to give another definition of passive system

Definition 3.1.5. For a passive system the equation

P =
dV
dt
+ Pdiss (3.10)

where P = LgV(x) = yT u is the power supplied to the system, V(x) is the storage
function and Pdiss = −L f V(x) > 0 is the dissipated power.

It is possible to use definitions and observations given above to undestand if a
port-Hamiltonian system is passive.
Consider the generic port-Hamiltonian system with dissipation

ẋ = [J(x) − R(x)]
∂H
∂x

(x) + g(x)u,

y = gT (x)
∂H
∂x

(x) (3.11)

It is possible to relate port-Hamiltonian systems and passivity by means of the fol-
lowing proposition:

Proposition 3.1.1. A port-Hamiltonian system with dissipation is passive and its

storage function is the Hamiltonian function.

Proof. It is possible to relate a port-Hamiltonian system of Eq. (3.11) to the affine
I-S-O system described by Eq. (3.1) defining the following relations:

• f (x) = (J(x) − R(x))∂H
∂x ;

• g(x) = g(x);

• h(x) = gT (x)∂H
∂x .

So, it turns out that:

L f H(x) = L(J(x)−R(x)) ∂H
∂x

H(x) =
∂T H
∂x

(J(x) − R(x))
∂H
∂x
= −∂

T H
∂x

R(x))
∂H
∂x
≤ 0

(3.12a)

LgH(x) =
∂T H
∂x

g(x) =
(
gT (x)

∂H
∂x

)T

= hT (x) (3.12b)
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where the term with J(x) in the first row disappears since J(x) is skew-symmetric
and the inequality holds since R(x) semi-positive definite. This means the a port-
Hamiltonian system with dissipation enjoys the KPY property and consequently
it is passive. Furthermore, a port-Hamiltonian system with dissipation is strictly
passive or lossless depending on the dissipation term R(x), as shown in Eq. (3.12a).
In particular, if R(x) = 0

L(J(x)−R(x)) ∂H
∂x

H(x) = 0 (3.13)

and then the system is lossless, otherwise, since R(x) is semi-positive definite, it is
strictly passive.
It is possible also to rewrite Def. 3.1.5 for port-Hamiltonian system, that is

P =
dH
dt
+
∂T H
∂x

R(x))
∂H
∂x

(3.14)

from which it follows that Pdiss =
∂T H
∂x R(x))∂H

∂x . So, the dissipated power depends
on the R(x). If R(x) is positive definite Pdiss > 0 that means that some power is
dissipated by the system and, then, the system is strictly passive. If R(x) = 0 also
Pdiss = 0 and so the system is lossless. Finally, if R(x) is definite negative, Pdiss < 0
which means that the system produces energy internally and it is not passive.

As just shown, port-Hamiltonian system have all the properties of passive sys-
tem. This means that it is possible to stabilize in an asymptotic way an equilibrium
configuration corresponding to the local minimum point of the associated Hamilto-
nian function by means of the control low u = −ky. The evolution of the state of a
system controlled in such a way is described by the equation:

ẋ = [J(x) − R(x)]
∂H
∂x
− g(x)u =

= [J(x) − R(x)]
∂H
∂x
− kg(x)y =

= [J(x) − R(x)]
∂H
∂x
− kg(x)gT (x)

∂H
∂x

ẋ = [J(x) − (R(x) + kg(x)gT (x))]
∂H
∂x

(3.15)

So, this kind of control act on the system as an added power dissipation corre-
spondig to kg(x)gT (x). This motivates the name of the control, called stabilization

by damping injection.
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3.2 Energy Shaping

As just saw it is possible to stabilize the configuration of the system corresponding
to the scrict minimum of the energy function by means of damping injection. Un-
fortunately the cases in which this configuration correspond to the desired one are
rares. It follows that the used control has to act on the system in such a way that
the minimumm of the energy function slides on the desired one. This kind of action
is called energy shaping. Furthermore, it is possible to asymptotically stabilize the
new minimum by means of damping injection. The resulting control law is named
energy shaping + damping injection.

To better undestand how this action acts on the system, here below Eq. (3.8) is
written for a port-Hamiltonian system:

H(x(t)) − H(x(0)) =
∫ t

0
uT (τ)y(τ)dτ −

∫ t

0

∂T H
∂x

R(x)
∂H
∂x

dτ =

=

∫ t

0
uT (τ)y(τ)dτ − d(t) (3.16)

where, obviously, d(t) is a non negative function representing the energy naturally
dissipated into the system in the interval [0, t].
The chosen control law u(t) has to act on the system such that the closed loop
dynamics satisfy a new energy balance equation

Hd(x(t)) − Hd(x(0)) =
∫ t

0
vT (τ)y(τ)dτ − dd(t) (3.17)

where Hd is a new energy function with a strict minimum in x∗, that is the desired
configuration, and dd(t) is the desierd energy dissipation assigned by damping in-
jection. A formal solution to this problem follows:

Proposition 3.2.1. If it is possible to find a function β(x) such that:

−
∫ t

0
βT (x(τ))y(τ)dτ = Ha(x(t)) + k (3.18)

where k ∈ R+ is constant, the the control law u = β(x) + v is such that the energy

balance

Hd(x(t)) − Hd(x(0)) =
∫ t

0
vT (τ)y(τ)dτ − d(t) (3.19)
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is satisfied with Hd(x) = H(x) + Ha(x).

Proof. By replacing u = β(x) + v in Eq. (3.16):

H(x(t)) − H(x(0)) =
∫ t

0
βT (x(τ))y(τ)dτ +

∫ t

0
vT (τ)y(τ)dτ − d(t) (3.20)

Then, substituting Eq. (3.18) in Eq. (3.20), it follows that:

H(x(t)) + Ha(x(t)) − H(x(0)) + k =
∫ t

0
vT (τ)y(τ)dτ − d(t) (3.21)

From Eq. (3.18) it has to be Ha(x(0)) = −k and then the previous equation can be
rewritten as:

H(x(t)) + Ha(x(t)) − H(x(0)) − Ha(x(0)) =
∫ t

0
vT (τ)y(τ)dτ − d(t) (3.22)

So, setting Hd(x(t)) = H(x(t)) + Ha(x(t)), Eq. (3.17) holds.

It can be seen that the closed loop energy is different than the one stored by the
plant and the one supplied by the controller. This kind of control is called energy

balancing passivity based control (or, shorter, energy balancing PCB).
Furthermore, since the control law is built in such a way that Hd(x) has a minimum
in the desired configuration, setting v = 0, the system will asymptotically reach x∗.
As just shown, the energy balancing PCB changes the energy of the plant by giving
it the desired shape. This action cab be interpreted in a physical way. To do this a
more geometric interpretation is necessary and it is given by che concept of control

as inteconnection.

3.3 The Control as Interconnection

The control as interconnection is a new way of looking at control and control prob-
lem than the classical signal processors. In particular it consist in considering the
controller as the simulation of a physical system, with well defined properties, con-
nected to the plant to be controlled. Then, the control issues concern in the design of
a system such that its interaction with the plant leads to the desired behavior of the
latter. In this section this control paradigm will be described for dynamical system,
which is the framework needed for the control of port-Hamiltonian system.
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Definition 3.3.1. Interconnection of dynamical systems The interconnection of
two dynamical systems Σ1 = (R,X,B1) and Σ2 = (R,X,B2) with the same signal
space X is denoted as Σ1 ∧ Σ2 and is defined as Σ1 ∧ Σ2 = (R,X,B1 ∩ B2)

This means that, since the two systems have the same signal space, the behavior
resulting by the interconnection consists in all those trajectories w : R → W that
are allowed for both Σ1 and Σ2. So, the interconnection limits the behavior of both
the interconnected system.
Let Σp = (R,X,Bp) be the plant to be controlled. The set of all dynamical systems
with R as time axis andW as signal space is called family of admissible controllers

and is denoted as C, while an element Σc ∈ C is called admissible controller. Con-
sequently, Σp ∧ Σc is called controlled system.
With this approach the controller is no more saw as a signal processor but as a dy-
namical system and it is possible to easily intepreted as a physical system. It follows
that the problem on control concerns in three steps:

• Description of the family of admissible controller C

• Description of the desired behavior of the plant

• Design of a controller Σc ∈ C such that Σp ∧ Σc has the desired behavior.

Since port-Hamiltonian systems interact with the external environment through power
ports, also the interconnection between port-Hamiltonian systems take place through
respective power ports. It is useful to interconnect the two systems (the palnt and the
controller) by means of power preserving interconnection, that allows to establish
an energy transfer between the power port interconnected (Fig. 3.1).

Σp

power
preserving

interconnectoin
Σc

Figure 3.1. Power preserving interconnection

The most general way to represent a power preserving interconnection is through
a Dirac sturcture (Sec. 2.2) but it is more useful to do it by means of a skew-
symmetric matrix Jint(xp, xc), where xp is the state of the plant and xc the one of the
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controller. The relation between inputs and outputs of the two systems is then:up

uc

 = Jint(xp, xc)

yp

yc

 (3.23)

In this way it is explicited that the energy extracted from one system and supplied
to the other one is trasfered without losing or producing extra energy. An important
result follows:

Proposition 3.3.1. The power preserving interconnection between two port-Hamiltonian

systems Σ1 adn Σ2 yelds to another port-Hamiltonian system with state space given

by the product X1 × X2 and with Hamiltonian function H1(x1) + H2(x2).

3.4 Control of Interaction

A robot has often to interact with the environment in order to accomplish a task.
During the interaction deep changes occour. Infact, before the contact with the
environment only the motion of the robot has to be controlled, while after it the
whole dynamic model needs to be changed so that the coupling of the robot and
the environment is taken into account. The main problem is that, even though the
controlled robot during free motion is stable, instability can rise during interaction
with the environment. During the contact the interacting systems influence each
other reciprocally. This contact takes place through localized ports and the ”infor-
mation” exchange affects forces and velocity. Therefore, the issue of the designer
is to undestand which kind of strategy has to be used in order to control the inter-
action. Indeed, neither the force nor the velocity controls would be proper, as they
both depend on the dynamics of the controlled system, which is known, and on the
dynamics of the environment, that is often mostly unknown.

The most used and successful control for this tasks is the well-known impedance

control that acts on the system by creating a dynamical relation between the applied
force and the velocity of the end effector. Then, the purpose of this control is to
define the behavior of the plant during the interaction. Impedance control is the
starting point of the design of a port-Hamiltonian based intrinsically passive con-

troller (IPC) of interaction.

Indeed, as just said above, the interaction between a robot and the environment
can be modeled as an exchange of forces and velocities between the two systems.
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precompensated system

Plant IPC SupervisorEnvironment

Figure 3.2. Scheme of Intrinsically Passive Control

This interaction can be easily modeled in a port-Hamiltonian framework by means
of a localized ports, that on the robot side it is usually located at its end-effector.
Then, since the only thing that can be intrinsically controlled is the relation between
forces and velocities characteristic of this power port, it is necessary to design a
controller able to modify the behavior of the whole system with respect to port,
instead of regulating just one variable. The goal of the controller is to regulate the
relationship between the two dual variables through the interconnection port and
this can be reached using the control by interconnection technique (Sec. 3.3). In
this way it is possible to regulate the plant by interconnecting to it another dynamical
system, that is, the controller, in order to constrain the behavior of the plant at the
power port through which the interconnection takes place, constraining the relative
variables to a desired subset. So, this constrained relation is reached indipendentely
from the environment the system interacts with.
It is naturally desirable to maintain a passive behavior also during the interaction,
while controlling the way the plant interacts with environment. In order to maintain
passivity, it is useful to connect to the plant a passive controller through power
preserving interconnection. In this way the controlled plant preserves passivity with
ANY possible passive environment. This is what it’s called Intrinsically Passive

Controller (IPC) and it is modelled as a physical system that compensates some
unwanted properties of the controlled system and sets the desired ones with respect
to the interaction. Anyway, such a controller doesn’t allow to perform any task.
In order to allow task accomplishment, a power port has to be added to the IPC.
Then, an external supervisory system can inject energy through this port in the
controlled system in a proper way such that a desired task is accomplished. The
general scheme of the IPC is shown in Figure 3.2.

