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Abstract: Pairwise likelihood functions are convenient surrogates for the ordinary likeli-
hood, useful when the latter is too difficult or even impractical to compute. One drawback
of pairwise likelihood inference is that, for a multidimensional parameter of interest, the
pairwise likelihood analogue of the likelihood ratio statistic does not have the standard chi-
square asymptotic distribution. Invoking the theory of unbiased estimating functions, this
paper proposes and discusses a computationally and theoretically attractive approach based
on the derivation of empirical likelihood functions from the pairwise scores. This approach
produces alternatives to the pairwise likelihood ratio statistic, which allow reference to the
usual asymptotic chi-square distribution useful when the elements of the Godambe infor-
mation are troublesome to evaluate or in the presence of large datasets with relative small
sample sizes. Monte Carlo studies are performed in order to assess the finite-sample perfor-
mance of the proposed empirical pairwise likelihoods.
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1 Introduction

In various modern applications, such as models with a complex dependence struc-
ture, classical likelihood-based methods may encounter both theoretical and com-
putational problems, due to the difficulty, or even impracticability, of specifying the
full likelihood function. In these situations, it is possible to resort to alternative
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inferential methods that are based on approximate likelihoods derived by combining
marginal distributions (see Cox and Reid, 2004; Varin, 2008; Varin et al., 2011).

Let Y be a q-dimensional random vector with joint density f(y; θ), θ ∈ Θ ⊆ Rd,
d ≥ 1. Let y = (y1, . . . , yn) be a random sample of size n from Y . Suppose
that there is a significant difficulty in evaluating f(y; θ), and the corresponding
likelihood L(θ), but that we may compute likelihoods for pairs of observations
(yih, y

i
k) (i = 1, . . . , n; h, k = 1, . . . , q, h 6= k). From the bivariate marginal densities

fhk(·, ·; θ), we can obtain the pairwise likelihood

pL(θ) = pL(θ; y) =
n∏
i=1

q−1∏
h=1

q∏
k=h+1

fhk(yih, y
i
k; θ)

wi
hk , (1)

where wihk are non-negative weights which do not depend on the parameter θ or on
y. The pairwise likelihood is a particular instance of the general class of composite
likelihoods (see Varin, 2008; Varin et al., 2011, for recent reviews on composite
likelihoods methods). Composite likelihood contains, and thus generalizes, the usual
ordinary likelihood, as well as many other alternatives, such as the pseudo-likelihood
of Besag (1974) and the partial likelihood of Cox (1975).

The validity of using the pairwise likelihood to perform inference about θ can
be assessed from the standpoint of unbiased estimating functions or the Kullback-
Leibler criterion (for details, see Lindsay, 1988; Cox and Reid, 2004; Varin, 2008;
Varin et al., 2011). Under regularity conditions (Molenberghs and Verbeke, 2005),
the pairwise score is an unbiased estimating function, the pairwise maximum like-
lihood estimator is asymptotically normal and Wald type statistics and score-type
statistics have the usual asymptotic null distribution.

As it is well known, Wald-type statistics lack invariance under reparametriza-
tion and force confidence regions to have an elliptical shape. Under this respect,
likelihood ratio type statistics are more appealing. However, one drawback with
pairwise likelihood methods is that the null distribution of the pairwise likelihood
ratio statistic does not converge to the standard chi-square distribution, but to a
linear combination of independent chi-square variates with coefficients given by the
eigenvalues of a matrix related to the Godambe information (Kent, 1982). Several
adjustments of the pairwise likelihood ratio to approximate the usual chi-square
distribution have been proposed, which typically require the computation of the
elements of the Godambe information (see Satterthwaite, 1946; Wood, 1989; Geys
et al., 1999; Lindsay et al., 2000; Chandler and Bate, 2007; Pace et al., 2011).

