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Abstract

This thesis investigates transition based systems for parsing of natural language

using dependency grammars. Dependency parsing provides a good and simple

syntactic representation of the grammatical relations in a sentence. In the last

years, this basic task has become a fundamental step in many applications that

deal with natural language processing.

Specifically, transition based systems have strong practical and psycholinguis-

tic motivations. From a practical point of view, these systems are the only parsing

systems that are fast enough to be used in web-scale applications. From a psy-

cholinguistic point of view, they very closely resemble how humans incrementally

process the language. However, these systems fall back in accuracy when com-

pared with graph-based parsing, a family of parsing techniques that are based on

a more traditional graph theoretic / dynamic programming approach, and that

are more demanding on a computational perspective.

Recently, some techniques have been developed in order to improve the accu-

racy of transition based systems. Most successful techniques are based on beam

search or on the combination of the output of different parsing algorithms. How-

ever, all these techniques have a negative impact on parsing time.

In this thesis, I will explore an alternative approach for transition based parsing,

one that improves the accuracy without sacrificing computational efficiency. I will

focus on greedy transition based systems and I will show how it is possible to

improve the accuracy by using a dynamic oracle and a flexible parsing strategy.

Dynamic oracles allow to reduce the error propagation at parsing time. Dynamic

oracles may have some impact on training time, but there is no efficiency loss at

parsing time. A flexible parsing strategy allows to reduce constraints over the

parsing process and the time impact in both training and parsing time is almost

negligible. Finally, these two techniques work really well when combined together,
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and they are orthogonal to previously explored proposals such as beam search

or system combinations. As far as I know, the obtained experimental results

are still state-of-the-art for greedy transition based parsing based on dependency

grammars.



Sommario

La tesi riguarda gli algoritmi incrementali per l’analisi del linguaggio (naturale)

usando grammatiche alle dipendenze. Queste grammatiche permettono di dare

una chiara rappresentazione delle relazioni sintattiche che intercorrono tra le varie

parole della frase. Negli ultimi anni tali rappresentazioni hanno rivestito grande

interesse, fino a diventare un passaggio fondamentale in moltissime applicazioni

che trattano il linguaggio.

I sistemi incrementali trovano forti motivazioni sia pratiche che psicolinguis-

tiche. Da un punto di vista pratico, questi sistemi sono gli unici algoritmi in grado

di processare velocemente grandi quantità di dati. Da un punto di vista psicol-

inguistico sono sistemi che simulano il modo in cui l’uomo elabora e capisce il

linguaggio.

Se in termini di velocità i sistemi incrementali sono i migliori, esistono sistemi

basati sulla teoria dei grafi che ottengono una migliore precisione. Recentemente

si è cercato di migliorare i sistemi incrementali con l’ausilio di tecniche più o

meno elaborate di “beam search” o combinando i risultati provenienti da diversi

algoritmi. Sebbene queste tecniche migliorino la precisione dei sistemi, hanno un

impatto negativo sulla velocità degli algoritmi.

Durante il mio lavoro di ricerca ho elaborato sistemi alternativi che migliorano

la precisione senza sacrificare l’efficienza. In particolare nella tesi descriverò come

sia possibile migliorare i sistemi incrementali agendo sulle funzioni oracolo e au-

mentando la flessibilità degli algoritmi. Agendo sulle funzioni oracolo, che guidano

l’apprendimento dei modelli statistici usati in fase applicativa, è possibile ridurre

la propagazione degli errori che tipicamente affligge gli algoritmi incrementali. Le

nuove funzioni riducono leggermente la velocità della fase di apprendimento, ma

non hanno alcun impatto sull’efficienza in fase applicativa. Invece, agendo sulla

flessibilità degli algoritmi, è possibile creare sistemi incrementali con meno vincoli
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con un miglioramento della precisione a scapito di una praticamente trascurabile

riduzione dell’efficienza. Concluderò mostrando come queste due nuove idee fun-

zionino bene combinate l’una con l’altra raggiungendo risultati tuttora allo stato

dell’arte.
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Chapter 1

Introduction

I started my PhD years after my master degree. I did not take my master degree in

this university so the first couple of months I met many professors to know what

they were working on. I had just a vague desire to study something related to

artificial intelligence but something not just theoretical, something that can have

some practical application.

When I first met my actual advisor I was fascinated by natural language pro-

cessing. All human knowledge, everything we know is written somewhere and

obviously it is written in some (natural) language.

Today most of human knowledge is freely available, Wikipedia has 4 706 409

articles, only considering the ones written in English. A lifetime is not enough

to read all of them and Wikipedia is just one possible source of information. We

already have automatic systems that can access to all this amount of information

but imagine if these systems would be able to understand these information, to

organize and elaborate them. These systems would know more history of any

history professor, they would know more about economy than every man in Wall-

Street and they would know more math than any winner of the Fields medal.

Every day millions of new words are written. Some years ago I tried to read

completely a newspaper from the first to the last word. It took me 2 days, but

unfortunately the second day the news were already old! A system able to process

and understand every day all information from newspapers, blogs, Facebook status

would know more about our society condition than any sociologist or any shrink

in the world.

13



14 CHAPTER 1. INTRODUCTION

Every day we communicate to a computer with some interface and with some

software, we write some keyword on Google to search some information on the

web, we use some application in order to complete a task, we sometimes teach it

to do something by writing a code. We adapt our way to communicate to the

interface offered by the system. But imagine an universal interface to which you

can simply speak or the possibility to teach some task to an automatic system by

simply explaining it by using using our way: the (natural) language.

Now, understanding language is not the only problem that we need to solve in

order to obtain systems like the ones imagined before. The information need to

be processed, selected and elaborated. Understand something does not imply the

ability to relate all these information in order to produce something “intelligent”.

However understand the language is certainly a crucial first step.

Feet back to Earth

Convinced my advisor to give me a trial, I started to study something. After the

enthusiastic beginning I was so upset with myself:

Studying syntax, really???

I hated so much syntax at school, specially when I was constrained to study Latin

grammar about 15 years ago. I remember the first paper that I read, it was about

part-of-speech tagging [Collins, 2002] and I thought: “why we need to know that

this is a determiner and this is a name?” Fortunately part-of-speech tagging is an

almost solved problem and my advisor suggested me to read something else...

Finally

I studied something about parsing, particularly I remember one paper about a new

parsing algorithm [Goldberg and Elhadad, 2010]. The authors were using an al-

most trivial idea, that exactly because it was simple was working well and I found

it great. Studying something more, I became a little bit more aware about the

problems of natural language: the ambiguity that is inside the language, the prob-

lem of its representations. I understood that there are so many multidisciplinary

aspects involved: linguistic, psycholinguistic, graph theory, algorithms, . . .
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At the end I am here, happy to write my thesis about parsing, knowing that

there are many unsolved problems, many things that I do not know and I want to

learn. But at least, now, consciously fascinated by natural language processing.

1.1 Who is interested in Natural Language Pro-

cessing?

If I read the first paragraph of this thesis three years ago I probably told myself:

“Francesco, 2001 is already passed and Hal 9000 is far to be invented !”. But today

I do not think that this systems are just for science-fiction movies. We already

have cool applications that make huge use of natural language processing and they

are already in our life:

• Siri from Apple makes a first step toward natural language interface,

• Google Now collects data about us to present useful information,

• Google translator app is a first attempt to realize a speech-to-speech trans-

lation system,

• IBM Whatson is a great attempt to create a cognitive model, it won a special

edition of the quiz show Jeopardy.

If we look at Figure 1.1 we can see the sponsors of the last main conference of

the Association for Computational Linguistics. It is true that most of them are big

companies that support many information technology events, but it is also clear

that natural language processing raises some interest.
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Figure 1.1: Backcover of the handbook of the 52nd Annual Meeting of the Asso-

ciation for Computational Linguistics

1.2 Why parsing?

I focus my work on the syntax representation based on dependency grammar.

Not all natural language applications use parsing, there are many information

extraction systems that are based on statistical models and they work well. For

example most of tools for text classification do not use parsing at all.

Probably I have not enough experience to make a prediction but I think that

soon almost all natural language applications will use some parsing pre-processing.
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Indeed we will soon reach a point after which we will need to understand how words

are related in order to improve actual natural language applications.

Dependency parsing is not the most famous syntax representation formalism.

Specially in English linguistic tradition the most used syntax representation is a

phrase tree, a representation based on constituencies like noun phrase and verb

phrase. However dependency parsing is really interesting because it highlight

exactly what is most important: the relation between words. For the same reason

I think that it is really interesting the predicate argument relation that can be

extracted from a CCG (Combinatory Categorial Grammar) derivation.

1.3 Content of Thesis

In this thesis I will try to describe formally my work, but most of all I will try to

give the motivations that are behind each idea. Probably this is a simple thesis

written in a simple (and often bad) English, but IF it will ever useful to somebody

I think that the most important thing is to transmit the reasons that are behind

something without shame if they look trivial. The chapters are organized as follow.

Chapter 2: Dependency Tree

I will give the definition of dependency tree and discuss some properties of such

syntactic representation. At the end of the chapter I will analyze some pros and

cons of the dependency tree formalism with respect to other syntactic representa-

tions.

Chapter 3: Dependency Parsing

I will give a quick overview of different approaches to the dependency parsing task.

Today the most common approaches are data-driven, however there is still a lot

of interest in hybrid approaches that are grammar-based and data-driven.

Chapter 4: Transition Based Dependency Parsing

Transition Based Dependency Parsing is the approach to dependency parsing that

I used in my work. In this chapter I will go into the details of the most used



18 CHAPTER 1. INTRODUCTION

transition based algorithms and I will give my personal point of view of them. I

will introduce the oracle function and explain how we can train a model by using

machine learning techniques in order to create automatic systems for dependency

parsing.

Chapter 5: Oracles

In this chapter we will see one of the central point of my work. I will describe

the details of the oracles functions and we will see how it is possible to improve

the performances of almost all transition based dependency parsers by using a

non-deterministic oracle and a dynamic oracle.

Chapter 6: LR-Spines

In this chapter we will see another central point of my work. I will present a new

transition based algorithm, specifically designed to introduce an high degree of

flexibility in the parsing process. It has the property to be highly incremental but

it is also able to postpone some critical decisions during the parsing process.

Experimental Results

In this chapter I will try to convince the reader that the new ideas presented in

the previous chapters are useful from a practical point of view. Specifically I will

compare the accuracy obtained by using a static, non-deterministic and dynamic

oracle. I will also present the experimental results obtained by using the LR-Spines

algorithm.

Conclusion

This chapter include some final consideration and some idea for future works.



Chapter 2

Dependency Tree

The dependency syntactic representation (or dependency grammar) has become

increasingly popular in the last decade or so. Above all I think that the raise

of the dependency representation is due to its clarity and simplicity that makes

it a great interface for downstream applications. Indeed the key idea into the

dependency syntactic representation is the predicate argument relation between

words. These relations are represented as arcs and the whole set of such relations

is a graph that connects the words of the sentence. In dependency grammar it is

common to assume that such graph is a tree, although there are some exceptions

(for example multi-stratal dependency theories) a tree is expressive enough to

represent most of the linguistic relations into a sentence.

In the following chapters we will see that this simple formalism allows to use

well known algorithms from graph theory and from formal languages while the

increased availability of dependency tree banks allows to use modern machine

learning techniques.

In this chapter I will give the formal definition of dependency tree and I will

discuss some properties. Then we will see the advantage and disadvantages of this

representation along with some practical examples. But let me start first with

some historical background.

19



20 CHAPTER 2. DEPENDENCY TREE

2.1 Some History

The concept of dependencies is extremely old and can be found in many ancient

grammars specially in Europe for Classical and Slavik languages. Anyway the

starting point of modern theoretical tradition is considered the work of the French

linguist Lucien Tesǹıere so let me quote his words [Tesnière, 1959]

Every word in a sentence is not isolated as it is in the dictionary.

The mind perceives connections between a word and its neighbors. The

totality of these connections forms the scaffold of the sentence. These

connections are not indicated by anything, but it is absolutely crucial

that they be perceived by the mind; without them the sentence would

not be intelligible.

[...] a sentence of the type Alfred spoke is not composed of just

the two elements Alfred and spoke, but rather of three elements, the

first being Alfred, the second spoke, and the third the connection that

unites them, without which there would be no sentence.

Tesǹıere called governor the word “spoke” and subordinate the word “Alfred”.

In modern dependency grammars we represent this idea of dependency relation by

means of a graph theoretic arc. In figure 2.1 we can see this simple example from

Tesǹıere in the contemporary representation of dependency tree, the arc that goes

from the head, “Alfred”, to the dependent “spoke” is exactly the third element

that Tesǹıere is talking about. We can also see that we add an artificial word:

-root- and a label to the arcs, we will discuss these elements in the next section.

-root- Alfred spoke

ROOT

SUBJ

Figure 2.1: Simple example of dependency tree
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2.2 Formal Definitions

As we have just seen the dependency tree of a sentence describes the syntactic

structure as words linked by binary relations called arcs, at each arc is associated

an arc label. I will formally define these element and give some property useful as

background for the rest of the thesis.

Definition 2.1. A sentence S is considered as a sequence of tokens:

S = w0w1w2 . . . wn, w0 = -root- (2.1)

Each element of the sentence (word, punctuation, digit or symbol) is a different

token. In most natural languages the tokenization is quite straightforward and

mostly correspond to the words’ separation in a sentence. However, there are

cases in which we need a preprocess, for example the word “won’t” needs to be

split in “will” and “n’t”. In some languages the token separation is not trivial and

the preprocessing step is harder and still introduces errors and noise in the data

(e.g., in Chinese). A further description of the problem can be found in [Guo,

1997]; for a discussion of some recent tools for this task we refer the reader to

[Dridan and Oepen, 2012]. We always set w0 as an artificial token -root- . This

is a technical assumption which we use here since it is useful to have all dependency

trees rooted by the same token and this also simplifies some of the definitions. We

remark here that including or not the -root- during the parsing process can have

an impact over the performances, as it will be discussed in more details.

Definition 2.2. An arc label (or dependency label) li identifies the type of a

syntactic relation. The set of arc labels is finite and is defined by the dependency

grammar.

li ∈ L, where L = {l0, l1, l2, . . . , lm} (2.2)

Unfortunately most of the treebanks use a language specific set of arc labels. In

my examples I will use the Stanford Dependency Labels from [de Marneffe and

Manning, 2008].

Definition 2.3. An arc (or dependency relation) a is a binary and asymmetric

link between a syntactically subordinate token (dependent or child) and another

token on which it depends (head or parent). It is represented by a tuple:

a = (wi, lk, wj) (2.3)
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where the tokens wi, wj are respectively the head and the dependent and lk is the

arc label.

Definition 2.4. A dependency tree T with respect to a set of dependency labels

L and a sentence S = w0w1w2 . . . wn is a directed, ordered tree:

T = (V,A) (2.4)

where:

1. V = {w0, w1, w2, . . . , wn} is the set of nodes

2. A ⊂ V × L× V is the set of arcs

3. T is rooted by w0 = -root-

Recall that an ordered tree is a rooted tree for which an ordering is specified for

the children of each node. Note that I restrict the directed tree to the case where

the arcs are all directed away from the root node.

Sometimes it is useful to consider an unlabelled dependency tree, by simply

ignoring the arc labels. Indeed for some application (e.g. speech, prosody, language

modelling) it is enough to know that the dependency relation between words exists.

In the following chapters I will often ignore the arc labels, mostly to simplify the

notation by using wi → wj to indicate a generic arc from wi to wj.

2.2.1 Example

-root- Rolls-Royce Inc. said it expects its U.S. sales to remain steady .

ROOT

NN

NSUBJ NSUBJ

CCOMP

XCOMP

POSS

NN

NSUBJ

AUX

ACOMP

PUNCT

Figure 2.2: Example of dependency tree
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In figure 2.2 it is possible to see a well-formed dependency tree. Following the

definition 2.4 the dependency tree is in the form T = (V,A) where:

V = {-root- , Rolls-Royce, Inc., said, it, expects, its, U.S., sales,

to, remain, steady, .}
A = {(Inc.,NN,Rolls-Royce),(said,NSUBJ,Inc.),(-root- ,ROOT,said),

(expects,NSUBJ,it),(said,CCOMP,expects),(sales,POSS,its),

(sales,NN,U.S.),(remain,NSUBJ,sales),(remain,AUX,to),

(expects,XCOMP,remain),(remain,ACOMP,steady),(said,PUNCT,.)}

it is easy to see that all the constrains given in the definition 2.4 are respected.

Each arc has a direct syntactic meaning, for example the arc (Inc.,NN,Rolls-

Royce) implies that “Rolls-Royce” is a noun compound modifier of “Inc.”, the

arc (said,NSUBJ,Inc.) means that “Inc.” is the nominal subject of “said”.

2.2.2 Properties of a Dependency Tree

Given the definition 2.4 of a dependency tree we can highlight some properties and

give some other definitions.

Property 2.5 (Single head). For all wj ∈ V \ {-root- }, ∃! a ∈ A of the form

wi → wj, wi ∈ V . This means that each token in the sentence has one and only

one head.

Property 2.6 (Single label). If (wi, lk, wj) ∈ A then @ (wi, l
′, wj) ∈ A s.a. l′ 6= lk.

This means that can exists only one arc with a specific label that connects two

nodes.

In figure 2.2 it is evident that each word except the -root- has one and only

one head and each arc has one and only one label.

Property 2.7 (Span of a node). A node w′ of a dependency tree is the root of a

sub-tree T ′ = (V ′, A′) (possibly consisting of a single node). The set of nodes V ′

is a subsequence of the sentence S and is called the span of w′.

Definition 2.8 (Gap-degree). If the span of a node w′ is a contiguous subsequence

(a substring) of S, the gap-degree of w′ is 0; if the span is composed by 2 contiguous
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subsequence of S, the gap-degree of w′ is 1, and so on. The gap-degree of a tree is

the maximum gap-degree over all its nodes.

Considering the example in figure 2.3 the span of w5 is the subsequence S ′ =

w5w6w7 and w5 has gap degree 0, the span of w2 is the subsequence S ′ = w1w2w5w6w7

and w2 has gap degree 1, the span of w3 is the subsequence S ′ = w1w2w3w4w5w6w7w8w9

and w2 has gap degree 0, while the gap degree of the tree is 1.

-root- A hearing is scheduled on the issue today .
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

ROOT

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT

Figure 2.3: Example of dependency tree

2.3 Projectivity

This is an important characterization of a dependency tree that practically splits

the whole world of parsing algorithms in two categories: the algorithms that are

able or not to deal with non projective dependency trees. In figure 2.4a we can see

the usual representation of a dependency tree, the arcs are drawn in the semi-plane

over the ordered sequence of the sentence. The arcs (w2 → w6) and (w5 → w9)

cross each other. If a dependency tree has crossing arcs is non-projective, formally:

Definition 2.9. A dependency tree is projective if and only if all nodes have

gap-degree 0. Otherwise a dependency tree is non projectice.

Note that the equivalence between non-projective and dependency tree with

crossing arcs holds only if we insert the artificial node -root- at the beginning

or at the end of the sentence.

Considering that a dependency tree is a tree, a non projective structure can

always became projective by reordering the tokens in the sentence as we can see
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-root- John was not as good for the job as Kate .
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

(a) Non projective dependecy tree

-root- John was not as good as Kate for the job .
w0 w1 w2 w3 w4 w5 w9 w10 w6 w7 w8 w11

(b) Dependecy tree projectivize by movig the words w9w10

-root- John was not as good for the job as Kate .
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

(c) Dependency tree projectivize by changing the arc w2 → w6 into the arc w5 → w6

Figure 2.4: Unlabelled non projective dependency tree with different projectivize

by using word reordering and arcs modification

in 2.4b. Another way to projectivize a dependency tree is by changing some arcs

like in figure 2.4c, this is a useful technique when we want to use a projective

parsing algorithm with non projective sentences. An interesting discussion with
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experimental results can be found in [Nivre and Nilsson, 2005].

Designing a parsing algorithm that deals only with projective trees can really

improve the performance, mostly in terms of computational time (speed) but also

in terms of precision. This can be a good compromise for languages like English

and Italian where the non-projective structures are infrequent, while it can raise a

coverage problem for languages like Czech or Hungarian that have more than 20%

of non-projective sentences or for languages like German with free word order. We

will see something more about this in the following chapters.

2.4 Pros & Cons of Dependency Tree

The main advantage of the dependency tree representation is that it directly en-

codes the predicate argument relations. These relations can be extracted also from

other representations but it is not so straightforward. For example in the phrase

structure in figure 2.5 we need to navigate the tree in order to understand that

the subject of “said” is “Inc.”.

