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parametric setting. The approach is not only very simple and computationally
light, but also the data-driven order enhances power when the sample size is
small (and also when &k and/or m is large). We illustrate the method on an
original study about gene discovery in multiple sclerosis, in which were involved
a small number of couples of twins, discordant by disease.
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1 Introduction

The statistical analysis of DNA Microarrays often leads to the evaluation of the
significance of thousands of hypotheses simultaneously. These applications are also
often characterized by lack of information due to small sample size, weak effect sizes,
very small fraction of true positives, and dependence among the test statistics.
Our motivation for this work comes from an original study on multiple sclerosis.
Thirteen couples of homozygotic Italian twins, discordant by disease, were enrolled
at Center for Experimental Neurological Therapy of Sant’Andrea hospital in Rome
(Italy). A small quantity of mRNA was drawn from each twin of the 13 couples; a
red dye assigned to the ill twin and a green dye to the safe twin for gene expression
mapping through a DNA microarray experiment. mRNAs for each couple were put
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on a slide, finally recording the expression levels of m = 8570 genes on 13 slides.

Large-scale transcriptional expression profiling allows screening for differentially
expressed genes in a discovery-driven fashion. As a complement, real time reverse
transcription and/or polymerase chain reaction (RT-PCR) can be used for more
targeted profiling after gene selection through multiple testing. Gene expression
profiling is a poweful tool for identifying novel molecular biomarkers. Powerful sta-
tistical tools for multiple testing are needed at the screening level, in order not to
exclude important biomarkers from the list of genes candidate for further investiga-
tion through the complementary techniques.

In our motivating example the use of twins leads to have an overwhelming ma-
jority of genes equally expressed in the pair. The signal is then sparse and weak.
The sample size is small, especially if compared to the number of genes involved.
This lead us to investigate the possibility of a powerful approach of multiple testing
especially devised for cases in which the number of samples is small. More details
and an analysis of this data set can be found in Section 5.

The problem of gene discovery is easily cast in the area of multiple hypothesis
testing, as discussed above. For reviews refer to Dudoit et al. (2003), to the books by
Westfall and Young (1993) and by Hochberg and Tamhane (1987), and to Farcomeni
(2008) for recent developments. In a multiple testing problem the p-values should
be corrected in order to take into account the multiplicity and control a suitable
generalization of the single-inference Type I error rate. This usually reduces to
comparing the raw p-values with a rank-dependent threshold, which is also a function
of the number tests and is often much smaller than the overall significance level a.

There are many different generalizations of the Type I error rate that can be
put forward. One possibility is given by the k-FWER (k-FamilyWise Error Rate),
defined as the probability of having k or more false positives. This is a generalization
of the well known FWER (the 1-FWER according to our definition). Allowing for
more than one false positive is seen to be liberal enough so to allow for satisfactory
power when the number of tests is high. There now are available a number of
methods controlling the k-FWER. A step-down approach is used in Lehmann and
Romano (2005). van der Laan et al. (2004) show augmentation procedures. One
common drawback is that those methods are somewhat conservative, in that they
often have an error rate well below the nominal «. In this regard, Guo and Romano
(2007) give procedures which dramatically improve power under independence of
the test statistics and Romano and Wolf (2007) show methods that can be used
also under dependence, which anyway are based on a resampling approach. Sarkar
(2008) makes use of the kth order joint null distributions obtaining k-FWER control
under the assumption of positive dependence among the test statistics.

Goal of this paper is to develop a simple but powerful approach for controlling
the k.-FWER which is not computationally intensive and that achieves high power
especially with lack of information. We anticipate the power of our procedure will be
enhanced in cases of approximate homoschedasticity of the error terms. The strategy
we suggest relies on pseudo-gatekeeping, in which hypotheses are tested in a (possibly
data-driven) order without correction for multiplicity. The p-values are ordered with
respect to a (data-driven) exogenous criterion, and compared sequentially with the
single-step cut-off . That is, at each step we simply perform uncorrected testing.
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Once an uncorrected p-value is found above the « level, we do not stop the procedure
but keep rejecting until a number J(k, ) of p-values are found above the a level;
where J(k,a) is to be defined below. After the algorithm is stopped, the processed
hypotheses corresponding to p-values below « are rejected. p-values can arise from
one or two sample t-testing, ANOVA, ANCOVA, regression. One can adjust the
p-values for confounders and non-parametric approaches can be accomodated via
rank-based testing, permutation, or the rank transformation (Conover and Iman,
1982).