33



Chapter 4

The KUKA LWR 4+

In this chapter an analysis of the KUKA Lightweight Robot 4+ is done. First the
kinematic proprieties and the construction of the bond-graph model will be shown.
Then a brief description about the external user interface will FRI follow. If inter-
ested, a full explanation of the internal controller KRC and all the operation prog-
gramming issues can be found in the original KUKA manuals.

base

link 1

link 2

link 3 link 4

link 5

link 6

link 7

Figure 4.1. The KUKA LWR4+
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4.1 The Kinematic structure

The KUKA LWR 4+ has a serial structure of 7 links (Figure 4.1). Its kinematic
configuration is show in Figure 4.2. It has been built using the Modified Denavit-

Hartenberg notation (MDH), whose parameters are also in Figure 4.2. This conven-
tion is built in such a way that the z axis of each frame corresponds to the rotational
axis of the realtive joint. Then, the variables q j are the rotational angles around z j

of each j − th joint.

Kinematic Parameters

l0 = 11cm
l1 = l2 = l3 = l4 = 20cm
l5 = 19cm
o f f set = 7.8cm
ltot = 117.8cm

MDH Parameters
j α j d j θ j r j

1 0 0 q1 0
2 π/2 0 q2 0
3 −π/2 0 q3 (l2 + l3)
4 −π/2 0 q4 0
5 π/2 0 q5 (l4 + l5)
6 π/2 0 q6 0
7 −π/2 0 q7 0

Figure 4.2. Kinematic structure

It follows that the H-matrix H j−1
j (q j) between the joint j and the joint j − 1 is

always like:

H j−1
j (q j) =


cos q j − sin q j 0 0

sin q j cosα j cos q j cosα j − sinα j −r j sinα j

sin q j sinα j cos q j sinα j cosα j r j cosα j

0 0 0 1

 (4.1)
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4.2 The Dynamic model

In this section a bond-graph representation of the the dynamic model of the KUKA
LWR4+ is shown. A good approximation of the inertia parameters of the arm can
be found in [2]. The same parameters were also used in this thesis to validate the
code explained in the next chapter.

4.2.1 The model of the joints

A joint establishes an energetic connection between two links. Then, it imposes a
relation between the wrenches and the twists of the two bodies.

Since the wrench applied in a joint is applied to the connected links, the same
wrench is applied to both bodies. The relation between the wrench of the actuator
and the ones applied to the links is:

Wact j = Wlink j = Wlink j−1 (4.2)

Furthermore, the relation between the twist of the link j − 1 with respect to the
inertial frame expressed in a frame j (T j,0

j−1) and the twist of the link j withe respect
to the inertial frame expresed also in the same frame j (T j,0

j ) is:

T j,0
j = T j,0

j−1 + T j, j−1
j (4.3)

In bond-graphs the two equations above are represented by a 0-junction (Figure
4.3). This means that a joint is an energetic connection between two links. To do
so all the twists and the joint must be expressed in the same frame. Here the j-th
frame is chosen.
A joint performs two actions in the system:

1. It applies constraints in certain directions;

2. It allows motion in the others.

All the joints of the KUKA LWR 4+ are rotational and then only a degree of
freedom is allowed. Furthermore, the choice of MDH convention implies that the
direction with freedom is the rotation around the z axis of each DH frame. The
relation between the torque applied by the actuator and the corresponding wrench
expressed in the j-th frame is:
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joint frame j − 1

joint frame j

0

1 RC

TF ŴT

1 R friction

MTF
AdH j

j−1

link jlink j−1

τ j

∫

×H j−1
0 H j

0

q̇ j

q j

Figure 4.3. Bond-graph model of a joint

W j = Ŵτ j (4.4)

where Ŵ =
[
τ̂ 01x3

]
and τ̂ =

[
0 0 1

]
. The power continuity impose a relation

between the wrench W j and the twist T j, j−1
j of the link and the torque τ j and the

angular velocity q̇ j of the actuator:

(W j)T T j, j−1
j = (Ŵτ j)T T j, j−1

j = τ jŴT T j, j−1
j = τ jq̇ j (4.5)

such that:

q̇ j = (Ŵ)T T j, j−1
j (4.6)

Equations (4.4) and (4.6) correspond to a �� element with ŴT as parameter (Figure
4.3).

A six dimensional constraint can be modeled as a �-element with really high
gains on the constrained directions (ideally∞) ad really low gains in the free direc-
tions (ideally −∞) plus a R-element in integral form with really high gains in the
constrained direction (ideally ∞) and null gains in the free directions, both linked
with a 1-junction (the relative twist must be the same). The equations of a constraint
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are then:

(WC)T = C ·
∫

T j, j−1
j dt (4.7)

(WR)T = R · T j, j−1
j (4.8)

Where C = diag
( [
∞ ∞ −∞ ∞ ∞ ∞

] )
and R = diag

( [
∞ ∞ 0 ∞ ∞ ∞

] )
.

Eventually a friction model can be added between the effort source and the TF el-
ement. The same concept of power continuity can be done between the couples of
wrenches and twists respectively expressed in the frames j − 1 and j.
The relation between the twist T j−1,0

j−1 of frame j − 1 with respect to the frame 0
expressed in the frame j − 1 and same one expressed and the same twist expressed
in the frame j T j,0

j−1 is:

T j,0
j−1 = AdH j

j−1
T j−1,0

j−1 (4.9)

and the dual relations between the wrench W j−1 expressed in the frame j − 1 and
the same frame expressed in the frame j (W j) is:

(W j−1)T = AdT
H j

j−1
(W j)T (4.10)

These last two equations are again equivalent to a transformation element in bond-
graph, but, since AdH j

j−1(q j)
varies with q j, it is a��� element (always Figure 4.3).

The × block multiply the matrices H j
j−1 (= (H j−1

j )−1) and H j−1
0 and gives as output

the matrix H j
0. This is needed, as it will be shown, in the model of the link to model

the gravity effects.

4.2.2 The model of a link

The model of rigid-body dynamics consists of inertia and gyroscopic effects. Defin-
ing as c j the frame attached to the center of mass of the j-th body with the axes
oriented as the principal inertia axes, the balance of wrenches is:

Ic j Ṫ c j.0
j =

P̃c j
ω P̃c j

v

P̃c j
v 0

 T c j.0
j + (Wc j)T (4.11)

Where
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• Ic j =

J 0
0 M

 is the inertia tensor expressed in the principal inertia frame;

• Pc j = Ic jT c j,0
j is the momentum, divided in the angular components Pω and

the linear components Pv. These are in the skew form;

• Wc j is the external wrench expressed in the principal inertia frame;

• T c j.0
j is the twist of the link with respect to the inertial frame always expressed

in the principal inertia frame.

frame j

frame c j

frame O

1

TFAdH
c j
j

1

MTFAdH j
0 Se gravity

II MGY Coriolis

joint j joint j+1

H j
0 H j

0

P

Figure 4.4. Bond-graph model of a link

The first term of Equation (4.11) corresponds to an � element, the second is
represented as��� while the thirds, the external force, came from the bond that
links the body to the joints. This three element are linked by a 1-junction (Figure
4.4).
The relation between the twist T c j,0

j of the body with respect of the inertial frame
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expressed int the body pricipal inertia frame c j and the same twist T j,0
j expressed in

the frame j is, again:

T j,0
j = AdH j

c j
T c j,0

j (4.12)

The one between the external wrench Wc j expressed in the c j frame and the same
wrench expressed in the frame j is:

(W j)T = AdT
H

c j
j

(Wc j)T (4.13)

Then, as for the joint, the change of coordinates of wrenches and twists between
two different frames is a �� with AdH

c j
j

as parameter.

The external wrench W j is the sum of the wrench W j
j transmitted by the joint j, the

wrench W j
j+1 transmitted by the joint j + 1 and the resulting gravitational wrench

W j
g, all expressed in the frame j:

W j = W j
j +W j

j+1 +W j
g (4.14)

Since all the bonds with these efforts contains variables expressed in the frame, they
also have the same twist. This is a 1-junction, whose twist is causally imposed by
the body (Figure 4.4).
The gravitational wrench W j

g is the result of the change of coordinates of the wrench
W0

g , given as a source element. The adjoint AdH j
0

is a function of qi with i = 1, ·, j.
Then a��� is necessary. Alwais in Figure (4.4) the signal H j

0 that came from the
previous joint is used to calculate of the gravitational wrench and the AdH j

0
.

4.2.3 The entire model

ba
se

jo
in

t 1

lin
k 1 . . .

jo
in

t 7

lin
k 7

E
nv

ir
on

m
en

t

Se

τ1

Se

τ7

: :

W0
1

T 0,0
0

W1
1

T 1,0
1

W1
2

T 1,0
1

W6
7

T 6,0
6

W7
7

T 7,0
7 W7

env

T 7,0
7

H0
0 H1

0 H2
0 H6

0 H7
0

Figure 4.5. Bond-graph model of the KUKA LWR4+
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The model of a joint (Figure 4.3) has three power ports ( link j−1 and τ j as input,
link j as output) and two signal ports (H j−1

0 as input and H j
0 as output) and the model

of a link (Figure 4.4) has three power ports ( joint j as input, joint j − 1 as output) and
two signal ports (H j−1

0 as input and output). Then, the entire model of the KUKA
LWR4+ is shown in Figure 4.5.

4.3 FRI Library

The Fast Research Interface (or FRI) is a C library that improves a simple user in-
terface to the KUKA LWR 4 and hides all communication and set-up issues behind
interface.
In this section its main features will be shown. An extended and complete documan-
tation can be found in [6].

The FRI Interface Library runs on a remote PC node that is connected to the
KRC (KUKA Robot Controller) via an Ethernet connection. In intervals of 1 to 100
milliseconds, UDP packages are periodically sent from the KRC unit to the remote
host. These packages contain a complete set of robot control and status data (e.g.,
joint positions, joint torques, drive FRIDriveTemperatures, etc.). The remote host
has to instantaneously send a reply message after the reception of each package.
A reply message contains input data for the applied controllers (e.g., joint position
set-points, joint stiffness set-points, etc.). The controller provided are:

• Joint position controller

• Cartesian impedance controller

• Joint impedance controller

Data transfer between the robot controller and an external computer is carried out
using the following modes:

• Monitor mode: Cyclical communication with transfer of robot data to an
external computer.

• Command mode: Cyclical communication with transmission of commands
from an external computer to the robot controller. In Command mode, robot
motion can also be controlled externally.
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In particular, there are two status graph, one running on the KRC and one running
on the remote PC. The second is ruled by the first. In Section 5.2.2 the status graph
of the remote PC and its rules are explained. Here the KRC FRI status graph is
shown.
The interaction between the two modes in the KRC is schematized in the status
graph of Figure 4.6. The functional principle is the following:

• FRIOPEN activates the FRI connection between the robot controller and the
external computer. At this point in time Monitor mode is active. In this mode,
there is cyclical data exchange between the KRL and the robot. The quality
of the data transfer is also determined and classified.