S

PUNCT

.

VP

S

VP

S

VP

VP

ADJP

JJ

steady

VB

remain

TO

to

NP

NNS

sales

NNP

U.S.

PRP

its

VBZ

expects

NP

PRP

it

VBD

said

NP

NNP

Inc.

NNP

Rolls-Royce

Figure 2.5: Example of Phrase Structure representation

The simple representation of the predicate argument relations has other ad-
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vantages, however it has also some limits. In the following sections I will analyze

some pros and cons.

2.4.1 Pros: PP-attachment

The prepositional phrase attachment is a typical problem related to the ambiguity

of natural language. The same sentence with a different pp-attachment can have

a completely different meaning. The sentences in figure 2.6 are both syntactically

correct but for the first sentence we can imagine that John saw a clever girl that

was carrying a telescope while in the second John is a voyeur that is spying a girl

with a telescope. It is worth noting that while the pp-attachment is represented

at the syntactic level, its disambiguation needs to resort to some kind of semantic

interpretation that can deal with phenomena ranging from lexical semantics, to

pragmatics and general world knowledge. In a dependency tree we have a clear rep-

resentation of the pp-attachment problem, it is easy to identify the words involved

into the relation and it is possible to choose above the possible interpretations by

simply changing an arc.

-root- John saw a girl with a telescope

(a) The girl was carrying a telescope

-root- John saw a girl with a telescope

(b) John was using a telescope

Figure 2.6: Unlabelled dependency trees that represent two different interpretation

of the same sentence
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2.4.2 Pros: free word order languages

Languages with (relatively) free word order can be easily dealt with dependency

trees because changing the word order does not change the relation between words.

For example in figure 2.7 we have two sentences with identical meaning but with

different word order. For both sentences the dependency tree is the same T =

(V,A) with:

V = {-root- , der, Hund, beißt, die,Frau}
A = {(-root- ,ROOT,beißt), (beißt,SUBJ,Hund), (beißt,OBJ,Frau),

(Hund,DET,der),(Frau,DET,dir)}

Otherwise a phrase structure grammar would need separate rules to handle differ-

ent positions of the subject/object.

-root- der Hund beißt die Frau

ROOT

SUBJDET DET

OBJ

(a)

-root- die Frau beißt der Hund

ROOT

OBJDET DET

SUBJ

(b)

Figure 2.7: Example of a dependency tree for a sentence in a free word order

language (German, the dog bites the woman)

2.4.3 Cons: coordination

The single head constrain may be a limitation in case of coordination. For example

in the sentence “Cathy bought and ate an apple”, it is clear that “Cathy” is the

subject of both verbs as well as the word “apple” is the object of both. There are
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different ways to treat coordinations, the most popular are in Figure 2.8, however

in all cases the dependency relations are not all evident.

-root- Cathy bought and ate an apple .

(a) The coordination problem solved by using the conjunction as

head

-root- Cathy bought and ate an apple .

(b) The coordination problem solved by using the first conjunct

as head the conjunction as a dependent

Figure 2.8: Example of coordination problem in dependency parsing

The Combinatory Categorial Grammar performs better from this point of view

because the predicate argument relation extracted from the derivation represents

all the dependencies. As we can see in Figure 2.9 the CCG uses a special category

(X\X/X) that allow to merge and combine the verbs.

2.4.4 Cons: compound names

In compound names we have to choose an head above all noun. Usually the right

most or the left most noun is chosen, however often the chosen node is not the

most significant. For example in figure 2.10 ”Inc.” is chosen above all other nouns

in ”Rolls-Royce motor cars Inc.”. In phrase structure all noun are represented as

sibling of the same node with a more clear representation.
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Cathy

N

bought

(S\NP)/NP

and

(X\X)/X

ate

(S\NP)/NP

an

NP/N

apple

N

.

PUNCT

NP ((S\NP)/NP)\((S\NP)/NP) NP

(S\NP)/NP

S\NP

S

S

(a) CCG derivation in case of coordination

Cathy bought and ate an apple .

(b) Predicate-argument relation for the derivation in (a)

Figure 2.9: Example of coordination solved with CCG

-root- Rolls-Royce motor cars Inc. said . . .

ROOT

NSUBJNN

NN

NN

Figure 2.10: Example of dependency tree



Chapter 3

Dependency Parsing

Dependency parsing is the task of automatically mapping a sentence into the

dependency tree that represents the correct syntactic relations. There are two

main approaches to the problem:

1. data-driven, an approach that uses machine learning techniques over a data

set of syntactically correct dependency trees.

2. grammar-based, an approach that uses formal grammars in order to define

a formal language that eventually recognise an input sentence

I worked exclusively on data driven approaches, however in this chapter I will

try to give a quick overview of all systems.

3.1 Data Driven approach

Data driven is the most popular parsing approach this days. These methods

consider the parsing task a supervised machine learning problem and they obtain

really good performances in terms of accuracy. They rely over a statistical model

that is learned from a dataset. The dataset is a list of couples:

D = {Si, Ti}|D|d=0

where Si is a sentence and Ti is the syntactically correct dependency tree for Si.

Many datasets are available for many languages, unfortunately most of them

make different assumptions in treating some dependency relations, for example in

31
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case of coordinations or -root- dependents. Different datasets have also different

label-sets with a different detail level.

However a data driven model can be trained almost independently from the

datasets’ peculiarities so we can use the same technique with different datasets.

This is important because it allows us to study the parsing problem from a multi-

language point of view. Indeed we can train a language specific model by simply

using a dataset with sentences in such language.

In the following sections we will see the two most popular data driven ap-

proaches:

1. Graph Based parsing

2. Transition Based Parsing

3.1.1 Graph Based Parsing

In Graph Based Parsing we use a traditional graph theory approach. We consider

the parsing problem as a maximization problem where the objective of the parsing

algorithm is to find a dependency tree that maximizes a score function. In the

training phase we learn the parameters of the score function. In this section I

do not pretend to give a complete description of graph based parsing systems

but a general description in order to compare them with the Transition Based

Parsing approach. A certainly better introduction to this technique can be found

in [McDonald and Pereira, 2006], and for a further analysis the Ryan MacDonald

PhD thesis is a must reading.

Score function

The score of a dependency tree TS should represent how likely the structure of the

tree represents the syntactically correct relations into the sentence S. The basic

assumption of graph based techniques is that the score of a dependency tree TS is

the factor of the scores of the subtrees of TS.

The smallest (non-complete) subtree into a dependency tree TS = (VS, AS) is
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an arc. So we can write:

score(TS) =
∑

wi,wj∈VS s.a.
(wi→wj)∈AS

score ′(wi, wj)

Specifically this is the score function for an arc-factored parsing algorithm that

independently score each arc in AS. The Independence assumption is strong and

allows to use efficient algorithms, but it is generally wrong to assume that the

relation between two words is independent from other words into the sentence.

However a scores function that consider couple of arcs is enough to reach state of

the art results.

score(TS) =
∑

wi,wj ,wk∈VS s.a.
(wi→wj),(wj→wk)∈AS

score ′(wi, wj, wk)

Parsing Algorithm

The parsing algorithm is a maximum spanning tree algorithm that search the tree

TS that maximize the score function over all possible dependency trees of a given

sentence S.

TM = arg max
Ti∈D(S)

score(Ti)

Where D(S) is the set of all possible dependency trees of S and TM is the depen-

dency tree retrieved by the parsing algorithm.

Given a sentence of length n the number of possible dependency trees is expo-

nential. However we can use use dynamic programming techniques to compute all

possible trees in D(S) in polynomial time and space. After that a Viterbi search

find the tree that maximize the score function.

Training Algorithm

Typically the score function is a perceptron algorithm trained by using an on-line

learning technique. In order to stabilize the model parameters we normally use

the MIRA update technique from [Taskar, Klein, Collins, Koller, and Manning,

2004] or the averaged perceptron from [Freund and Schapire, 1999].

We will see more details when we will use the perceptron algorithm for the

transition based algorithms in chapter 4.
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Computational Complexity

The computational complexity depends on two factors:

1. the search space (projective or non-projective dependency trees)

2. the scope (size of the subtree) considered by the score function

Using the naive arc-factored parsing algorithm the parsing process has com-

plexity O(n3) in case of projective or non projective dependency trees as in [Mc-

Donald, Pereira, Ribarov, and Hajič, 2005]. However if we consider three nodes

in the tree the complexity grows to O(n4) in the projective case and O(n5) in the

non-projective case (with some constraints). Note that this analysis is far to be

complete and precise because a further computation analysis depends on the detail

of the algorithm. However it is useful to understand that the complexity is too

high to use the graph based systems in web-scale applications.

These systems reach state of the art results in dependency parsing reaching

accuracy1 of 92-94%. So they are good systems if the data to be processed are

limited.

3.1.2 Transition Based Parsing

Transition Based Parsing is the core subject of this thesis. These systems use an

incremental non-deterministic algorithm that analyzes the sentence left to right.

At each step the parsing algorithm can choose an action (called transition) to

proceed with the parsing process. The choice is supported by a model trained by

using machine learning techniques. I will dedicate the whole chapter 4 to these

algorithms and the following chapters to see how it is possible improve them. For

now let me underline some general characteristics.

These algorithms reach an accuracy1 of about 88/90% depending on the de-

tails of the algorithm. Although they fall back in terms of accuracy compared to

graph based algorithms, transition based algorithms rise a lot of interest for their

efficiency. They are able to process an input sentence in linear time reaching a

throughput of several thousands of tokens for second. This is extremely important

if we want to use a parser into a web-scale application.

1 Accuracy over English Penn Tree Bank [Marcus, Marcinkiewicz, and Santorini, 1993] con-

verted into a dependency tree bank
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3.2 Grammar Based Approach

The Grammar Based Approaches rely on an explicitly defined formal grammar.

I never used these approaches but they deserve a mention into a thesis about

dependency parsing, for a further introduction see chapter 5 in [Kübler, McDonald,

and Nivre, 2009]. Specifically there are two main approaches:

1. context-free grammar

2. constraint satisfaction

3.2.1 Context-Free Grammar

The context-free grammar approach for dependency parsing is similar to the context-

free grammar approach used in graph-based parsing. The problem is restricted to

projective (usually unlabelled) dependency trees.

Definition 3.1. A context free grammar Γ is a tuple (N,Σ,Π, S) where:

1. N is a finite set of non-terminal symbols

2. Σ is a finite set of terminal symbols

3. Π is a set of production rules of type x→ {N ∪ Σ}∗, x ∈ N (∗ is the Kleene

star operator)

4. S is the start symbol

In dependency parsing the starting symbol S is the root node -root- , the set

of terminal symbols Σ is the set of all possible words and the set of non-terminal

symbols N is a subset of the set of all possible words N ⊆ Σ.

The advantage of this technique is that we can used well known algorithms

used in phrase structure parsing like CKY [Kasami, 1965] or Earley [Earley, 1970]

algorithms. Usually a probability is associated to each production rule obtaining a

probabilistic context-free grammars. These probabilities can be learned by using a

data driven approach, for example by using a maximum entropy model, obtaining

an hybrid approach: grammar based and data driven.

The complexity is O(n3) in case of a context free grammar approach and O(n5)

in case of bi-lexical context free grammars.
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3.2.2 Constraint Satisfaction

The constrain satisfaction approach defines a set of constraints that has to be

satisfied by the dependency tree. The interesting aspect is that constraints can

be syntactic, for example the verb need a subject, or semantic, for example the

object of the verb “play” must be a game or a musical instrument.

Definition 3.2. A constraint dependency grammar Γ is a tuple (Σ, L, C) where:

1. Σ is a finite set of terminal symbols

2. L is the label set

3. C is the set of boolean constraints

There can be hard constraints, constraints that must be satisfied, for example

in English a verb need a subject. Or weighted constraints in which the weight

represent a cost in case of the constrain is not satisfied. Given the high degree of

exceptions in natural language hard constraints are usually avoided.

The weights can be manually defined or learned by using a data driven ap-

proach. An example of manually written constraint dependency grammar for

German is [Foth, Daum, and Menzel, 2004] where there are 700 constraints.

There are two big problems with this approach. First of all the set of constraints

is strictly language dependent, second the constraints satisfaction problem is in

general NP-hard so we usually need to use an heuristic to treat the problem.



Chapter 4

Transition Based Dependency

Parsing

There are few things in which psycholinguistics, formal linguistics and engineers

agree upon, one of this is the left to right incremental parsing. The incremental

strategy is a largely accepted hypothesis from psycholinguistics about how humans

process and understand the language. In spoken, but also in written language is

clear the intuition that the comprehension of a sentence proceed and grow as

soon as a word is encountered [Altmann and Steedman, 1988]. It is interesting

the experiment in [Marslen-Wilson, 1973] where the authors realize that most

of the errors in speech shadowing 1 were syntactically and semantically correct

with respect to the previous part of the sentence; this suggests that the previous

grammatical structure was already built and that the subjects were unconsciously

following such structure. In the perspective of formal language theory, it is easy

to see similarities with well studied algorithms for formal grammars. Indeed most

of these algorithms are taken and adapted from the wide literature on context-free

and context-sensitive grammars. From an engineering point of view the transition

based systems have good performances in terms of precision and speed. The

precision is close to the state of the art reached from graph based parsers, while

the complexity with respect to the length of the input sentence is linear (or almost

linear).

1Speech shadowing is an experimental technique in which subjects repeat speech immediately

after hearing it (usually through earphones) with a latency of about 500-1500 ms

37
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As we have breefly seen in chapter 3 the transition based dependency parsers

process the input sentence left to right by incrementally building the dependency

tree. It relies on two components:

1. a parsing algorithm

2. a trained model

The parsing algorithm is a non deterministic algorithm that step by step builds a

dependency tree. At each step it has to take a decision about how to proceed and

the choice is supported by a statistical model. The model is trained from a data

set of syntactically correct dependency trees.

The transition based approach for dependency parsing was pioneered by Taku

Kudo and Yuji Matsumoto. In [Kudo and Matsumoto, 2002] they applied this

approach on Japanese dependency parsing and they claim the independence of

the parsing algorithm from the machine learning system used for the model. The

following years the same approach was used in [Yamada and Matsumoto, 2003],

[Nivre, 2003] and [Attardi, 2006]. Probably the best description of this systems

is [Nivre, 2008] where one can find both simple and formal descriptions of the

algorithms along with the relatives proofs.

In this chapter I will firstly describe the parsing algorithms in the most possible

general way to show that all this kind of systems share the same basic idea. After

that I will describe the four most used transition based systems: Arc-Standard,

Arc-Eager, Attardi’s algorithm and Swapping Algorithm. At the end I will describe

some possible ways to train a model for such algorithms.

4.1 Parsing Algorithms

I like to view a transition based parsing algorithm as a push down automaton with:

• a stack σ,

• a buffer β,

• an alphabet (in this case equal for the the stack and the buffer), that is the

set of all possible tokens in a sentence
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• a state called configuration

• a set of transitions that can change the state of the automaton from a start

configuration to a final configuration

While it is reasonable to consider the set of possible tokens limited, like the alpha-

bet of a push down automaton, the comparison is not formally correct because in

a (transition based) parsing algorithm we have a more complex definition of con-

figuration with respect to the state of a push down automaton. However I think

that the analogy gives a good idea about what we are dealing with.

Definition 4.1. A configuration c, given a sentence s = w0, w1, . . . , wn with the

set of nodes Vs is a tuple:

c = (σ, β,A) (4.1)

where:

• σ is the stack and it is a possibly non contiguous subsequence of s

• β is the buffer and it is a contiguous subsequence of s

• A is the set of already built arcs, with A ⊂ Vs × Vs

The initial configuration is:

c0 = ([ ], [w0w1 . . . wn],∅) (4.2)

and the final configuration is:

cf = ([w0], [ ], Af ), where |Af | = n (4.3)

Definition 4.2. A transition τ is an operator that maps a configuration c into

another c′. The notation:

c `τ c′

or

c′ = τ(c)

means that by applying the transition τ to the configuration c = (σ, β,A) we

obtain a new configuration c′ = (σ′, β′, A′). The functional notation τ(c) is is

useful to denote the obtained configuration.
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In practice a transition modifies the configuration by moving/removing the

tokens into the stack and the buffer and/or by creating a new arc. As we will

see in the next sections a transition can create at most one arc, giving the typical

incremental behaviour of the transition based dependency parsing algorithms.

Usually the transitions involve the topmost elements in the stack and the first

elements in the buffer. To highlight such elements is useful the notation σ|wi|wj
and wk|β where wi and wj are the two topmost elements of a generic stack and wk

is the first element of a generic buffer.

Transitions are not applicable to all configurations. To easily identify which

transitions are applicable to a configuration we use a precondition for each transi-

tion.

Definition 4.3. The precondition of a transition is a logical condition that defines

the applicability of a transition over a configuration.

Example 4.4. In the Arc-Standard algorithm the left-arc transition (briefly

la) creates an arc from the first topmost to the second topmost element of the

stack and removes the dependent of the new arc from the stack. To represent the

behaviour of the transition we highlight the differences in the configurations c and

c′ respectively before and after the transition:

c `la c′ (4.4)

c = (σ|wi|wj, β, A) (4.5)

c′ = (σ|wj, β, A ∪ {wj → wi}) (4.6)

In the Arc-Standard algorithm the transition left-arc has two preconditions:

1. the stack must contain at least two tokens

2. wi is not the token -root-

The first precondition is implicit in the representation c = (σ|wi|wj, β, A) and will

be omitted when I will describe the parsing algorithms. The second needs to be

explicitly added in the preconditions with the condition wi 6= -root- . The first

entry in table 4.1 represents the behaviour of the left-arc in a synthetic and

readable way.

Sometimes I will use the notation la(i, j) to highlight the nodes directly in-

volved into the transition, in this case wi, wj.
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Algorithm 4.1 General Parsing Algorithm

Input: sentence s = w0w1 · · ·wn
Output: dependency tree Ts

1: c = (σ, β,A)← ([ ], [w0, . . . , wn],∅) . initialize starting configuration

2: while |σ| > 1 ∨ |β| > 0 do . while c is not final do

3: T ′ ← ∅
4: for each τ in T do . select the applicable transitions

5: if applicable(τ ,c) then

6: T ′ ← T ′ ∪ {τ}

7: τ ← model.giveBestTransition(T ′, c)
8: c′ = (σ′, β′, A′)← apply(τ, c) . apply(τ, c) returns c′ s.t. c `τ c′

9: c = (σ, β,A)← c′ . update the current configuration

10: Vs ← {w0, w1, · · · , wn}
11: As ← A

12: return Ts = (Vs, As)

In algorithm 4.1 we can see the general parsing algorithm. Given a sentence

the algorithm initializes a starting configuration and enters in a loop. At each

iteration it selects the applicable transitions and asks to the trained model which

transition is the best one among the applicable transitions in the current configu-

ration. Following the suggestion of the model, the algorithm modifies the current

configuration and iterates until a final configuration is reached. The set of arcs A

in the final configuration is the set of arcs As of the dependency tree returned by

the parser.

The sequence of transitions applied to obtain the tree Ts is called derivation

of Ts. More generally we can speak about derivation of a configuration and it is

defined as follows.

Definition 4.5. A derivation (or computation) for a configuration cj given a con-

figuration ci is a sequence of transitions d = τ0τ1 · · · τk s.t.:

ci `τ0 ci+1 `τ1 · · · `τk cj (4.7)

Sometimes I will speak about reachability of a configuration cj from another ci if

exists a derivation that reaches the configuration cj. If the reachable configuration
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is final and represent the dependency tree Ts we can say that the dependency tree

Ts is reachable from ci

All parsing algorithms described in this chapter follow exactly the algorithm

4.1 and the different behaviour of each algorithm derives only from the different set

of possible transitions T . In order to give a comparable description I will discuss

all algorithms in terms of:

• coverage

• incremental strategy

• spurious ambiguity

In the next sections I will describe these three important properties and I will

go into the details of the most used transition based algorithms. To maintain the

notation simple I will formalize the algorithms in case of unlabelled dependency

parsing, at the end I will show how to extend this techniques to the labelled case.

4.1.1 Coverage

The coverage of a parsing algorithm depends on which types of dependency trees

are reachable from the system.

Definition 4.6. Given a sentence s = w0w1 . . . wn the dependency tree Ts =

(Vs, As) is reachable if there exists a derivation d = τ0τ1 . . . τk such that:

c0 `τ0 c1 `τ1 . . . `τk cf (4.8)

where the final configuration cf = ([w0], [ ], Af ) has the set of arcs equal to the one

in Ts: Af = As

Usually we distinguish the parsing algorithm in:

• projective, parsing algorithms that can reach only projective dependency

trees

• non-projective, parsing algorithms that can reach all dependency trees
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Clearly the coverage of a parsing algorithm has direct impact over the search

space of the algorithm. For languages with most of the dependency structures

projective it is convenient to limit the search space by using a projective parsing

algorithm, otherwise it’s better to use a non-projective algorithm.