When the order of the hypotheses is not data-driven, the procedure can be seen as
an extension of the 1-FWER controlling procedure of Maurer et al. (1995). When
there is a data-driven order, the procedure is an extension of Kropf and L&uter
(2002) and Kropf et al. (2004). The main difference with those methods is that
we do not stop at the first uncorrected p-value above the « level, but allow for a
suitable number of jumps, obtaining k-FWER control. We also give an extension of
the procedure which does not rely on any assumption concerning the dependency
structure. R (R Development Core Team, 2007) code for the proposed procedures
is available from the authors upon request.

The rest of the paper is as follows: in Section 2 we show our proposed procedure
and prove it controls the k-FWER under independence. In Section 3 we discuss
extensions under dependence. In Section 4 we illustrate and compare the method
via a simulation study, and in Section 5 we analyze the multiple sclerosis data set.

2 k-FWER control with possibly data-driven order of the
hypotheses

2.1 k-FWER control of ordered hypotheses

First let us assume that the hypotheses are naturally ordered and shall be tested
sequentially. This is not a theoretical situation: ordered hypotheses arise in dose-
response studies, in toxicity studies, in observational studies when comparing a
treatment to more than one type of control (Rosenbaum, 2008), and in few other
cases. See for instance Marcus et al. (1976); Hsu and Berger (1999); Maurer et al.
(1995); Strassburger et al. (2007).

The k-FWER can be controlled by performing tests sequentially at the uncor-
rected level a. Sequential testing is stopped after after J(k,a) p-values are found
above level «, where J(k,«) is to be defined below, and is fixed before the ex-
periment. After the sequential testing is stopped, all hypotheses corresponding to
p-values above o and hypotheses not yet reached by the sequential testing (regardless
of their significance level) are not rejected.

In summary, denoting with p(y),...,p@n) the m p-values ordered with respect
to the natural ordering of the m hypotheses, we propose the following sequential
procedure:
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Algorithm: Sequential procedure for naturally ordered hypotheses

- Let

Jtk—1
J(k, o) = max{J : Z <J + k B 1>aj(1 — )T <) (1)
j=k J
- Set j:=0,1:=1
WHILE(i < m & j < J(k,)) i =i + 1
IF(ps) > @) j := j + 1 ENDIF
ENDWHILE

- Reject all the hypotheses considered until stopping which correspond to a p-
value below a. Do not reject the hypotheses corresponding to a p-value above
« and the hypotheses which have not been reached by the sequential testing
even if they correspond to p-values below a.

Unlike many other approaches, the proposed sequential procedure does not correct

the level « of individual hypotheses, and k-FWER control is obtained by pseudo-

gatekeeping: after J(k,«) p-values are found above « there is no further rejection.
We now formally state our main results:

Theorem 1. Call Sj the set of hypotheses tested before the J" unrejected hypoth-
esis. Let 59 C Sy be the set of true null hypotheses tested before the J unrejected
hypothesis. Let ¢; =1 (i € 1,...,m) if the i-th hypothesis is rejected at level a and
o; = 0 otherwise. Call Ho the collection of mqg true null hypotheses and assume that
the distributions of the p-values of its elements are stochastically dominated by the
uniform. The remaining m, = m —mg hypotheses under the alternative are collected
in Hy and the distribution of their p-values are stochastically dominated by the null
distribution(s). Suppose the test statistics are independent. We have:

i For a fized J, the probability of k or more type I errors before the J" jump is
bounded by the survival function of a negative binomial random variable:

P(Y 6> k) <1 = Fapegsa—ay(k —1) V(k,@),¥85 € Ho

=y

it The sequential procedure 2.1 with J(k,ca) defined as in (1) controls the k-
FWER at level a.

