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Abstract: The catenary function has a well-known role in determining the shape of chains

and cables supported at their ends under the force of gravity. This enables design using

a specific static equilibrium over space. Its reflected version, the catenary arch, allows the

construction of bridges and arches exploiting the dual equilibrium property under uniform

compression. In this paper, we emphasize a further connection with well-known aggregate

biological growth models over time and the related diffusion of innovation key paradigms

(e.g., logistic and Bass distributions over time) that determine self-sustaining evolutionary

growth dynamics in naturalistic and socio-economic contexts. Moreover, we prove that the

‘local entropy function’, related to a logistic distribution, is a catenary and vice versa. This

special invariance may be explained, at a deeper level, through the Verlinde’s conjecture on

the origin of gravity as an effect of the entropic force.
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1 Introduction

Shannon’s entropy is a basic conceptual and physical tool to understand statisti-
cal properties of systems. In statistics, it is used for prediction purposes in different
areas in order to represent the natural variability of a population (system) with
reference to qualitative and quantitative factors or to describe its decomposition, in
multivariate contexts, highlighting some relationships (dependence among factors)
and their relative strength. The basic reference is a distribution of probabilities
pi, i = 1, 2, · · · ,K, among K possible alternative states of a system, and there is
no need to introduce space or time environments. This special feature is extremely
relevant in the sequel.

Shannon’s entropyH is a mean value of local entropies, log(1/pi), based on a par-
ticular information unit of measure, a log concave function of the ratio 1/pi, namely,
H =

∑K
i=1 pi log(1/pi) for pi > 0 and

∑K
i=1 pi = 1. The local entropy log(1/pi) de-

picts a level of rarity of event i within the possible system states and, therefore, the
level of information to detect or represent it. In an unconstrained system, we notice
two polar frameworks: a zero entropy situation, H = 0, corresponding to a degener-
ate distribution, where only one event or state is possible, for instance event i with
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probability pi = 1 and pj = 0 for j ̸= i, or, conversely, a maximal entropy situation,
H = logK, under the most uninformative distribution, pi = 1/K; i = 1, 2, · · · ,K.

Entropy index H, or its normalized version S = H/ logK, denotes a measure of
variability of a distribution of events stemming from a system. Nevertheless, it does
not explain why those events are related to a specific system.

We may consider a further interpretation of local entropy in a system. It measures
a hypothetical attraction force that the system exerts in maintaining the event i
as a member of it. Index H denotes the mean-field attraction expressed within
the current system. Under a degenerate distribution, we have a coherence among
different interpretations: The variability is absent (zero), the rarity of the only
possible event is minimal, log(1/pi) = 0, and the attraction force is absent (zero).
Conversely, for small positive values of pi, the contribution to variability is high, the
rarity of the specific event is relevant and the attraction force to be a member of the
system is significant. An equilibrium with maximal mean entropic attraction H is
obtained under the uniform distribution pi = 1/K in an unconstrained environment.
If the cardinality K of a homogeneous system (uniform distribution) augments, then
an increasing entropy due to expansion of logK confirms that the maximal entropy
is a monotone function of complexity.

In constrained environments over space or time, the distributions of events that
define an observable equilibrium may be different from the uniform hypothesis. Cor-
respondingly, the related function of local entropies is not invariant, log(1/pi) ̸=
logK. Notice that with the term ‘equilibrium’ we denote special distributions, or
their monotonic transformations, obtained under complex frameworks that may be
represented, not exclusively, through equations and related initial conditions.

In this paper, we examine two different experiments that exhibit two equilibria, a
first one over space and a second one over time. The proposed static equilibrium over
space refers to the shape of a homogeneous chain supported at its ends, under the
force of gravity. It is well known that the mathematical description of the previous
form is a catenary function.

An apparently different situation is the aggregate dynamic expansion of a viral
agent in a human population over time. In this case, under regularity conditions in
a homogeneous population, the pertinent mathematical description is a probability
density, a logistic distribution of events (Verhulst,1838) that depicts the time when
we observe the change of state of individuals.

Both examples may have similar or analogous alternatives. In the first case, for
instance, the catenary function properly defines, by reflection, the catenary arch
under local uniform compression. In the second one, we may consider many other
situations characterized by diffusion of innovations in a socio-economic context or
growth models in naturalistic frameworks that may be conceived as variants of lo-
gistic distribution; for instance, the Bass models (see in particular Bass, 1969 and
Bass, 1994).

