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Recent advances on Bayesian inference for
P (X < Y )

Laura Ventura∗ and Walter Racugno†

Abstract. We address the statistical problem of evaluating R = P (X < Y ), where
X and Y are two independent random variables. Bayesian parametric inference is
based on the marginal posterior density of R and has been widely discussed under
various distributional assumptions on X and Y . This classical approach requires
both elicitation of a prior on the complete parameter and numerical integration
in order to derive the marginal distribution of R. In this paper, we discuss and
apply recent advances in Bayesian inference based on higher-order asymptotics and
on pseudo-likelihoods, and related matching priors, which allow one to perform
accurate inference on the parameter of interest R only, even for small sample
sizes. The proposed approach has the advantages of avoiding the elicitation on the
nuisance parameters and the computation of multidimensional integrals. From
a theoretical point of view, we show that the used prior is a strong matching
prior. From an applied point of view, the accuracy of the proposed methodology
is illustrated both by numerical studies and by real-life data concerning clinical
studies.

Keywords: Asymptotic expansions, Frequentist coverage probability, Matching
prior, Modified likelihood root, Modified profile likelihood, Nuisance parameter,
ROC curve, Stochastic precedence, Stress-strength model, Tail area probability

1 Introduction

This contribution deals with parametric Bayesian inference on R = P (X < Y ), where
X and Y are two independent random variables. In spite of its apparent simplicity, the
topic of inference on P (X < Y ) - usually referred to as the stress-strength model - has
obtained wide attention in the literature, including quality control, engineering statis-
tics, reliability, medicine, psychology, biostatistics, stochastic precedence, and proba-
bilistic mechanical design (see, e.g., Johnson, 1988, and Kotz, Lumelskii and Pensky,
2003, for a review). For example, in a reliability study, where Y is the strength of a
system and X is the stress applied to the system, (1 − R) measures the chance that
the system fails. In a clinical study, an example of the application of R is given by
treatment comparisons, where X and Y are the responses of a treatment and a control
group, respectively, and 1−R measures the effectiveness of the treatment. Alternatively,
for diagnostic tests used to distinguish between diseased and non-diseased patients, the
area under the receiver operating characteristics (ROC) curve, based on the sensitivity
and the complement to specificity at different cut-off points of the range of possible test
values, is equal to R.
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Bayesian inference about R has been studied under both parametric and nonpara-
metric assumptions; see, among others, Guttman and Papandonatos (1997), Ghosh and
Sun (1998), Kotz, Lumelskii and Pensky (2003), Chen and Dunson (2004), Erkanli et
al. (2006), Dunson and Peddada (2008), Hanson, Kottas and Branscum (2008), and
references therein. Here, we focus on Bayesian parametric inference, which has been
discussed under various distributional assumptions on X ∼ fX(x|θx) and Y ∼ fY (y|θy),
with θ = (θx, θy) ∈ Θ ⊆ IRd, d ≥ 2. The classical way to perform Bayesian inference
is to derive the marginal posterior probability density function (pdf) of R, using trans-
formation rules. This approach requires both the assumption of a prior pdf on the
complete parameter θ and numerical integration.

In this paper we discuss and apply recent advances in Bayesian inference, based on
higher-order asymptotics (see, e.g., Reid, 1995, 2003, Brazzale, Davison and Reid, 2007)
and on pseudo-likelihoods and related matching priors (Ventura, Cabras and Racugno,
2009), to perform accurate inference on the parameter of interest R, even for small
sample sizes. The proposed approach has the advantages of avoiding the elicitation on
the nuisance parameters and the computation of multidimensional integrals. From a
theoretical point of view, we show that there is a strong agreement between frequentist
and Bayesian results, since the corresponding approximate tail areas are proved to be
identical. From a computational point of view, the accuracy of the proposed methodol-
ogy is illustrated both by numerical studies and by real-life data concerning results of
two clinical studies.

The outline of the paper is as follows. In Section 2 we briefly review parametric
Bayesian inference on R. In Section 3 we discuss recent advances on Bayesian inference
on R. Section 4 illustrates numerical studies, when X and Y are both independent
exponential or normal random variables. Moreover, we perform two applications to
real-life data concerning clinical studies. Concluding remarks are given in Section 5.

2 Background on Bayesian inference

Let X and Y be independent random variables with cumulative distribution functions
FX(x; θx) and FY (y; θy), respectively, with θx ∈ Θx ⊆ IRdx and θy ∈ Θy ⊆ IRdy ,
d = dx + dy. By definition, R can be evaluated as a function of the entire parameter
θ = (θx, θy), through the relation

R = R(θ) = P (X < Y ) =
∫

FX(t; θx)fY (t; θy) dt . (1)

Theoretical expressions for R are available under several distributional assumptions
both for X and Y (see, e.g., Kotz, Lumelskii and Pensky, 2003).