• FRISTART starts Command mode if the quality of the data transfer has been
classified as Good or Perfect. Data exchange between the robot controller
and the robot and determination of the quality of the data transfer continue.
If the quality of the data transfer is not high enough (edge ”4”) the activation
of Command mode is not allowed. If, instead, the comunication quality is at
least good, the state machine switch to Command mode and remote control
is allowed.

• FRISTOP stops Command mode and switches to Monitor mode.

• FRICLOSE closes the FRI connection.

• × indicate the faults. If there is a fault the machine is forced to switch in
Monitor mode.

MON CMD

⊕

×

OFF

OFF

FRIOPEN

FRICLOSE

FRISTART 1

4

FRISTOP

2

3 5

Figure 4.6. Status graph of the FRI

42



Chapter 5

A passive based control on the
KUKA LWR 4+

In this chapter it is explained how the Intrinsically Passive Control has been im-
plemented on the KUKA LWR4+. First a full description of the control is given,
starting from what kind of passive system the IPC has to simulate (see Sec. 3.4)
and the issues around it. Then, a brief explaination of the Robotic Operation System

(ROS) is given, in order to understand how the code written for this thesis works. A
description of the code and its structure will follow.

5.1 Design the IPC for the KUKA LWR4+

The aim of this control is to achieve a desired passive behavior, as explained in Sec-
tion 3.4. This means that the IPC has to simulate a physical passive system. Figure
3.2 shows the general scheme of the IPC. In that figure the pre-compensation of
undesired dynamics is exploited. These dynamics, generally, are the gravity effects
and the frictions presents in each joint.
Unfortunately an accurate model of the KUKA LWR4+ is not available. This im-
ply that is not possible to design a precise compensation of the gravity. Anyway,
gravity compensation is already perfectly done by the KRC. Then, it is delegated
to the internal controller of the arm and its presence in the control scheme will be
neglicted from here on.
The same problem regarding gravity compensation is present also for frictions. An
official documentation about them does not exist. Luckily, the brushless motors em-
bedded in the arm are equipped with harmonic drives. The friction presentes in this
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kind of drives is very low, almolt neglictable. Furthermore, as it will be explained
later, also an implicit internal compensation of this really low frictions is made by
the KRC. Then, also the terms concerning frictions and their compensation are not
considered in the following.

It has been largely explained in Cap. 3 that this control technique is based on
energy shaping strategy. Indeed, this is the effect of gravity compensation. The
shape of the compensated plant energy is flat for each joints configuration. Then,
IPC has to ”re-shape” the energy function at the end effector in order to achieve a
strict minimum in the desired configuration x∗. A possible desired energy shape is
shown in Figure 5.1, that is the characteristic energy function of any geometrical

and winding spring.

x

E(x)

x∗

Figure 5.1. Desired energy function

To fully understand what a spring is in a mathematical and geometric point of
view, a characterization of springs is given here below.

5.1.1 Springs

In mechanical domain ideal springs are ideal power-conserving concepts of storage
of potential energy. In general there exist two kinds of springs: geometrical springs

and winding springs. Winding springs are a particular kind of springs which are
able to create different wrenches for exactly the same configurations of the bodies
they are attached to.
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5.1.1.1 Geometrical Springs

A spring is a nodic element. A nodic element is a physical dynamical subsystem
with n > 1 ports whose state change does not depend on the absolute value of its
ports but on their relative values.
It follows that to define a spring at least two bodies (or in a geometric point of view,
two frames) are required. Then, given m bodies the spring is defined by its energy
storage function.

Definition 5.1.1. Spring Given m bodies contained in m Euclidean spaces E1, . . . ,Em,
we call spring a function of the following form:

V : S E1
2(n) × S E2

3(n) × . . . × S Em−1
m (n)→ R (5.1)

A spring is a passive physical element. This means that it cannot supply infinite
energy. Then, the function V must have a finite minimum.
To calculate the constitutive equations of a spring it is necessary to consider the
differential of the energy function:

dV : S E1
2(n) × S E2

3(n) × . . . × S Emm−1(n)→ T ∗S E1
2(n) × T ∗S E2

3(n) × . . . × T ∗S Em−1
m (n)

In a certain point h = (h1
2, . . . , h

m−1
m ) ∈ S E1

2(n) × . . . × S Emm−1(n) and for a velocity
ḣ ∈ Th2

1
S E1

2(n) × . . . × Thm−1
m

S Em−1
m (n), the differential is such that dV(h) applied to

(h, ḣ) represents the increase of energy due to a change of relative positions ḣ.
Then, if we define:

TV := t1
2 × . . . × tm−1

m ∈ se1(n) × . . . sem−1(n) (5.2)

where t j
i is an element in se j(n) anb represent the twist of the body i with respect

the body j, and

WV := w1
2 × . . . × wm−1

m ∈ se∗1(n) × . . . se∗m−1(n) (5.3)

where w j
i is an element in se∗j(n) and represent the wrench applied by body i to

the spring connecting bodies i and j and it is expressed in the space of body i, the
increase of energy of the spring at a certain istant of time is:

V̇ = ⟨WV ,TV⟩ = w1
2t1

2 + . . . + wm−1
m tm−1

m (5.4)
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IPC

Ψee Ψv(ee) Ψv(sp) Ψsp

Figure 5.2. IPC scheme

In Hamiltonian terms, a spring is then described by the following equations:

Ḣ = χHTV (5.5)

WV = χ
∗
H
∂V
∂H

(5.6)

where H ∈ S E1
2(n) × . . . × S Em−1

m (n), χH := χH1
2
× . . . × χHm−1

m
, with χHm−1

m
:= (π j

H j
i

)−1

and π j

H j
i

: THi∗ jS E j
i (n) → se j(n), and χ∗H is the dual of χH. The equations above

corresponds to a C-element in its integral form in the Bond-graph formalism.
It is also possible to define V with respect to the relative motion of just two bodies
i and j. It will be:

V j
i (H j

1, . . . ,H
j
i−1,H

j
i+1, . . . ,H

j
m); S E j

i (n)→ R; H j
i 7→ V(H1

j oH j
2, . . .H

m−1
j oH j

m)
(5.7)

Consider now two frames Ψi and Ψ j Since the potential energy V j
i has a minimum

it is possible to design it such that this minimum is at the identity of the frames,
that is Ψi ≡ Ψ j, so where H j

i = I. The relative configuration H j
i in which V has its

minimum is called center of stiffness and it is possible to study the elastic behavior
by using coordinates.
Furthermore the two energy functions:

V̆i(Hi) : S Ei → R; Hi 7→ V j
i (H−1

i ) (5.8)

V̆ j(H j) : S E j → R; H j 7→ V j
i (H−1

j ) (5.9)

have a minimum at the identity of S Ei(n) and S E j(n).

Finally, considering dV̆l : S El(n) → T ∗S El(n) with l = i, j, it is possible to
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define the stiffness map Kl, that chacaterizes the spring, as the lnearization of dV̆l

around the identity I ∈ S El(n):

Kl : sel(n) ∈ se∗l (n),Tl 7→
d
dt

(dV̆)|t=0 l = i, j (5.10)

and the relation between the stiffness maps expressed in the two spaces is:

K j = AdT
Hi

j
KiAdHi

j
(5.11)

5.1.1.2 Winding Springs

A winding spring is, in real world, a rotational spring. Consider such kind of spring
between two bodies. If we rotate one of them by 360 degrees around a fixed axis,
the final configuration is the same as the initial. Anyway, the the forces applyed
between the two bodies are not the same. This is what is called a winding spring:

Definition 5.1.2. Winding Spring A winding spring between two bodies i and j is
a spring with a lower bounded energy function having the form:

Vw : Q̃ j
i → R; Q̃ j

i ∈ Q j
i ⊂ S E j

i (n) (5.12)

such that q1 ∼ q2, q1 , q2 implies Vw(q1) , Vw(q2).

The energy function of a winding spring is the same shown in Fig. 5.1.

Going back to the implementation of the IPC, what our control has to simulate is
a spring attached to the end effector and eventually a damper to inject some desired
energy dissipation in the behaviour. It could be use full to have a variable rest
length spring in order to accomplish particular tasks. A 1D graphical representation
of it is given in Figure 5.2. In that figure Ψee is the frame fixed to the edge of the
end effector and Ψsp is the set-point frame, while Ψv(ee) and Ψv(sp) are the virtual

positions of the end effector and the set point respectively. As the figure shows,
it is possible to modify the length of the spring from both its vertices, varying the
distance (and a 6D case, also the orientation) between the ”real” and the ”virtual”
frames.

Figure 5.3 shows the spatial impelementation of the IPC on the KUKA LWR4+.
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Figure 5.3. IPC implementation on the KUKA LWR4+

The bond graph of this variable length spatial spring, comprehensive of damping
injection (R-element) is presented in the figure here below.

0

1T 0,0
v(ee) :

01T 0,0
ee : MTF

AdH0
ee

S f : T ee,ee
v(ee)

1T 0,v(sp)
0 :

0

0S fT 0,0
sp : MTF

AdH0
sp

S f : T sp,sp
v(sp)

1

T 0,v(sp)
v(ee)

MTF

AdHv(sp)
0

1

T v(sp),v(sp)
v(ee)

MTF

χHv(sp)
v(ee)

C :: Vv(sp)
v(ee) (Hv(sp)

v(ee) )

R :: Rdamping

Figure 5.4. Bond grah of the variable length spatial spring
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In Figure 5.4 it is possible to notice the presence of three flow source elements.
That are the power port through which the supervisor can inject energy in the con-
trolled system. On the other hand the 1-junction in the upper right corner is the
power port that connect the spring, that is the IPC, to the robotic arm. The general
bond graph scheme of the IPC is shown in Figure 5.5. Notice that such approach is
completely coordinate-free.

I.P.C

Supervisor

1KUKA LWR 4+

Environment
Wee

vee T ee
vee W sp

vsp T sp
vsp W0

sp T 0
sp

W T

W0
ee

T 0
ee

−W0
ee

T 0
ee

Figure 5.5. Bond-graph scheme of the IPC

The shape of energy that we would like to achieve is something really similar to
the one of Fig. 5.1. This is good for the ”translational” part. It has been character-
ized that, thinking about a rotational spring, Fig. 5.1 corresponds to the energy of
a winding spring. For our purpose this will take to an undesired behavior. Indeed,
if we define a diagonal 6 by 6 stiffness matrix K and simply apply the relation be-
tween displacement and forces applied to the end effector through the linear map
K : se(3) ∈ se∗(3); δT 7→ KδT , where δT is the infinitesimal twist, a rotation of
360 degrees around one axis (that puts the end effector to the same configuration
before the rotation) causes a torque around the same axis different than without that
rotation. This behavior is illogical.
The torques applied to the end effector depends on the energy shape with respect to
the angular displacement. Then, if we want that equivalent configuration qi ∼ q j (in
homogeneous matrix H(qi) = H(q j)) lead to equivalent applied torques, the energy
function of the rotational part has to be closed with respect to a circle (Fig. 5.6).
Here below it is shown how to design an energy function corresponding to the one
of Figure 5.1 for the translational displacement and to Figure 5.6 for the angular
displacement. A complete explanation of it can found in [11], Chapter 5.
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θ

E(θ)

θ∗θ∗ − π θ∗ + π

θ

θ∗

θ∗ + π

E(θ)

Figure 5.6. Desired rotational energy function

First of all, let’s recall the tilde notation for a twist T j
i and and its dual wrench W j

i :

T̃ j
i =

Ω j
i v j

i

0 0

 with Ω j
i = ω̃

j
i =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ;ω j
i =


ω1

ω2

ω3

 (5.13)

W̃ j
i =

 f̃ j
i m j

i

0 0

 (5.14)

The rotational map can be exploited in the following way, where K is partitioned
in its rotational, translational, and coupling components:m j

i

f j
i

 = Ko Kc

KT
c Kt

 δθ j
i

δp j
i

 (5.15)

The matrix K is always symmetric and therefore Ko adn Kt, which are respectively
called rotational stiffness adn translational stiffness, are also symmetric, while Kc =

KT
c corresponds to the maximum decoupling to between rotation and translation.