Also if the search space change it does not mean that a non-projective algorithm

is slower than a projective one, at least in terms of asymptotic complexity with

respect to the length of the sentence.

The coverage is an important characteristic also for graph based parsing where,

differently from transition based parsing, it has a huge impact over the perfor-

mances of the system in terms of speed. For example the second order maximum

spanning tree algorithm has complexity O(n3) in the projective case while it is

NP-hard if we consider non-projective dependency trees [McDonald and Pereira,

2006]. This has pushed researchers to consider other constraints in non-projective

parsing in order to improve the coverage of these algorithms maintaining the com-

plexity polynomial. Most of recent works limit the coverage to non-projective trees

imposing a fixed maximum gap-degree, allowing to design maximum spanning tree

algorithms that work in polynomial time (from O(n5) to O(n7)) [Pitler, Kannan,

and Marcus, 2012]. Other interesting works that consider similar constraints are

[Satta and Kuhlmann, 2013] and [Pitler, 2014]

4.1.2 Incremental Strategy

We have seen that a parsing algorithm builds incrementally the dependency tree

by creating at most an arc at each step. The incremental strategy can be:

• bottom-up

• top-down

A parsing algorithm builds arcs following a bottom-up strategy if all arcs that

involves a token wi as head (wi → wk) are built before the arc in which wi is

a dependent (wj → wi). Otherwise we have a top-down strategy when the arc

wj → wi is created before wi collects any dependents.
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4.1.3 Spurious Ambiguity

In parsing, spurious ambiguity refers to the ambiguity that occurs when different

derivations are equivalent in term of produced syntactic structure.

Definition 4.7. In a transition based parsing algorithm two derivations (or com-

putations) d and d′ are equivalent if, when applied to the same configuration ci,

they derive the same configuration cj

In practice a parsing algorithm with spurious ambiguity can have many equiva-

lent derivations that reach the same dependency tree Ts. It is possible to compare

two algorithms in term of degree of spurious ambiguity.

Definition 4.8. An algorithm A has a greater degree of spurious ambiguity than

an algorithm B when the algorithm A has more possible derivations to reach Ts

than the algorithm B, for all possible dependency trees Ts reachable from both

algorithms.

Sometimes it is clear that an algorithm has an higher degree of spurious am-

biguity than another (for example when the set of transitions TA is a super-set of

the set TB). Other times it is less clear because an algorithm A can offer more

possible derivations than an algorithm B for a sentence s1 while the opposite for

a different sentence s2. However I will compare the degree of spurious ambiguity

by statistically comparing the number of derivations from real samples.

Traditionally, spurious ambiguity has been considered a problem in dependency

parsing and in parsing in general. The main reason is that when a grammar is

enriched with probabilities the statistical model is defined over the derivation of a

structure. And if we have many possible computations the probability of the final

structure becomes the marginalized probability over all possible computations.

Usually in parsing we get rid of the spurious ambiguity by electing a canonical

derivation above all possible computations. The main approach in transition based

algorithms is to choose the derivation that maintains the stack shorter [Cohen,

Gómez-Rodŕıguez, and Satta, 2012]. This can be easily obtained by introducing

a bias over different transitions that start equivalent derivations. In practice the

choice of the first transition implies the choice of a derivation over another and

follows these principles:
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1. prefer a transition that creates an arc

2. if many transitions can create an arc prefer the one that has minimal distance

between the head and the dependent

3. prefer a transition that reduces the stack

For most of the algorithms it is easy to extract the canonical derivation. It is

equivalent to collect the transitions suggested by a static oracle as in algorithm

4.2. I will dedicate the whole chapter 5 to the oracle functions. Until that chapter

it is enough to consider the following definition of static oracle.

Definition 4.9. Given a dependency tree Ts = (Vs, As) and a configuration ci

from which it exists a derivation s.t.:

ci `τi ci+i `τi+1
. . . `τk cf = ([w0], [ ], As)

the static oracle for an algorithm is a function that retrieve an transition:

staticOracle(Ts, ci) = τi

where τi follow the principles of a canonical derivation.

Note that in many works that does not consider different types of oracles the

static oracle is simply called oracle. In chapter 5 we will see how it is possible to

take advantage from the spurious ambiguity by carefully designing a non determin-

istic oracle and how design a dynamic oracle in order to avoid error propagation

in parsing algorithms.

4.1.4 Arc-Standard

The Arc-Standard algorithm is one of the simplest and widely used parsing algo-

rithms. It was firstly used in dependency parsing in [Yamada and Matsumoto,

2003]. In table 4.1 we can see that there are two transitions that can create an

arc and one that moves elements from the buffer into the stack. A new arc can

be created only when the head and the dependent are adjacent and at the top

of the stack. Given a sentence of length n the arc-standard algorithm requires

exactly 2n− 1 transitions to retrieve a dependency tree, because all nodes need to

be pushed into the stack and for each node, except the root, an arc needs to be

built.
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Algorithm 4.2 Extract the canonical derivation by using a static oracle

Input:

sentence s = w0w1 · · ·wn
syntactically correct dependency tree Ts

staticOracleA . static oracle for algorithm A

Output:

canonical derivation d

1: d← [ ] . initialize the derivation as an empty sequence

2: c = (σ, β,A)← ([ ], [w0, . . . , wn],∅)

3: while |σ| > 1 ∨ |β| > 0 do . while c is not final do

4: τo ← staticOracle(Ts, c)

5: d← d+ [τo] . update the derivation

6: c′ = (σ′, β′, A′)← apply(τo, c)

7: c = (σ, β,A)← c′ . update the current configuration

8: return d

Transition c = (σ, β,A) c′ = (σ′, β′, A′) Preconditions

left-arc (σ|wi|wj, β, A) (σ|wj, β, A ∪ {wj, l, wi}) wi 6= -root-

right-arc (σ|wi|wj, β, A) (σ|wi, β, A ∪ {wi, l, wj})

shift (σ,wi|β,A) (σ|wi, β, A)

Table 4.1: Transitions in the Arc-Standard parsing algorithm

Coverage: given a sentence s the algorithm can reach all possible projective

dependency trees but no non-projective tree.

Incremental Strategy: the algorithm implements a pure bottom-up strategy.

When a new arc is created, the dependent is removed from the stack so it can’t

be used to create other arcs.

Spurious ambiguity: a node can collect independently left and right depen-

dents rising a spurious ambiguity that follows the pattern [la, sh, . . . ,ra] or

[sh, . . . ,ra, la].

Example 4.10. There are 7 possible derivations to build the dependency tree in
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figure 4.1; two of them are:

d1 = sh(0), sh(1), sh(2), sh(3), la(2, 3), la(1, 3), sh(4), sh(5), sh(6),

la(5, 6), ra(4, 6), ra(3, 4), sh(7), ra(3, 7), ra(0, 3)

d2 = sh(0), sh(1), sh(2), sh(3), la(2, 3), sh(4), sh(5), sh(6), la(5, 6),

ra(4, 6), ra(3, 4), la(1, 3), sh(7), ra(3, 7), ra(0, 3)

d1 is the canonical derivation. d2 is not the canonical derivation because consid-

ering the 4-th transition (the first difference between d1 and d2) for d1 we have

a transition that creates an arc, while for d2 we have a transition that does not

create an arc.

We can see the different pattern: [la(1, 3), sh(4), . . . ,ra(3, 4)] for the deriva-

tion d1 and [sh(4), . . . ,ra(3, 4), la(1, 3)] for d2.

Both derivations build the dependency tree in a bottom-up fashion, for example

w3 has to collect all its dependents before the creation of the arc w0 → w3. Note

also that the left dependents of a node are always collected in the same order:

first w2 and later w1. The same for the right dependents w4 and w7. Otherwise

the order between the attachment of left and right dependents can be mixed: d1

connects w1 before w4 while d2 works the other way around.

-root- Cathy is playing with her phone .
w0 w1 w2 w3 w4 w5 w6 w7

Figure 4.1: Example of dependency tree

4.1.5 Arc-Eager

The arc-Eager algorithm was firstly used in dependency parsing in [Nivre, 2004].

In table 4.2 we can see that, differently from the Arc-Standard algorithm, the

transitions that create a new arc involve the topmost node of the stack and the

first node in the buffer. Note also that the right-arc transition does not remove
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the dependent but pushes it into the stack. This implies the need of an extra extra

transition reduce that simply remove the topmost element into the stack.

The precondition over the left-arc and reduce transitions check the ex-

istence of an arc that has the topmost element of the stack as dependent: for

left-arc it is necessary to avoid that a token has two heads, while for reduce

it is necessary to avoid that a token is removed without a head. In order to obtain

a well formed dependency tree we have also to guarantee that the last token of a

sentence will be pushed into the stack after all other tokens have received a head.

Some implementations of the Arc-Eager algorithm do not take care of the last

token or about the precondition for reduce, the main reason is to limit the error

propagation during parsing but the obtained Ts can be a forest.

The exact number of transitions can slightly change from an implementation

to another but is bounded by 2n− 1 like in the Arc-Standard algorithm.

Transition c = (σ, β,A) c′ = (σ′, β′, A′) Preconditions

left-arc (σ|wi, wj|β,A) (σ,wj|β,A ∪ {wj, l, wi}) wi 6= -root-

(wk, l
′, wi) /∈ A

right-arc (σ|wi, wj|β,A) (σ|wi|wj, β, A ∪ {wi, l, wj})

reduce (σ|wi, β, A) (σ, β,A) (wj, l, wi) ∈ A

shift (σ,wi|β,A) (σ|wi, β, A)

Table 4.2: Transitions in the Arc-Eager parsing algorithm

Coverage: given a sentence s the algorithm can reach all possible projective de-

pendency trees but no non-projective tree.

Incremental Strategy: the algorithm implements a bottom-up strategy for the

left dependents and a top-down strategy for the right ones. This produces deriva-

tions that statistically maintains the stack shorter than the Arc-Standard. The

top-down strategy for right dependents gives to the algorithm an interesting in-

cremental behaviour in the creation of arcs wi → wj with i < j, but it requires a
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reduce transition that can force early decisions in parsing.

Spurious ambiguity: when a node is in the buffer it cannot collect any right

dependents, otherwise when it is pushed into the stack it cannot collect left de-

pendents. This implies that to reach a dependency tree Ts the algorithm has to

respect a strict order for arcs’ creation. However the Arc-Eager algorithm has

spurious ambiguity that follows the pattern [re, sh, . . .] or [sh, . . . ,re].

Example 4.11. There are 3 possible derivations to build the dependency tree in

figure 4.2; two of them are:

d1 = sh(0), sh(1), sh(2), la(2, 3), la(1, 3), ra(0, 3), ra(3, 4), ra(4, 5),

re(5), re(4), sh(6), la(6, 7), ra(3, 7), re(7), ra(3, 8), re(8), re(3)

d1 = sh(0), sh(1), sh(2), la(2, 3), la(1, 3), ra(0, 3), ra(3, 4), ra(4, 5),

re(5), sh(6), la(6, 7), re(4), ra(3, 7), re(7), ra(3, 8), re(8), re(3)

d1 is the canonical derivation, d2 cannot be the canonical derivation because the

10-th transition (the first difference between d1 and d2) is a shift while for d1 it is a

reduce. The different pattern between these two derivations is: [re(4), sh(6), . . .]

for d1 and [sh(6), . . . ,re(4)] for d2. Note that the left-arc and right-arc

transitions are exactly in the same order in both cases.

-root- Cathy is writing to Alice a message .
w0 w1 w2 w3 w4 w5 w6 w7 w8

Figure 4.2: Example of dependency tree
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4.1.6 Attardi’s algorithm (simplified)

The Attardi’s algorithm is the first transition based algorithm designed to deal

with non-projective dependency trees. Here I describe a simplified version of the

one in [Attardi, 2006]. In table 4.3 there are the five transitions that characterize

the algorithm: shift, left-arc1 and right-arc1 are the same as for the Arc-

Standard algorithm while left-arc2 and right-arc2 are the ones that allow

to build non-projective arcs. These new transitions create arcs that involve the

topmost and the 3rd topmost token into the stack without the need that the two

elements are adjacent in the stack.

Transition c = (σ, β,A) c′ = (σ′, β′, A′) Preconditions

left-arc1 (σ|wi|wj, β, A) (σ|wj, β, A ∪ {wj, l, wi}) wi 6= -root-

right-arc1 (σ|wi|wj, β, A) (σ|wi, β, A ∪ {wi, l, wj})

left-arc2 (σ|wi|wj|wk, β, A) (σ|wj|wk, β, A ∪ {wk, l, wi}) wi 6= -root-

right-arc2 (σ|wi|wj|wk, β, A) (σ|wi|wj, β, A ∪ {wi, l, wk})

shift (σ,wi|β,A) (σ|wi, β, A)

Table 4.3: Transitions in a simplified version of the Attardi’s parsing algorithm

Coverage: This simplified version of Attardi’s algorithm can reach many non-

projective dependency trees but not all of them. Unfortunately it’s hard to define

a property that identifies which type of dependency trees are reachable or not.

In figure 4.4 I provide an example of a dependency tree that cannot be reached.

The extended version of the algorithm uses an auxiliary stack that guaranties the

coverage of all possible non-projective dependency trees but complicates a lot the

model that needs to be trained. However this version already reaches a good cov-

erage for many languages, maintaining simple the algorithm.

Incremental Strategy: like the Arc-Standard, the Attardi’s algorithm imple-

ments a pure bottom-up strategy. When a new arc is created it is removed from
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the stack so it cannot be used to create other arcs.

Spurious ambiguity: in terms of spurious ambiguity it has a behaviour sim-

ilar to the Arc-Standard plus the ambiguity that derives from two left-arc1

and left-arc2 transitions where the topmost element into the stack can take 2

different dependents.

Example 4.12. The canonical derivation to build the dependency tree in figure

4.3 is:

d1 = sh(0), sh(1), sh(2), la1(1, 2), sh(3), ra1(2, 3), sh(4), sh(5),

la1(4, 5), sh(6), sh(7), sh(8), la1(7, 8), ra1(6, 8), ra2(2, 6),

sh(9), sh(10), ra1(9, 10), ra1(5, 9), la1(2, 5), sh(11),

ra1(2, 11), ra1(0, 2)

-root- John was not as good for the job as Kate .
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

Figure 4.3: Example of dependency tree

4.1.7 Swapping Arc-Standard algorithm

This algorithm is described in [Nivre, 2009]. The basic idea is that by reordering

the tokens of a non-projective dependency tree it is always possible to obtain a

projective dependency tree. This is straightforward if we consider that a tree is

always a planar graph. The algorithm has the same transitions of the Arc-Standard

plus a swap transition. At parsing time the new transition works like a bubble sort
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algorithm by reordering the tokens into the sentence. The precondition of swap

is necessary to avoid infinite loops into the algorithm’s iterations. The complexity

of the algorithm is O(n2) but given that the reordering necessity is limited in a

real sentences the algorithm works in expected linear time.

Transition c = (σ, β,A) c′ = (σ′, β′, A′) Preconditions

left-arc (σ|wi|wj, β, A) (σ|wj, β, A ∪ {wj, l, wi}) wi 6= -root-

right-arc (σ|wi|wj, β, A) (σ|wi, β, A ∪ {wi, l, wj})

shift (σ,wi|β,A) (σ|wi, β, A)

swap (σ|wi|wj, β, A) (σ|wj, wi|β,A) i < j

Table 4.4: Transitions in the Swapping Arc-Standard parsing algorithm

Coverage: The Swapping algorithm can reach all possible dependency trees,

projective or not.

Incremental Strategy: like the Arc-Standard, this algorithm implements a

pure bottom-up strategy. When a new arc is created it is removed from the stack

so it cannot be used to create other arcs.

Spurious ambiguity: the left/right dependents of a node can be reorder by the

swap transition given. In the Arc-Standard algorithm we have seen that the left

dependents has to be collected in order

This gives an higher degree of spurious ambiguity respect to the Arc-Standard

algorithm. The canonical derivation prefers the swap transition if the two topmost

nodes into the stack are not in projective order. The projective order is obtained by

reordering the sentence to obtain a projective dependency tree without changing

the relative order of the dependents of each node.

Example 4.13. The canonical derivation to build the dependency tree in figure 4.3
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is:

d1 = sh(0), sh(1), sh(2), la(1, 2), sh(3), sh(4), sh(5), swap(4, 5),

swap(3, 5), sh(3), sh(4), sh(6), sh(4, 6), sh(3, 6), sh(3), sh(4),

sh(7), swap(4, 7), swap(3, 7), la(6, 7), ra(5, 7), ra(2, 5), sh(3),

la(2, 3), sh(4), sh(8), ra(4, 8), ra(3, 4), sh(9), ra(3, 9), ra(0, 3)

-root- A hearing is scheduled on the issue today .
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

Figure 4.4: Example of dependency tree

4.1.8 From Unlabelled to Labelled

I described all algorithms in case of unlabelled dependency parsing. However ex-

tend them to the labelled case is simple. We have seen that each parsing algorithm

has some transition that creates an arc. In order to obtain a labelled parsing al-

gorithm we extend each transition that creates an arc with as many transitions as

the number of possible labels. In this way each transition that creates an arc has

associated a specific label.

Example 4.14. Consider the set of possible labels L = {l1, l2, l3} and the arc-

standard algorithm. The set of possible transitions in the unlabelled case is

T = {la,ra, sh}. Otherwise the set of possible transitions in the labelled case

is TL = {lal1 , lal2 , lal3 ,ral1 ,ral2 ,ral3 , sh}. Where given the same configura-

tion all transitions lal1 , lal2 , lal3 create an arc with the same head and the same

dependent but with different label.
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4.2 Train a Model

As we have seen in section 4.1, the parsing algorithm is non deterministic and the

model chooses which transition the parsing algorithm will apply to proceed.

Consider a dependency tree Ts = (Vs, As) for the sentence s = w0w1 . . . wn

and a parsing algorithm with a set of transitions T in which Ts is reachable. The

algorithm incrementally builds the tree through a derivation where each transition

is applied to a configuration (definition 4.6):

c0 `τ0 c1 `τ1 c2 `τ2 · · · `τk−1 ck `τk cf
c0 = ([ ], [w0 . . . wn],∅)

cf = ([w0], [ ], Af ),where Af = As

In practice the task of the model is to choose for each configuration the transition

that allow the parsing algorithm to reach the final configuration cf = ([w0], [ ], Af )

that represents the syntactically correct dependency tree (Af = As). From this

point of view the model is a classifier that maps a configuration c into a transition

τ ∈ T .

The classification is a standard problem in machine learning where, in a su-

pervised setting, we need a training data set (instances labelled with their correct

class). In this case the instances should be a configuration and the class one pos-

sible transition τi ∈ T . However the data sets available are treebanks: a list of

sentences with the respective syntactically correct dependency trees. We can treat

the problem in 2 ways:

• standard learning

• on-line learning

Another important aspect is the feature representation of our instances (the

configurations). The details of the chosen feature representation depends on the

specific machine learning approach, but it follows similar principles described in

section 4.2.3

4.2.1 Standard Learning

In standard (off-line) learning we need a data-set over which we train a model.

Using the algorithm 4.2, we extract the canonical derivation d = τ0τ1 . . . τk that
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reaches the corresponding syntactically correct dependency tree Ts = (Vs, As):

c0 `τ0 c1 `τ1 . . . ck `τk cf = ([w0], [ ], As)

The couples constituted by a configuration and the relative transition are the

training samples extracted from the sentence:

(c0, τ0), (c1, τ1), . . . , (ck, τk)

Doing that for each sentence of the treebank we covert the syntactically correct

dependency trees into a set D′ of pairs:

D′ = {ci, τi}|D
′|

d=0

Example 4.15. Considering the Arc-Standard algorithm we have three possible

transitions (left-arc,right-arc, shift). A derivation d for a sentence s =

w0w1 . . . wn is composed by 2n transitions. If we consider the English data set the

average length of a sentence (excluding the -root- node) is 23.85 and the number

of sentences usually used for training a model for English2 are 39 831. So the

training samples are about 950000. The number of sentences into the available

treebanks change with the language but this number gives a good idea about the

size of the data set in terms of pairs (c, τ).

Note that the training set obtained in this way is specific for a transition

based algorithm, indeed the configurations and the transitions are meaningless for

another algorithm.