By invoking the theory of unbiased estimating functions, in this paper we propose
a computationally and theoretically attractive alternative approach which is based
upon empirical likelihoods derived from the pairwise score function. In particular,
we propose two versions of the empirical pairwise likelihood ratio statistic. The
first one, termed hereafter pwe(θ), is derived following Adimari and Guolo (2010)
and has a standard chi-square asymptotic null distribution. The statistic pwe(θ) is
particularly appealing when the elements of the Godambe information are computa-
tionally expensive to estimate (see Varin et al., 2011). The second statistic, denoted
with pwe(θ), shares the same asymptotic distribution of the pairwise likelihood ratio
statistic and can be appealing since the rate of convergence to its null distribution
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is, in general, fast.
The paper is organized as follows. In Section 2 pairwise likelihood methods are

briefly reviewed. In Section 3 the proposed approach is discussed and in Section 4
three simulation studies are analyzed in detail in the context of the equicorrelated
normal distribution, of correlated binary data and of multivariate extreme values.
Simulation results indicate that the proposed statistic allow quite accurate infer-
ences. Some concluding remarks are given in Section 5.

2 Background on pairwise likelihood

The validity of inference about θ using the pairwise likelihood function (1) can
be justified invoking the theory of unbiased estimating functions. Under broad
assumptions assumed in this paper (Molenberghs and Verbeke, 2005), the maximum
pairwise likelihood estimator θ̂p is the solution of the pairwise score function

pU(θ) =
∂ log pL(θ)

∂θ
=

n∑
i=1

q−1∑
h=1

q∑
k=h+1

wihk pU
i
hk(θ) =

n∑
i=1

ηi(θ) , (2)

where pU ihk(θ) = ∂ log fhk(yih, y
i
k; θ)/∂θ, η

i(θ) =
∑q−1

h=1

∑q
k=h+1w

i
hkpU

i
hk(θ). The

pairwise score pU(θ) is unbiased, i.e. Eθ(pU(θ)) = 0, since it is a linear combination
of valid score functions. Moreover, the maximum pairwise likelihood estimator θ̂p is
consistent and asymptotically normal with mean θ and variance

V (θ) = H(θ)−1J(θ)H(θ)−1,

with H(θ) = Eθ(−∂pU(θ)/∂θ>) and J(θ) = varθ(pU(θ)) = Eθ
(
pU(θ)pU(θ)>

)
. The

matrix V (θ)−1 is known as the Godambe information matrix (Godambe, 1960). The
form of V (θ) is due to the failure of the second Bartlett identity since, in general,
H(θ) 6= J(θ).

Pairwise Wald-type or score-type test statistics based on pL(θ) are straightfor-
ward to derive using consistent estimates of the matrices H(θ) and J(θ) (see Varin,
2008, for a detailed discussion), and present the standard chi-square asymptotic
distribution. In particular the the Wald type test is

pww(θ) = (θ̂p − θ)>V (θ)−1(θ̂p − θ)

while the score type statistic is

pws(θ) = pU(θ)>J(θ)−1pU(θ).

On the contrary, the pairwise likelihood ratio statistic pw(θ) = 2(p`(θ̂p) − p`(θ)),
with p`(θ) = log pL(θ), does not have the standard chi-square asymptotic distribu-
tion. Indeed, the null asymptotic distribution of pw(θ) is a linear combination of
independent chi-square random variables, i.e.

pw(θ) d→
d∑
j=1

ωjZ
2
j , (3)



4 Nicola Lunardon

where Z1, . . . , Zd are independent standard normal variates and the coefficients
ω1, . . . , ωd are the eigenvalues of the matrix H(θ)−1J(θ). In the special case d = 1,
we have ω1 = J(θ)/H(θ), so that the adjusted pairwise likelihood ratio statis-
tic pw1(θ) = pw(θ)/ω1 is asymptotically χ2

1. For d > 1 several authors (see
Rotnitzky Jewell, 1990; Geys et al., 1999; Molenberghs and Verbeke, 2005) pro-
pose to use first order moment matching, which gives pw1(θ) = pw(θ)/ω̄, with
ω̄ =

∑d
j=1 ωj/d = tr(H(θ)−1J(θ))/d. A χ2

d approximation is used for the null dis-
tribution of pw1(θ).

First and second moment matching gives the Satterthwaite type (Satterthwaite,
1946) adjustment suggested in Varin (2008), i.e. pw2(θ) = pw(θ)/κ, with κ =∑

j w
2
j/
∑

j wj . The null asymptotic distribution is χ2
ν , with ν = (

∑
j wj)

2/
∑

j w
2
j .

Matching of moments up to higher order have been also be considered (Wood, 1989;
Lindsay et al., 2000). These corrections to pw(θ) might be inaccurate because they
correct only moments of the distribution.