Proof. For fixed J, the k-FWER of procedure 2.1 is given by P(} ;. s ¢; > k), since
all hypotheses corresponding to the other p-values are not rejected by definition.
Note that P(¢; = 1) < « for all i € HO. Hence

P(Z ¢Z > k) <1- FBneg(J,lfoz)(k - 1) (2)

=y
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To fix the ideas, suppose all null hypotheses are true. Each hypothesis is not
rejected with probability at least 1 —«. When the procedure is stopped, the number
of type I errors before the J% not rejected hypothesis is then a negative binomial
with parameters J and probability of success in each trial (i.e. test) equal to 1 — .
When some of the null hypotheses are false, the inequality holds because of the
hypothesis of stochastic domination. The inequality (2) is strict unless S4 = S; and
the tests are exactly a-size. This proves the first part.

To prove the second part of the theorem, we can use the properties of Negative
Binomial random variables to show that:

P( Z ¢i > k) <1- FBneg(J(k,a),lfoz) (k - 1) =1- FB(J(k:,a)+k:71,oz) (k - 1)7

€8Tk 0
where B(n, ) denotes binomial random variable. It is straightforward to see that
1 — FB(j(k,a)+k—1,a)(k — 1) = a by substituting the expression for (1). O

The idea behind the proof is that the number of failures (false rejections) which
occur in a sequence of Bernoulli trials before .J successes (i.e. J! unrejected hy-
pothesis) is reached can be seen as a negative binomial random variable. The rest
of the proof follows from straightforward algebra.

Computation of J(k, «) through (1) relies only on evaluation of the upper tail of
binomial distributions. It is straightforward to check that J(1,a) = 1 and then when
controlling the classical FWER we get back the Maurer et al. (1995) procedure. In
the k-FWER control setting this approach is particularly advantageous in terms of
power with respect to other procedures, in particular when k is large, as we will
illustrate below. Table 1 shows some values of J(k, «) as a function of k and a.

Table 1: Number of jumps J(k, ) in sequential testing for different values of k and

Q.
k

1 2 3 4 ) 6 7 8 9 10 20

a=.10\1 4 9 15 21 27v 34 40 47 54 128

a=.05|1 6 14 25 36 48 61 74 87 101 249

a=.01|1 14 42 80 125 175 228 285 345 406 1093

There are two features that are somewhat surprising: first of all, J(k,a) does
not depend on the number of tests. This could be expected since k does not depend
on m. It can also happen that J(k,a) is large or even larger than m. An example
is easily given: assume one is testing m = 100 hypotheses with o = .05 and k£ = 10.
One can reject all hypotheses below o = .05 (and in fact J(10,.05) = 101 jumps are
allowed) since the probability of having ten or more false positives would be lower
than or equal to .011. Note also that in presence of many true null hypotheses the
sequential testing will be stopped very early regardless of m.

According to this reasoning, it can be understood why the number of allowed
false positives k shall be set smaller when the number of tests is smaller.
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The second surprising feature is that J(k,«) is decreasing in . One should
anyway consider that even if the number of allowed jumps in the sequence increases
when controlling more strictly the k-FWER, the probability that a single p-value is
below « rapidly decreases. Hence, the number of jumps in a fixed-length sequence
will be much higher for lower a.

2.2 Data-Driven order

The hypotheses order should be chosen a priori, on the basis of experimental hy-
potheses. However in most cases there is no natural order of the hypotheses, as in
our motivating example. While in general an a posteriori data-driven ordering may
lead to inflation of the nominal error rate, we can propose in this section a strategy
for a data-driven ordering which does not inflate the error rate and which is chosen
in order to enhance power.

The final procedure we propose is to order the hypotheses according to the
criteria specified in this section, and then apply procedure 2.1.