Let x = (x1, . . . , xnx) be a random sample of size nx from X and let y = (y1, . . . , yny )
be a random sample of size ny from Y . Let π(θ) = π(θx, θy) be a prior pdf on θ. Let
π(θ|x, y) ∝ π(θ) L(θ) be the posterior pdf of θ, where L(θ) = L(θ;x, y) is the likelihood
function for θ based on x and y.

Bayesian inference on R is based on the derivation of the posterior pdf of R, which can
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be obtained using a suitable one-to-one transformation of θ of the form F : θ → (R, λ),
with inverse Q = F−1. Then, the joint posterior pdf of (R, λ) is given by π(R, λ|x, y) =
π(Q(R, λ)|x, y) |JQ(R, λ)|, where |JQ(R, λ)| is the Jacobian of the transformation Q, so
that

πR(R|x, y) =
∫

π(Q(R, λ)|x, y)|JQ(R, λ)| dλ

=
∫

π(R, λ|x, y) dλ . (2)

The most common choices for the Bayes estimator of R are the mode or the expectation
over (2). The posterior pdf can also be used for construction of Bayesian credible sets
for R. For applications of (2) see, among others, Reiser and Guttman (1986, 1987),
Ghosh and Sun (1998), and Guttman and Papandonatos (1997).

The Bayesian approach based on (2) may present some difficulties. First of all,
it requires the elicitation of a prior on the complete parameter θ, which may be dif-
ficult both in the subjective and objective Bayesian context, in particular when d is
large. Second, cumbersome numerical integration may be necessary in order to derive
the marginal distribution of R. This latter difficulty can be avoided using higher-order
asymptotics (see, e.g., Reid, 1995, 2003, and Brazzale, Davison and Reid, 2007), i.e.,
accurate approximations of a marginal posterior, which provide very precise inferences
on a scalar parameter of interest even when the sample size is small. Frequentist in-
ference on R based on higher-order asymptotics is discussed in Jiang and Wong (2008)
and Cortese and Ventura (2009). We now present an asymptotic expansion of (2), and
of the corresponding tail area probability, for Bayesian inference on R.

Let us denote by `p(R) = log L(R, λ̂R) the profile log-likelihood for R, where λ̂R is
the constrained maximum likelihood estimate of λ given R. Moreover, let (R̂, λ̂) be the
full maximum likelihood estimate, and let jp(R) = −`′′p(R) be the observed information
corresponding to the profile log-likelihood. Standard results for partitioned matrices
give |jp(R)| = |j(R, λ̂R)|/|jλλ(R, λ̂R)|, where j(R, λ) is the observed Fisher information
from `(R, λ) = log L(R, λ) and jλλ(R, λ) is the (λ, λ)-block of j(R, λ).

The marginal posterior pdf (2) can be approximated by expanding L(R, λ) as a
function of λ about λ̂R at the numerator and by using the Laplace approximation to
the denominator (see, e.g., Tierney and Kadane, 1986, Reid, 1995). We have

πR(R|x, y) =̇ πH
R (R|x, y)

∝ |jp(R̂)|1/2 exp{`p(R)− `p(R̂)} |jλλ(R̂, λ̂)|1/2

|jλλ(R, λ̂R)|1/2

π(R, λ̂R)

π(R̂, λ̂)
, (3)

where the symbol “=̇” indicates that the approximation to πR(R|x, y) is accurate to
O(n−3/2) (see Tierney and Kadane, 1986). Note that the approximation (3) depends
on simple likelihood quantities evaluated at (R̂, λ̂) or at (R, λ̂R).

The corresponding O(n−3/2) approximation to the marginal posterior tail area prob-
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ability is (DiCiccio and Martin, 1991)

∫ R0

−∞
πR(R|x, y) dR =̇ Φ(r0) + φ(r0)

(
1
r0
− 1

q0

)

= Φ
(

r0 +
1
r0

log
q0

r0

)

= Φ(r∗B) , (4)

where φ(·) and Φ(·) are the standard normal pdf and the standard normal distribution
function, respectively, r0 = rp(R0) with rp = rp(R) = sign(R̂−R)[2(`p(R̂)− `p(R))]1/2

is the likelihood root computed from the profile log-likelihood, q0 = q(R0) with

q(R) = `′p(R) |jp(R̂)|−1/2 |jλλ(R, λ̂R)|1/2

|jλλ(R̂, λ̂)|1/2

π(R̂, λ̂)

π(R, λ̂R)
,

and r∗B = r∗B(R) = rp + (1/rp) log(q/rp). Formula (4) gives an explicit expression for
the quantiles. Moreover, s(R) = 1−Φ(r∗B) gives the Bayesian survivor probability with
third-order accuracy.

Following DiCiccio and Stern (1994), asymptotic highest posterior density (HPD)
credible sets for R based on (3) can be derived as likelihood ratio type confidence regions
based on the adjusted profile log-likelihood

log πH
R (R|x, y) = c + `p(R) + B(R) , (5)

where B(R) = −(1/2) log |jλλ(R, λ̂R)|+ log π(R, λ̂R) and c is a constant. In particular,
an asymptotic HPD credible set for R arising from (5) is given by

{
R : 2

(
log πH

R (R̄|x, y)− log πH
R (R|x, y)

) ≤ χ2
1;1−α

}
, (6)

where R̄ maximizes log πH
R (R|x, y) and χ2

1;1−α is the (1 − α)-quantile of a chi-squared
distribution with one degree of freedom.