The corrections proposed by Chandler and Bate (2007) and Pace et al. (2011)
are alternative methods to moment based adjustments that aim to have a statistic
with the usual χ2

d asymptotic null distribution. In particular Chandler and Bate
(2007) propose the so-called vertical scaling to pw(θ), given by

pwcb(θ) =
(θ̂p − θ)>V (θ)−1(θ̂p − θ)
(θ̂p − θ)>H(θ)(θ̂p − θ)

pw(θ).

Pace et al. (2011) proposed a parametrization invariant adjustment that takes the
form

pwinv(θ) =
pU(θ)>J(θ)−1pU(θ)
pU(θ)>H(θ)−1pU(θ)

pw(θ).

All these adjustments to pw(θ) require the evaluation of J(θ) and H(θ), which can
be computationally troublesome or computationally demanding to compute in some
situations, such as in the example of multivariate extreme values example considered
in Section 4.

3 Empirical pairwise likelihood ratio statistics

This section develops a computationally and theoretically appealing approach, called
empirical pairwise likelihood. This approach is attractive in those problems where
the evaluation of the matrices H(θ) and J(θ) is computationally cumbersome or
when dealing with large datasets with relatively few observations.

Empirical likelihood is a pseudo-likelihood function for θ derived from a very
general estimating function (see Owen, 2001, as a general reference). It is a non-
parametric tool which allow to obtain a pseudo-likelihood in several contexts, which
include inference for dependent data(Owen, 1991; Kolaczyk, 1994; Kitamura, 1997;
Nordman and Lahiri, 2006; Nordman, 2008). The main appeal of the empirical
likelihood approach is that, under suitable regularity conditions, only unbiasedness
of the estimating function is required to obtain a standard asymptotic chi-square
distribution for the empirical likelihood ratio statistic or for its profile counterpart.
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The drawback of the empirical likelihood ratio statistic is that it may lead to unsat-
isfactory inferences when the sample size is relative small, since the convergence to
its null distribution may be slow.

An empirical pairwise likelihood ratio statistic for θ, derived from the pairwise
score function (2) can be expressed as

pwe(θ) = 2
n∑
i=1

log
{

1 + ξ>ηi(θ)
}
, (4)

where the Lagrangian multiplier ξ = ξ(θ) satisfies

1
n

n∑
i=1

ηi(θ)
1 + ξ>ηi(θ)

= 0 .

Note that, alternatively, the pairwise score function (2) may be expressed as

pU(θ) =
m∑
r=1

pUr(θ) (5)

when considering a set of measurable events {Ar : r = 1, . . . ,m} defined in terms of
pairs of observations (yih, y

i
k), with m = nq(q−1)/2. With this formulation, pUr(θ) =

∂ log f(y ∈ Ar; θ)/∂θ. In (5) it is highlighted that the pairwise score function has m
terms and we have pU1(θ) = pU1

12(θ), pU2(θ) = pU1
13(θ), . . . , pUm(θ) = pUn(q−1)q(θ).

An empirical likelihood ratio statistic for θ derived from (5), is

pwe(θ) = 2
m∑
r=1

log
{

1 + ξ̄>pUr(θ)
}
, (6)

where the Lagrangian multiplier ξ̄ solves

1
m

m∑
r=1

pUr(θ)
1 + ξ̄>pUr(θ)

= 0 . (7)

Expression (2) and (5) are alternative expressions of the same score function
and hence they lead to the same estimator θ̂p. The difference in grouping becomes
relevant when (2) and (5) are used to obtain an empirical likelihood function. Indeed,
the former maximizes a distribution function with n weights, while the second one a
distribution functions with m weights. In order to state the asymptotic behaviour of
the pairwise empirical likelihood ratio statistics pwe(θ) and pwe(θ) two propositions
are given.

Proposition 1. Consider the pairwise score function (2). Then

pwe(θ) = 2
n∑
i=1

log
{

1 + ξ>ηi(θ)
}

d→ χ2
d.
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Proposition 1 states the same asymptotic results of Owen (1988, 1990) for the
empirical pairwise likelihood ratio pwe(θ). In particular the leading term in the
expansion of pwe(θ) is Op(n−1) and the error term is of order Op(n−1/2). The proof
can be easily obtained following the theory in Adimari and Guolo (2010). The chi-
square approximation still holds when θ is partitioned as θ = (ψ, λ), i.e. for the
profile version of pwe(θ). In particular pwep(ψ) = infλwe(ψ, λ) still converges in
distribution to a chi-square random variable.