In the following, we assume that each p-value arises from a test on linear hy-
potheses on the parameters of the model:

Y; = Z;B; + €, (3)

where Y; is a numerical response, Z; is a fixed matrix of covariates (which may
include dummy variables and/or a constant column), 3; is a vector of parameters
and ¢; is distributed like a zero-centered Gaussian with variance 0'?. This setting
includes, but is not limited to, one and two-sample paired and unpaired t-tests,
F-tests, tests on the correlations; also adjusted for confounders, depending on the
construction of Z; and Y. Extension to other parametric and nonparametric testing
situations are discussed below.

We propose to order the hypotheses according to decreasing values of the second
moment of residuals of the model (3), estimated constraining the parameters under
the null hypothesis.

The idea is easily understood if one thinks about the one-sample ¢-test for a zero
mean, in which

_ _ 22,
M2 = "yh/n = (i — 7)*/n+ (7;)* = (L +; )5;°

2

with §; = >, 4ij/n, ¢;* the (biased) estimated variance and d; the estimated nor-
malized effect. Then, the ordering with respect to M2; enhances power since it is
a proxy for the ordering with respect to ;. The smaller and closer to each other
the variances 0‘J2-, the better. To give a further example, suppose to be comparing
two independent samples. In that case, Z is defined as a two column matrix with a
column of ones and a column which containts the indicator of one of the two groups.
The ordering shall be done with respect to the column-wise mean-centered matrix of
measurements (i.e., the residuals with respect to the estimated intercept under the
null hypothesis of equal mean samples). The same result can be reached for C' > 2
samples. In Section 5 we develop in detail the case of two paired samples.
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In the most general case, we have that the second moment E(YJQ) can be ex-
pressed as:

E(Y?) = E(Zp; + ¢;)) = | 25| + Var(e;).

(| - || denotes the Euclidian norm). When k£ = 1 and one, two-sample t-tests or
F-tests are performed, the procedure reduces to the sequential testing with data
driven order of Kropf and Lauter (2002).

A proof that the ordering according to M2; does not inflate the k-FWER is
based on the theory of sphericall distributed matrices (Fang and Zhang, 1990), and
is a direct extension of Lauter et al. (1998), Theorem 1.

One important feature of this data-driven criterion for ordering is that it pro-
motes rejection of hypotheses with larger effect sizes, even if they may also be asso-
ciated with larger p-values, thus producing a list of rejected hypotheses potentially
more interesting for the practitioner (see Kirk (2007), and references therein).

The non-parametric setting can be accomodated in three different ways. First,
one can simply use the rank-transformation of Conover and Iman (1982). Secondly,
one can compute p-values from non-parametric rank based methods, and order the
hypotheses according to (possibly adjusted) medians in case of one sample tests
and to (possibly adjusted) interquartile ranges in case of C' > 2 sample tests. The
resulting method is a generalization of the approach of Kropf et al. (2004) for the
classical 1-FWER, and a proof that the ordering according to the latter criterion
does not inflate the k-FWER directly follows from their results. The third approach
regards the use of p-values arising from permutation testing and the usual M?2;
based ordering. Finos and Salmaso (2006) show that any ordering which does not
depend on the vector of permuted indexes used for shuffling the data is valid. This
includes ordering based on M2;. Based on the results of Finos and Salmaso (2006),
our results extend to a broader class of statistics (e.g. interquartile ranges) whenever
p-values arise from permutation testing.

3 Extension for dependent test statistics

The m test statistics are in general not independent. Nevertheless, in many sit-
uations multiple testing procedures devised for independent test statistics can be
used under dependence according to the results of the recent breakthrough paper
of Clarke and Hall (2009). Formally, they show that if the distributions of the test
statistics under the null hypotheses are not heavy-tailed and dependence does not
increase with the number of tests, procedures devised for the independence case are
asymptotically valid also under dependence. Their conditions apply to many real
data applications. For instance, block (sometimes called “clumpy”) dependence is
usually expected in microarray experiments, like the one we discuss in Section 5, as
argued for instance in Storey and Tibshirani (2003). Further their conditions apply
to situations in which weak dependence is expected, as the applications discussed in
Farcomeni (2007). In summary, according to the results of Clarke and Hall (2009),
our procedure (together with the procedures in Guo and Romano (2007) and other
procedures devised for independent test statistics) can be used in many real situa-
tions when the number of tests m is large, even if the dependence among the test
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statistics is strong.