Furthermore, as said before, the point corresponding to the coinciding origins of
the coordinate systems Ψi and Ψ j at the equilibrium is called center of stiffness.
Defining:

Gx =
1
2

tr(Kx)I − Kx; x = o, t, c (5.16)
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the following equation is equivalent to Eq. (5.15)

m̃ j
i = 2as(Goδθ̃

j
i ) + 2as(Gcδp̃ j

i ) (5.17)

f̃ j
i = 2as(Gcδθ̃

j
i ) + 2as(Gtδ p̃ j

i ) (5.18)

that correspond to energy function of Fig. 5.1.
Relating the wrench and the displacement in the following way:

m̃ j
i = −2as(GoR j

i ) − as(GtRi
j p̃

j
i p̃ j

i R
j
i ) − 2as(Gcδp̃ j

i R
j
i ) (5.19)

f̃ j
i = −Ri

jas(Gt p̃
j
i ) − as(GtRi

j p̃
j
i R

j
i )R

j
i − 2as(GcR

j
i ) (5.20)

where H j
i =

[ R j
i p j

i
0 0

]
and the minus signs are used to create the minimum, the energy

functions of Fig. 5.1 and Fig. 5.6 are achieved for the translation and orientation
parts respectively. m j

i and f j
i are the torque and the force that applied to ”body” i by

the ”body” j expressed in i.
It is important to underline that K, and then Ko,Kt and Kc are defined only at the
identity point between Ψi and Ψ j. Figure 5.7 show how the control has been imple-
mented.

K
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SUPERVISOR AND VISUALIZATION
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×

SPRING JT

Jacobiand
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q

q

H7
0 H0

ee H0
v(ee) Hv(sp)

v(ee)
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H7
ee

Hee
v(ee)

H sp
v(sp)

H0
sp

H sp
v(sp)

Kp Kd
Wv(ee),v(sp)

v(ee) τ

T v(ee),v(sp)
v(ee)

Figure 5.7. The IPC control scheme

In the block DIRECT KINEMATIC equations 1.45 are applied. Since each
homogeneous transformation matrix H j−1

j that express the position of link j with
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respect to j − 1 depends on the MDH parameters and is of the form (Eq. 4.1), it
calculates each H matrix as a function the position of each joint q j received from the
KUKA in the vector q = [q1, . . . , q7]T , applies Eq. (1.45) and returns H7

0 = (H0
7)−1.

The IPC also receives H0
sp,H

ee
v(ee) and H sp

v(sp) from the SUPERVISOR, as well as the
stiffness matrix Kp and the dissipation matrix Kd. The derivative block d

dt is used in
order to obtain the twist between Ψv(ee) and Ψv(sp) expressed in Ψv(ee) and to pass it
to the SPRING block. SPRING uses Hv(sp)

v(ee) to calculate the simulated spring wrench
Wv(ee),v(sp)

v(ee) with Eq. (5.20), taking into account also the damping effect, given by
KdT v(ee),v(sp)

v(ee) , that is subtracted from the wrench resulting from Eq. (5.20). Finally,
through the use of the geometric Jacobian (Sec. 1.5.3), the vector τ = [τ1, . . . , τ7]
(vector of the torques that the joint actuators have to apply in order to simulate the
spring wrench) is sent to the KUKA LWR4+.
The SUPERVISOR AND VISUALIZATION block communicates with the IPC, in
order to inject energy sending the matrices said before and receiving back some
information to visualize on a screen, useful to the user to check what is going on.
An important aspect of this control is that there is no inversion of kinematic. This
means that the control is immune to singular configurations, that are often a big
problem in controls like this, as the equivalent impedance control.

As said in Sed 4.3 it is possible to communicate, and then to control, the KUKA
LWR4+ with a remote computer via Ethernet cable. This is done writing some
programs that, through the FRI, control the robotic arm. In the next sections it is
explained how.

5.2 The code

The implementation of the control scheme in Figure 5.7 has been done using the
Robotic Operative System (ROS) environment, well known in the robotic world,
and the programming in C++.
Anyway, to easily design the control, the IPC has been developed by using the
20-Sim [1] modeling and simulation software. The reason why 20-Sim has been
used is that it allows the user to directly model systems using bond-graphs, and
easily build a 3D simulation of our model in order to immediately check the correct
behaviour of the controlled plant. This means that, once the bond-graph model of
the KUKA LWR4+ has been designed, it was possible to duplicate it in the 20-
Sim environment as it has been drawn (Fig. 4.5). Furthermore, once the controller
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is tested and checked, it is possible to automatically generate a C++ class of the
controller and use it in the ROS environment.
In Figures 5.8 and 5.9 the entire model of the KUKA arm, and the entire simulated
sistem are shown. These are exactly the same as the ones shown and explained of
Figure 4.5 and 5.7.

Figure 5.8. Bond-graph model of the KUKA LWR4+ in 20-Sim environment.

Figure 5.9. Total simulated system in 20-Sim environment.

An explanation of main features of ROS will follow. For a full explanation of
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how it works it is suggested to look at [8]. Then, the structure of implemented codes
and data communication is given.

5.2.1 ROS

The Robot Operating System (ROS) [8] is a flexible framework for writing robot
software. It is a collection of tools, libraries, and conventions that aim to simplify
the task of creating complex and robust robot behavior across a wide variety of
robotic platforms.
ROS works with two kinds of elements:

• Nodes: executable files, contained into ROS packages that are collector of
libraries and executable regarding a certain argument;

• Topics: communication channels that allow nodes to exchange data and in-
formation.

For each ROS node it is possible to specify the frequency/rate at which it runs. E.g,
specify a rate of 20 means that the frequency at which the node runs is 20 Hz (1
time each 0.05 seconds). Furthermore, nodes can communicates through topics.
To be able to do so a node needs to be an advertiser on a topic (if it has to send
certain information) or a subrisciber to a topic (if it has to listen and receive some
information to elaborate). A topic is characterized by the kind of data (message)
that can be broadcasted through it and the size of the queue of messages that it
can contain. This means that if the size of the topic is set to n, n messages are
mmaintainedin the queue waiting for some node to consume them. If the queue is
already full and a new message is published to the topic, the oldest message in the
queue (indeed, the first) is eliminated and the new one is inserted to the bottom of
the queue. The syntax to publish on a topic is:
ros::Publisher publisher_name = n.advertise <message_tipe >("topic_name", queue_size);

Once the publischer is initialized it is possible to publish the message on the topic
with:
publisher_name.publish(msg);

The syntax o subscribe on a topic:
ros::Subscriber subscriber_name = n.subscribe("topic_name", queue_size , topic_CallBack);

where topic_CallBack is a function with which the node treat the message received.
In its declaration the type of message that it has to handle has to be specified as
inputs:
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void topic_CallBack(const message_type::ConstPtr& msg){

...

%code

...

}

message_type can be anything, from just a integer to an array of double to a struc-
tured data.

Now the explanation of all the nodes, and relative topics, used to control the
KUKA LWR4+ is given.

5.2.2 FRI node

It has been shown in Sec. 4.3 that the communication between the KRC and the
PC host is carried out by means the two modes MONITOR and COMMAND. The
transitions between these two modes in the KRC is shown always in Section 4.3,
while the operation in the remote PC, ruled by the state of KRC, is here explained.

The FRI node is a node that uses the FRI library in order to communicate with
the KRC, adapted in such a way that it is able to run in the ROS environment and,
then, its role is to build a bridge between the KRC and the PC. In this way it is
possible to run some control nodes that communicate with the FRI node, which has
the task to communicate data relative to the operative state of the KUKA (such that
running control mode, position of the joints, setted stiffness of the joint, ecc...) to
the rest of the running nodes and to receive control commands from control nodes
(as desired joint position, stiffness, torque to apply..) and communicate them to the
KRC. To be able to have this operation, KRC and FRI node must be syncronized.
Then, a state machine guides the FRI node, ruled by the one of the KRC. The states
of the FRI node are: IDLE, INIT, MON, PRECMD, ENDCMN, CMD, KILL. In-
teraction bewteen states is shown in Fig. 5.10.

The requirements to enable FRI and go into monitor mode are on the KRC
because this happens before the first communication with the FRI host machine. To
allow monitor mode (MON) in FRI node the configurations on the KRC must be
checked, such as a load data and estimated external joint torque. If something is not
matched it is not possible to enable FRI.
When FRI node is initialized and monitor mode is running there are also some
requirements for the state transition to CMD mode. These constraints are: drives are
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engaged, command flag (that is a flag that indicates the control type for the KRC,
see Sec. 4.3) is setted and it is constant, the commanded position of the external
controller is almost identical to the commanded position of the internal controller.
When running in command mode (CMD) it is not allowed to change control flags
and the variable that corresponds to these control flags must be setted. When a
change of the control flag is desired while in command mode, the mode needs to go
back to monitor mode where the control flag can be changed.
The control of the KRC control mode is done by means of a state machine in FRI
node. This state machine guides the KRC state machine by sending its state as an
integer value.
The way the FRI node state machine works is that it starts at ”IDLE” and receives a
request to initialize a FRI connection and transitions to the INIT state. Inside INIT
the correct ROS publishers and subscribers are created and it then waits for the FRI
connection to transit into MON state. In monitor mode information is send back
over ROS topics, the cmd flags are setted in the KRC and the commanded position
of the KRC is copied and send back to the KRC as commanded position by the
FRI controller. When command mode is desired, the state is changed to PRECMD,
where measurements continue but the command flags cannot be changed anymore,
and the KRC side of the state machine attempts to FRI START to change in CMD
mode. When the KRC changes to command mode the FRI node state machine
follows and the robot can be controlled in the variables setted by the CMD flags.
To stop FRI connection the ROS side state becomes ENDCMD where neither the
commanded variables or the cmd flags can be changed, the KRC side of the state
machine attempts to FRI STOP to change back to MON MODE. When the KRC is
back into monitor mode the FRI node state machine will follow.