The main aim of this paper is to prove that the dynamic equilibrium of a logistic
distribution over time may be linked to a corresponding local entropy function, which
is a catenary. In this way, the local attraction of each event in the system over time
or the reciprocal contagion rate over time has a common representation with the
static equilibria of suspended chains or catenary arches.
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Conversely, starting from a static catenary, we prove that the local cardinality
of the chain links, for unitary variations over space, defines, under the gravity force,
a logistic distribution through a local entropy function.

We highlight that both examples refer to specific constraints. The chain has rigid
and homogeneous links; it is not free but suspended at two separate ends. In the
contagion or diffusion experiment, the susceptible population is homogeneous and
limited. In both cases, the role of entropy and the ‘attraction force’ that it implies
are the common bricks. The proposed connection, between static and dynamic
equilibria in these two reduced but general cases, is in agreement with Verlinde’s
conjecture on the origin of gravity as an effect of entropic force (see Verlinde, 2011).

A further issue of interest for both static and dynamic contexts, previously re-
duced to a common interpretative key, is the treatment of systematic deviations
from uniformity or homogeneity assumptions. The generalized Bass model, GBM
(see Bass, 1994), and the related perturbed logistic model may be easily converted
to perturbed catenaries in order to take into account different intervention functions
in controlling dynamics of viral or diffusion of innovation expansions or, in the static
domain, the presence of local non-uniform compression due to design constraints.
In this perspective, the proposed solution, through the local entropy function of
a perturbed logistic or a GBM, simplifies the operative construction of weighted
catenaries as characterized in Osserman (2010).

The paper is organized as follows. Section 2 presents the catenary function, some
historical aspects, applications in architecture and its recent weighted extensions by
Osserman (2010). Section 3 introduces basic growth models and a diffusion of in-
novations perspective focusing on logistic and Bass models and their isomorphism.
Section 4 establishes the fundamental result of this paper: the connection between a
static equilibrium framework, described through a catenary, and the corresponding
dynamic equilibria typical of logistic and related models in growth or diffusion of
innovations contexts. In particular, Sub-section 4.4 proposes a physical interpre-
tation of the correspondence between the above-mentioned equilibria drawing on
Verlinde’s conjecture on gravity conceived as an entropic force. Section 5 introduces
a more tractable definition of weighted catenaries via the generalized logistic model.
In Section 6, we propose our conclusions.

2 The catenary: Definition and main characteristics

It is sometimes surprising to discover how certain natural and social phenomena
may refer to common interpretations in a way that is universal. The multiplicity
of manifestations of natural phenomena, from the deepest levels of physical forms
of matter to the elementary and complex biology of life, and to more sophisticated
linguistic devices typical of social systems, apparently results in specific and extreme
fragmentation of knowledge not attributable to common denominators. It should be
noted, however, that from the time of ancient Greek philosophers, the attempt to
propose ways to partially unify languages and knowledge was always at the centre
of Western cultural traditions.

Here, we propose a careful consideration of a typical function of mathematical
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analysis, the catenary. This function, referable to the hyperbolic cosine,1 directly
describes different phenomena such as homogeneous ropes or chains supported at
both ends and subjected to the action of gravity, a geodetic section of a soap film of
minimum area subtended by circles of support and the shape of the cables of sus-
pended power lines. Its simple transformation, reflection, describes, under uniform
loads, arches in many buildings and the supporting arches of several bridges.

2.1 Some historical aspects

The term used for the catenary function comes from the Latin word catena and
was introduced by Huygens in a letter to Leibniz in 1690. Similar terms include
‘funicular’, ‘alysoid’ and ‘chainette’. Galileo also examined this curve. In the Di-
alogue of the Second Day, he established that a chain suspended at both ends can
be seen as a parabola. However, in the Dialogue of the Fourth Day, he corrects his
previous sentence by noting that the approximation to the parabola is obtained in
the presence of a small curvature. Evidence that the catenary is never a parabola
was given in a paper published by Jungius (post mortem) in 1669. In 1675, Hooke
published a solution through an encrypted anagram in Latin and first pointed to the
dualism between the catenary and its reflected version, thought to form an optimal
arch with uniform loads. An outstanding application of his result, in collaboration
with Wren, is the dome of St Paul’s Cathedral in London.

2.2 Architecture and Gaud́ı

The use of the catenary arch in architecture, from its characterization as an ideal
self-sustaining arch in relation to uniform loads, draws upon the premises of Hooke,
but its actual use is much more recent.