Using a standard machine learning approach we can now consider each pair

(c, τ) an independent training sample and use whichever classifier, where the set of

possible classes is the set of possible transitions of the parsing algorithm. The most

used techniques are linear classifiers (like the perceptron algorithm), Maximum

Entropy Models and Neural Networks. There are some systems that use Memory

Based Learning systems but I found these techniques in contrast with the parsing

efficiency that in general we want to reach by using a transition based algorithm.

Great results have been reached also by using Support Vector Machines, however

the training can be computationally intensive for large training sets.

2The values are taken considering the sections of the Penn-Treebank generally used for train-

ing (from 2 to 21)
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Advantages of Standard Learning Converting the treebank into a static set

of samples allows to easily test many different types of learning algorithms. Rep-

resenting the data in couples (instance,class) is standard in machine learning and

we can choose above many different classifier algorithms. There are also many

available tools for classifications tasks, so we can easily train and test different

learning algorithms in few hours. As we will see a great impact on the precision

of a transition based algorithm is given by the used feature representation. With

a standard approach it is simple to test different features and eventually try new

representations like in [Chen and Manning, 2014]. We can also easily preprocess

the sentences to add new information to the training/test data like in [Ambati,

Deoskar, and Steedman, 2013].

Disavantage of Standard Learning The main problem is that we represent

the data as a flat set of configurations and relative transitions. In this way we

loose information about the sequentiality that they have at parsing time. What

we are really training by using this approach is a model that, given a configuration

ci, retrieves the most probable transition to obtain the following configuration ci+1

into the canonical derivation for a tree Ts. But at parsing time the configuration

ci is reached only if the previous transitions are well predicted:

c0 `τ0 c1 `τ1 . . . ci−1 `τi−1
ci `τi . . . `τk cf

Informally we can say that the previous transitions are more important because

without them we can loose the path of the canonical derivation.

4.2.2 On-line Learning

On-line learning is used when the data becomes available in a sequential fashion,

in order to determine a mapping from the sample to the corresponding class. The

model is updated after the arrival of every new training sample. We use the general

parsing algorithm 4.1 to provide the data instances (configurations) in a sequential

order and the oracle function to get the correct classes (transitions). In algorithm

4.3 there is an on-line training algorithm that updates the model only when the

model’s prediction is wrong.

The model is initialized with the possible classes (the set of possible transitions

T of a parsing algorithm). Then the algorithm process all trees into the treebank.
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Each tree is built by using the parsing algorithm but each transition predicted

by the model is compared with the one retrieved by the oracle. If the predicted

transition is not the one retrieved by the static oracle we update the model.

In the on-line setting, the most used machine learning technique is the averaged

perceptron [Freund and Schapire, 1999]. Personally I use the averaged perceptron

algorithm for structure prediction as described in [Daumé III, 2006].

After a model update there are three way to proceed:

1. early update

2. aggressive update

3. correct and go on

Early update is used in algorithm 4.3 where at line 13 the algorithm return to

line 2. Practically after an update the algorithm proceed with another sentence.

The basic idea is that if the parsing algorithm fails to reach a configuration it is

not significant to proceed. In this way the algorithm gives more importance to the

prediction of the early transitions of a derivation.

Aggressive update substitutes line 13 with goto line 4. In this configuration,

instead of skip the sentence, we continually update the model until it does not

retrieve the correct prediction for the current configuration. The advantage of

this technique is that we use the whole sentence during training. Otherwise this

aggressive strategy implies many updates with possible undesirable oscillations

into the model parameters.

Correct and go on is show in algorithm 4.4 where, after the model update

the algorithm correct the predicted transition with the oracle’s suggestion and

proceed. This is my favourite technique because we can use the whole sentence

during training without the model oscillations of the aggressive update. As far

as I know the first works in dependency parsing that uses this way to update the

model were [Sartorio, Satta, and Nivre, 2013] and [Goldberg and Nivre, 2012]. The

reason that motivates me and the other authors to use this technique is that this

way to proceed is useful in case of non-deterministic oracle as in [Sartorio, Satta,
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Algorithm 4.3 On-line Training Algorithm (early update)

Input:

treeBank= [(s1, Ts1), (s2, Ts2), . . . , (sm, Tsm)]

Output:

model . return a trainined model

1: model ← newModel(T ) . initialization of the model

. one class for each τ ∈ T
2: for each s, Ts in treeBank do

3: c = (σ, β,A)← ([ ], s,∅) . initialize starting configuration

4: while |σ| > 1 ∨ |β| > 0 do . while c is not final do

5: T ′ ← ∅
6: for each τ in T do . select the applicable transitions

7: if applicable(τ ,c) then

8: T ′ ← T ′ ∪ {τ}

9: τ ← model.giveBestTransition(T ′, c)
10: τo ← staticOracle(Ts, c)

11: if τ 6= τo then . model retrieve a bad prediction w.r.t. oracle

12: model.update(T ′, c, τo) . update the model

13: goto line 2

14: c′ = (σ′, β′, A′)← apply(τ, c) . apply(τ, c) returns c′ s.t. c `τ c′

15: c = (σ, β,A)← c′ . update the current configuration

16: return model

and Nivre, 2013] and a similar approach is fundamental in case of dynamic oracle

like in [Goldberg and Nivre, 2012]

Advantages of on-line Learning The advantage of using a on-line learning

system is that during training we use the exact strategy that we use at parsing

time. In other words, differently from the standard learning approach we do not

loose the sequentiality of a derivation.

In an on-line setting it is easy to limit the choice of the model above the only

applicable transitions. In this way the update involve only applicable transitions

without learning useless constraints about impossible transitions. In a standard

learning setting it is possible to do something like that, specially if we use binary

classifiers in an one-versus-all strategy. Anyway it is not straightforward as in an
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Algorithm 4.4 On-line Training Algorithm (correct and go on)

Input:

treeBank= [(s1, Ts1), (s2, Ts2), . . . , (sm, Tsm)]

Output:

model . return a trainined model

1: model ← newModel(T ) . initialization of the model

. one class for each τ ∈ T
2: for each s, Ts in treeBank do

3: c = (σ, β,A)← ([ ], s,∅) . initialize starting configuration

4: while |σ| > 1 ∨ |β| > 0 do . while c is not final do

5: T ′ ← ∅
6: for each τ in T do . select the applicable transitions

7: if applicable(τ ,c) then

8: T ′ ← T ′ ∪ {τ}

9: τ ← model.giveBestTransition(T ′, c)
10: τo ← staticOracle(Ts, c)

11: if τ 6= τo then . model retrieve a bad prediction w.r.t. oracle

12: model.update(T ′, c, τo) . update the model

13: τ ← τo

14: c′ = (σ′, β′, A′)← apply(τ, c) . apply(τ, c) returns c′ s.t. c `τ c′

15: c = (σ, β,A)← c′ . update the current configuration

16: return model

on-line setting and as far as I know it is not used in practice.

Disavantage of on-line learning Obviously we have to use a machine learning

approach that allows an on-line strategy and this limits the possible choices. In on

line learning the model’s parameters are not globally optimized over all training

samples, so we usually need many iterations over the training samples in order to

obtain a model that converges to stable parameters. The order in which the sen-

tences are processed during training may have impact over the model parameters

and consequently to the performances of the model. To obtain consistent results

we should try different random reordering by creating different models and testing

them separately.
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4.2.3 Feature Representation

We have seen that both approaches use as training sample couples of configurations

and correct transition: (c, τ). The configuration has a complex form: a stack, a

buffer and a set of already built arcs, all of them bounden only by the length of the

sentence. In order to treat the learning problem with standard machine learning

techniques we need to introduce a level of abstraction over the practically infinite

set of possible configurations. We introduce a feature function f that maps a

configuration c into a n-dimensional vector:

f(c) = v

In general the feature function can use arbitrary attributes of the configuration.

There are complex feature functions that consider extra information obtained by

preprocessing the data set or that use global information about the sentence. How-

ever many transition based parsers obtain good results by using a feature function

that consider simple features of few tokens into a configuration. These features

are properties of tokens3 in particular positions of the configuration such as the

topmost tokens into the stack and the first elements of the buffer. Given the in-

cremental behaviour of the parsing algorithm it is possible to include information

about the already built structure (the set of arcs into a configuration). Usually the

left/right most dependents of the top most tokens into the stack are important to

discriminate the class of a configuration, so we include features like the POS and

the arc label of such dependents.

Note that the number of usable feature depends on the learning system adopted.

Indeed in parsing we already have a huge number of samples, using a big number

of features in learning algorithms like support vector machines or memory based

classifiers can be impracticable.

Some machine learning algorithms automatically combine the features extracted

by the configuration. For example the support vector machines usually use a kernel

or a neural networks use (in some sense) the hidden layers. Otherwise learning al-

gorithms like the averaged perceptron needs a manually designed feature template

to eventually combine the simple features extracted from a configuration.

3In parsing we usually consider the sentence preprocessed by a POS (part-of-speech) tagger

so for each token of the sentence we know the form, the POS, and eventually the lemma.



Chapter 5

Oracles

In the previous chapter we briefly introduced the static oracle and we saw that it

is strictly related to the canonical derivation. The oracle is useful in a standard

learning approach to convert the treebank into training samples. In an on-line

learning setting the oracle function is crucial to decide when the model predicts

a wrong transition and needs to be updated. In this chapter I will focus on the

on-line learning approach and I will give a more general interpretation of the oracle

function.

Specifically I will consider three types of oracle function:

1. static oracle

2. non-deterministic oracle

3. dynamic oracle

Given a sentence of length n a careful implementation of the static and non-

deterministic oracles leads to a constant time complexity of the oracle function

O(1) but it requires a preprocessing of the sentence with time complexity O(n).

For each token of the sentence the preprocessing needs to extract and store some

information from the gold (syntactically correct) dependency tree: the parent,

the left-most-child and the right-most-child tokens into the gold dependency tree.

Some implementations, instead of the left-most-child and right-most-child, stores

the number of dependents of each token. In case of dynamic oracle the computa-

tional complexity depends on the specific parsing algorithm and we will see it case

by case.

61
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It is important to remark that the complexity of the oracle has impact only

on training time. Unless we have an exponential or high degree polynomial com-

plexity, which implies extremely long training time, the oracle complexity is not

critical from a practical point of view.

I will use the mostly standard notation:

• s0, s1, s2, . . . elements of the stack starting from the topmost token into the

stack (s0);

• b0, b1, . . ., the first tokens into the buffer,

• TG = (V,AG), the gold (syntactically correct) dependency tree for the con-

sidered sentence where the AG is the set of correct arcs.

• c = (σ, β,A), the usual configuration where A is the set of already built arcs

• p(wi), to indicate the parent node of the node wi

Considering that the position of a token into the sentence uniquely identifies it, I

will often treat the tokens like numbers that identify the token position into the

stack. So I will use i to identify the token wi.

In this chapter I will consider the Arc-Standard, Arc-Eager and Attardi’s algo-

rithm. Firstly I will describe the static oracles and the non-deterministic oracles

for such algorithms, then I will describe the dynamic oracle. At the moment I

don’t know if it is possible to implement a dynamic oracle for the swap algorithm.

5.1 Static Oracle

Until a couple of years ago the static oracle was the only defined oracle function. So

it was simply called oracle. In the previous chapter we saw the following definition

of static oracle.

Definition 5.1. Given a configuration ci from which it is possible to reach the

gold dependency tree TG = (V,AG) the static oracle is a function that retrieves a

transition:

staticOracle(TG, ci) = τo
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where τo begins a derivation that reaches TG and follows the principles of a canon-

ical derivation in 4.1.3.

The static oracle is simple and easy to implement. Given a parsing algorithm

we can define a set of conditions for each possible transition. In algorithm 5.1 given

a configuration and the correct dependency tree, the static oracle takes in consid-

eration the transitions of a parsing algorithm in a fixed order and returns the first

transition in which the conditions are satisfied. The order in which the transitions

are examined is based on the canonical derivation principles: first we consider

the transitions that create an arc and last the shift transition that increases the

length of the stack.

Algorithm 5.1 Static Oracle Algorithm

Input:

configuration c

gold dependency tree Tg

Output:

transition τo . return a transition

1: Ta ← [τ0, τ1, . . . , shift] . ordered sequence of transitions for the algorithm

. that follows the canonical derivation principles

2: for each τi in Ta do

3: if conditions(Tg, c, τi) then

4: τo ← τi

5: break

6: return τo

For each algorithm I will present a table with the conditions checked by the

oracle for all transitions. The rows in the tables follow the order in which the

relative transitions are considered by the static oracle.

5.1.1 Arc-Standard Static Oracle

In table 5.1 I report the conditions checked by the static oracle for the Arc-Standard

algorithm. We can switch left-arc and right-arc in the sequence Ta but it’s

important that the shift transition will be returned by the oracle if and only if the

other conditions are not satisfied. Considering that the arc-standard algorithm can
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create an arc only between the two topmost elements into the stack and considering

the projectivity constrain, for the transition left-arc we do not need to check if

the node has already taken all its dependents.

Transition Oracle’s Condition

left-arc (s0 → s1) ∈ Ag

right-arc (s1 → s0) ∈ Ag and

∀wi ∈ V, @ (s0 → wi) ∈ Ag \ A

shift no conditions

Table 5.1: Static oracle conditions for Arc-Standard algorithm

5.1.2 Arc-Eager Static Oracle

In table 5.2 I report the conditions checked by the static oracle for the Arc-Eager

algorithm. Similarly to the Arc-Standard algorithm the transitions right-arc,

left-arc and reduce can be exchanged. The left-arc and right-arc transi-

tions only check that the arc created by the transition exists into the gold depen-

dency tree. Indeed, considering the bottom-up strategy for left dependents and

the top-down strategy for right dependents, there is no need for other conditions.

5.1.3 Attardi’s algorithm Static Oracle

For the simplified version of the Attardi’s algorithm the conditions checked by the

static oracle are in table 5.3. Following the most used definition of the canonical

computation the transitions left-arc2 must be evaluated after left-arc1.
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Transition Oracle’s Conditions

left-arc (b0 → s0) ∈ Ag

right-arc (s0 → b0) ∈ Ag

reduce ∃ wi ∈ σ | (wi → s0) ∈ A and

∀ wj ∈ β, @ (s0 → wi) ∈ Ag

shift no conditions

Table 5.2: Static oracle conditions for Arc-Eager algorithm

Transition Oracle’s Condition

left-arc1 (s0 → s1) ∈ Ag and

∀wi ∈ V, @ (s1 → wi) ∈ Ag \ A

right-arc1 (s1 → s0) ∈ Ag and

∀wi ∈ V, @ (s0 → wi) ∈ Ag \ A

left-arc2 (s0 → s2) ∈ Ag and

∀wi ∈ V, @ (s2 → wi) ∈ Ag \ A

right-arc1 (s2 → s0) ∈ Ag and

∀wi ∈ V, @ (s0 → wi) ∈ Ag \ A

shift no conditions

Table 5.3: Static oracle conditions for the Attardi’s algorithm

5.2 Non-Deterministic Oracle

The non-deterministic oracle was firstly introduced in [Goldberg and Nivre, 2012]

and in [Sartorio, Satta, and Nivre, 2013]. Despite the fact that the second paper

was published some months after the first paper, the authors of the two papers have

independently reached the idea of a non-deterministic oracle following two different
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motivations. The authors of the first paper were looking for a way to reduce error

propagation and as intermediate step they developed a non-deterministic oracle for

the Arc-Eager algorithm. On the other hand, I was trying to take advantage from

the spurious ambiguity of a parsing algorithm and I developed a non-deterministic

oracle for the arc-standard algorithm and for LR-Spine algorithm that we will see

in chapter 6. Note that in [Sartorio, Satta, and Nivre, 2013] I called this type of

oracle easy-first strategy because the objective of such training is to choose the

easier computation above all possible computations: An idea that shares some

principles with the Easy-First algorithm in [Goldberg and Elhadad, 2010].

The idea that pushed me to explore this kind of technique is simple. During

training, especially in an on-line setting, we try to learn a model that approximates

the oracle function. But the static oracle strictly follows the canonical derivation

among many possible derivations (due to algorithm’s spurious ambiguity). So

we train a model that tries to reproduce such behaviour adding a non necessary

constrain: our objective is to reach the gold dependency tree and not to follow

the canonical computation! I thought it reasonable that training a model without

useless constraints would be simpler to learn. Indeed we can avoid to update the

model when it is not strictly necessary.

It came out that for many algorithms it is easy to design an oracle that dur-

ing training takes in consideration all possible derivations that reach the correct

dependency tree. As we will see in the experimental results the performance im-

provements by using a non-deterministic oracle is more effective on algorithms with

a high degree of spurious ambiguity. Formally we can define a non-deterministic

oracle as follow.

Definition 5.2. Given a configuration ci from which the gold dependency tree

TG = (V,AG) can be reached, the non-deterministic oracle is a function that

retrieves a set of transitions:

nondetOracle(Ts, ci) = To = {τ1, τ2, . . . , τk}

where all transitions τ ∈ To start a different derivation that reaches the same TG.

Similarly to what we did for the static oracle, we can design conditions for

each transition of a parsing algorithm that satisfy the property of producing a

new configuration that is in the set To. In this case the conditions define whether

a transition is correct.
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Definition 5.3. Given a parsing algorithm and given a configuration ci, from

which the gold dependency tree TG is reachable, the transition τ is correct if

ci `τ ci+1 and from ci+1 TG is still reachable.

In algorithm 5.2 we can see that, differently from the static oracle, the non-

deterministic oracle checks the conditions for all transitions and it returns a set

containing all correct transitions. For left-arc and right-arc the conditions

are identical to the static oracle; for shift new conditions are needed because this

transition can no longer be chosen by exclusion.

Algorithm 5.2 Non-Deterministic Oracle Algorithm

Input:

configuration c

gold dependency tree Tg . correct dependency tree for sentence s

Output:

transition To . return a set of transitions

1: Ta ← {τ0, τ1, . . . , shift]} . set of transition for a specific algorithm

2: for each τi in Ta do

3: if conditions(Tg, c, τi) then

4: To ← To ∪ {τi}
5: break

6: return To

In order to use such oracle the learning algorithm needs to be slightly modified

from the one in section 4.2.2 because the non-deterministic oracle retrieves a set

and not a single transition. In Algorithm 5.3 we can see that the model is updated

only if the predicted transition is not in the set retrieved by the oracle (line 11).

If we choose a training strategy correct-and-go-on we have to choose a transition

over the ones retrieved by the oracle. We can do it randomly but using a model

that retrieves a score for each transition I prefer to choose the transition τi ∈ To
that maximize the model’s score.

5.2.1 Arc-Standard Non-Deterministic Oracle

In table 5.4 I present the conditions checked by the non-deterministic oracle for the

Arc-Standard algorithm. left-arc and right-arc have the same conditions of



68 CHAPTER 5. ORACLES

Algorithm 5.3 On-line Training Algorithm (correct-and-go-on) using a non de-

terministic oracle
Input:

treeBank= [(s1, Ts1), (s2, Ts2), . . . , (sm, Tsm)]

Output:

model . return a trainined model

1: model ← newModel(T )

2: for each s, Ts in treeBank do

3: c = (σ, β,A)← ([ ], s,∅)

4: while |σ| > 1 ∨ |β| > 0 do . while c is not final do

5: T ′ ← ∅
6: for each τ in T do . select the applicable transitions

7: if applicable(τ ,c) then

8: T ′ ← T ′ ∪ {τ}

9: τ ← model.giveBestTransition(T ′, c)
10: To ← nonDeterministicOracle(Ts, c)

11: if τ /∈ To then . model retrieve a bad prediction w.r.t. oracle

12: model.update(T ′, c, To) . update the model

13: τ ← τi , τi ∈ To . To contains one or more transitions

14: c′ = (σ′, β′, A′)← apply(τ, c) . apply(τ, c) returns c′ s.t. c `τ c′

15: c = (σ, β,A)← c′

16: return model

Transition Oracle’s Condition

left-arc (s0 → s1) ∈ Ag

right-arc (s1 → s0) ∈ Ag and

∀wi ∈ V, @ (s0 → wi) ∈ Ag \ A

shift (s0 → s1) /∈ Ag and (s1 → s0) /∈ Ag or

∃ (s0 → wi) ∈ Ag | wi ∈ β

Table 5.4: Non-deterministic oracle conditions for Arc-Standard algorithm
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the static oracle. shift is retrieved if there are no left-arc and right-arc (as

for the static oracle) or if there exists a right dependent of s0 into the buffer. This

new condition takes care of the spurious ambiguity pattern described in section

4.1.4: [la, sh, . . . ,ra] or [sh, . . . ,ra, la].