For cases in which the conditions of Clarke and Hall (2009) may not be met,
or when the number of tests is too small to invoke asymptotic results (with m), a
simple device is given by testing the individual hypotheses at level o/ = W,
obtaining a slightly more conservative procedure which anyway is valid under general
dependence. A proof of this statement given in next theorem:

Theorem 2. Assume the distributions of the p-values under the null hypotheses
are stochastically dominated by the uniform, and the distributions of the p-values
under the alternative are stochastically dominated by the null distribution(s). Let
o = W Under general dependence among the test statistics we have that
the sequential procedure 2.1 with J(k, ) defined as in (1) and in which the individual
test level is fized as o/, controls the k-FWER at level .

Proof. The proof relies on the Markov’s inequality:

J(k‘,Oé)“l‘k‘—l J(k,a)+k—1 ,
B[y Z. 7 _
1

; k k

1=
This inequality replaces conclusion (i) of Theorem 1. The result trivially follows as
in the proof of Theorem 1. ]

4 Simulation Study

A brief simulation study is used to illustrate our methodology. We perform one-
sample t-tests, with data generated from standard normals under the null hypothesis.
We let n = 5,10, 20, 50; m = 500, 1000, 10000; o = .01,.05. We fix the mean under
the alternative hypotheses so that the single tests have a prescribed power of 70%
(hence, the mean under the alternative decreases as the sample size n increases) and
the proportion of false null hypotheses is fixed at 10%.

For each setting we generate the data, compute p-values, and apply the Lehmann
and Romano (2005) (LR) and Guo and Romano (2007) (GR) step-down procedures;
together with our procedure with data-driven order of the hypotheses (ORD). We
repeat the operation B = 1000 times and record the average fraction of correctly
rejected hypotheses as a measure of power, and the &-FWER (that is, the fraction of
datasets with a number of false rejections larger than or equal to k) in order to check
that it is below the nominal error rate level a. The results for different values of k
are reported in tables 2, 3 and 4 for a = .05 and respectively m = 500, 1000, 10000.
In tables 5, 6 and 7 we report the results for respectively m = 500, 1000, 10000 when
« = .01. Note that the case k = 1 is reported only for reference, since control of the
1-FWER is not the main focus of this paper.

The main conclusion from the simulations is that the procedure is particularly
suited for the challenging cases in which the sample size is small. The differences are
particularly evident as m and k get larger. As we noted, in real data applications
it is sensible to allow for larger k as m gets larger. In other settings, the k-FWER
control with data-driven order of the hypotheses behaves approximately like LR,
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Table 2: Average proportion of correctly rejected hypotheses (and k-FWER in paren-
theses) for different values of k£ and n, with m = 500 and o = .05. The proportion
of false nulls is set at 10% and the power of each single test at 70%.

n=>= n =10 n =20 n =50

LR GR ORD/LR GR ORD/LR GR ORD/LR GR ORD
1].011 .01 .216 | .066 .067 .229 | .170 .172 .130 | .273 275 .049
(.044) (.046) (.006) (.044) (.045) (.033) (.047) (.047) (.042) (.042) (.043) (.052

31.030 130 .710 | .135 .348 .601 | 274 .503 435 | 385 .505 .248
(.001) (.040) (.019) (.000) (.039) (.038) (.000) (.044) (.037} (.000) (.044) (.039

5|.047 253 .790 | .185 506 .732 | .335 638 .504 | 445 705 401
(.000) (.034) (.027) (.000) (.041) (.040) (.000) (.045) (.044) (.000) (.046) (.038

8|.071 403 823 | 241 641 815 | .397 .740 .723 | 502 .787 .556
(.000) (.035) (.037) (.000) (.041) (.042) (.000) (.045) (.047} (.000) (.047) (.051