A structured and systematic contribution was made at the turn of the nine-
teenth and twentieth centuries. Across Europe, various architectural movements
arose simultaneously with consequent cultural and political effects. The Art Nou-
veau movement in France, the Liberty in Italy and the Jugendstil in Germany and
Austria were flanked by the so-called Catalan Modernism, which was proposed as
an artistic movement in various fields of expression, architecture, painting, sculpture
and decorative arts (glass processing, textiles, iron and wood). This movement oc-
curred with the use of irregular forms and sinuous floral ornament contrasted with
the prevailing classicism of linear forms. This emphasis took its inspiration from
organic shapes and forms of expression of life. Catalan Modernism also had politi-
cal implications connected with the autonomous role of the Barcelona region under
the European ‘Industrial Revolution’ active at that time. Many works of Catalan
Modernism are found in the Eixample district in Barcelona.

The outstanding creator of this current of thought was Antoni Gaud́ı (1852 -
1926). He built several buildings including a dozen that are defined by UNESCO as

1The hyperbolic cosine was introduced in 1760 by Vincenzo Riccati (mathematician and
physicist, 1707–1775, a son of the mathematician Jacopo Riccati) alongside the other hyper-
bolic functions. It is defined as the arithmetic average of two exponential functions; namely,
coshx = 1

2
(ex + e−x).
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World Heritage Sites. The work to which he devoted a large part of his energy for
decades, La Sagrada Famı́lia, is a basilica still under construction.

The architecture of Gaud́ı is based on the discovery of unusual shapes and un-
predictable nature that have great connotations: It is a biomorphism making use of
various materials with forged craftsmanship (brick, stone, concrete, ceramics, glass
and iron). Among these natural forms systematically reconstructed, in which the
colours, light and ventilation play a balancing role, there is a wide use of the cate-
nary arch, because it ensures a static equilibrium, which is a typical choice of Nature.
See, for example, the Milà and Batlló houses and La Sagrada Famı́lia itself, with
their underlying static models based on complex reflected catenaries.

2.3 Classic and weighted catenary

The function that defines the catenary takes the form

y = c(x) = a cosh

(
x− x0

a

)
=

a

2

(
e

x−x0
a + e−

x−x0
a

)
, a > 0, (1)

where cosh(·) is called the hyperbolic cosine and x0 is its minimum point.

A more general expression that allows simple transformations within the coor-
dinate system, is

y = a cosh

(
x− α

b

)
+ β a, b > 0; α, β ∈ R. (2)

Usually, the parameters α and β in Equation (2) are specified as a function of
suspension points of the chain and its length. The derivation of a standard catenary,
for b = a, is based on the definition of a homogeneous chain with an internal force,
a tension, that acts in every point of it, and an external force, the gravity, which
determines the internal tensions and their variations along the curve. A reflected
version of the catenary solves the dual equilibrium problem (i.e., the construction
of a freestanding arch with uniform loads). In this case, we have b = |a| and a < 0.

A standard derivation of the catenary function is well known under the assump-
tion of constant mass per unit length. More generally, we argue that a direct solution
for a weighted chain is not straightforward. In Osserman (2010), a weighted chain
C is introduced as a pair of functions (f(x), ρ(s)), where f(x) is a suitable smooth
function on an interval x1 ≤ x ≤ x2, s is arc length along the curve y = f(x) and ρ(s)
is a positive continuous function of s, called the ‘density’ function of C. A weighted
catenary is a weighted chain C in which (i) −∞ < f ′(x1) < 0 < f ′(x2) < ∞, and
(ii) f ′′(x) is continuous and positive. As stated in Osserman (2010), if function f(x)
satisfies conditions (i) and (ii), there exists a function ρ(s) such that (f(x), ρ(s))

is a weighted catenary where ρ(s(x)) = Hf ′′(x)√
1+f ′(x)2

, 0 < H = W
|f ′(x2)|−|f ′(x1)| and

W =
∫ x2

x1
ρ(s(x)) dsdxdx is the total weight of the chain.

The proposed theorem is very useful in order to determine the particular density
function ρ(s(x)) for a known function f(x) satisfying conditions (i) and (ii). Un-
fortunately, the converse theorem, which states f(x) as a function of ρ(s(x)), is not
derived, as the f(x) definition is quite general. Notice that this is a central point
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in determining an accurate curve-fitting approach. Following Osserman’s example
motivated by the Gateway Arch, the characterization of its structure has to be based
on a flexible f(x) controlled by a suitable ρ(s(x)) and not vice versa.

In the final part of the present paper, Section 5, we derive a solution based on a
simple transformation of a dual problem related to a GBM. The weighted catenary
based on the GBM and the related intervention function, x(t), define a function
f(x) in the sense of Osserman (2010) so that the corresponding ‘density’ ρ(s(x)) is
easy to determine.