The shift conditions in table 5.4 are equivalent to:

Lemma 5.4. given a configuration c from which it is possible to reach the gold

dependency tree TG, the transition shift is incorrect if and only if the following

conditions are both satisfied:

1. (s0 → s1) ∈ AG or (s1 → s0) ∈ AG

2. @ (s0 → wi) ∈ AG | wi ∈ β

Proof. Let c = (σ|s1|s0, β, A) and c′ = shift(c)

If statement.

Assuming 1 and 2 satisfied I argue that from c′ it is not possible to reach TG. The

only way to create the arc (s0 → s1) ∈ AG or the arc (s1 → s0) ∈ AG is to reach

a configuration c′′ = (σ|s1|s0, β′′, A′′) with the same stack of c. From c′, the only

way to reach the configuration c′′ is to reduce the stack by doing a right-arc

that creates an arc (s0 → bi) but this contradicts the condition 2.

Only if statement.

If condition 1 is not satisfied, then left-arc and right-arc are not correct and

the only possible transition is shift (as in the static oracle). If condition 2 is

not satisfied, then there exists a complete (except the root) subtree of TG rooted

by s0 that spans over the substring of s : [s0, . . . , wj], wj ≥ wi. Such subtree

is the complete subtree of a reachable tree TG, so there exists a derivation that

reduces the subtree to its root s0. In such way we can reach a configuration

c′′ = (σ|s1|s0, β′′, A′′) where the stack is the same of c and β′′ has been reduced by

optimal transitions. Clearly from c′′ the parsing algorithm can reach TG.

5.2.2 Arc-Eager Non-Deterministic Oracle

In table 5.5 I present the conditions checked by the non-deterministic oracle for

the Arc-Eager algorithm. Note that the transitions reduce and shift are correct
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Transition Oracle’s Conditions

left-arc (b0 → s0) ∈ Ag

right-arc (s0 → b0) ∈ Ag

reduce ∃ wi ∈ σ | (wi → s0) ∈ A and

∀ wj ∈ β, @ (s0 → wj) ∈ Ag

shift ∃ wi ∈ β | (wi → b0) ∈ Ag and

@ wj ∈ σ | (b0 → wj) ∈ Ag

Table 5.5: Non deterministic oracle conditions for Arc-Eager algorithm

only if left-arc and right-arc are both wrong. This is due to the lack of

spurious ambiguity over the creation of an arc. Otherwise shift and reduce can

be both satisfied.

The shift conditions in table 5.5 are simple to prove.

Lemma 5.5. given a configuration c from which it is possible to reach the gold

dependency tree TG, the transition shift is correct if and only if the following

conditions are both satisfied:

1. ∃ wi ∈ β | (wi → b0) ∈ Ag

2. @ wj ∈ σ | (b0 → wj) ∈ Ag

Proof. If statement. Considering the projectivity, if both conditions are satisfied

it means that there exists a complete (except the root) subtree of TG rooted by

p(b0) that spans over the substring s′ = [b0, . . . ,p(b0)]. The nodes of such subtree

can be reduced to the root p(b0).

Only if statement.

If the first condition is not satisfied it means that p(b0) ∈ σ and in the Arc-Eager

algorithm it is possible to create an arc only between a node in the stack and a

node in the buffer. Similarly, if the second condition is not satisfied it means that

there is a dependent of b0 in the stack, and it will be impossible to create the

associated arc after shifting b0 into the stack. So in both cases shift is wrong.
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5.2.3 Attardi’s Non-Deterministic Oracle

Transition Oracle’s Condition

left-arc1 (s0 → s1) ∈ Ag and

∀wi ∈ V, @ (s1 → wi) ∈ Ag \ A

right-arc1 (s1 → s0) ∈ Ag and

∀wi ∈ V, @ (s0 → wi) ∈ Ag \ A

left-arc2 (s0 → s2) ∈ Ag and

∀wi ∈ V, @ (s2 → wi) ∈ Ag \ A

right-arc1 (s2 → s0) ∈ Ag and

∀wi ∈ V, @ (s0 → wi) ∈ Ag \ A

shift reachable(TG, shift(c))

Table 5.6: Non deterministic oracle conditions for Attardi’s algorithm, the reach-

able function checks if the gold dependency tree is reachable from the configuration

obtained by applying a shift to the current configuration

Unfortunately for Attardi’s algorithm it is hard to define whether the gold

dependency tree for a sentence is reachable or not, unless we try to parse it.

Similarly we have the same problem for subsequences of the original sentence and

we cannot apply the same trick that we use for the shift transition in the Arc-

Standard algorithm.

We can approximate a non-deterministic oracle by retrieving at the same time

left-arc1 and left-arc2 when both are correct. However this approach does not

capture most of the possible derivations, indeed most of the spurious ambiguity

relies over the choosing of the shift transition instead of a left-arc. A real

non-deterministic oracle can be obtained by testing if after a shift the resulting

configuration can reach the gold dependency tree by applying a static oracle.. This

requires the parsing of the whole sentence each time that there is a configuration in

which we can make a reduction (left-arc,right-arc, left-arc2,right-arc2).

In table 5.6 the function parsable checks the reachability of the gold dependency
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tree after a shift. Given a sentence of length n, the time complexity of this test

is O(n) and it should be done at each reduction. To parse a sentence we need

exactly n− 1 reductions leading to a time complexity of O(n2) at training time.

5.3 Dynamic Oracle

One of the main problem in greedy transition based parsers is the error propaga-

tion. When a parser commits an error at test time it reaches configurations that

are unlikely to have significant features. The model is trained only over config-

urations from which it is reachable the correct dependency tree and it learns to

discriminate the right transition in such context. Otherwise if at test time the

parser fails the model is constrained to classify configurations it has never seen

before. In [Goldberg and Nivre, 2012] and [Goldberg and Nivre, 2013] the au-

thors had a simple idea that achieves really good results: let the parser fail also

at training time.

For the non-deterministic oracle we define the correctness of a transition by

looking if the following configuration can reach the gold dependency tree. In a

configuration that cannot reach the gold dependency tree we need a different way

to recognize the best transitions: the cost function.

5.3.1 Loss and Cost function

In dependency parsing the objective is to retrieve the syntactically correct depen-

dency tree. However if we have a configuration in which the gold dependency tree

is not reachable we can still reach a tree that has few errors. If we consider all arcs

with the same importance we can say that the best tree is the one that contains

less errors. We can define a loss function that compares any complete dependency

tree with the gold dependency tree.

Definition 5.6. The loss L of a dependency tree T = (V,A) with respect to the

gold dependency tree TG = (V,AG) is the cardinality of the set difference of set A

from set AG:

L(T, TG) = |A \ AG|
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Note that considering all arcs with the same importance can be arguable. An

arc that represents the relation between subject and verb can be considered more

important than the relation between a name and an adjective. However let me

consider all arcs with equal importance.

For a configuration we can consider all reachable dependency trees and we can

define a loss function as follows.

Definition 5.7. The loss L of a configuration c with respect to the gold depen-

dency tree TG = (V,AG) is the minimum loss above all reachable dependency

trees:

loss(c, TG) = min
T∈D(c)

L(T, TG)

where D(c) is the set of all reachable dependency trees from c.

Having defined the loss of a configuration we are able to compare different

configurations (obviously with respect to the same gold dependency tree). This is

particularly interesting if we look to transitions that belongs to the same derivation:

c0 `τ0 c1 `τ1 c2 `τ2 c3 `τ3 . . . `τk cf

If we consider the incremental behaviour of the transition based algorithms it is

clear that:

L(c0) = 0 ≤ L(c1) ≤ L(c2) ≤ L(c3) ≤ . . . ≤ L(cf ) = L(T )

where T is the tree resulting from the derivation. For example, if we have L(c2) = 3

the gold dependency tree is not reachable, so we have done some mistake in the

previous transitions. However if L(c3) = 10 it is clear that the transition τ2 is not

the best one.

By using this principle we can define the cost of a transition.

Definition 5.8. Given a gold dependency tree and a configuration ci the cost C
of a transition τ such as ci `τ ci+1 is the difference over the loss of ci+1 and ci:

C(τ, ci, TG) = L(ci+1, TG)− L(ci, TG)
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General Dynamic Oracles

Using the cost function above, we are able to compare transitions of a parsing

algorithm when they are applied to configurations in which the gold dependency

tree is not reachable. Following the same principles of the non-deterministic oracle,

we define a dynamic oracle that retrieves a set of 0-cost transitions.

Definition 5.9. Given a configuration c and a gold dependency tree TG = (V,AG)

the dynamic oracle is a function that retrieves a set of transitions:

dynamicOracle(TG, c) = To = {τi | C(τ, c, TG) = 0}

where all transitions τi ∈ To start different derivations that can reach different

trees T with the same loss.

To train a model that is able to reduce the error propagation we need to explore

wrong configurations. As we can see in algorithm 5.4 we update the model as

usual in case of wrong prediction but we let the parser proceed with the predicted

transition independently if it is a 0-cost transition. If we do not remove line 13

in the training algorithm we constrain the system to follow 0-cost transitions,

obtaining exactly the same behaviour of the non-deterministic oracle.

In [Goldberg and Nivre, 2013] the authors use two parameters to limit the error-

exploring behaviour. The first one constrains the algorithm to follow the 0-cost

transitions for the first k iterations. The second parameter defines a probability

p: with probability p the training chooses the 0-cost transition, and with proba-

bility 1 − p it follows the wrong prediction. The parameter k is interesting if we

assign to it a small value, for example it is reasonable to start the error-exploring

after the first iteration when we already have a model that avoid to explore really

wrong transitions. Otherwise I don’t like too much the random behaviour given

by parameter p. Another interesting parameter can be a loss bound b, maybe

parametrized with the length of the sentence b(length(s)): if the loss of a configu-

ration is greater than the loss bound we follow only the 0-cost transitions. It can

be interesting to use this kind of parameter with a beam search technique and a

dynamic oracle; for example we can choose to update the model if into the beam

there are no configurations with loss less than the bound value. However I prefer

to avoid parameters that are hard to set and can lead to inconsistent experimental

results so in my tests I do not use them.
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Algorithm 5.4 On-line Training Algorithm (error-exploring) using dynamic ora-

cle
Input:

treeBank= [(s1, Ts1), (s2, Ts2), . . . , (sm, Tsm)]

Output:

model . return a trainined model

1: model ← newModel(T )

2: for each s, Ts in treeBank do

3: c = (σ, β,A)← ([ ], s,∅)

4: while |σ| > 1 ∨ |β| > 0 do . while c is not final do

5: T ′ ← ∅
6: for each τ in T do . select the applicable transitions

7: if applicable(τ ,c) then

8: T ′ ← T ′ ∪ {τ}

9: τ ← model.giveBestTransition(T ′, c)
10: To ← dinamicOracle(Ts, c)

11: if τ /∈ To then . model retrieve a bad prediction w.r.t. oracle

12: model.update(T ′, c, To) . update the model

13: τ ← τi , τi ∈ To
14: c′ = (σ′, β′, A′)← apply(τ, c) . apply(τ, c) returns c′ s.t. c `τ c′

15: c = (σ, β,A)← c′

16: return model

Unfortunately given a generic configuration it is not easy to compute the loss.

In [Goldberg and Nivre, 2013] the authors identify a property that holds for some

parsing algorithm. This property allows to simplify the dynamic oracle for some

parsing algorithms, we will see it in the case of the arc-eager algorithm. For

other algorithms, I will present a more general approach based on a dynamic

programming technique. In [Goldberg, Sartorio, and Satta, 2014] we use this

technique for the arc-standard algorithm while in [Gómez-Rodŕıguez, Sartorio, and

Satta, 2014] we use an even more general approach for the Attardi’s Algorithm.
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5.3.2 Arc-Eager Dynamic Oracle

In [Goldberg and Nivre, 2013] the authors define the arc-decomposition property

and they show that the Arc-Eager algorithm has this property. They start by

defining the reachability of an arc.

Definition 5.10. Given a configuration ci = (σi, βi, Ai), an arc a /∈ A is reachable

if there exists a derivation d = τ0τ1 . . . τk such as:

ci `τ0 ci+1 `τ1 · · · `τk ci+k = (σi+k, βi+k, Ai+k)

a ∈ Ai+k

In practice an arc is reachable from a configuration if there exists a derivation

that builds the arc starting from the configuration.

Obviously, if we consider a gold dependency tree TG = (V,AG) that is reachable

by using a parsing algorithm, we have that the whole set of arcs AG is reachable

from the initial configuration c0:

AG = {a | a ∈ AG ∧ a is reachable from c0}

Otherwise if we have a configuration ci = (σi, βi, Ai) from which it is not possible

to reach the gold dependency tree we have:

AG 6= Ai ∪ {a | a ∈ AG ∧ a is reachable from ci}

The arc-decomposition property of a parser considers the subset of arcs of a

dependency tree that are reachable from a configuration.

Definition 5.11. A transition based parsing algorithm has the arc-decomposition

property if for every reachable dependency tree T = (V,A) and for all possible

configurations ci there exists a derivation d = τ0τ1 . . . τk such that:

ci `τ0 ci+1 `τ1 · · · `τk ci+k = (σi+k, βi+k, Ai+k),

{a | a ∈ A ∧ a is reachable from ci} ⊆ Ai+k

The arc-decomposition property holds for all possible dependency trees but in

practice what interests us is that in a arc-decomposable algorithm, given a gold de-

pendency tree, every gold arc reachable from a configuration is mutually reachable.
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This is a powerful property because it allows to consider all arcs independently.

The authors of [Goldberg and Nivre, 2013] show that this property holds for the

arc-eager algorithm but unfortunately not for the arc-standard algorithm.

Considering the modifications of the configuration, when we apply a transition,

we can see that each transition may prevent the reachability of some arcs. Given

the arc-decomposition property each arc can be considered independently from the

others, so the number of prevented arcs is the cost of the transition.

In algorithm 5.5 we can see the algorithm to compute the cost function of a

configuration. The algorithm considers that if a token i is removed from the stack

there is no derivation that can create arcs of type: (i → j), j ∈ β. Otherwise if

a token is moved from the buffer into the stack it is impossible to reach any arc

(i → j), j ∈ σ. Note that the cost is 0 if the new arc (i → j) ∈ AG but also if

(i → j) /∈ AG and there are no reachable arcs prevented by the new arc. Note

also that the dynamic oracle does not guaranties that the retrieved graph is a

dependency tree because reduce may be a 0-cost transition if s0 has no head and

the head is not available (by means p(s0) /∈ β).

Computational Analysis

Clearly the algorithm 5.5 works with complexity O(n) where n is the length of

the input sentence. Indeed for each transition we need to check the prevented arcs

by analyzing the gold parent for each token into the buffer or into the stack, both

bounded by n. However, by using a careful implementation that incrementally

saves the reachable arcs of a configuration (with respect to the gold dependency

tree) the increased training time compared with a static oracle is barely notable.

5.3.3 Arc-Standard Dynamic Oracle

In [Goldberg, Sartorio, and Satta, 2014] we solve the dynamic oracle for the Arc-

Standard algorithm by using a polynomial tabular method to compute the loss of

a configuration.

The algorithm consists of two steps. Informally, in the first step we compute

the largest subtrees, of the gold tree TG that have their span entirely included in

the buffer β. The root nodes of these tree fragments are then arranged into a

list, according to the order in which they appear in β. We call this structure the



78 CHAPTER 5. ORACLES

Algorithm 5.5 Computation of the cost function for the Arc-Eager algorithm

1: cost ← 0

2: if τ = left-arc then

3: if p(s0) 6= b0 and p(s0) ∈ β then

4: cost ← cost +1

5: for bi ∈ β do

6: if p(bi) = s0 then

7: cost ← cost +1

8: if τ = right-arc then

9: if p(b0) 6= s0 and p(b0) ∈ σ then

10: cost ← cost +1

11: for si ∈ σ do

12: if p(si) = b0 then

13: cost ← cost +1

14: if τ = reduce then

15: if p(s0) ∈ β then

16: cost ← cost +1

17: for bi ∈ β do

18: if p(bi) = s0 then

19: cost ← cost +1

20: if τ = shift then

21: if p(b0) ∈ σ then

22: cost ← cost +1

23: for si ∈ σ do

24: if p(si) = b0 then

25: cost ← cost +1

26: return cost

reduced buffer βR. Intuitively, βR can be viewed as the result of pre-computing β

by applying all sequences of transitions that match TG and that can be performed

independently of the stack in the input configuration c.

In the second step of the algorithm we use dynamic programming techniques

to simulate all computations of the Arc-Standard algorithm starting in a config-

uration with stack σ and with a buffer now represented by βR. The search space

defined by these computations includes at least one the dependency tree for the
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sentence s that is reachable from the input configuration c and that have minimum

loss. We then perform a Viterbi search to pick up the loss value.

The second step is very similar to standard implementations of the CKY parser

for context-free grammars [Hopcroft and Ullman, 1979], running on an input string

obtained as the concatenation of σ and βR. The main difference is that we restrict

ourselves to parse only those constituents in σβR that dominate the topmost el-

ement of σ (the rightmost element, if σ is viewed as a string). In this way, we

account for the additional constraint that we visit only those configurations of

the Arc-Standard parser that can be reached from the input configuration c. For

instance, this excludes the reduction of two nodes in σ that are not at the two

topmost positions. This would also exclude the reduction of two nodes in βR:

this is correct, since the associated subtrees have been chosen as the largest such

fragments in β.

Reduction of the Buffer

In the first step we process β and construct βR, which we call the reduced buffer

Definition 5.12. Given a configuration c = (σ, β,A) and a gold dependency tree

TG = (V,AG) the reduced buffer (for the Arc-Standard Algorithm) is a subsequence

of β in which each token is the root of a tree T that satisfies the following properties:

1. T is a subtree of the gold tree TG having span entirely included in the buffer

β;

2. T is bottom-up complete for TG, meaning that for each node wi of T different

from the root of T , the dependents of wi in TG cannot be in σ;

3. t is maximal for TG, meaning that every supertree of T in TG violates the

above conditions.

The stack βR is incrementally constructed by processing β from left to right.

Each node i is copied into βR if it satisfies any of the following conditions

1. the parent node of i in TG is not in β;

2. some dependent of i in TG is in σ or has already been inserted in βR.
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It is not difficult to see that the nodes in βR are the roots of tree fragments

of TG that satisfy the condition of bottom-up completeness and the condition

of maximality defined above. Another way to reduce the buffer is to run the arc-

standard algorithm over the buffer with a static oracle, this is not the most efficient

way to do it but considering that it is clear that the operation can be done in linear

time.

In order to simplify the specification of the loss computation algorithm, we

assume below that first element in βR is the topmost element in σ, so βR and σ

has the same topmost element. Therefore the other elements of βR are shifted of

one position.

Algorithm 5.6 Computation of the loss function for the Arc-Standard algorithm

1: A[1, 1](σ[1])←
∑
i∈[1,|σ| ] L(T (σ[i]), TG) . in A[1, 1] the loss

. of all already computed subtrees

2: for d← 1 to |σ|+ |βR| − 1 do . d is the index of a sub-anti-diagonal

3: for j ← max{1, d− |σ|+ 1} to min{d, |βR|} do . j is the column index

4: i← d− j + 1 . i is the row index

5: if i < |σ| then . expand to the left

6: for each h ∈ ∆i,j do

7: A[i+ 1, j](h)← min{A[i+ 1, j](h), A[i, j](h) + δG(h→ σ[i+ 1])}
8: A[i+ 1, j](σ[i+ 1])← min{A[i+ 1, j](σ[i+ 1]), A[i, j](h) + δG(σ[i+ 1]→ h)}
9: if j < |βR| then . expand to the right

10: for each h ∈ ∆i,j do

11: A[i, j + 1](h)← min{A[i, j + 1](h), A[i, j](h) + δG(h→ |βR|[j + 1])}
12: A[i, j + 1](βR[j + 1])← min{A[i, j + 1](βR[j + 1]),A[i, j](h) + δG(βR[j + 1]→ h)}
13: return A[ |σ|, |βR| ](0)

Computation of Configuration Loss

Let me introduce some notation:

• |σ| and |βR| to denote the length of the left stack and of the reduced buffer

• σ[i] and βR[i] to denote the i-th element of σ and of βR, σ[1] the topmost

element into σ and βR[1] the first element into βR

• T (σ[i]) and T (βR[i]) to denote the corresponding subtree respectively rooted
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by σ[i]) and βR[i]), where T (σ[i]) is a subtree already built by the parser and

T (βR[i]) is a subtree of TG

Algorithm 5.6 uses a two-dimensional array A (a table) of size |σ|×|βR|, where

each entry A[i, j] is an association list from integers to integers. An entry A[i, j](h)

stores the minimum loss among dependency trees rooted at h that can be obtained

by running the parser on the first i elements of stack σ and the first j elements of

buffer βR. More precisely, let

∆i,j = {σ[k] | k ∈ [1, i]} ∪ {βR[k] | k ∈ [1, j]}

For each h ∈ ∆i,j, the entry A[i, j](h) is the minimum loss among all dependency

trees defined as above and with root h. We also assume that A[i, j](h) is initialized

to +∞ for all possible h (not reported in the algorithm).