Proposition 2. Consider the pairwise score function (5). Then

pwe(θ) = 2
m∑
r=1

log
{

1 + ξ>pUr(θ)
}

d→
d∑
j=1

ωjZ
2
j .

The proof of Proposition 2 is given in the Appendix. Proposition 2 states that the
asymptotic null distribution of pw(θ) and pwe(θ) are the same. Hence, when d = 1 it
is possible to recover the usual asymptotic null distribution of pwe(θ) considering its
scaled version pwe1(θ) = pwe(θ)/ω1 (see Adimari and Guolo, 2010). For d > 1, it is
possible to use the scaled statistic pwe1(θ) = pwe(θ)/ω̄. In the presence of nuisance
parameters, the profile version of pwe(θ), given by pwep(ψ) = infλ pwe(ψ, λ), can be
easily scaled in order to have a statistic distributed as chi-square random variable.
In the Appendix some remarks about the accuracy of the chi-square approximation
of pwe1(θ), which depends on n, q and the dependence structure of the observations,
are given.

4 Monte Carlo studies

In this section three examples are discussed in order to compare the finite-sample
behaviour of the inferential procedures based on the statistics presented in Sections
2 and 3. The first example deals with a equicorrelated multivariate normal distri-
bution, the second one considers correlated binary data and the third one focuses
on multivariate extreme values. The first example considers a vector parameter and
is feasible to do closed form calculations both for complete and pairwise likelihood
quantities. The second and the third examples provide a framework of practical
interest, where the estimation of the matrices H(θ) and J(θ) is needed and can be
computationally intensive to estimate.

4.1 Multivariate normal distribution

Let us focus on the mean µ, variance σ2, and on the correlation coefficient ρ of
a multivariate normal distribution. In this case, the full likelihood function L(θ),
with θ = (µ, σ2, ρ), is available and it is possible to compare the full likelihood ratio
statistic w(θ), based on L(θ), with the scaled versions of pw(θ) presented in Section
2 and with the proposed pairwise empirical likelihoods, pwe(θ) and pwe(θ).

Let Y be a q-variate normal random variable with corr(Yr, Ys) = ρ, for r, s =
1, . . . , q, r 6= s and with µr = µ, andσ2

r = σ2, for r = 1, . . . q. Given a sample
y = (y1, . . . , yn), the pairwise log-likelihood is
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p`(θ) = −nq(q − 1)
2

log σ2 − nq(q − 1)
4

log(1− ρ2)− q − 1 + ρ

2σ2(1− ρ2)
SSW+

− q(q − 1)SSB + nq(q − 1)(ȳ − µ)2

2σ2(1 + ρ)
,

where

SSB =
n∑
i=1

q∑
h=1

(yih − ȳi)2 , SSW =
n∑
i=1

(ȳi − ȳ)2,

with ȳi =
∑q

h=1 y
i
h/q and ȳ =

∑n
i=1

∑q
h=1 y

i
h/nq . In order to assess the behaviour

of the proposed test statistics, we ran a simulation experiment, with n = 15, 30
and q = 30, for three values of ρ, ranging from a moderate to a strong correlation.
Table 1 reports the empirical coverages of equitailed confidence regions. Note that
both pw1(θ) and pwe1(θ) are multiplied by the same scale factor 1/ω̄, which is
evaluated at the pairwise maximum likelihood estimate. The results in Table 1 show
that the proposed pairwise empirical likelihood statistic pwe1(θ) shows a reasonably
performance in terms of coverage and is close to w(θ), pw1(θ), pws(θ) and pwinv(θ)
when the correlation is less than 0.9. For all considered n, pwe1(θ) outperforms
pwe(θ), pww(θ) and pws(θ).

4.2 Binary data

The pairwise likelihood is particularly useful for modelling correlated binary out-
comes, as discussed in Le Cessie and Van Houwelingen (1994). This kind of data
arises, e.g., in the context of repeated measurements on the same subject, where a
maximum likelihood analysis involve multivariate integrals whose dimension equals
the cluster sizes.