10 .086 .481 .832 | .270 .699 .845 | .428 .781 .775 | .529 .819 .63l
(.000) (.037) (.037) (.000) (.043) (.042) (.000) (.040) (.048) (.000) (.045) (.050

Table 3: Average proportion of correctly rejected hypotheses (and k-FWER in paren-
theses) for different values of k and n, with m = 1000 and o = .05. The proportion
of false nulls is set at 10% and the power of each single test at 70%.

n=>5 n =10 n =20 n = 50

LR GR ORD|LR GR ORD LR GR ORD LR GR ORD

1].005 .006 .138|.040 .041 .169 | .120 .121 .093 | .213 215 .032
(.039) (.040) (.002) (.044) (.045) (.022) (.046) (.047) (.044) (.042) (.043) (.046

31.016 072 617 | .087 .245 .503 | 204 .403 .337 | 311 506 .170
(.000) (.038) (.007) (.000) (.038) (.029) (.001) (.042) (.038} (.000) (.045) (.036

5|.025 .150 .737 | .122 380 .640 | .255 533 477 | .365 .618 .284
(.000) (.032) (.014) (.000) (.039) (.036) (.000) (.042) (.045) (.000) (.042) (.045

81.038 254 791 | .163 509 .737 | .308 .641 .600 | 418 .707 .408
(.000) (.035) (.024) (.000) (.036) (.033) (.000) (.039) (.047} (.000) (.048) (.046

10 .046 315 .807 | .185 .569 .774 | .336 .687 .655 | 444 744 472
(.000) (.030) (.025) (.000) (.038) (.037) (.000) (.043) (.049) (.000) (.049) (.040

and sometimes slightly worse than GR. More precisely, with n =5 and n = 10 our
procedure always outperforms the competitors, often markedly. With n = 20 and
n = 50 the ORD procedure behaves usually more or less like LR. With o = .05
and n = 20,50 it never outperforms GR, while with o = .01 it compares better and
behaves more or less like GR with large k£ and smaller m.

A somewhat surprising behaviour of our ORD procedure is that power is some-
times seen to decrease for larger n. Recall anyway that single-inference power has
been fixed to 70%. This has been done in order to make this behaviour evident. This
happens because of the decreasing capability of the data-driven ordering of putting
false nulls at the beginning of the list as n increases. Roughly speaking, effect size is
blurred by a larger sum of squares of the errors when n is larger. If the mean under
the alternative were left fixed as n increased, as expected, the proportion of correctly
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Table 4: Average proportion of correctly rejected hypotheses (and k-FWER in paren-
theses) for different values of k and n, with m = 10000 and « = .05. The proportion
of false nulls is set at 10% and the power of each single test at 70%.

n=>5

n =10

n =20

n = 50

LR GR ORD

LR GR ORD

LR GR ORD

LR GR ORD

001 .00l .025
(.044) (.046) (.000

006 .007 .050
(.047) (.048) (.016

032 033 .028
(.049) (.050) (.037

084 085 .007
(.040) (.042) (.045

002 .009 .196
(.000) (.037) (.000

016 057 .223
(.000) (.039) (.010

062 .153 .123
(.000) (.039) (.032

134 255 044
(.000) (.045) (.041

003 .020 360
(.000) (.033) (.000

024 105 .326
(.000) (.037) (.013

083 230 .191
(.000) (.042) (.031

165 340 .079
(.000) (.041) (.041

004 039 510
(.000) (.029) (.000

034 163 418
(.000) (.029) (.017

107 308 .261
(.000) (.037) (.034

197 419 120
(.000) (.039) (.044

10

006 051 569
(.000) (.028) (.000

040 195 461
(.000) (.033) (.017

120 347 297
(.000) (.038) (.034

214 456 .144
(.000) (.040) (.041

Table 5: Average proportion of correctly rejected hypotheses (and k-FWER in paren-
theses) for different values of k£ and n, with m = 500 and o = .01. The proportion
of false nulls is set at 10% and the power of each single test at 70%.