As said above, it is possible to chose the control type through the command
flag. Here only the case of the join impedance controller is analyzed. This because
this type of control allows to change the stiffness of the joints and to control them
sending the desired torques. Then it is possible to set the stiffness to zero and control
the robot in torques, that is exactly the purpose of the IPC ( Fig. 5.7).
The topic for which the FRI is a publisher is just FRI_MsrJnt, through which the
FRI node send the position of the seven joints using the message type Jnt_pos , a
message containing an array float32[7].
Furthermore, FRI node is subscribed to the following topics:

FRI_Control message type: FRI_control
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IDLE

KILL CMD

PRECMD

MON

ENDCMD

INIT

Figure 5.10. Status graph of the FRI node

FRI_send_stiffness message type: Jnt_stiff

FRI_sendtorque message type: Jnt_torque

through which the controller node (in this case the IPC node) send the command to
be sent to the KRC. The three message types above contain:

• FRI_control: array of bool[5] containing five booleans to able or disable the
control commands:

– Position

– Velocity

– Stiffness

– Damping

– Torque

• Jnt_stiff: array of float32[7]

• Jnt_torque: array of float32[7]

An explanation of the other ROS nodes follows.
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5.2.3 IPC node

The IPC node is the ROS node in which the Intrinsically Passive Controller is im-
plemented (Sec. 5.1). The topic in which it is involved are listed below, divided
in two section: topics for the communication IPC-Supervisor (and in general to all
other nodes) and topic specifically for communication IPC-Plant (through FRI).

5.2.3.1 IPC-Plant topics

Subscribers: message type
FRI_MsrJnt Jnt_pos: floatt32[7]

Publisher:
FRI_Control FRI_control: bool[5]

FRI_send_stiffness Jnt_stiff: float32[7]

FRI_send_torque Jnt_torque: float32[7]

5.2.3.2 IPC-Supervisor topics

Subscribers: message type
SetEndEffector Cart_pose: float32[12]

SetVee Cart_pose: float32[12]

SetPoint Cart_pose: float32[12]

SetVsp Cart_pose: float32[12]

SetStiffness Twist: standard message belonging to the class
geometry_msgs provided by ROS

SetEndEffector,SetVee,SetPoint,SetVsp are used by the supervisor to set H7
ee,

Hee
v(ee),H

0
sp,H sp

v(sp) while through SetStiffness it set the stiffness of the spring. H7
ee is

set only one time just after the launch of the node. It depends on the position and
orientation of the tip of the end effector (the tool) used.
Cart_pose contains all the datas of the relative homogeneous matrix. Since the last
row of each H-matrix is always [0001], the format of Cart_pose message and the
correspondence with H-matrix elements is:

H =


rxx rxy rxz px

ryx ryy ryz py

rzx rzy rzz pz

0 0 0 1


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msg = [rxx, rxy, rxz, px, ryx, ryy, ryz, py, rzx, rzy, rzz, pz]

Twist is a message containing two structure, linear and angular, each one com-
posed by three float64 named x,y,z. Since for the user is mainly useful to define
a stiffness matrix diagonal (so defining a total decoupled stiffness map), this type
of message is used setting the diagonal of Ko in angular and the diagonal of Kt in
linear.

Publisher:
EndEffector_wrench WrenchStamped: used to communicate to RViz (Sec: 5.2.5)

the spring wrench with respect to Ψee.
WrenchStamped is a standard message be-
longing to the class geometry_msgs pro-
vided by ROS

Vee_wrench WrenchStamped: used to communicate to RViz the spring
wrench with respect to Ψv(ee)

EndEffectorPose Cart_pose: used to communicate to the Supervisor
node Hee0 for its initialization

VeePose Cart_pose: (see above)
VspPose Cart_pose: (see above)

When the IPC node is lunched, it set the control types and the stiffness of each
joint and waits to receive for the first time the joint position through the topic
FRI_MsrJnt. Once received it initialize the object IPC (class IPC generated from
20-Sim code generation). During initialization Hee0 is calculated and then Ψee, Ψsp,
Ψv(sp) are set at the identity of Ψee. After initialization it starts to run on a while
cycle at a frequency of 500Hz. The pseudo-code is here below:

...

%callBackFunctions

...

void main()

{

%node initialization

...

%declaration of the node frequency

ros::Rate r(500);

%publishers and subscribers declaration

59



5.2. The code

...

%creation of the IPC object

controller IPC;

%creation of the message FRI_Control and setting true the stiffness and torque commands.

%Then send it to the FRI node

Fri_Control ControlType = [false, false, true, false, false];

toFRI_control.publish(ControlType);

%creation of the message Empty_Jnt_stiff and then send it to the FRI node

Jnt_stiff Empty_Jnt_stiff;

to_FRI_stiffness.publish(Empty_Jnt_stiff);

%waiting for the first joint position received

while (first_recieved == false){}

%inizialization of the IPC

IPC.initialize();

%start the cycle

while (ros::ok())

{

%calculation of wrenches , torques to apply and frames position

IPC.calculate();

toFRI_torque.publish(Jnt_torque);

toAll_ee_wrench.publish(ee_wrench);

toAll_vee_wrench.publish(v_ee_wrench);

toAll_ee_pose.publish(ee_pose);

toAll_vee_pose.publish(v_ee_pose);

toAll_vsp_pose.publish(v_sp_pose);

print();

}

return 0;

}

Notice the command ros::Rate r(500). A so high frequency is needed because
we have to simulate a continuous energy interconnection between IPC and plant.
Higher the frequency is more accurate this simulation is.
print() function is a function that print on the terminal some information as the
time, the values of diagonal of K, H0

ee, H0
sp , H0

v(ee), H0
v(sp), the position error between

Ψv(ee) and Ψv(sp) as a 6 × 1 vector [δθT , δpT ]T that express the position of Ψv(ee)

with respect to Ψv(sp) in a vector form instead of the matrix form Hv(sp)
v(ee) (the cal-

culation of δθ is made with particular function from_rot_to_omega that implement
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Figure 5.11. Screen of the printed information to the terminal by IPC node

a Cayley-Hamilton method explained in [14]; this calculates δθ form the rotation
matrix Rv(sp)

v(ee) (t)), the wrenches Wv(ee) and Wee.
The layout of what is printed to the terminal is Fig. 5.11.

5.2.4 Supervisor nodes

The Supervisor node has to send to the IPC nodes the matrices Hee
v(ee), H0

sp and H sp
v(sp)

using the topics SetVee,SetPoint,SetVsp and the stiffness matrix K through the topic
SetStiffness. This is done by the user that communicate with the IPC node through
the following four distinct nodes

5.2.4.1 v ee node

v_ee node is used to set Hee
v(ee). Once lunched, it first wait to receive the actual H0

ee

and H0
v(ee).Then it calculates the initial Hee

v(ee)ti, memorize it and the instant in which
it has been received and start ask to the user to set the position and the orientation
of Ψv(ee) with respect to Ψee to communicate to the IPC node. Its subscribed to and
publish on the following topics:
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Subscribers
VeePose

EndEffectorPose

Publisher:
SetVee

With the function from_rot_to_omega [14] the node calculates the rotational
part of the vector form corresponding to the initial Hee

v(ee)(ti) that will be called
see

v(ee)(ti) = [(δθee
v(ee))

T (δpee
v(ee))

T ].
The user has to give as input the coordinates of the position of Ψv(ee) with respect to
Ψee (that are px, py, pz) and the desired orientation setting the rotation angles around
the axis in the order θx, θy, θz. These 6 paramenters are memorized in a 6 by one
vector.
Furthermore, since the movement from one configuration to another cannot happen
instantaneously (it would be not physically consistent, since it would means that the
supervisor inject an infinite amount of power in an infinitesimal interval), once the
user finishes to set the desired position of Ψv(ee) it has to set also the time T in which
he want to reach it. The desired position is then see

v(ee)(t f ) with t f = ti + T , where ti is
updated to the instant in which the user finish to input the data. The node generate
a five degrees polynomial trajectory from the initial to the final (desired) configu-
ration (as said just above, the node calculates the vector see

v(ee)(ti) and then each its
elements has a corresponding one in see

v(ee)(t f )). The initial and final velocity and ac-
celeration, needed by the trajectory function, are setted to zero. This function give
back the vector configuration see

v(ee)(t) corresponding to the actual istant t ∈ [ti, t f ]
Each cycle the node convert see

v(ee)(t) in Hee
v(ee)(t), using the function fromomega_torot

(that is the inverse of from_rot_to_omega) to calculate Ree
v(ee) from δθee

v(ee)(t)) and pub-
lish on the topic SetVee the position corresponding to the one generated by the
trajectory function.
The pseudo-code of this node is:
...

bool done=true;

ros::Time initial_time;

ros::Time present_time;

ros::Time final_time;

ros::Time duration;

...

%callBackFunctions

...
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void trajectory_generation()

{

present_time = ros::Time::now()()

if ( present_time <= final_time){

\% trajectory calculation

...

return;

}

done = true;

}

void main()

{

%node initialization

...

%publishers and subscribers declaration

...

while (firsts_recieved == false){}

%calculation of the initial position of v(ee)

...

from_rot_to_omega();

%start the cycle

while (ros::ok())

{

if (done == true){

set_desired_vee();

initial_time = ros::Time::now()();

done = false;

}

if (done == false){

trajectory_generation();

}

from_omega_to_rot();

SetVee.publish(Vee_pose);

}

return 0;

}

5.2.4.2 v sp node

v_sp node has the same task of v_ee node but with respect the frames Ψv(sp) and Ψsp.

63



5.2. The code

Then its working flow is the same but the topic for on which it publish and the topics
to which it is subscribed are:

Subscribers
VspPose

SetPoint

Publisher:
SetVsp

5.2.4.3 v ee and sp node

Eventually the user would like to change Hee
v(ee) and Hee

v(ee) in the same way. This is
allowed by the node v_ee_and_sp . In this case both Hee

v(ee)(ti) and H sp
v(sp)(ti) has to

be calculated during the initialization, and treat Hee
v(ee)(t) and H sp

v(sp)(t) separately, at
least during the first trajectory generation ”cycle”. After this, infact, Hee

v(ee) and Hee
v(ee)

are the same, and could be treated in the same way.
The structure of this node is the same as the previous, but the subscribers and pub-
lishers are the sum of the nodes v_ee and v_sp :

Subscribers
VeePose

VspPose

EndEffectorPose

SetPoint

Publisher:
SetVee

SetVsp

5.2.4.4 setpoint node

The setpoint node allows to move the set the matrix H0
sp. Again, it works like the

others ”point-generation” node, but the initial H0
sp(ti) is set equal to the value of H0

ee

at the istant in which the node is launched. The message corresponding to H0
sp(t)

isSetPoint. Topics involved are:
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Subscribers
EndEffectorPose

Publisher:
SetPoint

5.2.5 RViz node

To understand and literally see where the various frames are positioned in the word,
the 3D visualization tool of ROS called RViz [9] is used.
RViz allows the visualization of a 3D model of a robotic system, and the replication
of the movements of the real one, through the use of the urdf files. To understand
their syntax see [13].

Basically, in these files the model of the robotic system is built specifying its
joints (and their type, as translational or rotational) and links and their spatial rela-
tion (the displacement and RPY angles between the joint frames are required, that
can be obtained from the MDH paramenters, Fig.(4.2) ). Furthermore, since it is a
ROS tool, it is possible to communicate to RViz through specified topics. In par-
ticular, RViz automatically open and listen to the topic joint_states, interpreting
the default ROS message type sensor_msgs::JointState, to set the value of the joint
position of the 3D model. This kind of message is structured with three array of the
dimension equal to the number of the non-fixed joint of the model:

• name[] (its elements are strings that have to be equal to the names of the joints
defined in the urdf file);

• position[] (its elements are floats64 corresponding to the positions of the
joints);

• effort[] (it contains the torque applied by the actuator of each joint, eventu-
ally it can be not used).