Let us focus on a multivariate probit model and constant cluster sizes. In this
case, the pairwise log-likelihood is

p`(θ) =
n∑
i=1

q−1∑
h=1

q∑
k=h+1

log pr(Y i
h = yih, Y

i
k = yik; θ) (8)

(see Le Cessie and Van Houwelingen, 1994; Kuk and Nott, 2000). Pairwise likeli-
hood inference is much simpler than using the full likelihood since it involves only
bivariate normal integrals. For instance (see also Renard et al., 2004), we have
pr(Y i

h = 1, Y i
k = 1; θ) = Φ2(γih, γ

i
k; ρ), where Φ2(·, ·; ρ) denotes the standard bivari-

ate normal distribution function with correlation coefficient ρ and γih = xi>h β/σ, with
β unknown regression coefficient, σ known scale parameter and xih fixed constants
(i = 1, . . . , n;h, k = 1, . . . , q).

Simulation results for the overall parameter θ = (β0, β1, ρ) are summarized in
Table 2, which gives the empirical coverages for equitailed confidence regions for θ.
The derivatives of (8) are not available in closed form and numerical evaluation of all
the likelihood quantities involved in the simulation study has been used. The results
in Table 2 show that, as in Example 1, the empirical likelihood statistic pwe(θ) gives
quite good results for moderate sample sizes improves on pww(θ), pws(θ), pwcb(θ),
pwpss(θ).
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Table 1: Correlation coefficient: empirical coverage probabilities of equitailed confi-
dence regions for θ based on 20.000 Monte Carlo trials

q = 30 ρ = 0.2 ρ = 0.5 ρ = 0.9

n = 15 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

w(θ) 0.891 0.943 0.987 0.889 0.941 0.987 0.888 0.941 0.987
pw1(θ) 0.838 0.890 0.949 0.839 0.892 0.952 0.845 0.899 0.959
pw2(θ) 0.865 0.919 0.972 0.863 0.919 0.972 0.869 0.924 0.976
pww(θ) 0.809 0.860 0.924 0.776 0.831 0.900 0.715 0.767 0.837
pws(θ) 0.906 0.947 0.983 0.906 0.947 0.983 0.905 0.948 0.983
pwcb(θ) 0.831 0.884 0.944 0.820 0.876 0.941 0.762 0.818 0.891
pwinv(θ) 0.907 0.953 0.989 0.898 0.948 0.989 0.890 0.941 0.986
pwe(θ) 0.886 0.930 0.976 0.884 0.935 0.949 0.856 0.870 0.888
pwe1(θ) 0.904 0.953 0.990 0.907 0.949 0.989 0.848 0.871 0.880

n = 30 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

w(θ) 0.892 0.944 0.987 0.896 0.944 0.988 0.894 0.945 0.988
pw1(θ) 0.855 0.905 0.961 0.855 0.906 0.967 0.868 0.919 0.974
pw2(θ) 0.882 0.931 0.980 0.879 0.933 0.982 0.891 0.940 0.985
pww(θ) 0.850 0.900 0.955 0.824 0.879 0.941 0.709 0.763 0.831
pws(θ) 0.901 0.947 0.986 0.902 0.947 0.984 0.902 0.948 0.985
pwcb(θ) 0.861 0.914 0.967 0.852 0.908 0.963 0.743 0.796 0.869
pwinv(θ) 0.900 0.949 0.989 0.898 0.947 0.989 0.893 0.942 0.986
pwe(θ) 0.815 0.876 0.937 0.826 0.883 0.941 0.855 0.903 0.951
pwe1(θ) 0.900 0.950 0.990 0.900 0.946 0.976 0.871 0.923 0.958

4.3 Multivariate extreme values

As pointed out in Padoan et al. (2010), the general q-dimensional distribution
function under a max-stable process representation does not permit an analytical
tractable form. In this situation the specification of bivariate spatial models be-
comes crucial in order to write down a likelihood function to make inference with
multivariate extreme values. The model used is the Gaussian extreme value model
(Coles, 1993) that, for locations th, tk ∈ R2 (h, k = 1, . . . q), has probability function

pr{Z(0) ≤ zh, Z(t) ≤ zk} = exp
[
− 1
zh

Φ
(
a(t)

2
+

1
a(t)

log
zk
zh

)
+

− 1
zk

Φ
(
a(t)