The higher-order approximations (3) and (4) allow one to avoid numerical computa-
tions in order to obtain the marginal posterior of R, using standard likelihood quantities.

3 Inference based on pseudo-likelihoods

The aim of this section is to discuss some recent advances in Bayesian inference based
on pseudo-likelihood functions, and related matching priors, to perform accurate infer-
ence on the parameter of interest R only (see Ventura, Cabras and Racugno, 2009).
This approach presents the advantages of avoiding the elicitation on λ, as well as the
computation of the integral in (2).

As in the frequentist approach, elimination of the nuisance parameter λ may be
carried out using appropriate pseudo-likelihoods, functions of the parameter of interest
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only, with properties similar to those of a likelihood function. Examples of pseudo-
likelihoods for a parameter of interest are the marginal, the conditional, the profile,
and modifications thereof (see, e.g., Pace and Salvan, 1997, Chapters 4 and 7, Severini,
2000, Chapter 9). Here, we focus on the modified profile likelihood Lmp(R) of Barndorff-
Nielsen (1983) and on the related matching prior π∗(R) (Ventura, Cabras and Racugno,
2009). Treating Lmp(R) as a genuine likelihood, the posterior pdf

π∗(R|x, y) ∝ π∗(R)Lmp(R) (7)

can be obtained. Although this approach cannot always be considered orthodox in
a Bayesian setting, the use of alternative likelihoods is nowadays widely shared, and
several papers are devoted to Bayesian interpretation and applications of some well-
known pseudo-likelihoods. See, among others, Monahan and Boos (1992), Bertolino
and Racugno (1994), Fraser and Reid (1996), Severini (1999), Chang and Mukerjee
(2006), Chang, Kim and Mukerjee (2009), Ventura, Cabras and Racugno (2009, 2010),
Racugno, Salvan and Ventura (2010), Pauli, Racugno and Ventura (2011) and references
therein.

A further advantage in using (7) instead of (2) is that π∗(R|x, y) guarantees good
frequentist coverages, that is the posterior probability limits are also frequentist limits in
the sense that the frequentist coverage of the Bayesian intervals induced by the matching
prior π∗(R) is equal to the nominal value plus a remainder of order O(n−1).

Assume that the minimal sufficient statistic for the model is a one-to-one function
of (R̂, λ̂, a), where a is an ancillary statistic, so that `(R, λ; x, y) = `(R, λ; R̂, λ̂, a). The
modified profile likelihood Lmp(R) of Barndorff-Nielsen (1983) is

Lmp(R) = Lmp(R; x, y) = Lp(R) |jλλ(R, λ̂R)|−1/2

∣∣∣∣∣
∂λ̂R

∂λ̂

∣∣∣∣∣

−1

, (8)

where |∂λ̂R/∂λ̂| = |`λ;λ̂(R, λ̂R)|/|jλλ(R, λ̂R)| involves the sample space derivatives
`λ;λ̂(R, λ) = ∂2`(R, λ; R̂, λ̂, a)/(∂λ ∂λ̂T ). Calculation of sample space derivatives is
straightforward only in special classes of models, notably exponential and group families.
See Severini (2000, Section 9.5) for a review of approximate calculation of sample space
derivatives, and Pace and Salvan (2006) for various second-order equivalent versions of
Lmp(R), which can be used in (7).

When considering the modified profile likelihood (8), the matching prior π∗(R) is
simply proportional to the square root of the inverse of the asymptotic variance of
the maximum likelihood estimator of R (Ventura, Cabras and Racugno, 2009). In
particular, the matching prior for R associated with (8) is

π∗(R) ∝ iRR.λ(R, λ̂R)1/2 , (9)

where iRR.λ(R, λ) = iRR(R, λ) − iRλ(R, λ)iλλ(R, λ)−1iλR(R, λ) is the partial informa-
tion, with iRR(R, λ), iRλ(R, λ), iλλ(R, λ), and iλR(R, λ) blocks of the expected Fisher
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information i(R, λ). The posterior pdf (7) thus becomes

π∗(R|x, y) ∝ Lp(R) |jλλ(R, λ̂R)|−1/2

∣∣∣∣∣
∂λ̂R

∂λ̂

∣∣∣∣∣

−1

iRR.λ(R, λ̂R)1/2

∝ Lp(R)
|jλλ(R, λ̂R)|1/2

|`λ;λ̂(R, λ̂R)| iRR.λ(R, λ̂R)1/2 . (10)

Accurate tail probabilities are directly computable by direct integration of (10). Let
us consider the posterior tail area probability

∫ R0

−∞
π∗(R|x, y) dR =

∫ R0

−∞
c jp(R̂)1/2 exp

{
`p(R)− `p(R̂)