3 Some growth models

The phenomena of growth are found in many natural and social contexts. In
support of these processes, some key aspects that define a common conceptual basis
are identified. These systems consist of a large number of units or agents that are
connected in terms of relational forms through appropriate languages that determine,
lato sensu, the internal architecture of the attraction forces; see, for instance, Couzin
(2007) and Pentland (2010) in different fields. A key example is a swarm of bees. The
organization of these systems does not require a central control. For instance, the
initiatives linked to the search for food are based on the flexible recruitment of worker
bees. Based on preliminary information provided by some explorer bees through
conventional dances, many other workers take steps to reach the site, dynamically
involving other bees. Initialization of information process and its expansion, through
local interaction, are basic features. In migrations of birds or movements of schools
of fish, the evolutions of these systems of animals seem to respond to rather simple
and universal forms. For example, information acquired by local members in relation
to the presence of a predator is processed collectively, by closing ranks to facilitate
the transmission of information and replication of imitative behaviour quickly based
on defence veering that do not need a ‘conductor’. The system is delimited by the
common language that defines the contour of the internal attraction forces. The
growth of a cell culture in a laboratory (Verhulst, 1838), under suitable testing
conditions, is based on autocatalytic splitting mechanisms. These systems tend to
saturation with respect to the capacity of the environment. The dynamics of the
spread of a viral agent in a human population are a function of types of organization
and networks of social relationships (Barabasi, 2002). The susceptible come into
contact with a carrier and in turn spread the viral agent, temporarily saturating the
subpopulation that may be affected. The launch of a new product, a technological
innovation or a fad, responds to similar mechanisms (Rogers, 2003; Granovetter,
1978; Bass, 1969; Bass, 1994; Guseo, 2008; Guseo, 2009; Guseo, 2010; Guseo, 2011).
Some opinion leaders quickly adopt innovation based on the systematic actions over
time of corporate communications; then the imitative mechanism is activated in
parallel by word-of-mouth (WOM), a very powerful tool that is critical to the success
or the failure of almost all business initiatives. In all previous systems, ‘internal
attraction’ among agents allows the definition of physical, chemical, social, biological
or economic relationships with correlated networks.

The mathematical and statistical models that are used in these contexts are
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generally included in special subfamilies of Riccati2 equations. The key paradigms
are represented by the logistic model (Verhulst, 1838) and the Bass model Bass
(1969). We see the basic features of both.

3.1 Logistic distribution

The logistic equation expresses the aggregate growth over time of a biological sys-
tem in a constrained environment. This equation defines the instantaneous growth
of a phenomenon as an interaction between the cumulative extension of the current
process and the residue that may still be activated. Consider as an example the
formation of a new biochemical compound in terms of certain components and spe-
cific catalysts. Let us define the total mass m obtained at the end of the reaction,
z(t) the compound obtained until time t, and z′(t) the instantaneous quantity of
the product made at time t. The equation that governs the dynamics may take the
following form:

z′(t) =
r

m
z(t)(m− z(t)), t ∈ R, (3)

where the parameter r > 0 controls the speed of the reaction. Note that the fraction
z(t)/m stimulates, through an interaction (multiplicative interaction), the residual
process represented by the difference (m − z(t)). The above equation is completed
with an initial positive condition z(0) = z0 > 0. Under the position tp =

1
r log

m−z0
z0

,
the solution is

z(t) = mL(t) = m
1

1 + e−r(t−tp)
, (4)

where L(t) represents the distribution function of the corresponding logistic distri-
bution over time. The instantaneous growth rate is

z′(t) = ml(t) = m
re−r(t−tp)(

1 + e−r(t−tp)
)2 , (5)

where l(t) is the associated logistic density function. It can be shown that tp is
the time to peak, and it is obviously connected with the initial condition: z0 =
m/(1 + ertp).

The prevailing applications of the logistic model are usually defined within nat-
uralistic fields, where growth phenomena over time are nonlinearly determined by
constrained environments.

3.2 Bass’s distribution

The Bass equation (Bass, 1969) has established itself in a very different context
with respect to the former, in the area of diffusion of innovation processes in socio-
economic systems (Rogers, 2003). This is a typical field of applied mathematics in

2Count Jacopo Riccati, renowned Italian mathematician, was born in Venice in 1676 and lived
mainly in Castelfranco Veneto, where he was superintendent (mayor) for a decade. He was a man
of great erudition and he had contacts with many European mathematicians of the time (among
them, different components of the Bernoulli family as well as Hermann, Agnesi and Vallisneri). He
is known, among other things, for the equation that now bears his name: x′ = ax2 + bx + c. He
died in 1754.
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the quantitative marketing tradition (the ‘Bass model’ has about 160 millions of
results in Google). Bass suggests that success in marketing a product or service
depends very much on the contribution of two main types of consumers: innovators
who are directly sensitive to the actions of institutional communication (advertis-
ing campaigns and incentives) and imitators who basically ignore this channel of
information and prefer to support their decisions to adopt based on interpersonal
relationships. In the latter case, the main communication channel is the interac-
tion between adopters and susceptibles through word-of-mouth (WOM) in a broad
sense. WOM denotes not only simple verbal communication but also all of the signs
and gestures that humans use broadly (Pentland, 2010). The equation proposed for
government of the dynamics takes the following form:

z′(t) =

(
p+ q

z(t)

m

)
(m− z(t)), t ∈ [0,+∞), (6)

where, z′(t) denotes the instantaneous adoptions at time t, z(t) the cumulative
adoptions until time t, m the asymptotic market potential (limt→+∞ z(t) = m),
the parameter p > 0 represents the contribution of innovators directly proportional
to the residual market (m − z(t)) and q > 0 rules, so modulated by the relative
knowledge about the product z(t)/m, the access to the residual market (m − z(t))
due to the imitators and related word-of-mouth. The above equation is completed
with an initial condition that is natural for processes of this type, z(0) = 0.

Following the total probability law, a parallel hazard description with three
sub-populations and related conditional probabilities of adoption – innovators (1),
imitators z(t)/m, and neutrals (0) –, is useful for interpretation, namely, h(t) =
z′(t)/(m − z(t)) = (p · 1 + q · (z(t)/m) + (1 − p − q) · 0). The obtained hazard is
a probability mixture of three latent components. The solution of the cumulative
Bass model, expressed by Equation (6), is

z(t) = m
(1− e−(p+q)t)

1 + q
pe

−(p+q)t
, t ∈ [0,+∞), 0 < p < q, (7)

and the corresponding rate version is

z′(t) = m
(p+ q)2e−(p+q)t

p
(
1 + q

pe
−(p+q)t

)2 , t ∈ [0,+∞), 0 < p < q. (8)

We can compare the logistic model with that of Bass using a reparameterization
of Equations (7) and (8) (i.e., r = p + q, tp = (ln q/p)/(p + q)) or, equivalently,
q = rertp/(1 + ertp), p = r/(1 + ertp).

We obtain, therefore,

z(t) = mB(t) = m
(1− e−rt)

1 + e−r(t−tp)
, t ∈ [0,+∞), 0 < r, (9)

where B(t) is the Bass distribution function, and

z′(t) = mb(t) = m
r
(
e−rt + e−r(t−tp)

)(
1 + e−r(t−tp)

)2 , t ∈ [0,+∞), 0 < r, (10)
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the corresponding rate function with b(t) the Bass (probability) density.

The cumulative Bass model (9) can be determined by a monotonic transforma-
tion of the logistic model (isomorphism):

B(t) = L(t) (1− e−rt), t ∈ [0,+∞). (11)

Notice that in probability theory equation (1−e−rt) denotes the distribution function
of a monomolecular process and that a product of two or more distribution functions
is always a distribution function. For t → +∞, the logistic and Bass models are
asymptotically equivalent, because e−rt, for r > 0, tends rapidly to zero. Of course,
they differ in the right neighbourhood of zero where the initial positive condition of
the logistic exerts its main effect.

As expressed in Equation (11), the logistic model and the Bass model are isomor-
phic but not equivalent. The main difference can be concentrated in the role of the
mechanism of initialization. In the logistic model, this effect is entirely concentrated
at the time t = 0 by the positive initial condition, z(0) = z0 > 0. In the Bass model,
the mechanism of external initialization is based on a ‘seeding effect’ distributed
over time, for t ≥ 0, and governed by the parameter r, namely, (1− e−rt).

It may be interesting to examine the nature of the basic logistic model within
a Complex Systems perspective. In Guseo (2008-2011) some special Cellular Au-
tomata models, under a mean-field approximation, may explain a large class of
aggregate growth models. The emphasis, at the micro level, is related to the de-
scription of heterogeneous agents in a system. The emergent macro levels, related
to the aggregate temporal description of a Complex System, define special Riccati
equations and the corresponding solutions as distributions over time. The logistic
and the Bass models are basically key examples included in previous more general
distributions related to growth processes.

4 Catenary and diffusion models

A simple transformation of the catenary function, here proposed for the first time
and based essentially on the squared reciprocal transformation, reveals its entropic
nature, related to the local entropy concept, and represents the logistic distribution.
As explained in Section 3, the latter is the head of a family of models that describes
and predicts the growth of biological systems in a constrained environment. It
also depicts the diffusion of ideas and knowledge in a social body as well as the
market penetration of specific technological innovations or fashions in special areas
or countries.