Therefore, the name[] array is set during the node initialization and never changed
again, while position[] is updated every time the new position of the joints is re-
ceived. To visualize frames that does not belong to the model structure, that areΨee,
Ψv(ee), Ψsp and Ψv(sp), it is possible to use tools provided by the standard ROS pack-
age tf. The type of message used is the standard geometry_msgs::TransformStamped
that contains:
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• the frame_id, that is the name of the frame with respect to the frame that has
to be visualized is expressed;

• the child_frame_id, that is the name of the published frame;

• the reference time, that is the intant in which the message is published;

• the position of the frames, expressed in a 3 by one vector for the position and
a quaternion for the orientation.

These messages, one for each ”floating frame”, are published on a special topic,
called broadcaster, always provided by the tf package.
It follows that a new node, here called rviz_state_publisher is used in order to con-
vert the messages used by the other nodes in the format explained above. It will be
subscribed to the topics:

Subscribers
SetEndEffector

SetPoint

SetVee

SetVsp

FRI_MsrJnt

In the CallBack functions of the first four topics the transformation is done. For
example, concerning the end effector pose:

...

geometry_msgs::TransformStamped EndEffector_pose;

...

SetEndEffectorCallBack( const Cart_pose::ConstPtr& msg)

{

Cart_pose SetEndEffector_cart_pose=(*msg);

EndEffector_pose.header.stamp = ros::Time::now();

EndEffector_pose.transform.translation.x = SetEndEffector_cart_pose.Cart_pose[3];

EndEffector_pose.transform.translation.y = SetEndEffector_cart_pose.Cart_pose[7];

EndEffector_pose.transform.translation.z = SetEndEffector_cart_pose.Cart_pose[11];

R[0] = SetEndEffector_cart_pose.Cart_pose[0];

R[1] = SetEndEffector_cart_pose.Cart_pose[1];

R[2] = SetEndEffector_cart_pose.Cart_pose[2];

R[3] = SetEndEffector_cart_pose.Cart_pose[4];

R[4] = SetEndEffector_cart_pose.Cart_pose[5];

R[5] = SetEndEffector_cart_pose.Cart_pose[6];

R[6] = SetEndEffector_cart_pose.Cart_pose[8];
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R[7] = SetEndEffector_cart_pose.Cart_pose[9];

R[8] = SetEndEffector_cart_pose.Cart_pose[10];

fromRotationToQuaternion( R );

EndEffector_pose.transform.rotation.x = q.x();

EndEffector_pose.transform.rotation.y = q.y();

EndEffector_pose.transform.rotation.z = q.z();

EndEffector_pose.transform.rotation.w = q.w();

}

while for the callback of FRI_MsrJnt:
...

sensor_msgs::JointState Rviz_Jnt_state;

...

jointPoseCallback(const Jnt_pos::ConstPtr& msg)

{

Jnt_pos Msr_Jnt_pos==(*msg);

for( i = 0; i < 7; i++)

{

Rviz_Jnt_state.position[i] = Msr_Jnt_pos[i];

}

}

The pseudo-code of the rviz_state_publisher node is:
...

%Callback functions

void main()

{

%node initialization

...

ros::Rate r(20);

%publishers and subscribers declaration

...

while(ros::ok())

{

ToRVIZ_jointstate.publish(Rviz_Jnt_state);

br.sendTransform(SetPoint_pose);

br.sendTransform(EndEffector_pose);

br.sendTransform(v_ee_pose);

br.sendTransform(v_sp_pose);

}

}

Notice that the rate of this node is quite low, since it is used just for visualization
and it is not necessary to execute it at a high frequency (and a high rate could busy
the CPU too much, affecting the performances of the controller). Since the trans-
formation of messages are done directly in the callbacks function, only publication
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of the various messages are required in the while loop.
The last things visualized by RViz are the wrenches imposed by the IPC with respect
the frames Ψee and Psiv(ee). A screenshot that show how RViz looks like follows:

Figure 5.12. Screenshot of the RViz interface

A scheme of the interaction between all these ROS nodes is given in Figure
5.13. Notice that is really similar to the control scheme of the IPC (Fig. 5.7)

Supervisor

IPC

setpoint

v_ee_and_sp

or

v_ee v_spand

FRI

rviz_state_publisher

to KRC

to RViz

Figure 5.13. Nodes comunication
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Analysis of the RCC

The Remote Center of Compliance device (RCC) was designed in principle to assign
some compliance to the end effector of robots that had to task a classical peg in hole.
RCC was necessary because first robotic arms didn’t allow to reach a compliant
behaviour. Therfore, to compensate some misalignment between the peg and the
hole, a passive compliant device attached between the tip of the robot and the peg
was needed. A scheme of the working principle is Figure (6.1)

Figure 6.1. The Remote Center of Compliance

To understand how exactly it is designed, it is suggested to have a look at [3].
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Basically, it consists of two parallel rigid plates, linked with a system of springs
and dampers. These springs are designed and regulated in such a way that the result-
ing total center of stiffness (corresponding to the center of compliance) is coincident
with the tip of the peg (see Figure 6.1. Furthermore, the stiffness matrix is diagonal
with quite low lateral stiffness and high stiffness along the vertical axis of the RCC
and around all the axis.
In this way, a lateral misalignment between the peg and the hole is compensated by
the RCC, helped also by the slope (that in Figure 6.1 is either on the edge of the peg
and on the edge of the hole), whose lower plate slides allowing the insertion. Slope
can be only on one of the two edges.

6.1 Replication of the RCC

Since the IPC is passive and it is possible to set the center of stiffness and its relative
stiffness matrix K, it is possible to intrinsically replicate the behaviour of the RCC.
To be precise, it is possible to set the stiffness with respect to Ψv(ee). Therefore, the
stiffness matrix that the user set is indicated as Kv(ee). Remember that it is defined
with respect to the configuration corresponding to the identity between Ψv(ee) and
Ψv(sp). Generally speaking, to replicate the RCC, Kv(ee) has to be:

Kv(ee) =



ko,x 0 0 0 0 0
0 ko,y 0 0 0 0
0 0 ko,z 0 0 0
0 0 0 kt,x 0 0
0 0 0 0 kt,y 0
0 0 0 0 0 kt,y


; ko,x, ko,yko,z, kt,z big kt,x, kt,y small

(6.1)

Set Hee
v(ee) = Hsp

v(sp) = I means that Kee = Kv(ee), and therefore the same behavior of
the RCC is achieved.
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Hole

45◦

�80mm

80mm

�31.85mm
20mm

43mm

Shaft

�30.05mm

150mm

Base

24.65mm

�61.25mm

Figure 6.2. Shapes and quotes of the hole (left) and of the peg, composed by the hole and hole
(right).

The simulation has been done using a peg attached to the tip of the KUKA
LWR4+ composed by the base and the shaft corresponding to the ones shown in
Figure (6.2). Always in Fig. (6.2) it is indicated the shape of the used hole.
The difference between the hole diameter and the peg diameter (to be precise, the
diameter of the shaft) is 1.8mm .
The total height of the peg is hpeg = 0.17465m. Considering also the offset between
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the frame of the 7-th joint and the tip of the arm (see Fig. (4.2), H7
(ee) was set by the

supervisor at:

H7
(ee) =


1 0 0 0
0 1 0 0
0 0 1 0.17465 + 0.078
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 1 0.25265
0 0 0 1

 (6.2)

During simulation, the position of the bottom of the hole with respect to the base of
the KUKA LWR+ was:

p0
hole =


x0

hole

y0
hole

z0
hole

 =

−0.5783
0.0105
0.0206

 m (6.3)

To create the desired misagnment the positions along x0 and y0 of the setpoint frame
Ψsp were constant and set to:

x0
sp = 0.02m

y0
sp = 0.57m

Simulations has been done creating a cyclic ”up and down”, with a trajectory on z

going from 0.08m to 0.02m in the following way:

%start cycle

1 second to 0.08m;

from 0.08m to 0.02m in 2 seconds with a 5th degree polynomial;

1 second to 0.02m;

from 0.02m to 0.08m in 2 seconds with a 5th degree polynomial;

%end cycle

Notice that the end value of the trajectory is a little bit lower than the real bottom
altitude of the peg. This is done to be sure that the arm always push to go down.
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Chapter 6. Analysis of the RCC

The replication of the RCC was made with the stiffness matrix

Kv(ee) = Kee =



100 0 0 0 0 0
0 100 0 0 0 0
0 0 100 0 0 0
0 0 0 400 0 0
0 0 0 0 400 0
0 0 0 0 0 1000


(6.4)

Remember that the orientation terms have a mesure unit Nm/rad, while the trans-
lational ones are N/m. Therefore, 100 is a really high value for orientation terms,
while 400 is quite low for the translations.
Results corresponding to this stiffness matrix and with Hee

v(ee) = H sp
v(sp) = I are shown

in the following plots.
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6.1. Replication of the RCC

As plots show, the misalignment on x and y is always ”compensated” (look at
the blue lines on the relative plots) and simultaneously the peg is allowed to descend
along z. The . The task is always completed.
The two next plots show the forces along the axis and the torques around the same
axis respectively, in order to understand the amount of stress that the arm apply to
the hole. These will be usefull later, to compare other results.

As shown above, the replication of the RCC works pretty good. Anyway the
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Chapter 6. Analysis of the RCC

stress on the hole could be too high (in particular the forces at which it is subjected),
expecially if the material is soft and delicate. A solution could be define Hee

v(ee) and
H sp

v(sp) different from the identity, movingΨv(ee) and Ψv(sp) along the z axis of Ψee and
Ψsp respectively.

Hee
v(ee) = Hv(sp)

sp =


1 0 0 0
0 1 0 0
0 0 1 z

0 0 0 1

 (6.5)

where with z is indicated the distance along ẑv(ee) and ẑv(sp) between the frames Ψee
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6.1. Replication of the RCC

and Ψv(ee) and the frames Ψsp and Ψv(sp).
From Equations (5.11), the relation between Kee and Kv(ee) is given by means of the
Adjoint map AdHv(ee)

ee
.