} π̄(R, λ̂R)

π̄(R̂, λ̂R)
dR , (11)

with π̄(R, λ̂R) ∝ iRR.λ(R, λ̂R)1/2|jλλ(R, λ̂R)|1/2/|`λ;λ̂(R, λ̂R)| and c an arbitrary con-
stant. Considering the change of variable in (11) from R to rp = rp(R) (see, e.g., also
Reid, 2003), whose Jacobian is drp(R)/dR = `′p(R)/rp(R), we obtain

∫ R0

−∞
π∗(r|x, y) dr =̇

∫ r0

−∞
c exp

{
−1

2
r2
p

}(
rp

q∗

)
drp

=
∫ r0

−∞
c φ(rp)

(
rp

q∗
+ 1− 1

)
drp

= Φ(r0) +
∫ r0

−∞
c rpφ(rp)

(
1
q∗
− 1

rp

)
drp

= Φ(r0) + φ(r0)
(

1
r0
− 1

q∗0

)

= Φ
(

r0 +
1
r0

log
q∗0
r0

)

= Φ(r∗F ) , (12)

where q∗0 = q∗(R0), with

q∗(R) =
`′p(R)

jp(R̂)1/2

iRR.λ(R̂, λ̂)1/2

iRR.λ(R, λ̂R)1/2

|`λ;λ̂(R, λ̂R)|
|jλλ(R̂, λ̂)|1/2|jλλ(R, λ̂R)|1/2

, (13)

and
r∗F = r∗F (R) = rp +

1
rp

log
q∗

rp
. (14)

It is worth noting that the statistic (14), with q∗(R) given by (13), appears also in
Barndorff-Nielsen and Chamberlin (1994) and is known as a modified likelihood root
(see, e.g., Barndorff-Nielsen and Cox, 1994, and Severini, 2000, Chapter 7). A modified
likelihood root, such as r∗F , is a higher-order pivotal quantity, which allows one to obtain
frequentist p-values, confidence limits and accurate point estimators. Since frequentist
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and Bayesian approximate tail areas are identical when using π∗(R|x, y), there is an
agreement between frequentist and Bayesian results. Following Fraser and Reid (2002),
the prior π∗(R) is thus a ‘strong’ matching prior, in the sense that a frequentist p-value
coincides with a Bayesian posterior survivor probability.

Using the posterior distribution π∗(R|x, y) and the corresponding (12), the HPD
credible set H(bα) = {R : log π∗(R|x, y) ≥ bα} for R is such that H(bα) = (1 −
Φ(r∗F (bα))){1 + O(n−3/2)}, where bα is a given constant. In view of this,

H(z1−α/2) = {R : |r∗F (R)| ≤ z1−α/2} (15)

is a HPD credible set for R such that Pπ(H(z1−α/2)|X, Y ) = 1− α + O(n−3/2), i.e., it
has approximate frequentist validity (1 − α), where Pπ(·) is the posterior probability
measure. Note that (15) is also an accurate likelihood-based confidence interval for R
with approximate level (1−α) (see, e.g., Barndorff-Nielsen and Cox, 1994, and Severini,
2000, Chap. 7). The strong matching prior π∗(R) is thus also an HPD matching prior
(see, e.g., Datta and Mukerjee, 2004) for R based on the modified profile likelihood.

Note also that from (12) the posterior mode of π∗(R|x, y) can be computed as the
solution in R of the estimating equation r∗F (R) = 0. Then, the posterior mode coincides
with the frequentist estimator defined as the zero-level confidence interval based on
r∗F , as explained in Skovgaard (1989). In particular, the solution of r∗F (R) = 0 is a
refinement of the maximum likelihood estimator R̂, which improves its small sample
properties, respecting the requirement of parameterisation equivariance (see Pace and
Salvan, 1999, Giummolé and Ventura, 2002).

Note that these theoretical results hold in general when using the modified profile
likelihood of Barndorff-Nielsen (1983), and the corresponding matching prior, in (7) for
inference about a scalar parameter of interest.

4 Applications and numerical studies

In this section the proposed Bayesian procedures are illustrated for two real-life datasets
with small sample sizes, concerning clinical studies. In particular, in the first example
about anaplastic large cell lymphoma, it is assumed that X and Y both follow an
exponential distribution; in the second example about abdominal aortic aneurysm mea-
surements, X and Y are supposed to be independent normal variables. For discussions
on these parametric assumptions in the Bayesian setting see Reiser and Guttman (1986),
Ghosh and Sun (1998) and references therein.

The accuracy of the proposed methodology is also illustrated, in both the stress-
strength models, by numerical studies which investigate the empirical coverages of
Bayesian credible sets from π∗(R|x, y), (2) and (3) and the finite-sample properties
of their posterior modes. When computing (2) and (3) non-informative priors on θ are
considered (Ghosh and Sun, 1998).