4.1 Static and dynamic equilibria

The proposed above-mentioned connection between the static equilibrium of the
catenary and the dynamic one typical of a logistic diffusion process requires a deeper
understanding of such an observation. Is it a pure accident, or could it be included
in a more general context? In Sub-section 4.4, we discuss some aspects related to the
Verlinde’s conjecture of the origin of gravity (see Verlinde, 2011) as a consequence of
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the entropic force due to a change of entropy referred to the distribution of matter.
Local entropy or information is based on a monotonic concave transformation of a
ratio 1/pi, usually log(1/pi), where pi is the probability of an event. The ratio 1/pi
describes a measure of separation of event i from the central body of a distribu-
tion. A suggestive interpretation of the ratio 1/pi points to the implicit forces that
physically determine a distribution of events of a system. Those events exhibit a
sort of reciprocal ‘attraction’ in order to be members of the observed system. Low
levels of pi denote events that are strongly attracted by the system, and, vice versa
more probable events belong to the system with a low-level ‘attraction’. There is no
effort to include them in the generating system: they are not rare, they are typical
outcomes of the system. Here, the key argument is based on the meaning of the
square root of the reciprocal of a logistic probability density of events in a system.
This is eventually a measure of local entropy or information in a broad sense. It
allows a direct interpretation of the evolutionary character of a logistic diffusion
as a dynamic equilibrium equivalent to a static one over time characterized by a
catenary which is usually defined over space where the gravity force, as an emergent
phenomenon, exerts its macroscopic effect.

In the following sub-sections, we examine the proposed connections in the two
possible directions.

4.2 From the logistic to the catenary over time

It is important to see now the analytic relationship between the catenary model
over time and the basic diffusion models previously introduced. For convenience,
we examine the connection with the logistic model, knowing that this moves, in
accordance with the isomorphism, as the Bass model.

The density of the logistic distribution (see Equation (5)) can be exactly ex-
pressed through the hyperbolic cosine:

l(t) =
re−r(t−tp)

(1 + e−r(t−tp))2

=
rer(t+tp)

(ert + ertp)2
=

rer(t+tp)

e2rt + 2er(t+tp) + e2rtp

=
r
2

1 + 1
2e

r(t−tp) + 1
2e

−r(t−tp)
=

r
2

1 + cosh(r(t− tp))

=
r
4

(cosh(r(t− tp)) + 1)/2
=

r

4
cosh−2

(
r(t− tp)

2

)
. (12)

For a = 2
r , the transformation that connects the density of the logistic to the catenary

over time is immediately obtained; namely,√
a
2√

l(t)
= a cosh

(
t− tp
a

)
= c(t). (13)

Similarly, based on Equations (5) and (10), it follows the relationship l(t) = b(t) −
h(t), where h(t) = re−rt/(1+e−r(t−tp))2, so we can express the immediate connection
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between the Bass density and the catenary, specifically,√
a
2√

b(t)− h(t)
= a cosh

(
t− tp
a

)
= c(t). (14)

By neglecting the monotonic transformation induced by the square root, the recip-
rocal of a probability density denotes a measure of the rarity of an event at time
t.

The main question here is the meaning of the ratio
√

a
2/
√

l(t) whose behaviour
in terms of t is a catenary in the relevant space (time in this case). As explained
in the introductory Sub-section 4.1, it is possible to interpret such a ratio as a
local measure of information or local entropy related to the events’ positioning on
a time scale with the focal point in tp. Shannon’s entropy is an average of such
a local measure of information, i.e., H =

∑
i pi log(1/pi), where the log function

is a device to introduce a unit of measure for information (in particular, log2(·)
for the binary digit). A similar device may be a concave function like the square
root by obtaining an analogous measure, G =

∑
i pi
√

(1/pi). Within a first-order
approximation, G ≃ 1 +H/2, the measure G is an affine transformation of H. The
choice between one of them is therefore a conventional statement. The ratio 1/

√
pi or

1/
√

l(t) denotes the degree of local entropy that separates events’ time positioning
with reference to the focal point tp. The local symmetry of l(t) and b(t) around tp
is well known, and related local entropies are therefore symmetric.

Let us turn again to the basic interpretation of the logistic and Bass models
as emergent aggregate behaviour of special complex systems. The reciprocal of a
probability describes an information notion of events that are considered as part of
a common complex system. This ratio exhibits the intensity of a kind of attraction
that links together those events as members of a statistical population or a statistical
complex system. Under the special logistic behaviour, the corresponding squared
root reciprocal of the probability density of events is a catenary over time.