2
+

1
a(t)

log
zh
zk

)]
,
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Table 2: Binary data: empirical coverage probabilities of equitailed confidence re-
gions based on 20.000 Monte Carlo trials, with β0 = 1/2 andβ1 = 1

q = 20 ρ = 0.25 ρ = 0.50 ρ = 0.75

n = 50 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

pw1(θ) 0.871 0.918 0.968 0.867 0.914 0.967 0.869 0.916 0.968
pw2(θ) 0.898 0.944 0.985 0.895 0.943 0.985 0.897 0.943 0.985
pww(θ) 0.839 0.896 0.959 0.850 0.907 0.969 0.858 0.914 0.970
pws(θ) 0.861 0.913 0.969 0.869 0.922 0.975 0.878 0.930 0.978
pwcb(θ) 0.843 0.902 0.965 0.863 0.914 0.972 0.863 0.920 0.979
pwinv(θ) 0.860 0.911 0.967 0.867 0.920 0.972 0.875 0.927 0.975
pwe(θ) 0.875 0.928 0.978 0.886 0.935 0.982 0.886 0.936 0.982
pwe1(θ) 0.878 0.924 0.973 0.872 0.920 0.971 0.873 0.920 0.971

n = 100 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

pw1(θ) 0.876 0.922 0.969 0.877 0.923 0.971 0.872 0.920 0.972
pw2(θ) 0.900 0.947 0.985 0.903 0.948 0.987 0.900 0.947 0.987
pww(θ) 0.867 0.923 0.976 0.878 0.932 0.983 0.880 0.932 0.981
pws(θ) 0.875 0.929 0.978 0.886 0.938 0.983 0.887 0.940 0.983
pwcb(θ) 0.874 0.930 0.984 0.884 0.939 0.988 0.885 0.940 0.990
pwinv(θ) 0.873 0.928 0.976 0.884 0.935 0.980 0.885 0.938 0.981
pwe(θ) 0.894 0.945 0.987 0.894 0.948 0.990 0.896 0.947 0.988
pwe1(θ) 0.880 0.925 0.971 0.879 0.925 0.972 0.874 0.922 0.973

where Φ(·) is the standard gaussian distribution function, t = (th − tk)>, a(t) =
(t>Σt)1/2 and Σ is the covariance matrix with covariance σhk and standard devia-
tions σh, σk > 0. The function a(t) measures the strength of the extremal depen-
dence between zh and zk: as a(t) tends to zero we have complete dependence while
as a(t) tends to infinity we have complete independence. Data were simulated over
regular grids of 8×8 and 30×30 locations and the couples considered in the pairwise
likelihood function were all those satisfying e(t) = (t>t)1/2 ≤ d with d > 0 fixed con-
stant. This condition implies that the pairwise likelihood function (1) has weights
wihk = {0, 1} in accordance to e(t). In our simulation study we set σh = σ1 = 2000,
σk = σ2 = 3000, σhk = σ12 = 1500 and d = 3. The results for this example are
summarized in Table 3, with θ = (σ1, σ2, σ12), and highlight a reasonable perfor-
mance of the proposed statistics. The pwe(θ) seems to be more accurate when the
dimension of the grid grows, in accordance with the proof given in the Appendix.
As expected, pwe(θ) needs relatively large sample sizes to be comparable with the
scaled versions of pw(θ) and pwe(θ) but in this example a jack-knife estimate of J(θ)
is cumbersome to obtain since the maximization step required to obtain θ̂p is time
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demanding: in the 30× 30 grid framework with n = 150 the couples involved in the
pairwise likelihood function are 2.975.400.

Table 3: Multivariate extreme values: empirical coverage probabilities of equitailed
confidence regions based on 1.000 Monte Carlo trials
n 50 100 150

1− α 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

8× 8 grid

pw1(θ) 0.871 0.922 0.967 0.884 0.927 0.979 0.884 0.922 0.979
pw2(θ) 0.889 0.939 0.983 0.899 0.943 0.986 0.902 0.945 0.983
pwcb(θ) 0.829 0.899 0.969 0.860 0.928 0.979 0.862 0.926 0.979
pwinv(θ) 0.771 0.818 0.902 0.840 0.879 0.941 0.835 0.878 0.943
pwe(θ) 0.820 0.892 0.952 0.866 0.925 0.976 0.869 0.930 0.980
pwe1(θ) 0.851 0.896 0.946 0.875 0.918 0.965 0.880 0.923 0.965