418 Bayesian inference for P (X < Y )

4.1 Exponential distribution

Data example. The dataset about anaplastic large cell lymphoma (ALCL), which is a
rare cancer disease which affects both children and adults, is part of a retrospective study
on the ALCL carried out by the Clinic of Pediatric Hematology Oncology (University
of Padova, Italy). The aim of the study was to assess the role of the Hsp70 protein in
association with the ALCL. Diseased patients seem to have higher Hsp70 levels than
healthy subjects. Moreover, it is known that the presence of the Hsp70 protein can
induce the development of pathological states, such as oncogenesis (see Mayer and
Bukau, 2005), and that seems to limit the efficacy of the chemotherapy treatment in
diseased patients. Thus, Hsp70 protein levels can be studied as a biomarker for detecting
early ALCL lymphoma and, therefore, its effectiveness in diagnosing the disease can be
evaluated by R = P (X < Y ).

The data consist of a small sample: 10 patients with ALCL lymphoma (cases) and
4 healthy subjects (controls). Hsp70 protein level was recorded on a continuous scale
for each individual. According to extra-experimental information, two independent
exponential random variables were assumed for the protein level in cancer patients
and in non-diseased subjects, respectively. Results from a Kolmogorov-Smirnov test
supported the choice of an exponential model assumption for these data.

Assume that X and Y are independent and exponentially distributed, with rates α
and β, respectively. In this framework, the reliability parameter R can be written as

R = R(α, β) =
α

α + β
.

This simple example can be easily extended to the Weibull distribution, which general-
izes the exponential distribution by allowing increasing or decreasing failure rates (see
Ghosh and Sun, 1998, Kundu and Gupta, 2006).

Both for classical and modern Bayesian inference on R, it is convenient to consider
the one-to-one transformation θ = (R, λ), with R = α/(α + β) the scalar parameter of
interest and λ = α + β a nuisance parameter. Moreover, we assume the joint Jeffreys’
prior π(α, β) ∝ α−1β−1, or equivalently π(R, λ) ∝ R−1(1 − R)−1λ−1 (see Ghosh and
Sun, 1998). Then, it can be shown that (see, for instance, Kotz, Lumelskii and Pensky,
2003, Chapter 2)

πR(R|x, y) ∝ Rnx−1(1−R)ny−1(1−BR)−(nx+ny) , (16)

with B = (ny ȳ − nxx̄)/(ny ȳ), where x̄ and ȳ denote the sample means.

Let us consider now the Laplace approximation (3). The profile likelihood for R is
given by Lp(R) = λ̂

(nx+ny)
R Rnx(1−R)ny , with λ̂R = (nx + ny)λ̂x̄/(ny(x̄ + ȳ)(1−BR)),

R̂ = ȳ/(x̄+ȳ) and λ̂ = (x̄+ȳ)/(x̄ȳ). Moreover, we have jλλ(R, λ) = (nx+ny)/λ2. Then,
simple calculations show that the higher-order approximation πH

R (R|x, y) coincides with
πR(R|x, y).

Modern Bayesian inference about the parameter of interest R may be based on
the modified profile likelihood Lmp(R) = Lp(R)λ̂2

R(nx + ny)−1/2/λ̂. Straightforward
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calculations show that the matching prior π∗(R) is given by

π∗(R) ∝ 1
R(1−R)

.

The corresponding posterior (7) is thus

π∗(R|x, y) ∝ Rnx−1(1−R)ny−1(1−BR)−(nx+ny) , (17)

and, in this example, it coincides with (16). To find a credible interval for R the one-
to-one transformation r = (1 − R)/(1 − BR) can be used, since r has a Beta(nx, ny)
posterior pdf.

For the ALCL data, the two protein level samples have different means (equal to
0.23 and 1.44 in controls and cases, respectively), as observed in Figure 1 (left). Also the
posterior pdf π∗(R|x, y) and the normalized Lmp(R) are reported in Figure 1 (right).
Note that the normalized Lmp(R) can be interpreted as a posterior distribution for
R assuming a uniform prior in (7). The posterior mode from π∗(R|x, y), that is the
estimated probabilities that a cancer patient has a higher Hsp70 protein level than a
healthy patient, is about 0.89, while the posterior mode from the normalized Lmp(ψ)
is about 0.86. Both these values suggest a sufficiently high effectiveness of the protein
level in early detection of ALCL patients. The 0.95% credible sets for R from π∗(R|x, y)
and from the normalized Lmp(R) are, respectively, (0.61,0.95) and (0.55,0.93). Infer-
ence based on π∗(R|x, y) appears to be more concentrated and thus more accurate in
estimating the accuracy of the protein level biomarker.
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Figure 1: Hsp70 protein levels: (left) boxplot of cases and controls subjects; (right)
π∗(R|x, y) (solid) and normalized Lmp(R) (dashed).
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(nx, ny) R = 0.8 R = 0.9 R = 0.95

(5,5) π∗(R|x, y) 0.952 0.949 0.949
(0.023,0.024) (0.024,0.025) (0.026,0.024)