4.3 From the catenary to the logistic over space

Vice versa. Is the observed equilibrium of a suspended uniform chain over space
an entropic equilibrium? In order to answer this central question, we can study the
local length n(x) of a suspended chain for a unitary increment of space argument x if
its shape behaves as a catenary function, c(x) = a cosh

(
x−x0
a

)
. The first derivative

of c(x) is

c′(x) = sinh

(
x− x0

a

)
(15)

and, therefore, the first-order approximation of the local length n(x) for a unitary
increment of x is

n(x) = K1/2(x) =

√
1 + sinh2

(
x− x0

a

)
= cosh

(
x− x0

a

)
. (16)

The function n(x), proportional to the catenary c(x), describes the local length
through the number of links in the interval (x, x + 1) if we assume their unitary
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length, and, therefore, we have

n(x) =
1
1

n(x)

=
1
1

K1/2(x)

=
1√
p(x)

, (17)

where the ratio p(x) = 1/n2(x) denotes a probability. Moreover, Equation (17)
specifies that n(x) = 1/

√
p(x) denotes also a local entropy.

A similar monotonic transformation ñ(x) of previous cardinality n(x) may be
the following:

ñ(x) = logK(x) = log
1
1

K(x)

= log
1

p(x)
. (18)

Both functions, n(x) = 1/
√

p(x) and ñ(x) = log 1/p(x), denote local entropies. In
particular, logK(x) is the maximal entropy value for a generic discrete distribution
over K(x) points, and this extreme value is obtained for the uniform distribution
1/K(x). In other words, the equilibrium of a suspended chain denotes an entropic
equilibrium.

As a clear consequence, we have that a catenary always defines a local entropy
function based on a logistic probability density. In fact, we can express p(x) as a
function of n(x) following Equations (16) and (17), namely,

p(x) =
1

n2(x)
= cosh−2

(
x− x0

a

)
. (19)

In other words, see Equation (12) in space domain, the probability p(x) is pro-
portional to l(x). Function p(x) is not a generic density; it is a logistic density
distribution over space. This important aspect explains that the local entropies
n(x) of a spatial catenary, implicitly defining the corresponding probability density
p(x), express the normalized internal level of tension (a kind of attraction) among
local links at the space coordinate x.

4.4 A physical interpretation of static and dynamic equilibria

Equation (1) depicts, in Cartesian coordinates over space x, the shape of a
suspended chain under the force of gravity. This equilibrium is a traditional solution
due to the effect of the gravitational force on a system with a special structure based
on homogeneous links in terms of shape, density and mass.

In previous Sub-section 4.3, we have stated that the classical catenary solution
has an entropic nature due to the well-known maximizing principle related to its equi-
librium. The proposed result may be embedded into recent advances in theoretical
physics. Following the thought-provoking paper by Verlinde (2011) – which summa-
rizes and overcomes analogous results by Bekenstein (1973, 1981, 2003), Hawking
(1975), and Padmanabhan (2010) – we can assume that gravity is an emergent phe-
nomenon like space-time geometry. Gravity arises as an entropic force, once space
and time have emerged. Verlinde (2011) identifies a cause for gravity: ‘It is driven by
differences in entropy, in whatever way defined, and a consequence of the statistical
averaged random dynamics at the microscopic level.’ It is this differences in entropy
that cause motion in order to reach equilibrium.
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Following Verlinde’s approach, we may interpret the local length n(x) of a cate-
nary, for a unitary variation of space at x, as a measure of local entropy related to
the internal tension between adjacent links. Links near suspension points have a
high tension (a high entropy) that keeps them connected in the system (chain). The
links near the lower part of the chain have a small tension (small entropy) to include
them in the system. Conversely, we can interpret the reciprocal of the local lenght
of a catenary as a probability that governs the disposition of a link in a suspended
chain under the gravity force so that high probabilities denote the links in the central
positions and low probabilities depict links at the periphery of the system.

At the same time and with the same basic mechanism, the disposition over time
of events in a simple growth model, within a constrained environment, is driven by
the same catenary function that describes the reciprocal attraction or local entropy
of each event within the common system of events.

This is the same, for example, for the events that define the aggregate behaviour
of a complex system of increasing yeast cells in a limited environment, the adoption
of a technological innovation in a regional market or the diffusion of a new fad
among young people. In diffusion of innovation contexts, for instance, adoptions
are extremely difficult at the beginning or at the end of a life-cycle. In this case,
the internal psychological reasons of the involved agents may be different at the
beginning of the process, because few customers are aware of the existence of the
product or its quality. At the end, the adoption rate is again low but for different
internal reasons; most potential adopters have already adopted the product, and the
residual market is limited. Nevertheless, from an aggregate point of view, agents’
decisions – not their psychological attitudes – are what matter. Under the logistic
(or Bass) framework, the contribution of imitators is summarized by sub-equation
qy(t)(1− y(t)) (i.e., a symmetric function of y). It is a mean description that does
not take into account local latent motivations of agents but their behaviour due to
the interactions depicted by qy(t)(1− y(t)) as a relevant set of specific relationships
that sustain positive decisions under a common attraction force that include both
the share of adopters y(t) and the share of future adopters (1− y(t)).