30× 30 grid

pw1(θ) 0.854 0.909 0.969 0.875 0.932 0.985 0.891 0.930 0.971
pw2(θ) 0.871 0.930 0.981 0.887 0.947 0.992 0.903 0.941 0.985
pwcb(θ) 0.830 0.897 0.961 0.864 0.922 0.981 0.874 0.914 0.970
pwinv(θ) 0.798 0.850 0.912 0.829 0.887 0.945 0.855 0.902 0.945
pwe(θ) 0.827 0.879 0.954 0.857 0.918 0.981 0.873 0.921 0.978
pwe1(θ) 0.865 0.904 0.951 0.896 0.932 0.974 0.895 0.939 0.973

5 Concluding remarks

In this paper, the possibility of deriving empirical likelihoods from a pairwise score
function has been investigated. This approach offers a new attractive computational
method to derive likelihood ratio type test statistics. The simulation results in
Section 4 indicate that the proposed pwe1(θ) and pwe(θ) can be useful to make
inference in complex models. Moreover, for multidimensional θ and for large q,
pwe1(θ) appears preferable than pwe(θ), but it must be noticed that the latter can be
used when both pwe1(θ) and pw1(θ) are not available. For example, when analysing
long sequences of genetic or spatial data, it may happen that the matrix H(θ) is
too large and its inverse can be computational troublesome to compute. As a final
remark, we note that the proposed pairwise empirical likelihoods may be readily
extended to general composite score functions providing inferential tools alternative
to composite likelihood functions.
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Appendix

Proof of Proposition 2

Following Cox and Reid (2004) we formally expand ηi(θ̂p) around θ, up to the first
order,

ηi(θ)− (θ̂p − θ)>∂ηi(θ)/∂θ
·= 0.

The second term is Op(q2) while the order of the first term is Op(qk). The constant
k ∈ [1, 2] accommodates for the dependence structure of the data (see Cox and Reid,
2004).

Since the ηi(θ) are independent we have

n∑
i=1

{
ηi(θ)− (θ̂p − θ)>∂ηi(θ)/∂θ

}
= pU(θ) + (θ̂p − θ)>∂pU(θ)/∂θ = (9)

= Op(n1/2qk) +Op(n−1/2qk−2)Op(nq2).

Let us denote the second moment of pU(θ) with Jp(θ) and minus the expected
value of its first derivative with Hp(θ). The estimator of Jp(θ) supplied by (5)
is Ĵp(θ) =

∑m
r=1 pUr(θ)pUr(θ)

>, while that from (2) is J̃p(θ) =
∑n

i=1 η
i(θ)ηi(θ)>.

Thus, Ĵp(θ) converges to Hp(θ) and J̃p(θ) converges to Jp(θ).
A McLaurin series expansion of (7) yields

ξ̄ = Ĵp(θ)−1pU(θ) +Op(n−1q2k−4) = Op(n−1/2qk−2),

and both −∂pU(θ)/∂θ> and Ĵp(θ) converge to Hp(θ). The order of pU(θ) and
∂pU(θ)/∂θ> can be derived from (9).

The expansion for pwe(θ) is

pwe(θ) = 2
m∑
r=1

log
(

1 + ξ̄>pUr(θ)
)

=

= 2
(
ξ̄>pU(θ)− 1

2
ξ>Ĵp(θ)ξ

)
+Op

(
n−1/2q3k−4

)
=

= pU(θ)Ĵp(θ)−1pU(θ)> +Op

(
n−1/2q3k−4

)
=

=
{
J̃p(θ)−1/2pU(θ)

}
J̃p(θ)Ĵp(θ)−1

{(
J̃p(θ)−1/2pU(θ)

)>}
+Op

(
n−1/2q3k−4

)
,

where J̃p(θ)1/2J̃p(θ)1/2 = J̃p(θ). The result stated in Proposition 2 follows since, in
the last equality, we have a quadratic form in normal random variables.

In order to use the statistic pwe(θ) for inference it might be necessary to use
its scaled version, i.e. pwe1(θ). It is easy to show that ω̄ = tr(J̃p(θ)Ĵp(θ)−1)/d =
Op(q2k−2) and hence the remainder term of the scaled statistic pwe1(θ) isOp

(
n−1/2qk−2

)
.

This highlights that, as the correlation strengthen, hence k moves from 1 to 2, the
convergence will be slower. Indeed, if q = O(n1/2) and k = 1, the remainder term is
Op(n−1), while if k = 2 it is Op(n−1/2).
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