Lmp(R) 0.941 0.944 0.943
(0.028,0.025) (0.028,0.027) (0.027,0.029)

(10,10) π∗(R|x, y) 0.948 0.952 0.951
(0.026,0.025) (0.022,0.025) (0.025,0.025)

Lmp(R) 0.944 0.946 0.947
(0.026,0.028) (0.027,0.023) (0.026,0.025)

(20,20) π∗(R|x, y) 0.949 0.949 0.950
(0.023,0.026) (0.026,0.025) (0.026,0.025)

Lmp(R) 0.949 0.947 0.946
(0.027,0.024) (0.026,0.026) (0.026,0.026)

(30,30) π∗(R|x, y) 0.951 0.951 0.950
(0.026,0.026) (0.024,0.025) (0.026,0.025)

Lmp(R) 0.948 0.949 0.949
(0.027,0.026) (0.026,0.024) (0.025,0.026)

Table 1: Frequentist coverage probabilities of approximate 0.95% HPD and of the lower
and upper 0.025 quantiles (in brackets), under the exponential model.

Simulation study. The behaviour of (17) under the exponential model is illustrated
through simulation studies, based on 10000 Monte Carlo trials. The numerical studies
were carried out by fixing the parameter α = 1 and determining β values so that
R = 0.8, 0.9, 0.95, for different combinations of sample sizes (nx, ny).

Table 1 gives the empirical frequentist coverages for 95% asymptotic posterior HPD
from π∗(R|x, y), computed as in (6), and for the lower and upper 0.025 quantiles. For
comparison, also the frequentist coverage probabilites from the normalized Lmp(R) are
given. From Table 1 we observe that, even for small (nx, ny), π∗(R|x, y) has the correct
frequentist coverages. Larger sample sizes (nx, ny > 20) show, as one would expect,
rather small differences between the results of the two procedures.

In order to compare the behaviour of the posterior pdf π∗(R|x, y) with Lmp(R), we
evaluated the finite-sample properties of their posterior modes. The posterior modes
are compared in terms of the usual centering and dispersion measures, i.e., bias and
standard deviation. From Table 2 it can be noted that the mode of (17) exhibits a
smaller bias than the maximum modified profile estimator. This result is due to the
fact that the posterior mode of (17) is an r∗F -based estimator, as explained in Section 3.

4.2 Normal distribution

Data example. The abdominal aortic aneurysm is a localized blood-filled dilation of the
abdominal aorta. Accurate measurements of the diameter of the aneurysm are essential
for screening and in assessing the seriousness of the disease. Surgical intervention is
planned when the aneurysm diameter exceeds a certain threshold, often fixed at 5
cm, since it is known that the risk of aneurysm rupture increases as the size becomes
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R = 0.8 R = 0.9 R = 0.95
(nx, ny) bias sd bias sd bias sd

(5,5) π∗(R|x, y) 0.012 (0.07) 0.010 (0.04) 0.006 (0.03)
Lmp(R) 0.021 (0.07) 0.017 (0.04) 0.010 (0.04)

(10,10) π∗(R|x, y) 0.008 (0.07) 0.006 (0.02) 0.003 (0.02)
Lmp(R) 0.010 (0.07) 0.008 (0.02) 0.005 (0.02)

(20,20) π∗(R|x, y) 0.004 (0.05) 0.003 (0.02) 0.001 (0.02)
Lmp(R) 0.005 (0.05) 0.004 (0.02) 0.003 (0.02)

(30,30) π∗(R|x, y) 0.002 (0.04) 0.001 (0.02) 0.001 (0.01)
Lmp(R) 0.003 (0.04) 0.002 (0.02) 0.001 (0.01)

Table 2: Bias (and standard deviations) of the posterior mode of π∗(R|x, y) and of the
maximum of Lmp(R), under the exponential model.

larger. For decision making about interventions, it is thus important that the available
measurement instruments are very accurate and provide the actual diameter values.

The aneurysm study considered two groups of nx = ny = 10 patients classified with
low (L) and high (H) rupture risk, that is with small and large aneurysm diameter.
The dataset consists of measurements of the aneurysm diameter on the two groups
of patients obtained by a new instrument based on ultrasounds (US). The aim of the
study was to evaluate the diagnostic accuracy of this new instrument in discriminating
between patients with low and high rupture risk.

According to extra-experimental information, the US measurements can be assumed
to be distributed in the two groups as normal variables with different means and equal
variances (see, e.g., Nyhsen and Elliott, 2007, Azuma et al., 2010). This is a typical
setting commonly used in the literature on two sample comparisons, stress-strength
models, and ROC curves. Moreover, this hypothesis was supported by the boxplots in
Figure 2 (left) showing a similar variability for the two samples, and the choice of a
normal model assumption for these data is supported by the Kolmogorov-Smirnov test.