As a final remark, the invariance between the static equilibrium of a suspended
chain or a catenary arch and the logistic process over time defining a saturating
equilibrium is coherent with Verlinde’s conjecture and is explained by a common
idea, the local entropy, and a common principle: the entropic force and its variations
in the reference domain, time or space.

5 Perturbed catenary and diffusion models

Both classic catenary and logistic function are based on homogeneity of links
or agents in a regular environment. In many static situations, it is necessary to
implement non-uniform loads or links in the space domain. This issue may be easily
discussed through the properties of a GBM or the corresponding perturbed logistic
by introducing a control function over space that is non-uniform.

A logistic equation perturbed by an exogenous intervention function x(t) acting
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on the basic Equation (3) is

z′(t) = r
z(t)

m
(m− z(t))x(t), t ∈ R, (20)

where x(t) is an integrable function in a limited range. For a more general case, see
Bass et al. [?].

Its solution, under initial condition z(0) = z0 > 0 or, tp =
1
r log

m−z0
z0

, is

z′(t) = mg(t) = m
rx(t)e−r(

∫ t
0 x(τ)dτ−tp)(

1 + e−r(
∫ t
0 x(τ)dτ−tp)

)2 . (21)

The corresponding perturbed catenary, for a = 2/r, is, therefore,

f(t) =

√
a
2√

g(t)
=

1√
x(t)

a cosh

(∫ t
0 x(τ)dτ − tp

a

)
. (22)

For x(t) = 1, we obtain the pure logistic density and the related catenary repre-
sentation. For x(t) ̸= 1, the standard logistic equilibrium is modified, yielding a
weighted catenary. Through Equation (22), we directly give an explicit solution
for a weighted catenary, function of an external input x(t) that is not uniform in
general. Following the theory by Osserman (2010), we can obtain, through f(t), the
corresponding ‘density’ ρ(s(t)).

6 Final remarks and discussion

This article emphasizes the unexpected but consistent connection between the
catenary function (which describes the static equilibrium of a chain, rope, or cable
suspended between two ends and subjected to gravity), or its dual form obtained
by reflection, the catenary arch (which optimizes the static equilibrium of uniform
loads), and the logistic function (which expresses the aggregate evolution of the
growth of biological or social systems in general under the effect of an internal
attraction force that determines the existence of a well-identified entity, the system
itself). The latter is a dynamic equilibrium chosen by natural evolutionary growth
processes.

Moreover, a perturbed logistic model may easily determine a corresponding per-
turbed catenary with non-uniform loads, and this may be a practical way to identify
local loads under fixed design points.

Gaud́ı’s intuition about the static equilibrium of tensions or compression forces
is extended here to cover a strong correlation with the dynamic ones related to
aggregate diffusions in socio-economic or biological systems. Both respond to a
common mathematical concept, the catenary, as defined by Equation (1). This
special invariance may be explained at a deeper level through local entropy and, in
particular, through Verlinde’s conjecture that obtains gravity as an effect of entropic
force.

The analysis of the catenary in Sub-section 4.3, from the point of view of in-
formation theory, parallels the well-known example proposed in Verlinde (2011) for
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describing an entropic force through a polymer molecule immersed in a heat bath.
Monomers are all of the same length, and the point of attachment with each other
makes them free to move in any direction. The same is exhibited by the homoge-
neous links in a suspended chain. The chain equilibrium under gravity is a maximal
entropy configuration. Analogously, the polymer in a heat bath assumes the random
configuration with higher entropy in comparison with a stretched one that moves it
out of the equilibrium.

In particular, when we apply an external force to a chain that takes it out of
equilibrium configuration (catenary), the statistical tendency that the chain return
to a configuration with higher entropy will define a macroscopic force that points to
an opposite direction (in this case, gravity). The direction and intensity of entropic
force is justified by a fewer number of states at a lower entropy when the chain is
‘contracted in space’, rather than when it is in a longer configuration, the equilibrium
catenary configuration.

In other words, Nature does not separate static equilibria from the dynamic
equilibria of biological or social growth processes governed by logistic family distri-
butions and their extensions over time. Both are a result of an entropic force defined
to reach the maximal entropy configuration in a constrained environment and may
be interpreted as a gravity force in the space domain and as an attraction force
among agents or events within a biological, physical or social system over time.
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