Algorithm 5.6 starts at the top-left corner of A, visiting each individual sub-

anti-diagonal of A in ascending order, reaching the bottom-right corner of the

table. The entry A[1, 1](σ[1]) is initialized with the loss of all already built subtrees

with roots in σ. For each entry A[i, j], the left expansion is considered (lines 5 to 8)

by combining with tree fragment σ[i + 1], through a left or a right arc reduction.

This results in the update of A[i+1, j](h), for each h ∈ ∆i+1,j, whenever a smaller

value of the loss is achieved for a tree with root h. The Kronecker-like function

used at line 8 provides the contribution of each single arc to the loss of the current

tree. Denoting with AG the set of arcs of TG, such a function is defined as

δG(i→ j) =

{
0, if (i→ j) ∈ AG;

1, otherwise.
(5.1)

A symmetrical process is implemented for the right expansion of A[i, j] through

subtrees βR[j + 1] (lines 9 to 12).

The quantity A[|σ|, |βR|](0) is the minimal loss above all reachable trees. Note

that contribute to the loss of all subtrees T (βR[j]) is zero because they are optimal

subtrees of TG. Otherwise the contribute to the loss of all T (σ[i]) is constant

during the computation and it is assign to A[1, 1](σ(1))

Computational Analysis

The reduction of the buffer is an important step because it allows to completely

reduced subtrees that span only into the buffer. This allow the oracle step to
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always combine an inferred entry in the table with either a node from the stack

or from the reduced buffer. In such way the dynamic programming technique can

avoid to combine inferred entries toghether.

The reduced buffer βR can be easily constructed in time O(n), n the length

of the input string. In the loss computation, for each entry A[i, j] and for each

h ∈ ∆i,j, we update A[i, j](h) a number of times bounded by a constant which

does not depend on the input. Each updating can be computed in constant time

as well. We thus conclude that Algorithm 5.6 runs in time O|σ| · |βR| · (|σ|+ |βR|).
All quantities are bounded by n so the complexity is O(n3). However, in practice,

the former is significantly smaller: when measured over the sentences in the Penn

Treebank, the average value of |σ|+|βR|
n

is 0.29. In terms of runtime, training is 2.3

times slower when using our oracle instead of a static oracle.

5.3.4 Attardi’s algorithm Dynamic Oracle

When I firstly try to make a dynamic oracle for the Attardi’s algorithm I thought

that I could use the same procedure of the Arc-Standard parser. Unfortunately

some helpful properties that hold with projective trees are no longer satisfied in the

non-projective case. In the projective case, as we have seen in the previous section,

subtrees that are in the buffer can be completely reduced. As a consequence, each

loss computation step always combines an inferred entry in the table with either

a node from the left stack or a node from the reduced buffer. Otherwise, in the

non-projective case, subtrees in the buffer can not always be completely reduced.

As a consequence, the oracle needs to make cell updates in a more general way,

which includes linking pairs of elements in the reduced buffer or pairs of inferred

entries in the table.

Consider the dependency tree in figure 5.1 and assume a configuration c =

(σ, β,A) where σ = [0, 1, 2, 3, 4], β = [5, . . . , 11], and A = ∅. It is easy to see

that the loss of c is greater than zero, since the gold tree is not reachable from c:

parsing the subtree rooted at node 5 requires shifting 6 into the stack, and this

makes it impossible to build the arcs 2 → 5 and 2 → 6. However, if we reduced

the subtree in the buffer with root 5, we would incorrectly obtain a loss of 0, as

the resulting tree is parsable if we start with shift followed by left-arc and

right-arc2. Note that there is no way of knowing whether it is safe to reduce
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Example 5.13.

-root- John was not as good for the job as Kate .
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

Figure 5.1: Example of a gold tree such that not all the subtrees in the buffer can

be reduced in configuration c = (σ, β,A) where σ = [0, 1, 2, 3, 4], β = [5, . . . , 11],

and A = ∅.

the subtree rooted at 5 without using non-local information. For example, the arc

2 → 6 is crucial here: if 6 depended on 5 or 4 instead, the loss would be zero.

These complications are not found in the projective case.

We can still reduce the buffer using principles similar to the Arc-Standard case

but we have to use a more general dynamic programming technique to the loss

computation.

Reduction of the Buffer

We use the same first two principles defined in 5.3.3 for the preprocessing of the

buffer but instead of the maximality we consider subtrees with Zero gap-degree.

This is an important requirement for the construction of t(βR[i]) from β, since

a tree fragment having a discontinuous span over β might not be constructable

independently of σ. More specifically, parsing such fragment implies dealing with

the nodes in the discontinuities, and this might require transitions involving nodes

from σ.

Definition 5.14. Given a configuration c = (σ, β,A) and a gold dependency tree

TG = (V,AG) the reduced buffer (for the Arc-Standard Algorithm) is a subsequence

of β in which each token is the root of a tree T that satisfies the following properties:

1. T is a subtree of the gold tree TG having span entirely included in the buffer

β;
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2. T is bottom-up complete for TG, meaning that for each node wi of T different

from T ’s root, the dependents of wi in TG cannot be in σ;

3. T has Zero gap-degree, meaning that all the nodes of T form a contiguous

substring of s.

If T satisfies the above conditions, then we can safely reduce the nodes of T

appearing in β, creating a right stack βR replacing them with the node root node

h. This is clearly true because the Zero gap-degree condition guarantees that the

span of T over the nodes of β is not interleaved by nodes that do not belong to

T . The bottom-up complete condition guarantee that all nodes, except the roots,

of the subtrees have no arcs with other elements of the buffer or of the stack. A

subtree of a tree reachable from a parsing algorithm is reachable too. And if a

tree is reachable from a parsing algorithm means that exists a derivation that can

optimally reduce the span of a tree into one element (the root).

The sufficient condition above allow to compute βR. We process the buffer

β from left to right and for each node k we test the Bottom-up completeness

condition and the Zero gap-degree condition for the complete subtree T of TG

rooted at k. We substitute the span of the subtree with k if the conditions are

satisfied. Note that in this process a node k resulting root of a reduced subtree T

might be removed from β if, at some later point, we reduce a supertree of T .

Computation of the Loss

The loss computation is based on the dynamic programming technique in [Kuhlmann,

Gómez-Rodŕıguez, and Satta, 2011] and more specifically over the tabular pars-

ing algorithm in [Cohen, Gómez-Rodŕıguez, and Satta, 2011]. Given an input

string their algorithm produces a compact representation of the set of all possible

computations of a transition based algorithm.

In our case the input string γ is the concatenation of the stack and the buffer:

γ = σ βR

where the elements are ordered by following the order into the input sentence s,

so γ[0] is the last (left-most) element into the stack σ. γ[i] is the (i + 1)-th node

in γ for 0 ≤ i ≤ |γ| − 1. Let ` = |σ| be the boundary between the stack and the

buffer in γ. So γ[i] ∈ σ if i < `, otherwise γ[i] ∈ βR if i ≥ `.
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Algorithm 5.7 Computation of the loss function for Attardi’s algorithm (simpli-

fied)

1: A[0, 1]([$, $0])← 0 . shift node 0 on top of empty stack symbol $

2: for i← 1 to `− 1 do

3: A[i, i+ 1]([γ[i− 1], γ[i− 1]γ[i]])← 0 . shift node γ[i] with γ[i− 1] on top of the stack

4: for i← ` to |γ| do

5: for h← 0 to i− 1 do

6: A[i, i+ 1]([γ[h], γ[h]γ[i]])← 0 . shift node γ[i] with γ[h] on top of the stack

7: for d← 2 to |γ| do . consider substrings of length d

8: for i← max{0, `− d} to |γ| − d do . i = beginning of substring

9: j ← i+ d . j − 1 = end of substring

10: ProcessCell(A, i, i+ 1, j) . range k = i+ 2 to max{i+ 2, `} − 1 omitted

11: for k ← max{i+ 2, `} to j do . factorization of substring at k

12: ProcessCell(A, i, k, j)
13: return A[0, |γ|]([$, $0]) +

∑
i∈[0,`−1] L(σ[i], TG)

14: procedure ProcessCell(A, i, k, j)
15: for each key [h1, h2h3]) defined in A[i, k] do

16: for each key [h3, h4h5]) defined in A[k, j] do . h3 must match

17: lossla ← A[i, k]([h1, h2h3]) +A[k, j]([h3, h4h5]) + δG(h5 → h4)

18: if (i < `) ∨ δG(h5 → h4) = 0 ∨ (h5 6∈ γ) then

19: A[i, j]([h1, h2h5])← min{lossla,A[i, j]([h1, h2h5])} . cell update la

20: lossra ← A[i, k]([h1, h2h3]) +A[k, j]([h3, h4h5]) + δG(h4 → h5)

21: if (i < `) ∨ δG(h4 → h5) = 0 ∨ (h4 6∈ γ) then

22: A[i, j]([h1, h2h4])← min{lossra,A[i, j]([h1, h2h4])} . cell update ra

23: lossla2 ← A[i, k]([h1, h2h3]) +A[k, j]([h3, h4h5]) + δG(h5 → h2)

24: if (i < `) ∨ δG(h5 → h2) = 0 ∨ (h5 6∈ γ) then

25: A[i, j]([h1, h4h5])← min{lossla2
,A[i, j]([h1, h4h5])} . cell update la2

26: lossra2 ← A[i, k]([h1, h2h3]) +A[k, j]([h3, h4h5]) + δG(h2 → h5)

27: if (i < `) ∨ δG(h2 → h5) = 0 ∨ (h2 6∈ γ) then

28: A[i, j]([h1, h2h4])← min{lossra2
,A[i, j]([h1, h2h4])} . cell update ra2

As for the Arc-Standard algorithm 5.7 uses a two-dimensional array A. The

dimension is (|γ| − 1) × (|γ| − 1), with row indexes range from 0 to |γ| − 1 while

the column indexes from 1 to |γ|, and only the cells A[i, j] with i < j are filled.

Each entry A[i, j] is an association list whose keys are items [h1, h2h3], where

h1, h2, h3 are nodes in γ. The value stored at A[i, j]([h1, h2h3]) is the minimum

loss contribution due to the computations represented by [h1, h2h3].
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Specifically the variables into the notation A[i, j]([h1, h2h3]) = v denote a set

of computations such as:

• i, j the computations involve the tokens from the γ[i] to γ[j]

• h1 was the topmost element into the stack when the computations began

• h2h3 are the topmost elements when the computations end

• v is the minimal loss contribution above all the computations where the

previous holds

To correctly represent the inference model, we assume that our parser starts

with a symbol $ 6∈ Vw in the stack, denoting the bottom of the stack.

We initialize the table by populating the cells of the form A[i, i + 1] with

information about the trivial computations consisting of a single shift transition

that shifts the node γ[i] into the stack. These computations are known to have

zero loss contribution, because a shift transition does not create any arcs. In the

case where the node γ[i] belongs to σ, i.e., i < `, we assign loss contribution 0 to

the entry A[i, i + 1]([γ[i − 1], γ[i − 1]γ[i]]) (line 3 of Algorithm 5.7), because γ[i]

is shifted with γ[i − 1] at the top of the stack. On the other hand, if γ[i] is in

β, i.e., i ≥ `, we assign loss contribution 0 to several entries in A[i, i + 1] (line

6) because, at the time γ[i] is shifted, the content of the stack depends on the

transitions executed before that point.

After the above initialization, we consider pairs of contiguous substrings γ[i] · · · γ[k−
1] and γ[k] · · · γ[j − 1] of γ. At each inner iteration of the nested loops of lines

7-11 we update cell A[i, j] based on the content of the cells A[i, k] and A[k, j].

We do this through the procedure ProcessCell(A, i, k, j), which considers all

pairs of keys [h1, h2h3] in A[i, k] and [h3, h4h5] in A[k, j]. Note that we require the

index h3 to match between both items, meaning that their computations can be

concatenated. In this way, for each reduce transition τ in our parser, we compute

the loss contribution for a new piece of computation defined by concatenating a

computation with minimum loss contribution in the first item and a computation

with minimum loss contribution in the second item, followed by the transition τ .

Two pieces of computation are combined by following the inference rules in
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Figure 5.2: Concatenation of two computations/items and transition left-arc2,

resulting in a new computation/item.

[Cohen, Gómez-Rodŕıguez, and Satta, 2011]:

left-arc1 :
[i, k, h1, h2h3] [k, j, h3, h4h5]

[i, j, h1, h2h5]

right-arc1 :
[i, k, h1, h2h3] [k, j, h3, h4h5]

[i, j, h1, h2h4]

left-arc2 :
[i, k, h1, h2h3] [k, j, h3, h4h5]

[i, j, h1, h4h5]

right-arc2 :
[i, k, h1, h2h3] [k, j, h3, h4h5]

[i, j, h1, h2h4]

In Figure 5.2 its represented the concatenation of two pieces of computation in

case of left-arc2.

The computed loss contribution is used to update the entry in A[i, j] corre-

sponding to the item associated with the new computation. The loss contribution

provided by the arc created by τ is computed as into the arc-standard case by the

δG function (lines 17, 20, 23 and 26) which is defined as:

δG(i→ j) =

{
0, if i→ j is in TG;

1, otherwise.
(5.2)

It is important to remark that the nature of the problem allows to apply several

shortcuts and optimizations that would not be possible in a setting where we
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actually needed to parse the string γ. First, the range of variable i in the loop in

line 8 starts at max{0, `−d}, rather than at 0, because we do not need to combine

pairs of items originating from nodes below the topmost node into the stack σ, as

the items resulting from such combinations correspond to computations that do

not contain our input configuration c. Second, when we have set values for i such

that i + 2 < `, we can omit calling ProcessCell for values of the parameter k

ranging from i+ 2 to `− 1, as those calls would use as their input one of the items

described above, which are not of interest. Finally, when processing substrings

that are entirely in βR (i ≥ `) we can restrict the transitions that we explore to

those that generate arcs that either are in the gold tree TG, or have a parent node

which is not present in γ (see conditions in lines 18, 21, 24, 27), because we know

that incorrectly attaching a buffer node as a dependent of another buffer node,

when the correct head is available, can never be an optimal decision in terms of

loss, and if the head is not available we can always attach it into the following

steps.

Once we have filled the table A, the loss for the input configuration c can be

obtained from the value of the entry A[0, |γ|]([$, $0]), representing the minimum

loss contribution among computations that reach the input configuration c and

parse the whole input string. To obtain the total loss, we add to this value the

loss contribution accumulated by the dependency trees with root in the stack σ of

c. This is represented in Algorithm 5.7 as
∑

i∈[0,`−1] L(σ[i], TG), where L(σ[i], TG)

is the count of the descendants of σ[i] (the (i+ 1)-th element of σ) that had been

assigned the wrong head by the parser with respect to TG.

Computational Analysis

The first stage of our algorithm can be implemented in time O(|β||TG|), where

|TG| is the number of nodes in TG, which is equal to the length n of the input

sentence.

For the worst-case complexity of the second stage (Algorithm 5.7), note that

the number of cell updates made by calling ProcessCell(A, i, k, j) with k < `

is O|σ|3|γ|2|βR|. This is because these updates can only be caused by procedure

calls on line 10 (as those on line 12 always set k ≥ `) and therefore the index k

always equals i + 1, while h2 must equal h1 because the item [h1, h2h3] is one of
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the initial items created on line 3. The variables i, h1 and h3 must index nodes on

the stack σ as they are bounded by k, while j ranges over βR and h4 and h5 can

refer to nodes either on σ or on βR.

On the other hand, the number of cell updates triggered by calls to Process-

Cell such that k ≥ ` is O(|γ|4|βR|4), as they happen for four indices referring to

nodes of βR (k, j, h4, h5) and four indices that can range over σ or βR (i, h1, h2,

h3).

Putting everything together, we conclude that the overall complexity of our

algorithm is O(|β||TG| + |σ|3|γ|2|βR| + |γ|4|βR|4). When expressed as a function

of n, our dynamic oracle has a worst-case time complexity of O(n8). This is also

the time complexity of the dynamic programming algorithm of [Cohen, Gómez-

Rodŕıguez, and Satta, 2011] we started with, simulating all computations of our

parser.

In practice, quantities |σ|, |βR| and |γ| are significantly smaller than n. For

instance, when measured on the Czech treebank, the average value of |σ| is 7.2,

with a maximum of 87. Even more interesting, the average value of |βR| is 2.6,

with a maximum of 23. Comparing this to the average and maximum values of

|β|, 11 and 192, respectively, we see that the buffer reduction is crucial in reducing

training time. These considerations are coherent with the reasonable training time

obtained by testing the dynamic oracle. The extra processing due to the dynamic

oracle made training about 4 times slower, on average, than using a static oracle.

5.3.5 Optimizations

There are few things that I want to point out about implementation details of the

loss functions.

First, we do not need to compute the loss for all transitions, for example in the

case of the Attardi’s algorithm we do not need to compute the loss of any of the

5 transition at each iteration. We just need to start from the predicted one and

eventually check the others, following the model’s score, in case of bad prediction.

Second, it is possible to remove all nodes from σ and βR that have already

collected all their dependents and that have no head into σβR. These nodes will

be certainly linked by a wrong arc so we can directly add them to the final loss

count.
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Third, during training we are interested to know if the loss of the configuration

τ(c) is greater or equal to the loss of c. So when we are looking for the Zero cost

transition we can add a branch and bound search strategy into the loss-function:

when the algorithm is filling the entries into the table A is useless to explore

computations which loss is already greater than the loss of c.

These optimizations do not reduce the worst case complexity but drastically

reduce the training time.



Chapter 6

LR-Spines

In the previous chapter we have seen how a non-deterministic Oracle can take

advantage from spurious ambiguity by learning the easiest way to build the tree,

instead of learning how to reproduce the canonical computation. However the

parsing algorithms described have many constrains:

1. bottom-up / top-down strategy

2. arcs can be created only at certain conditions

3. low or no flexibility to postpone decisions that require more information

All these constraints are due to the specific transitions set that characterize a

parsing algorithm.

In the Arc-Standard and Attardi’s algorithms the tree is built in a bottom-up

fashion and a node needs to collect all its dependents before being attached to

the parent. In case of right dependents this constrains the algorithm to shift a

node also if the arc created by a right-arc is in the gold dependency tree. In my

opinion, this is a huge problem because the learning system has to discriminate

not only if the transition creates a link that is in TG but also if it is the right

moment to create it. Consider also that postponing the arc creation can depend

on information that involve nodes far from the topmost nodes into the stack, so

information that are far from the feature extraction scope.

The arc-eager algorithm gets partially rid of the previous problem by using a

top-down strategy for right dependents. However it introduce a reduce transition

91
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to remove nodes into the stack with the irreversible result that an eliminated node

cannot take other dependents. The arc-eager lack of flexibility is evident if we

consider that it has no spurious ambiguity over the arc creation, since an arc must

be created, by using a left-arc or a right-arc, as soon as this action is possible,

because it will be impossible to create it later.

Both Arc-Standard and Arc-Eager algorithms evaluate if it is possible to cre-

ate an arc between two nodes (by using left-arc,right-arc) but they do not

directly compare different arc options. The choice of other arcs are not simultane-

ously available but different options require different computations using the com-

bination of at least a shift and a left-arc / right-arc transitions. Attardi’s

algorithm, as a side effect of the transitions used to build non-projective arcs,

has the capability to compare two heads for the same token with right-arc1 and

right-arc2, but the other structural constraints are identical to the Arc-Standard

algorithm.

Example 6.1. The lack of flexibility problem is evident if we consider the well

know PP-attachment issue whose schema is illustrated in figure 6.1c. Here we

have to choose whether to attach node P as a dependent of V (arc α2) or else as

a dependent of N1 (arc α3).

The purely bottom-up arc-standard model has to take a decision as soon as N1

is placed into the stack (to be precise if we consider the sentences in figure 6.1a

and 6.1b after the la(girl,a) ). This is so because the construction of α1 excludes

α3 from the search space, while the alternative decision of shifting P into the stack

excludes α2. This is bad, because the information about the correct attachment

could generally come from the lexical content of node P.