Consider always a Kv(ee) diagonal as in Eq. (6.1). It follows that applying the
homogeneous matrix of Eq. (6.5) to Eq. (5.11):

AdHvee
ee
=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 −z 0 0 1 0
z 0 0 0 0 1


(6.6)

Kee =



ko,x + z2kt,y 0 0 0 zkt,y 0
0 ko,y + z2kt,x 0 −zkt,x 0 0
0 0 ko,z 0 0 0
0 −zkt,x 0 kt,x 0 0

zkt,y 0 0 0 kt,y 0
0 0 0 0 0 kt,y


(6.7)

Such a positioning between Ψee and Ψv(ee) induces a stiffness matrix Kee with
orientational stiffness around x̂ee and ŷee that are greater than the of Kee, proportional
to the square of the distance z, while the translational terms kt,i remain the same.
Furthermore, Kc (see Eq. (5.15)) is no more null.
Let’s see how this kind of configuration can influence the peg in hole task.
To compare this case with the previous one, that is the normal RCC, it would be
nice to have similar values on the diagonal of Kee. The idea is to set a Kv(ee) with
diagonal terms not null, in order to always be able to control either the position and
the orientation. In this way, thinking about a real use of it, it is possible to properly
control the robot during free motion, setting Hee

v(ee) = I, and once in proximity of the
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hole, move Ψv(ee) along ẑee of the desired value. Simulations were made using:

Kv(ee) =



5 0 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 400 0 0
0 0 0 0 400 0
0 0 0 0 0 1000


(6.8)

If then z is set to 0.5m (that is the distance position of the origin of Ψee along ẑv(ee)):

Kee =



105 0 0 0 200 0
0 105 0 −200 0 0
0 0 5 0 0 0
0 −200 0 400 0 0

200 0 0 0 400 0
0 0 0 0 0 1000


(6.9)

Its diagonal is almost the same of the one of Eq. 6.5 (out of 5 for the orientational
terms). Here below the results of the simulation of this setting are shown.
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6.1. Replication of the RCC

The peg in hole is done also in this case. Anyway, there are some losses along
z (see plot). Indeed, the lowest position the peg reaches this time is higher than the
previous, and then it does not reaches perfectly the bottom of the hole.
But look at the following plots, that compare each force and torque applied to the
hole in the two different cases.
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6.1. Replication of the RCC

The maximum absolute values of each force/torque in the last case are always
lower with respect to the ”original” RCC. This happen thanks to the coupling terms
created setting the distance on the z axis different from zero.
Only mz could be considered the same, or at least really similar. This result is
completely consistent with the analysis of the stiffness matrices. Indeed, only the
relations between mz and fz and the displacements in Kee do not change with respect
the ones in Kv(ee). The reason why also fz is lower is that it is influenced by the re-
actions along x and y axis.
To conclude, more z is high more the performances increase: the evolution of z fol-
lows better the setpoint and the stress on the hole is lower.

This results show that, within this technique it is possible to act a peg in hole
decreasing the stress imposed to the hole. Anyway, a compromise with the perfor-
mance on position is needed.
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Conclusions

The work of this thesis is finished. A fully analysis of the port-Hamiltonian frame-
work was done. It was shown that this framework leads to an energetic interpre-
tation of systems and their interactions. This approach completely reflects what
happens in nature. Therefore, approaching the problem of the control of a plant in
this framework means to understand which kind of behaviour is desired and that is
possible to achieve it always through the energetic approach, by means of control
by energy shaping and damping injection. Port-Hamiltonian framework allows also
to easily introduce all the concepts belonging to the Passivity Theory. If these are
applied to the control issues by means of the control by interconnection, it is possi-
ble to control the behavior of the plant such that it is ALWAYS passive, that is the
IPC. The main advantage given by this is that it is possible to ensure an intrinsically
safety behavior of the robot system. The anylisis of the replication of the Remote
Center of Compliance through the IPC shows that such devices are no more nec-
essary if it is possible to control the arm with ”torque controls”. Finally, using the
features of the IPC in a clever and proper way, it has been shown that RCC can be
improved in the forces applied to the hole. This could be really useful if the task
of the peg-in-hole has to take place with a soft hole. Regulating the IPC configu-
ration, it is possible to decrase as much as necessary the stress to which the hole is
subjected.

Further works could be made in order to understand how the behavior at the end
effector changes as a function of the configuration of the IPC, through the interpre-
tation of the stiffness matrix Kee. What happens if a translation along another axis
is operated? And if a rotation of Ψv(ee) is made instead of a translation? And what if
both are operated simultaneously? Other useful behaviors, as the one achieved with
a tralsation along z, could be achieved also with respect to the forces applied to the
environment.
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Appendix A

Mathematical Background

In this Appendix several concept are defined. These are useful to understand the
work did in this thesis. A deeper analysis and explanation of these topics can be
found in [5] and [11].

A.1 Linear algebra

Definition A.1.1. Mappings Given two sets A and B, we call a map f from A to B

and we denote it as:
f : A→ B; f (a) 7→ b

an operation which associates to each element a ∈ A a unique element f (a) ∈ B.
The set A is called the domain of the map and B its co-domain.The set of all b ∈ B

such that there exists an a ∈ A with f (a) 7→ b is called the range of f .

Definition A.1.2. Surjective, injective, bijective A mapping f : A → B is surjec-

tive if its range is equal to its co-domain. It is injective if for every b in its range
there is exactly one a ∈ A such that f (a) 7→ b. A mapping is bijective if it is injective
and surjective.

Definition A.1.3. Diffeomorphism A mapping ϕ : Rn → Rn is a diffeomorphism if
and only if it is bijective and ϕ and ϕ−1 are differentiable.

Definition A.1.4. Algebraic structure An algebraic structure is a pair (A,T ) for
which A is a set and T is an internal binary operator, which means T is a map of the
following form:

T : A × A→ A
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A.1. Linear algebra

Definition A.1.5. Identity element and inverse element The identity element for
an algebraic structure (A,T ) is an element u ∈ A for which:

T (a, u) = T (u, a) = a∀ a ∈ A

Furthermore, given the identity element u, we say that a ∈ A has inverse iff ∃ b ∈ A,
which is denoted by a−1 such that T (a, a−1) = T (a−1, a) = u.

Definition A.1.6. Associative and commutative property An algebraic structure
satisfies the associative property iff:

T (T (a, b), c) = T (a,T (b, c))∀ a, b, c ∈ A

while it satisfies the commutative property iff:

T (a, b) = T (b, a))∀ a, b ∈ A

Definition A.1.7. Group An algebraic structure (A,T ) that satisfies the associative
property, it has an identity element and for each element in A there exist an in-
verse is called group. A group that satisfies the commutative property is called a
commutative ora Abelian group.

Definition A.1.8. Vector Space A real vector space V is a set of elements (called
vectors), one element called the identity (or zero-vector

−→
0 ), and two operations ⊕

(addition of two vectors) and · (multiplication of a vector by a scalar), such that

• ∀ v1, v2 ∈ V also v1 ⊕ v2 ∈ V

• ∀ v1 ∈ V and ∀ x ∈ R also x · v ∈ V

• ∀ v1 ∈ V there exist v−1 ∈ V such that v1 ⊕ v2 =
−→
0

and such that the following properties holds for all v1, v2, v3 ∈ V and x1, x2 ∈ R

• 1 · v1 = v1;

• v1 ⊕
−→
0 = v1;

• x1 · (x2 · v1) = (x1x2) · v1;

• (v1 ⊕ v2) ⊕ v3 = v1 ⊕ (v2 ⊕ v3);
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• (x1 + x2) · v1 = (x1 · v1) ⊕ (x2 · v2);

• x1 · (v1 ⊕ v2) = (x1 · v1) ⊕ (x1 · v2).

Definition A.1.9. Dual vector space The dual space V∗ of the vector space V is the
space of the all linear mappings (called co-vectors) from V to R, i.e all mappings
f : V → R such that ∀vi ∈ V and∀xi ∈ R

f ((x1 · v1) ⊕ . . . ⊕ (xk · vk)) = x1 f (v1) + . . . + xk f (vk)

Definition A.1.10. Dual product The dual product is the natural pairing of an
element v ∈ V and an element f ∈ V∗ as ⟨ f |v⟩ := f (v) ∈ R. Often the elements
belonging to V are called flows, while the ones belonging to V∗ are called efforts.

Definition A.1.11. Tensor Given a vector space V and its dual V∗, a tensor T is a
mapping of the form

T : V∗ × · · · × V∗︸          ︷︷          ︸
p times

×V × · · · × V︸        ︷︷        ︸
q times

→ R

that is linear in all its arguments. The tensor T is said to have order p + q, order p

contra-variant and order q co-variant, and is a type (p, q) tensor.

Definition A.1.12. Lie algebra A Lie algebra is a vector space together with a
bilineary opearator

[
.
]

: V ×V → V (called Lie bracket or commuator), that satisfies
the following properties for all v1, v2, v3 ∈ V and x1, x2 ∈ R:

• bilinearity:


[
x1v1 + x2v2, v3

]
= x1

[
v1, v3

]
+ x2

[
v2, v3

]
[
v1, x1v2 + x2v3

]
= x1

[
v1, v2

]
+ x2

[
v1, v3

]
• skew-symmetry:

[
v1, v2

]
= −

[
v2, v1

]
• Jacobi’s identity:

[
v1,

[
v2, v3

]]
+

[
v2,

[
v3, v1

]]
+

[
v3,

[
v1, v2

]]
= 0

A.2 Differential geometry

Definition A.2.1. Manifold A manifold is intuitively defined as a set which is lo-
cally diffeomorphic to Rn around each of its points.
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Definition A.2.2. Tangent space Given a manifoldM, we define the tangent space
TpM toM at p as the linear space of mappings of the following form:

Xp : C∞ → R

satisfying the following:

• Linearity: Xp(α f + βg) = α(Xp f ) + β(Xpg)

• Leibniz rule: Xp( f g) = (Xp f )g(p) + f (p)(Xpg)

Definition A.2.3. Canonical Projection A canonical projection for the tangent
space TpM to the manifoldM is a mapping of the following form:

π : TpM→M; (x, v) 7→ x

Definition A.2.4. Vector field We call a smooth mapping of the following form a
vector field:

X :M→ TM

Definition A.2.5. Co-vector field We call a smooth mapping of the following form
a co-vector field:

X∗ :M→ T ∗M

Definition A.2.6. Lie group A Lie group (M, o) is a manifold M whose points,
together with a binary operator ”o” defined on them, form a group.

X∗ :M→ T ∗M

Definition A.2.7. Lie Derivative The derivative of a function f along the vector
field X is a map defined onM and it is defined by:

LX f :M→ R; LX f (x) =
∂T f
∂x

X(x) x ∈ M (A.1)
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An Introduction to Bond-graphs

In this appendix the main rules and elements of the bond graphs will be presented.
The Bond graph is a language that allows to represent a physical system in a graph-
ical way. The main difference from the well known block diagrams representation
is that bond graph are built in such a way that the first principle of the thermody-
namics, the conservation of the energy, is assured.
Indeed, the vertices, or elements, of a bond-graph represent the physical concepts
of energy storage, dissipation or transformation, while the edges, here called power

bonds, represent the energy flow, that by definition is the power, between two el-
ements of the graph. This energetic approach is also physical convenient: the dy-
namics of a system are due to an exchange of energy among the different parts of
the system. This holds for each physical domain, from the electromagnetic to the
thermic. It follows that the bond-graph language easily allows the representation of
a network of systems belonging to different domains.
Another difference between bond graphs and other graphical representation, such
as block diagrams, is the absence of causality. In block diagrams the exchange of
information between two blocks A and B is represented with an arrow. So an ar-
row representing a variable x going from A to B means that A produce x and give
it to B that use it. This change of information is causal: x is an effect of A and a
cause for B. Often this causality is physically artificial and not justified. Thinking
about an electrical resistor, there is no reason why the current must be an effect of a
voltage or vice versa. Bond graph allow us to not consider the causality during the
modelling phase and to introduce it only when simulation is needed.
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B.1. The bonds

A B
e ∈ R
f ∈ R

A B
e ∈ Rn

f ∈ Rn

Figure B.1. A general bond-graph: single-bond (left) and multi-bond (right)

B.1 The bonds

Edges in the bond graphs are called power bonds, or, shortly, bonds, and represent
the power exchanged between two elements. Bonds are represented as half arrows,
and then the direction of the arrows represent the direction of the power passing
through them.
In each physical domain there are two variables that multiplied give a result dimen-
sionally equal to power, as velocities v and forces F in the mechanical translational
domain or currents i and voltages v in the electrical domain. These couples of vari-
ables are called power conjugate variables, and for each of them a variable is called
flow and the other is called effort. In the generic case, a flow is indicated as f and
an effort as e. A list of flows and efforts for each domain is shown in Table B.1.