Let us assume that X and Y are independent normal random variables with equal
variances, that is X ∼ N(µx, σ2) and Y ∼ N(µy, σ2). In this situation, the entire
parameter θ is given by θ = (µx, µy, σ2), and the reliability parameter can be written
as

R = R(θ) = Φ
(
−µx − µy

σ
√

2

)
, (18)

which is one-to-one with η = (µx−µy)/σ (see, for instance, Ghosh and Sun, 1998). This
simple example can be easily extended to the situation of unequal variances, for which
R = Φ

(
−(µx − µy)/

√
σ2

x + σ2
y

)
, or to include linear regression models by assuming

that µx and µy depend on some covariates (Guttman and Papandonatos, 1997).

To perform both classical and modern Bayesian inference on (18), it is convenient
to consider the one-to-one transformation θ = (µx, µy, σ2) = (η, λ), with λ = (λ1, λ2) =
(µy, σ). To compute the marginal posterior pdf for η we assume the one-at-a-time
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reference prior recommended by Ghosh and Sun (1998), given by

π(η, λ) ∝ 1
λ2

1
(2(1 + m−1)(1 + m) + η2)1/2

, (19)

with m = nx/ny. As pointed out in Ghosh and Sun (1998), the associated marginal
posterior πη(η|x, y) is analytically intractable, as is the marginal posterior of R. To
avoid this drawback, let us consider the higher-order approximation to πη(η|x, y), based
on the profile log-likelihood

`p(η) = −n

(
log λ̃2 +

λ̂2
2

2λ̃2
2

)
− 1

2λ̃2
2

(
ny(λ̂1 − λ̃1)2 + nx(λ̂2η̂ + λ̂1 − λ̃2η − λ̃1)2

)
, (20)

with n = nx + ny, where the constrained maximum likelihood estimate λ̂η = (λ̃1, λ̃2) is
obtained by numerical procedures. Since

|jλ,λ(η, λ̂η)| = 2n2

λ̃4
2

− 2nxnη(λ̂2η̂ + λ̂1 − λ̃2η − λ̃1)
λ̃5

2

+
nxnyη2

λ̃4
2

,

we obtain

πH
η (η|x, y) ∝ exp{`p(η)}|jλ,λ(η, λ̂η)|−1/2

λ̃2(2(1 + m−1)(1 + m) + η2)1/2
. (21)

Finally, since η = η(R) = −√2Φ−1(R), the posterior pdf for R is

πH
R (R|x, y) ∝ πH

η (η(R)|x, y)
√

2
φ(Φ−1(R))

. (22)

Modern Bayesian inference about the parameter η may be based on the modified
profile likelihood (8), with (20), (21) and

|`λ;λ̂(η, λ̂η)| = 2n2λ̂2

λ̃5
2

+
2nnxη̂(λ̂2η̂ + λ̂1 − λ̃2η − λ̃1)

λ̃5
2

+
nxnyηη̂

λ̃4
2

.

Straightforward calculations show that the matching prior π∗(η) is given by

π∗(η) ∝ 1
(2(1 + m−1)(1 + m) + η2)1/2

.

It may be noted that, as in the previous example, the proposed prior differs from the
complete prior (19) because of the absence of the nuisance parameter. The correspond-
ing posterior pdf for η is thus

π∗(η|x, y) ∝
exp{`p(η)}|jλ,λ(η, λ̂η)|1/2|`λ;λ̂(η, λ̂η)|−1

(2(1 + m−1)(1 + m) + η2)1/2
. (23)
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The posterior pdf for R can be obtained from (23), giving

π∗(R|x, y) ∝ π∗(η(R)|x, y)
√

2
φ(Φ−1(R))

. (24)

For the abdominal aortic aneurysm data, the posterior modes from π∗(R|x, y) and
πH

R (R|x, y) are, respectively, 0.932 and 0.926 (see Figure 2, right). Both these values
suggest a high accuracy of the US instrument in discriminating between patients with
low and high rupture risk. The 0.95% HPD credible sets for R arising from π∗(R|x, y)
and πH

R (R|x, y) were found to be similar, i.e., (0.78,0.99) and (0.76,0.99), respectively.
Also in this example, π∗(R|x, y) gives accurate results.
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Figure 2: Boxplot of the sample distributions of L and H groups (left); π∗(R|x, y) and
πH

R (R|x, y) (right).

Simulation study. The accuracy of the proposed posterior π∗(R|x, y) under the normal
model is illustrated through simulation studies, based on 10000 Monte Carlo trials.
The numerical studies were carried out by fixing the parameters (µx, µy, σ) so that
R = 0.8, 0.9, 0.95, for different combinations of the sample sizes. The performance of
π∗(R|x, y) is compared with the higher-order approximation πH

R (R|x, y) and with the
normalized modified profile likelihood Lmp(R).

Table 3 reports the empirical frequentist coverages for 95% asymptotic posterior
HPD credible sets and for the lower and upper 0.025 quantiles from π∗(R|x, y), πH

R (R|x, y),
and the normalized Lmp(R). From Table 3 we observe that inference based on π∗(R|x, y)
is in general better than that from πH

R (R|x, y) and Lmp(R). For (nx, ny) > 20 the cov-
erages are quite comparable.