The arc-eager model performs slightly better, since it can delay the decision

up to the point in which α1 has been constructed and P is read from the buffer.

However, at this point it must make a commitment and either construct α3 or

pop N1 from the stack (implicitly committing to α2) before N2 is read from the

buffer.

Attardi’s algorithm performs slightly better than the arc-standard algorithm

because it can reach a configuration in which V, N1, P are the topmost nodes

into the stack and both α2 and α3 can be constructed by using a right-arc1

and right-arc2. However this is possible if and only if the arc α1 has not been

created, N2 has already collected all its dependents and the choice regards only two
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-root- John saw a girl with a telescope

(a) The girl was carrying a telescope

-root- John saw a girl with a telescope

(b) John was using a telescope

V N1 P N2
(saw) (girl) (with) (telescope)

α2

α3α1
α4

(c) PP-attachment schema, with dashed arcs identifying two

alternatives

Figure 6.1: PP-attachment example

possibilities (consider for example a sentence as:“John saw a girl with a telescope

with his friend”).

In [Sartorio, Satta, and Nivre, 2013] we propose an algorithm where a flexible

strategy allows a transition system to decide between the attachments α2 and α3

after it has seen all of the four nodes V, N1, P and N2. A system where the

correctness of the creation of an arc depends only from the existence in TG and

that can, in many cases, postpone critical decisions. In [Sartorio, Satta, and Nivre,

2013] we called it dynamic strategy, but let me call it flexible strategy to avoid

confusion with the oracles (yes ... the word “dynamic” is sometimes abused in

NLP)
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6.1 LR-Spines Algorithm

Consider the arc-standard algorithm and let me give a different interpretation of

the stack data structure. In a configuration c = (σ, β,A), each stack element is

a token. But considering the set of already built arcs each stack element is the

root node of a tree spanning some (contiguous) substring of the input sentence s.

Specifically, in the arc-standard algorithm each token in the stack is the root of a

(complete) subtree of every dependency tree reachable from c.

Using the same notation of chapter 5 the parser can combine two trees t(si)

and t(sj) through attachment operations, called left-arc or right-arc, under the

condition that si and sj appear at the two topmost positions in the stack. Crucially,

only the roots of t(si) and t(sj) are available for attachment; see Figure 6.2(a).

t(s1)

t(s0)

t(s1)

t(s0)

(a) (b)

Figure 6.2: Left-arc attachment of t(s1) to t(s0) in case of (a) standard transition-

based parsers and (b) our parser.

In contrast, into the new transition based algorithm LR-Spines, a stack element

records the entire left spine and right spine of the associated tree.

Definition 6.2. The left spine of a dependency tree T is an ordered sequence

〈ls[1], . . . , ls[p]〉 with p ≥ 1 and ls[i] ∈ Vw for i ∈ [1, p], consisting of all nodes in a

descending path from the root of T taking the leftmost child node at each step.

And symmetrically:

Definition 6.3. The right spine of a dependency tree T = (V,A) is an ordered

sequence 〈rs[1], . . . , rs[q]〉 with q ≥ 1 and rs[i] ∈ V for i ∈ [1, q], consisting of all

nodes in a descending path from the root of T taking the rightmost child node at

each step.
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Note that the left and the right spines share the root node and no other node,

see figure 6.3 for an example.

w4

w5

w6

w7

w8 w9

w10

w11

w12

w13

root

left spine

right spine

Figure 6.3: Root, Left Spine and Right Spine of a dependency tree, note that the

root node belongs to both spines.

This allows to extend the inventory of the attachment operations of the parser

by including the attachment of tree t(s1) as a dependent of any node in the left

spine of t(s0) and symmetrically it allows to attach t(s0) to each node of the right

spine of t(s1). See Figure 6.2(b) for an example.

Differently from Arc-Standard and Attardi’s algorithm, the LR-Spines algo-

rithm implements a mix of bottom-up and top-down strategies, since after any of

the attachments in Figure 6.2(b) is performed, additional dependencies can still

be created for all element in the new spines.

The new strategy is more powerful than the strategy of the arc-eager model,

since we can use top-down parsing at left arcs, which is not allowed in arc-eager

parsing, and we do not have the restrictions of parsing right arcs (h → d) before

the attachment of right dependents at node d, without the need of the reduce

transition as for the Arc-Eager algorithm.
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6.1.1 Formal Definition

Configuration

LR-Spine is a transition based algorithm for projective dependency parsing. As

usual the state of the algorithm is defined by a configuration:

c = (σ, β,A)

The stack σ is an ordered sequence of stack elements:

σ = [σd, . . . , σ1]

and we can use the same notation introduced in chapter 4 and we write σ = σ′|σ1
to indicate that σ1 is the topmost element of σ.

Differently from other algorithms each stack element is a pair:

σk = (lsk, rsk)

where:

lsk = 〈lsk[1], . . . , lsk[p]〉
rsk = 〈rsk[1], . . . , rsk[q]〉

lsk and rsk are the left and the right spines, respectively, of the tree associated

with σk. Recall that lsk[1] = rsk[1], since the root node of the associated tree is

shared by the two spines.

Similarly to the Arc-Standard parser, the buffer β stores the portion of the

input string still to be processed.

Transitions

The set of transitions has three types of transitions, defined in what follows:

• shift. This transition removes the first node from the buffer and pushes

into the stack a new element. The nodes into the stack are considered trees

with an associated left and right spine, so formally:

(σ,wi|β,A) `sh (σ|σsh, β, A)
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where:

σsh = (ls , rs)

lssh = 〈wi〉
rssh = 〈wi〉

When pushed into the stack wi is considered the root of an unitary subtree

so it is the first and only element lssh[1] and rssh[1] in the left and right spine

of the new stack element σsh.

• left-arck, k ≥ 1. Let h be the k-th node in the left spine of the topmost

tree in the stack, and let d be the root node of the second topmost tree in

the stack. This transition creates a new arc (h→ d). Furthermore, the two

topmost stack elements are replaced by a new element associated with the

tree resulting from the (h→ d) attachment. The transition does not advance

with the reading of the buffer. More formally:

(σ|σ2|σ1, β, A) `lak
(σ|σlak

, β, A ∪ {h→ d})

where:

σ1 = (ls1, rs1)

σ2 = (ls2, rs2)

h = ls1[k]

d = ls2[1]

σlak
= (〈ls1[1], . . . , ls1[k]〉 ⊕ ls2 , rs1)

Note that the right spine rs2 of σ2 disappears from the stack because its

nodes became internal into the tree t(σlak
). The left spine of σlak

is the

concatenation, denoted by the symbol ⊕, of the first k elements into the left

spine of σ1 and the left spine of σ2. The missing nodes 〈ls1[k + 1], . . . ls1[p]〉
with p = |ls1| are removed because they do not belongs to the spines of

t(σlak
)

• right-arck, k ≥ 1. This transition is defined symmetrically with respect

to left-arck:

(σ|σ2|σ1, β, A) `rak
(σ|σrak

, β, A ∪ {h→ d})
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where:

σ1 = (ls1, rs1)

σ2 = (ls2, rs2)

h = rs2[k]

d = rs1[1]

σrak
= (ls2 , 〈rs2[1], . . . , rs2[k]〉 ⊕ rs2, )

For the same reason as the left-arc transition, the left spine of σ1 disap-

pears while the right spine of σrak
is the concatenation of the of the first k

elements into the right spine of σ2 and the right spine of σ1

Transitions left-arck and right-arck are parametric in k, where k is bounded

by the length of the input sentence and not by a fixed constant. Thus the system

uses an unbounded number of transition relations, which has an apparent disadvan-

tage for learning algorithms that have to disambiguate many possible transitions.

We will see how it is possible to solve this problem in the following section.

Considering that this new algorithm can always simulate the behaviour of the

Arc-Standard parser, it is not difficult to see that the LR-Spines algorithm is

complete, meaning that every (projective) dependency tree for w is constructed

by some complete computation on w. It is also sound, meaning that the set of

arcs constructed in any complete computation on the input sentence s is always a

dependency tree for s. It is easy to see that all transitions respect the projectivity

constraint and they guaranty that the reached dependency tree is well-formed.

6.2 The Context

We have seen in chapter 4 that a set of atomic features is statically defined and

extracted from each configuration. These features are then combined together into

complex features, according to some feature template, and joined with the available

transition types. This is not possible in our system, since the number of transitions

left-arck and right-arck is not bounded by a constant. Furthermore, it is not

meaningful to associate transitions left-arck and right-arck, for any k ≥ 1,

always with the same features, since the constructed arcs impinge on nodes at
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different depths in the involved spines. It seems indeed more significant to extract

information that is local to the arc h → d being constructed by each transition,

such as for instance the grandparent and the great grandparent nodes of h. This

is possible if we introduce a higher level of abstraction than in existing transition-

based parsers. This kind of abstraction makes the feature representation more

similar to the ones typically found in graph-based parsers, which are centered on

arcs or subgraphs of the dependency tree.

We index the nodes in the stack σ relative to the head node of the arc being

constructed, in case of the transitions left-arck or right-arck, or else relative

to the root node of σ1, in case of the transition shift. More precisely,

Definition 6.4. let c = (σ, β,A) be a configuration and let τ be a transition. We

define the context of c and τ as the tuple C(c, t) = (s3, s2, s1, q1, q2, gp, gg), whose

components are placeholders for word tokens in σ or in β.

All these placeholders are specified in Table 6.1, for each transition type τ and

for k values 1, 2 and greater than 2. We do not need to specify greater values of k

because we consider a feature template that at most considers 2 elements before

and after the evaluated arc h→ d. Note that in Table 6.1 placeholders are dynam-

ically assigned in such a way that s1 and s2 refer to the nodes in the constructed

arc h→ d, and gp, gg refer to the grandparent and the great grandparent nodes,

respectively, of d. Furthermore, the node assigned to s3 is the parent node of s2,

if such a node is defined; otherwise, the node assigned to s3 is the root of the

tree fragment in the stack underneath σ2. Symmetrically, placeholders q1 and q2

refer to the parent and grandparent nodes of s1, respectively, when these nodes

are defined; otherwise, these placeholders get assigned tokens from the buffer.

The placeholders in C(c, τ) is the set of atomic features and they are combined

together following a feature template. To be consistent with all other experiments

I use the feature template of [Zhang and Nivre, 2011], originally developed for the

arc-eager model. To be precise the feature template is slightly extended because the

grandparent gp and great-grandparent gg features are considered also for transition

of type left-arck. I also add the right child features for the dependent d in case

of right-arck. However I think that the extended feature template guaranties

comparable results because they are excluded into the arc-eager feature template

only because such information are never available.
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context shift left-arck right-arck

placeholder k = 1 k = 2 k > 2 k = 1 k = 2 k > 2

s1 ls1[1] = rs1[1] ls1[k] ls1[1] = rs1[1]

s2 ls2[1] = rs2[1] ls2[1] = rs2[1] rs2[k]

s3 ls3[1] = rs3[1] ls3[1] = rs3[1] ls3[1] = rs3[1] rs2[k − 1]

q1 b1 b1 ls1[k − 1] b1

q2 b2 b2 b1 ls1[k − 2] b2

gp none none ls1[k − 1] none rs1[k − 1]

gg none none none ls1[k − 2] none none rs1[k − 2]

Table 6.1: Definition of context C(c, τ) = (s3, s2, s1, q1, q2, gp, gg), for a configura-

tion c = (σ′|σ3|σ2|σ1, b1|b2|β,A) and a transition τ of type shift or left-arck,

right-arck, k ≥ 1. Symbols lsj[k] and rsj[k] are the k-th nodes in the left and

right spines, respectively, of stack element σj, with lsj[1] = rsj[1] being the shared

root of σj; none is an artificial element used when some context’s placeholder is

not available.

Example 6.5. Figure 6.4 shows some examples of context extraction for the

right-arck transtions. The input sentence (taken from my first talk) is: “I hope

to be clear enough in this talk . ”. The green area represent the stack elements

which elements are spines, the red area represent the buffer elements that into the

example contain only the token “.” (dot).

Figure 6.4a and figure 6.4b show the different contexts retrieved from the same

configuration by the same transition type right-arck with k = 2 in figure 6.4a

and k = 1 in figure 6.4b.

In figure 6.4b and figure 6.4c we have two different configurations, the same

transition type right-arck with k values 1 and 2. However we can observe that

the obtained context is really similar because the transitions are considering the

same arc (be → in). The only difference is that in figure 6.4b gp = none while
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in figure 6.4c gp = hope. The difference is due to the more information available

in 6.4c because the arc (hope → be) has already been created. This is important

because implies that most of the features are shared if we evaluate the same arc in

different configurations. Statistically it means that if the arc is simple to recognize

by the model the scores will be similar. Otherwise if the arc is difficult the features

with none value can help to postpone the decision by downgrading the score in

order to let the model prefer a shift.
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CONFIGURATION

STACK BUFFER

CONTEXT

inbehope .

s3 = be

s2 = clear

s1 = in

q1 = .

q2 = none

gp = be

gg = none

I to clear

enough

talk

ra2

(a) Context extracted for right-arc2 given a configuration c

inbehope .

s3 = hope

s2 = be

s1 = in

q1 = .

q2 = none

gp = none

gg = none

ra1

I to clear

enough

talk

(b) Context extracted for right-arc1 given a configuration c

inhope

be

.

s3 = hope

s2 = be

s1 = in

q1 = .

q2 = none

gp = hope

gg = none

ra2

I

clear

enough

talk

(c) Context extracted for right-arc2 given a configuration c′ different from the

configuration c in (a) and (b)

Figure 6.4: Example of context extraction for configurations that are processing

the sentence s = 〈 I, hope, to, be, clear, enough, in, this, talk, .〉. In (a) and

(b) we have the same configuration c but the context is extracted for a different

transitions, right-arc2 and right-arc1. In (c) we have a different configura-

tion c′ where the algorithm has already created the arc (hope → be). Note that

the transition and the configuration in (b) and (c) are different but the context

extracted is similar because the transitions right-arc1 in (b) and right-arc2

in (c) will create the same arc (be→ in).
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6.3 Oracles for LR-Spines

As in chapter 5 we can define a static, a non-deterministic and a dynamic oracle

for the LR-Spines algorithm in order to train the model. The static and non-

deterministic oracles are described in [Sartorio, Satta, and Nivre, 2013] while the

dynamic oracle is presented in [Goldberg, Sartorio, and Satta, 2014]. As usual for

the static and non-deterministic oracle we consider a configuration c from which

the gold dependency tree TG is reachable. Otherwise for the dynamic oracle we

can consider any configuration derived from the initial configuration c0.

We have seen that in a configuration there are p left-arck transitions avail-

able, p the length of the left spine of σ1, and s right-arck transitions available,

s the length of the right spine of σ2. Obviously the conditions for such transitions

take in consideration different nodes of the spine depending on the k value.

6.4 Static Oracle

As for other oracles in chapter 5 the transitions that create an arc can be considered

in any order, given that only one of them can be correct into a configuration. As

usual for a static oracle the shift transition is chosen by exclusion, if no other

transition is correct. As we can see in table 6.2, the static oracle simply checks

the existence of the created arc into the gold dependency tree TG. Indeed given

the flexible bottom-up/top-down strategy of the algorithm, a node attached to its

correct parent can still take its dependents.

Transition Oracle’s Condition

left-arck (ls1[k]→ ls2[1]) ∈ Ag

right-arck (rs2[k]→ rs1[1]) ∈ Ag,

shift no conditions

Table 6.2: Static oracle conditions for LR-Spines algorithm
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Lemma 6.6. given a configuration c from which it is possible to reach the gold

dependency tree TG, the transitions left-arck and right-arck are incorrect if

and only if they create a new arc (h→ d) /∈ AG.

Proof. If statement is self-evident.

Only if statement. Assuming that transition right-arck creates a new arc (h→
d) ∈ AG, we argue that from configuration c′ with c `rak

c′ we can still reach the

final configuration associated with AG. We have h = rs2[k] and d = rs1[1]. The

tree fragments in σ with roots rs2[k+1] and rs1[1] must be adjacent siblings in the

tree associated with AG, since c is a correct configuration for AG and (rs2[k] →
rs1[1]) ∈ AG. This means that each of the nodes rs2[i], i > k, in the right spine

of σ2 must have already acquired all of its right dependents, since the tree is

projective, therefore it is safe for transition right-arck to eliminate such nodes.

For the same reason it is safe to remove all nodes ls1[j],∀j > 1, because they have

already acquired all its left dependents.

6.4.1 Non deterministic Oracle

As for dynamic oracles saw in chapter 5 we focus over the shift transition, that

now can be retrieved by the oracle with other transitions. The shift conditions

in table 6.3 are equivalent to the following lemma.

Transition Oracle’s Condition

left-arck (ls1[k]→ ls2[1]) ∈ Ag

right-arck (rs2[k]→ rs1[1]) ∈ Ag,

shift ∃ (rs1[k]→ wi) ∈ Ag, k ∈ [1, |rs1|] | wi ∈ β or

∃ (wi → rs1[k]) ∈ Ag | wi ∈ β

Table 6.3: Non deterministic oracle conditions for LR-Spines algorithm

Lemma 6.7. given a configuration c from which it is possible to reach the gold

dependency tree TG, the transition shift is incorrect if and only if the following

conditions are both satisfied:
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1. there exists an arc (h→ d) in AG such that p is in σ and c = rs1[1];

2. there is no arc (h→ d) in AG with h = rs1[k] for all k and for all d ∈ β.

Proof. Let c = (σ|s1|s0, β, A) and c′ = shift(c) = (σ′, β′, A)

If statement Assuming conditions 1 and 2 are verified, we argue that c′ is incorrect.

Node c is the head of σ′2. Arc (h → d) is not in A, and the only way we could

create (h → d) from c′ is by reaching a new configuration with c in the topmost

stack symbol, which amounts to say that σ′1 can be reduced by a correct transition.

Node p is in some σ′i, i > 2, by condition 1. Then reduction of σ′1 implies that the

root of σ′1 is reachable from the root of σ′2, which contradicts condition 2.

Only if statement. Assuming 1 is not satisfied, we argue that shift is correct for

c and TG. There must be an arc (h → d) not in A with d = v1,1 and p is some

token wi in β. From stack σ′ = σ′′|σ′2|σ′1 it is always possible to construct (h→ d)

consuming the substring of β up to wi and ending up with stack σ′′|σred , where

σred is a stack element with root wi. From there, the parser can move on to the

final configuration cf with Af = AG. A similar argument applies if we assume that

condition 2 is not satisfied.

6.4.2 Dynamic Oracle

The dynamic oracle for LR-Spines algorithm is very similar to the one for the

Arc-Standard algorithm in chapter 5. The algorithm computes the loss of a con-

figurations in order to find the Zero cost transitions by using the already seen

steps: buffer reduction and loss computation.

Buffer Reduction

The buffer reduction is practically identical to the procedure described in section

5.1.1. The only difference is that in the reduced buffer βR each element βR[j] is

now a pair of spines (lsR,j, rsR,j). However considering that the buffer reduction

requires that the tree fragment t(βR[j]) is bottom-up complete, we now restrict the

search space in such a way that only the root node root(βR[j]) can take dependents.

This is done by setting lsR,j = rsR,j = 〈root(βR[j])〉 for each j ∈ [1, |βR|]. In order

to simplify the presentation we also assume βR[1] = σ[1], as we have done for the

Arc-Standard dynamic oracle.
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Loss Computation

In the second phase we compute the loss of an input configuration using a two-

dimensional array A, defined as in section 5.1.1. However, because of the way

transitions are defined in the LR-Spine parser, we now need to distinguish tree

fragments not only on the basis of their roots, but also on the basis of their left

and right spines. Accordingly, we define each entry A[i, j] as an association list

with keys of the form (ls , rs). More specifically, A[i, j](ls , rs) is the minimum loss

of a tree with left and right spines ls and rs , respectively, that can be obtained

by running the parser on the first i elements of stack σ and the first j elements of

buffer βR.

The Algorithm follow the main idea of Algorithm 5.6 and expand each tree in

A[i, j] at its left side, by combining with tree fragment T (σ[i+ 1]), and at its right

side, by combining with tree fragment T (βR[j + 1]).

Differently from the Arc-Standard where trees can be combined only through

the roots, in the LR-Spines algorithm the new tree can be created in many ways.

Specifically we consider the combination of a tree Ta fromA[i, j] and tree T (σ[i+1])

by means of a left-arck transition. All other cases are treated symmetrically. Let

(lsa, rsa) be the spine pair of Ta, so that the loss of Ta is stored in A[i, j](lsa, rsa).