Physical Domain Flow Effort
Electromagnetic current i voltage v
Mechanical translational lin. velocity v force F
Mechanical rotational ang. velocity ω torque τ
Hydraulic flow rate Q pressure p
Thermic entropy flow Ė temperature T

Table B.1. Flows and efforts in different domains

It follows that for each bond we can explicit its effort and flow. The notation
impose that the effort value must be indicated above an horizontal and on the left
of a vertical one and the dual flow under an horizontal bond and on the right side
of a vertical one. Also, these variables can be single or multi-dimensional. Then a
single-bond or a multi-bond is used to explicit it, as shown in figure B.1.

As said before, if needed the causality can be expressed. This is done using the
causal stroke that specify the direction of the relative effort. As a consequence, the
dual flow has the opposite direction. The reason is that if an element could impose
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both effort and flow, it could set the power flow P = eT f independently of the rest
of the system and, therefore, it could extract infinite energy from the other system
and this in physically inconsistent.
An example of the introduction of the causality can be seen always in Figure B.1.
In the single-bond graph the causal stroke is on the left of the bond. This means that
the effort e goes from B to A, and so the flow goes from A to B. Conversely, in the
multi-bond graph the causal stroke is on the right of the bond. This means that the
effort e goes from A to B, and so the flow goes from B to A.

B.2 Energy Storage elements

A storage element represent a physical storage of energy in a model. Real examples
of such elements are springs or inductors. A storage element in his integral form is
characterized by:

• An input u

• An output y

• A physical state x

• An energy function E(x) of the state x

The term ”integral form” means that the state of the element results from the
integration of the input (x(t) = x(t0)+

∫ t

t0
f (s)ds). The state space equations of these

kind of system are:

ẋ(t) = u(t) (B.1)

y(t) = γ(x(t)) =
∂E
∂x

(t) (B.2)

In the physical modelling,inputs are either efforts or flows. Then, if u is an
efforts f must be a flow and vice versa. It follows that the power resulting from the
dual product of u and f is equal to the power supplied to the storage element and
the bond connected to this element has as effort and flow the input and output of
the equations B.1 and B.2. Furthermore, due to the nature of the storage element,
the half arrow of the power bond conneceted to it, indicating the direction of the
positive power, must be ALWAYS directed towards the element.
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B.2. Energy Storage elements

The inputs of the storage element can be either an effort and a flow. Then two types
of storage elements in their integral form can be defined, depending on which kind
of input is considered. These two elements are called C and I.

B.2.1 C element

A C element is a storage element that in its integral form as a flow as the input u and
as a consequence has the dual effort as an output y. Then, the causal stroke is not
on the side of the element. The representation of a C element in its integral form is
shown on the left side of Figure B.2.

C C

Figure B.2. C element in its integral (left) and differential (right) forms

Since the state x is the integral of a flow it is called generalized displacement

and the energy, function of a generalized displacement, is called generalized poten-

tial energy. Inverting inputs and outputs, so to have an effort as input and a flow
as output, the result is the differential form, since there is a differentiation in the
equations of the model, as it will be shown in few moments.
In this form the ”flow” of the variables is inverted and then the inverse of γ(·) and
a derivative action is needed. In the same way as γ is a gradient of the energy
function, γ−1 can be calculated as the gradient of a new function which is called
co-energy, since it is not more function of the state (like an energy function is for a
C element) but a function of an effort:

E∗(e) =⇒ γ−1(e) =
∂E∗(e)
∂e

The causal representation of the differential form of a C element is shown on
the right side of Figure B.2 and its state space equations are:

x(t) = γ−1(e) =
∂E∗(e)
∂e

(B.3)

y(t) =
dx
dt

(t) (B.4)
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The multidimensional case of C is �.

B.2.2 I element

A I element is a storage element that in its integral form as an effort as the input
u and as a consequence has the dual flow as an output y.Then, the causal stroke is
on the side of the element. The representation of a I element in its integral form is
shown on the left side of Figure B.3.

I I

Figure B.3. I element in its integral (left) and differential (right) forms

Since the state x is the integral of an effort it is called generalized momenta and
the energy, function of a generalized displacement, is called generalized kinetic en-

ergy. Inverting inputs and outputs, so to have an effort as input and a flow as output,
the result is the differential form, since there is a differentiation in the equations of
the model.
In this form the ”flow” of the variables is inverted and then the inverse of γ(·) and
a derivative action is needed. In the same way as γ is a gradient of the energy
function, γ−1 can be calculated as the gradient of a new function which is called
co-energy, since it is not more function of the state (like an energy function is for a
I element) but a function of a flow:

E∗( f ) =⇒ γ−1( f ) =
∂E∗( f )
∂ f

The causal representation of the differential form of a I element is shown on the
right side of Figure B.3 and its state space equations are:

x(t) = γ−1( f ) =
∂E∗( f )
∂ f

(B.5)

y(t) =
dx
dt

(t) (B.6)

The multidimensional version of I is denoted as �.
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B.3 Energy Dissipation element

Excluding thermic domain from the analysis, it is possible to consider elements
which dissipate energy, like electrical resistors or mechanical dampers. An ideal
dissipator has no-state and its characteristic equation is a static relation between an
effort and a flow:

e = Z( f ) (impedance form) (B.7)

f = Y(e) (admittance form) (B.8)

for which, the following must hole:

Z( f ) f ≤ 0 or eY(e) ≤ 0 (B.9)

This last condition ensure that the energy can flow just toward the element but
cannot be generated by the element because otherwise we would have for example
that if Z( f ) f > 0 would result in:

Pout = −Pin = −Z( f ) f > 0 (B.10)

The bond graph representation of a dissipation element is shown in Figure B.4

R :r
e
f

Figure B.4. Bond graph representation of a dissipation element

B.4 Energy Transformation elements

The element analyzed since now are characterized only by one port power. There
are also elements with two power ports, corresponding to the two power bonds
connected to the element, like electrical transformers and mechanical reducers. This
kind of element are ideal and power continuous which means that in each instant of
time the power flowing into the element from one of the two ports (input bond) is
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Figure B.5. Bond-graph representation of transformers

identical to the one flowing out from the other port (output bond). As a consequence,
the element cannot store energy. Then, the following equation must holds:

Pin = eT
in fin = eT

out fout = Pout (B.11)

Furthermore, these elements describe a linear relation between one of the exter-
nal variable on one port to one of the external variables on the other port. Depending
which variables this relation takes into account the element can be a transformers

or a gyrator.

B.4.1 Transformers

A transformer describe a linear relation between flows and, due to the power conti-
nuity, a linear relation also between efforts of the two ports. Its bondgraph symbol
is TF and its characteristic equation is:

fout = n fin (B.12)

where n is the linear constant characterizing the transformer. The power conti-
nuity impose that

Pout = eout fout = eoutn fin = ein fin = Pout (B.13)

and so

ein = neout or eout =
1
n

ein (B.14)
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This equations are used, for example, to describe the model of a gear-box. As
well-known, its reduction ratio can be changed. This means that n is no more con-
stant. In bond-graph representation this is achieved adding a signal port, not a
power port, as input for the transformer. This transformers are called modulated

transformers and their bond-graph symbol is MTF. The general representation of
single-bond transformers TF and modulated transformers MTF is shown on the left
side of Figure B.5.

B.4.1.1 Transformers in multi-dimensional domain

If the bonds a multi-dimensional (for example n), then the constant of the trans-
former N ∈ Rn × Rn and the equations that characterize the transformers are:

fout = N fin ein = NTeout (B.15)

The concepts applied to the single-dimensional case for a modulated trans-
former can be applied also to the multi-dimensional case. A multi-dimensional
transformer is indicated as �� and the modulated case as���. Representation of
these elements are on the right side of Figure B.5.

B.4.2 Gyrators

A gyrator, differently to a transformer, relates the output effort with the input flow .
Its bond-graph symbol is GY and its characteristic equation is:

eout = n fin (B.16)

where n is the linear constant characterizing the gyrator. The power continuity
impose that

Pout = eout fout = n fin fout = ein fin = Pout (B.17)

and so

ein = n fout or fout =
1
n

ein (B.18)

A perfect example of a gyrator is a DC motor, in which the electrical power
flows in and the mechanical power flows out, coupling the resulting torque τ with
the current i by the motor constant K.
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Figure B.6. Bond-graph representation of gyrators

As for the transformers, the characteristic ratio of a gyrator can be a variable. Again,
this is represented adding a signal port as input for the gyrator and it is called mod-

ulated transformers, indicated as MGY. The general representation of single-bond
transformers GY and modulated transformers MGY is shown on the left side of
Figure B.6.

B.4.2.1 Gyrators in multi-dimensional domain

If the bonds a multi-dimensional (for example n), then the constant of the trans-
former N ∈ Rn × Rn and the equations that characterize the gyrator are:

eout = N fin ein = NT fout (B.19)

Again, multi-bonds gyrator cab be modulated. A multi-dimensional gyratir is
indicated as �� and the modulated case as���. Representation of these elements
are on the right side of Figure B.6.

B.5 Energy Source elements

Energy source elements are sources of either a flow or an effort and are called re-
spectively flow source and effort source and indicated as S f and Se, or as � f and �e

in the multi-dimensional case.
An effort source can supply an effort independently of the dual flow, as a flow source
can supply a flow independelty of the dual effort.
Being sources, the power bond direction goes always out, because the positive flow
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of energy is the power Psource = eT f . Bond-graph representation of the sources are
shown in Figure B.7

S ee :
e
f

S ff :
e
f

Figure B.7. Bond-graph representation of sources

B.6 Junction elements

Junction elements are the elements that allow the interconnection between all the
types of elements explained above. How elements are interconnected specify how
the energy flows in the modeled system.
The specification of the interconnections can be done using a generalization of
Kirchhoff’s laws. Furthermore, junctions can have any number of bonds attached
to them and, as for the other elements, are power continuous which means that the
total power flowing in must be equal to the total one flowing out. According to the
generalization of Kirchhoff’s laws the types of junctions are two, respectively called
0-junction and 1-junction.

B.6.1 0-junction

The 0-junction is characterized by the fact that all bonds connected to it are con-
strained to have the same effort value at all times. For this reason, this junction
is also called effort junction. This propriety implies two things: the first is that,
causally speaking, only one of the bonds connected to the junction will set the ef-
fort value and all other bonds ”use” it, while the second is that, due to the power
continuity, the sum of the flows of the all entering bonds must be equal to the sum
of the flows of all the exiting bonds. According to the Figure B.8 the characterizing
equations of a 0-junction are:

ei1 = . . . = eim = eo1 = . . . = eon (B.20)
m∑

k=1

fik =

n∑
k=1

fok (B.21)
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Figure B.8. Bond-graph representation of 0-junction and 1-junction

B.6.2 1-junction

The 1-junction is characterized by the fact that all bonds connected to it are con-
strained to have the same flow value at all times. For this reason, this junction is also
called flow junction. Than, as for the 0-junction, only one of the bonds connected
to the junction will set the flow value and all other bonds ”use” it, while the second
is that, due to the power continuity, the sum of the efforts of the all entering bonds
must be equal to the sum of the efforts of all the exiting bonds. According to the
Figure B.8 the characterizing equations of a 1-junction are:

fi1 = . . . = fim = fo1 = . . . = fon (B.22)
m∑

k=1

eik =

n∑
k=1

eok (B.23)
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