In order to compare the behaviour of the the posterior pdf π∗(R|x, y) with πH
R (R|x, y)

and with Lmp(R), we evaluated the finite-sample properties of their posterior modes.
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(nx, ny) R = 0.8 R = 0.9 R = 0.95

(5,5) πH
R (R|x, y) 0.935 0.934 0.935

(0.022,0.029) (0.019,0.030) (0.020,0.032)
π∗(R|x, y) 0.936 0.935 0.939

(0.024,0.027) (0.025,0.026) (0.025,0.026)
Lmp(R) 0.930 0.934 0.935

(0.025,0.034) (0.024,0.035) (0.023,0.036)

(10,10) πH
R (R|x, y) 0.940 0.940 0.939

(0.024,0.030) (0.022,0.033) (0.020,0.034)
π∗(R|x, y) 0.944 0.944 0.941

(0.026,0.029) (0.026,0.026) (0.024,0.026)
Lmp(R) 0.942 0.943 0.940

(0.026,0.033) (0.026,0.031) (0.026,0.031)

(20,20) πH
R (R|x, y) 0.944 0.943 0.943

(0.023,0.027) (0.022,0.028) (0.022,0.028)
π∗(R|x, y) 0.948 0.947 0.946

(0.024,0.025) (0.026,0.025) (0.027,0.025)
Lmp(R) 0.942 0.945 0.942

(0.024,0.029) (0.023,0.029) (0.024,0.029)

(30,30) πH
R (R|x, y) 0.948 0.948 0.947

(0.026,0.027) (0.021,0.024) (0.023,0.026)
π∗(R|x, y) 0.948 0.950 0.949

(0.024,0.024) (0.025,0.025) (0.025,0.026)
Lmp(R) 0.947 0.949 0.948

(0.023,0.024) (0.024,0.024) (0.024,0.025)

Table 3: Frequentist coverage probabilities of approximate 0.95% HPD and of lower and
upper 0.025 quantiles (in brackets), under the normal model.

As in the previous example, the posterior modes are compared in terms of the usual
centering and dispersion measures, i.e., bias and standard deviation (see Table 4). It
can be noted that the posterior mode of π∗(R|x, y) improves on the mode of πH

R (R|x, y)
and on the maximum modified profile estimator.

5 Discussion

We note that, in general, the computation of the proposed posterior π∗(R|x, y), and
of the associated inferential procedures, is simpler than the computation of π(R|x, y).
Indeed, to compute π(R|x, y), elicitation on the nuisance parameters is required and a
Markov-Chain Monte Carlo algorithm may be needed. Moreover, results from π∗(R|x, y)
appear quite accurate, since it has been shown that the matching prior π∗(R) is also a
strong matching prior.

On the basis of the simulation results discussed in Section 4, a natural question is
what type of adjustment π∗(R) makes to the modified profile likelihood Lmp(R). This
also raises the possibility that the use of matching priors is an alternate way to adjust
the profile likelihood.

Finally, we observe that the method we discuss in this paper can be extended to
more complex models and that different expressions for the modified profile likelihood,
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R = 0.8 R = 0.9 R = 0.95
(nx, ny) bias sd bias sd bias sd

(5,5) πH
R (R|x, y) 0.017 (0.13) 0.019 (0.09) 0.025 (0.06)

π∗(R|x, y) 0.006 (0.13) 0.009 (0.09) 0.010 (0.05)
Lmp(R) 0.013 (0.13) 0.014 (0.09) 0.013 (0.05)

(10,10) πH
R (R|x, y) 0.016 (0.10) 0.017 (0.06) 0.012 (0.04)

π∗(R|x, y) 0.003 (0.10) 0.003 (0.06) 0.004 (0.04)
Lmp(R) 0.010 (0.10) 0.006 (0.06) 0.008 (0.04)

(20,20) πH
R (R|x, y) 0.007 (0.06) 0.011 (0.04) 0.008 (0.03)

π∗(R|x, y) 0.000 (0.06) 0.002 (0.04) 0.002 (0.02)
Lmp(R) 0.003 (0.06) 0.005 (0.04) 0.004 (0.02)

(30,30) πH
R (R|x, y) 0.003 (0.05) 0.007 (0.03) 0.006 (0.02)

π∗(R|x, y) 0.001 (0.05) 0.001 (0.03) 0.001 (0.02)
Lmp(R) 0.002 (0.05) 0.003 (0.03) 0.002 (0.02)

Table 4: Bias (and standard deviations) of the posterior modes of π∗(R|x, y) and
πH

R (R|x, y) and of the maximum of Lmp(R), under the normal model.

which do not require the sample space derivatives, can be used. Moreover, our proposal
might be extended to include linear regression models by assuming that the mean of
X and Y depend on some covariates (see, for instance, Guttman et al., 1988), or to
truncated or censored data (see, for instance, Jiang and Wong, 2008). A final point
concerns the extension of the problem to the partial area under the ROC curve, when
only a restricted range of specificity values is of interest.
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