n=>5

n =10

n =20

n = 50

LR GR ORD

LR GR ORD

LR GR ORD

LR GR ORD

031 .007 .112
(.043) (.011) (.000

199 073 .356
(.049) (.012) (.003

430 240 314
(.047) (.009) (.004

596 420 .132
(.046) (.011) (.010

083 .196 .750
(.001) (.011) (.004

351 540 882
(.001) (.009) (.007

584 731 .833
(.000) (.009) (.008

715 817 .642
(.001) (.011) (.010

126 .409 .751
(.000) (.008) (.006

437 737 903
(.000) (.010) (.009

655 853 916
(.000) (.010) (.010

766 898 836
(.000) (.008) (.009

182 627 .751
(.000) (.009) (.010

522 858 .908
(.000) (.007) (.012

718 920 942
(.000) (.008) (.010

808 .941 938
(.000) (.011) (.009

10

215 720 .751
(.000) (.010) (.010

564 898 908
(.000) (.010) (.010

746 941 945
(.000) (.010) (.010

828 .955 .957
(.000) (.010) (.009

rejected hypotheses by the ORD procedure would have been non-decreasing.

The same results are obtained in other simulations settings, also under depen-
dence, which we do not show for reasons of space. In the simulations shown we have
set a prescribed power for each single test at 70%. In cases in which the single-
inference power is set lower our procedure compares much better also in settings

with a larger number of observations.

5 Multiple Sclerosis Data

Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system with
inflammatory and neurodegenerative components affecting about 2.5 million world-
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Table 6: Average proportion of correctly rejected hypotheses (and k-FWER in paren-
theses) for different values of k£ and n, with m = 1000 and o = .01. The proportion
of false nulls is set at 10% and the power of each single test at 70%.

n=>5

n =10

n =20

n = 50

LR GR ORD

LR GR ORD

LR GR ORD

LR GR ORD

017 003 .063
(.046) (.009) (.000

131 044 245
(.045) (.009) (.001

343 179 243
(.045) (.012) (.007

518 351 .096
(.042) (.009) (.010

045 113 .745
(.000) (.005) (.002

247 412 852
(.000) (.007) (.007

487 639 757
(.001) (.011) (.007

639 752 519
(.000) (.008) (.009

070 259 .749
(.000) (.005) (.004

319 611 .892
(.000) (.009) (.007

560 778 869
(.000) (.010) (.006

695 .848 716
(.000) (.011) (.010

105 441 750
(.000) (.007) (.003

396 757 904
(.000) (.010) (.008

626 864 922
(.000) (.008) (.007

7437905 856
(.000) (.011) (.009

10

125 533 .750
(.000) (.007) (.007

435 812 .906
(.000) (.009) (.010

656 894 935
(.000) (.008) (.010

765 924 903
(.000) (.012) (.010

Table 7: Average proportion of correctly rejected hypotheses (and k-FWER in paren-
theses) for different values of k and n, with m = 10000 and « = .01. The proportion
of false nulls is set at 10% and the power of each single test at 70%.

n==>5

n =10

n =20

n = 50

k

LR GR ORD

LR GR ORD

LR GR ORD

LR GR ORD

1

002 .000 .009
(.046) (.009) (.000

026 .007 .054
(.038) (.007) (.000

129 056 .083
(.045) (.010) (.002

288 170 .030
(.043) (.007) (.009

005 .015 221
(.000) (.006) (.000

059 121 .583
(.000) (.007) (.000

213 325 .455
(.000) (.009) (.003

391 504 213
(.001) (.010) (.007

009 039 .500
(.000) (.007) (.000

084 228 .756
(.000) (.007) (.002

263 465 .603
(.000) (.008) (.004

444 624 336
(.000) (.009) (.009

013 .081 .735
(.000) (.007) (.000

114 345 830
(.000) (.008) (.003

315 581 711
(.000) (.007) (.006

495 712 457
(.000) (.007) (.008

10

016 109 .745
(.000) (.006) (.000

131 404 852
(.000) (.008) (.002

342 631 .754
(.000) (.010) (.005

519 748 516
(.000) (.007) (.008

wide. In most cases, a diagnosis is made between the ages of 20 and 3. A definitive
therapy is not yet available, and medications available usually are prescribed to help
victims cope with pain and slow down degradation of physical, mental, and speech
abilities.

No clear causative factor has yet been identified. Further, there are a variety of
clinical and pathological manifestations of MS which account for a large causative
heterogeneity and make harder the disclosure of the relative contribution of genetic
and environmental factors for this multifactorial disease.

Studies that aim at assessing gene relationships with the disease can then be of

great help, at least by increasing understanding of disease mechanisms.
At Center for Experimental Neurological Therapy of Sant’Andrea hospital in
Rome (Italy) a case-control study was designed by enrolling thirteen cases who had




12 Finos, Farcomeni

an homozygotic twin safe from the disease. The choice of working with twins is
related to the heterogeneity expected at the individual level for MS cases, since
homozygotic twins are obviously expected to be similar the the genetic level. For
a discussion about the advantages of using twins for this kind of studies refer to
Salvetti et al. (2000). Of course, in a study involving homozygotic twins discordant
by a disease whose prevalence in Italy is about 75 per 100000, the number of couples
enrolled can not be expected to be large.

Main goal is gene discovery, that is, forming a list of significantly differentially
expressed genes for further study through Polymerase Chain Reaction and other
methods.

A two-colour DNA microarray experiment was designed by using thirteen sep-
arate slides onto which the mRNA from each couple was spotted. The mRNAs in
each slide were labeled using a green and a red dye. Microarrays were scanned using
the GenePix scanner (Axon Instruments, Inc., Union City, CA) and expression lev-
els for each gene, subject, and slide were recorded for data analysis, together with
information about the background noise.

The expression levels were normalized and then log transformed. In order to
apply our approach, for each gene the response Y is defined as the difference between
the log-transformed normalized expression levels, and the null hypothesis for each
gene specifies a zero mean for the difference on the log-scale. This is a simple device
for transforming this two-sample paired design in an equivalent one-sample design.

More formally, we let Y;; be the difference for the log expression levels of the j-th
gene for the i-th couple; and assume Y;; ~ N (,uj,ajz). For each gene, we test the
null hypothesis Hy : p1; = 0. For each test, p-values arise from one-sample t-tests,
and M2; = Zlyfj

Figure 1 shows the p-values (on the y-axis) plot against the second moments M2;
(on the z-axis). According to our procedure, p-values are compared to the one-step
cut-off « staring from the rightmost and proceeding leftwards, until J(k, a) p-values
are found above a.

Results are reported in Table 8 for Lehman and Romano procedure (LR), Guo
and Romano step-down approach (GR) and our ordered procedure with the data-
driven order of hypotheses (ORD), for different o and k.

Table 8: Number of rejected hypotheses for Lehman and Romano (LR), Guo and
Romano step-down (GR) and ordered (ORD) procedures for different o and k. In
parentheses, J(k, «) for the ORD procedure.

a=.05 a=.01 a = .001
k. LR GR ORD(J(k,a)) LR GR ORD(J(k,a)) LR GR ORD(J(k,a))
1 14 14 52(1) 8 8 7(1) 2 2 6(1)
5 37 159 232(36) 14 117 188(125) 7 T4 118(737)
10 58 326 379(101) 21 274 325(406) 8 214 236(2956)

As expected, the number of selected genes decreases with « for all the procedures.
Only in one case (k = 1,a = .01) the ORD procedure selects a lower number of
genes than its competitors, while the number of selected genes is much higher (but
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Figure 1: p-values for the multiple sclerosis twin data plot against the second moment
for each test.

still reasonable for further screening) in many settings, suggesting a possibly higher
power for the ORD procedure for the data at hand. An higher number of selected
genes reduces the odds of exclusion of important genes for further investigation, and
as already noted our data-driven criterion further enhances selection of genes with
larger effect-sizes, which are put at the beginning of the list even if they may have
larger p-values.
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