Let also (lsb, rsb) be the spine pair of T (σ[i+ 1]). In case there exists a gold arc in

TG connecting a node from lsa to r(σ[i+ 1]), we choose the transition left-arck,

k ∈ [1, |lsa|], that creates such arc. In case such gold arc does not exists, we choose

the transition left-arck with the maximum possible value of k, that is, k = |lsa|.
We therefore explore only one of the several possible ways of combining these two

trees by means of a left-arck transition.

Note that the above strategy is safe, in fact, in case the gold arc exists, no

other gold arc can ever involve the nodes of lsa eliminated by left-arck, because

arcs can not cross each other in a projective dependency tree. In case the gold

arc does not exist, our choice of k = |lsa| guarantees that we do not eliminate any

element from lsa.

Once a transition left-arck is chosen, as described above, the reduction is per-

formed and the spine pair (ls , rs) for the resulting tree is computed from (lsa, rsa)

and (lsb, rsb), as defined in section 6.1.1. At the same time, the loss of the re-

sulting tree is computed, on the basis of the loss A[i, j](lsa, rsa), the loss of tree
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T (σ[i+ 1]), and a Kronecker-like function defined below. This loss is then used to

update A[i+ 1, j](ls , rs).

Each time we combine two trees we have to update the loss with the contribu-

tion of the new arc. Let Ta and Tb be two trees that must be combined in such a

way that Tb becomes the dependent of some node in one of the two spines of Ta.

Let also pa = (lsa, rsa) and pb = (lsb, rsb) be spine pairs for Ta and Tb, respectively.

Recall that AG is the set of arcs of TG. The new Kronecker-like function for the

computation of the loss is defined as

δG(pa, pb) =


0, if rsa[1] < rsb[1] ∧ ∃k[(rsa[k]→ rsb[1] ∈ AG];

0, if lsa[1] > lsb[1] ∧ ∃k[(lsa[k]→ lsb[1] ∈ AG];

1, otherwise.

Efficiency Improvement

The loss computation in this case has an exponential behaviour. To see why,

consider trees in A[i, j]. These trees are produced by the combination of trees

in A[i − 1, j] with tree T (σ[i]), or by the combination of trees in A[i, j − 1] with

tree T (βR[j]). Since each combination involves either a left”-arc or a right”-arc

transition, we obtain a recursive relation that resolves into a number of trees in

A[i, j] bounded by 4i+j−2.

We introduce now two restrictions to the search space of that result in a huge

computational saving. For a spine s, we write N (s) to denote the set of all nodes

in s. We also let ∆i,j be the set of all pairs (ls , rs) such that A[i, j](ls , rs) 6= +∞.

• Every time a new pair (ls , rs) is created in ∆[i, j], we remove from ls all nodes

different from the root that do not have gold dependents in {root(σ[k]) k <

i}, and we remove from rs all nodes different from the root that do not have

gold dependents in {root(βR[k]) k > j}.

• A pair pa = (lsa, rsa) is removed from ∆[i, j] if there exists a pair pb =

(lsb, rsb) in ∆[i, j] with the same root node as pa and with (lsa, rsa) 6=
(lsb, rsb), such that N (lsa) ⊆ N (lsb), N (rsa) ⊆ N (rsb), and A[i, j](pa) ≥
A[i, j](pb).

The first restriction above reduces the size of a spine by eliminating a node if it

is irrelevant for the computation of the loss of the associated tree. The second
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Figure 6.5: Empirical worst case size of A[i, j] for each value of i+j−1 as measured

on the Penn Treebank corpus.

restriction eliminates a tree Ta if there is a tree Tb with smaller loss than Ta, such

that in the computations of the parser Tb provides exactly the same context as Ta.

It is not difficult to see that the above restrictions do not affect the correctness

of the algorithm, since they always leave in our search space some tree that has

optimal loss.

In order to give an idea about the practical complexity after the above restric-

tions we can plot the worst case size of A[i, j], for each value of j+ i− 1, occurred

while training a by using a dynamic oracle.

In Figure 6.5, we can see that |A[i, j]| grows linearly with j+i−1, leading to the

same space requirements of algorithm for loss computation in the Arc-Standard

case. Empirically, training with the dynamic oracle is only about 8 times slower

than training with a static or a non-deterministic oracle.



Chapter 7

Experimental Results

In chapter 5 we saw how we can design an non-deterministic oracle that reduce the

learned constraints. Then we analyzed a general approach to explore configurations

that cannot reach the gold dependency tree by using a dynamic oracle.

In chapter 6 we saw a new parsing algorithm that maximizes the incremental

behaviour and uses a more flexible strategy than traditional algorithms.

In both previous chapters I tried to give the motivations that are behind such

ideas. In this chapter I will present my experimental results and I will try to

convince you that by applying these new techniques we can improve the accu-

racy of transition based parsing algorithms. Let me start with some preliminary

considerations.

7.1 Some considerations

In order to obtain comparable results it is important that all algorithms are tested

under the same conditions. I personally do not like papers in which the authors

compare their results with the ones taken from previous works, specially if they

take them as they are. As in many fields, in parsing there are many surrounding

conditions that have huge impact over the results.

We should retest all systems at the same condition, with exactly the same

datasets in order to eliminate all possible causes of noise. If necessary we should

re-implement a system or at least check the code of other authors in order to

eliminate different assumptions. Indeed simple assumptions that seem irrelevant

109
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can have significant impact.

Let me give some practical examples, where for each case I will indicate the

degree of difference in accuracy (based on my experience):

1. Data preprocessing. Apply different preprocessing techniques implies use

different training/testing data. For example different taggers or different

tree bank conversions (like the one used to convert the Penn Tree Bank into

a dependency tree bank) can easily give differences of about 0.5 percentage

point.

2. Root position. Simple considerations over the -root- node, such as consid-

ering the -root- node at the beginning or at the end of the sentence, can

lead to differences up to 3-4 percentage points in accuracy [Ballesteros and

Nivre, 2013].

3. Different features. A couple of different features, or the simple choice to

include or not into the model features that have null values, can lead to

differences of about 0.3-0.7 percentage points.

4. Randomization functions. If our systems use some randomization function

(quite common in machine learning approaches) we should try to train our

models with different seeds. I found differences of 0.3-0.5 percentage points

by simply reordering the training samples.

Such differences are shocking if we consider that many works claim improvements

when the accuracy difference is about 0.2 in just one language.

7.2 Experimental Assessments

In this section I will give the details of my experimental assessments.

Data Sets

For performance evaluation I use the Penn Tree Bank [Marcus, Marcinkiewicz, and

Santorini, 1993] and the multi-lingual dataset used into the shared task in CoNLL

2007. The Penn Tree Bank uses a phrase structure representation so it needs to

be converted in dependency trees. I use the Stanford toolkit with the constraint
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to produce projective dependency trees [de Marneffe, MacCartney, and Manning,

2006]. For the Penn Tree Bank I use automatically assigned part of speech tags

(97.1% of accuracy) in both training and test sets. Sections 2-21 of Penn Tree

Bank are used as training set while section 23 is used as test set. Otherwise I use

the CoNLL dataset with the given train/test set splits and the given (correct) part-

of-speech tags. In all results of this chapter the accuracies regarding the Penn Tree

Bank are reported by excluding punctuation while I include it for CoNLL datasets.

These are the most common settings that I found in literature, however some

papers use different set-up regarding punctuation and part of speech tags.

For the Attardi’s algorithm I use also the CoNLL 2006 dataset in order to

include some languages that are important in non-projective evaluation (such as

German and Dutch).

There is a useful tool-kit provided by CoNLL 2006 and CoNLL 2007 committee

that analyze the test results. However pay attention that it exclude/include the

punctuation by looking at the Unicode type of the tokens and the Unicode type is

a little confused between symbols and punctuation marks.

The CoNLL datasets represent a huge resource for dependency parsing tasks

but it has small test sets (about 100-200 sentences), specially for some languages.

I think that we need to look to the results on their complexity instead of focusing

on a particular language. Otherwise we risk to make considerations based on one

or two wrong sentences.

Root Position

I usually prefer to not include the -root- into the parsing process. For many

datasets the -root- node has only one dependent, in this case I simply attach

the -root- dependent after parsing a sentence to the only token that has not yet

an head. However in some datasets (for example Czech) the -root- node can

have more dependents, for such datasets I consider the -root- the last token into

the sentence.

Learning algorithm

I use the averaged perceptron algorithm in an on-line learning configuration. The

model is trained up to different iterations depending on the specific parsing algo-
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rithm because different algorithms require different number of iterations in order

to obtain a stable model. This is reasonable if we consider that an algorithm with

high degree of spurious ambiguity can reach more possible configurations than

an algorithms with low degree of spurious ambiguity. Specifically the models for

the arc-standard algorithms are trained up to 15 iterations, the models for the

Attardi’s algorithm up to 20 and the models for LR-Spines up to 30.

Accuracy

In the following tables I report the accuracy results for labelled (LAS) and un-

labelled (UAS) attachment scores. A labelled arc is correct if head, label and

dependent represent an arc that is in the gold dependency tree: (h, l, d) ∈ AG.

Otherwise a unlabelled arc is correct also if the assigned label is not correct. Note

that the trained model is the same for labelled and unlabelled scores. The different

accuracy is only due to the evaluation function that consider or not the labels.

I report also the results for Unlabelled Exact Match (UEM) that represent the

percentage of sentences in which all (unlabelled) arcs are correct. This measure is

less common in literature than UAS and LAS, however it is useful to understand

that most of dependency trees contains at least one error.

Different Seed

Each number in the following tables is an average of 5 runs with different random-

ization seeds. The random function is used only to shuffle the training samples at

each iteration of training.

7.3 Oracles Comparison

In [Goldberg and Nivre, 2012] the authors analyze the performances of the arc-

eager algorithm with different oracles. We will see now that similar results can

be obtained with the arc-standard and the Attardi’s algorithm. These results

were not obvious because the dynamic oracles for such algorithms are clearly more

complex than the dynamic oracle for the arc-eager algorithm.
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Arc-Standard Algorithm

In table 7.1 we can see that the move from a static to a non-deterministic ora-

cle during training improve the accuracy for most of languages. Making use of

the completeness of the dynamic oracle and exploring non-correct configurations

during training further improve the results in UAS and LAS.

Otherwise the best results in term of UEM are obtained by using a non-

deterministic oracle. This makes sense because the objective of a dynamic or-

acle is to limit the error propagation at parsing time despite updating the model

parameters for non-correct configurations. Otherwise the objective of the non-

deterministic oracle is to follow the easy-way to build the correct dependency tree.

The only significant exceptions are Basque, that has a small dataset with more

than 20% of non projective sentences, Arabic and Chinese. For Arabic and Chinese

we observe a reduction of accuracy in the non-deterministic oracle setup but an

increase in the dynamic oracle setup. However, as I told before, I consider more

correct to analyze the results in their complexity given the small size of the test

sets in the CoNLL datasets.

static non-deterministic dynamic

UAS LAS UEM UAS LAS UEM UAS LAS UEM

Arabic 81.19 71.44 14.35 80.59 70.48 12.98 82.24 72.47 12.37

Basque 75.46 65.66 21.68 74.71 65.05 21.26 74.69 65.45 19.88

Catalan 90.59 85.27 27.78 90.72 85.38 27.78 90.60 85.57 25.27

Chinese 85.34 80.50 60.70 84.52 79.78 60.38 85.98 81.61 60.00

Czech 78.86 71.37 28.46 79.83 71.24 32.45 80.91 72.67 30.07

English 85.91 84.80 28.41 86.86 85.84 29.07 87.66 86.76 28.13

Greek 79.77 72.18 17.26 80.64 72.96 20.30 81.34 73.66 20.61

Hungarian 77.74 67.86 28.72 77.66 67.69 29.28 78.55 69.50 27.79

Italian 82.60 78.55 28.75 83.41 79.46 31.33 84.07 80.00 29.88

Turkish 77.02 66.08 11.40 77.08 66.23 11.60 77.26 66.95 13.67

PTB 89.89 87.59 38.29 90.53 88.26 39.83 90.90 88.69 38.49

Table 7.1: Unlabelled Attachment Score (UAS), Labelled Attachment Score (LAS)

and Unlabelled Exact Match using the arc-standard algorithm with a static, a

non-deterministic and a dynamic oracle. Evaluation on CoNLL 2007 datasets (first

block) and on Penn Tree Bank (PTB)
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Attardi’s Algorithm

In table 7.2 we can see the accuracies by using a static and a dynamic oracle. Un-

fortunately I realize how to design a non-deterministic oracle when I was reviewing

my thesis so I add a section in chapter 5 but I had not time to run a new set of

experiments.

The benchmark languages for non-projective parsing algorithms are Dutch,

Czech and German. For all of them we observe a good improvement by using

a dynamic oracle. Observing all languages in table 7.2, the general trend shows

an improvement by using a dynamic oracle. However the results are less con-

sistent than the arc-standard case and we have many exceptions. For Swedish

and Bulgarian the accuracy differences are negligible. For Basque, Catalan and

Hungarian the performance actually decreases. In order to further understand

such behaviour we use a 10-fold cross-validation instead of testing on the standard

test sets. The average of the resulting accuracies show improvements for Swedish,

Bulgarian and Catalan but not for Basque and Hungarian. More specifically, mea-

sured (UAS, LAS) pairs for Swedish are (86.85, 82.17) with dynamic oracle against

(86.6, 81.93) with static oracle; for Bulgarian (88.42, 83.91) against (88.20, 83.55);

and for Catalan (88.33, 83.64) against (88.06, 83.13). This suggests that the negli-

gible or unfavourable results in table 7.2 for these languages are due to statistical

variability given the small size of the test sets. As for Basque, we measure (75.54,

67.58) against (76.77, 68.20); similarly, for Hungarian we measure (75.66, 67.66)

against (77.22, 68.42). For Basque we observe a similar exception in the arc-

standard case and in the arc-eager results in [Goldberg and Nivre, 2012]. One

possible motivation can be that both training and test sets are small. Otherwise

I have no explanation for the significant difference in the Hungarian dataset.
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static dynamic

UAS LAS UEM UAS LAS UEM

Arabic 80.90 71.56 16.03 82.23 72.63 12.21

Basque 75.96 66.74 22.76 74.32 65.59 19.76

Catalan 90.55 85.20 26.83 89.94 84.96 24.43

Chinese 84.72 79.93 60.35 85.34 81.00 58.29

Czech 79.83 72.69 29.72 82.08 74.44 31.82

English 85.52 84.46 25.14 87.38 86.40 28.41

Greek 79.84 72.26 18.07 81.55 74.14 21.73

Hungarian 78.13 68.90 29.90 76.27 68.14 26.31

Italian 83.08 78.94 29.00 84.43 80.45 28.11

Turkish 79.57 69.44 16.40 79.41 70.32 17.93

Bulgarian 89.46 85.99 49.70 89.32 85.92 45.88

Danish 85.58 81.25 33.29 86.03 81.59 31.99

Dutch 79.05 75.69 26.63 80.13 77.22 27.25

German 88.34 86.48 47.56 88.86 86.94 46.33

Japanese 93.06 91.64 75.29 93.56 92.18 77.07

Portuguese 84.80 81.38 34.31 85.36 82.10 30.14

Slovene 76.33 68.43 31.64 78.20 70.22 31.64

Spanish 79.88 76.84 20.68 80.25 77.45 21.17

Swedish 87.26 82.77 46.53 87.24 82.49 44.11

PTB 89.55 87.18 38.13 90.47 88.18 37.48

Table 7.2: Unlabelled Attachment Score (UAS), Labelled Attachment Score (LAS)

and Unlabelled Exact Match using the Attardi algorithm with a static and a

dynamic oracle. Evaluation on CoNLL 2007 datasets (first block), CoNLL 2006

datasets (second block) and on Penn Tree Bank (PTB)

7.4 LR-Spines

Comparing table 7.3 with table 7.1 we can see that the LR-Spines outperform

the results obtained by the arc-standard algorithm with the same setup. Only in

Hungarian we observe a decrease in accuracy. Otherwise if we consider the results

for the Attardi’s algorithm in table 7.2 we can see that the LR-Spines is still behind

for highly non-projective languages as Czech.

I speculate that the good results obtained by the LR-Spine algorithm can be

ascribed to three different factors:
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1. the left and right spines allow to directly compare different attachment at

the same time,

2. the mixed bottom-up/top-down strategy implies that a transition is always

correct if creates a syntactically correct arc (note that this holds also in case

of non-correct configurations),

3. the training with a non-deterministic or a dynamic oracle combined with

the flexibility of the algorithm allows the model to learn to postpone critical

decisions.

Considering the results for different oracles, in table 7.3 we can see a practically

uniform improvement in UAS and LAS by using a non-deterministic and a dynamic

oracle. The only relevant exception is Basque, but the isolate language seems a

constant exception in my experiments. It is interesting to note that as in the arc-

standard case the UEM reach top accuracies in case of non-deterministic oracle.

The most widely used transition based algorithms are the arc-standard and

the arc-eager algorithms trained with a static oracle. My implementation of such

systems reach accuracies (UAS,LAS) over the Penn Tree Bank of (89.89,87.59)

for the arc-standard and (89.92, 87.66) for the arc-eager. If we compare such

results with the LR-Spines algorithm trained with a dynamic oracle (91.77,89.53)

we observe an error reduction of about 18 % for UAS and 15 % for LAS.
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static non-deterministic dynamic

UAS LAS UEM UAS LAS UEM UAS LAS UEM

Arabic 81.67 72.24 15.27 83.14 72.94 13.74 84.54 74.54 14.96

Basque 76.07 66.21 21.98 75.53 65.66 19.82 75.82 66.91 19.64

Catalan 91.47 86.02 28.26 91.31 86.03 28.62 91.92 86.83 27.66

Chinese 84.24 79.36 60.06 84.98 80.47 62.67 86.72 82.38 61.13

Czech 77.93 70.48 27.34 80.03 71.32 31.40 81.19 72.72 30.21

English 86.36 85.38 27.48 88.38 87.45 31.03 89.37 88.44 30.19

Greek 79.43 72.36 17.46 81.12 73.09 19.90 81.78 74.04 20.81

Hungarian 76.56 66.79 29.54 76.98 67.70 26.05 77.48 68.76 23.54

Italian 84.64 80.38 30.20 85.29 81.32 32.13 85.38 81.50 31.16

Turkish 77.00 66.02 11.00 77.63 67.02 12.13 78.61 68.06 11.33

PTB 90.33 88.07 40.52 91.18 88.96 41.74 91.77 89.53 41.94

Table 7.3: Unlabelled Attachment Score (UAS), Labelled Attachment Score (LAS)

and Unlabelled Exact Match using the LR-Spines algorithm with a static, a non-

deterministic and a dynamic oracle. Evaluation on CoNLL 2007 datasets (first

block) and on Penn Tree Bank (PTB)
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Chapter 8

Conclusions

In this thesis we focus on greedy transition based dependency parsing. We saw how

it is possible to improve such systems by using new oracles functions or increasing

the flexibility of the algorithms. Specifically the original contribution relies on:

1. the idea of non-deterministic oracles, that take advantage from the spurious

ambiguity of a parsing algorithm and avoid the useless constraints of the

canonical derivation,

2. dynamic oracles for the Arc-Standard algorithm and for Attardi’s algorithm

that are able to explore non-correct configurations during training in order

to reduce the error propagation that typically affect the transition based

algorithms at parsing time,

3. LR-Spines algorithm along with its non-deterministic and dynamic oracles,

a new transition based algorithm that using a mixed bottom-up/top-down

strategy allows to increase the flexibility of the parsing process.

For such ideas we saw the formal definitions and the experimental improve-

ments obtained. Most of all, I hope to have transmitted the informal motivations

behind any idea.

8.1 Future Work

For future work, I would like to pursue the following directions:
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1. The general dynamic oracle for the Attardi’s algorithm can be used to im-

prove the performances of projective algorithms over non-projective sen-

tences. I have only early results but it seems possible to almost eliminate

the gap in accuracy between non-projective and projective algorithms when

they parse non-projective sentences.

2. I am not completely satisfied of the features used for the LR-Spines algorithm

in case of a shift transition. I think that it is possible to use specifically

designed features that try to capture the error condition of shift.

3. The techniques explored in this thesis are orthogonal with a beam search

approach. I think that combining a dynamic oracle with a flexible strategy

and a beam search could be really effective even with a small beam. However

a beam search in a system that has high degree of spurious ambiguity should

work well only with a beam search technique that can merge many possible

derivations like the one in [Huang and Sagae, 2010].

4. We saw how it is possible to reduce error propagation during parsing by

using a dynamic oracle. But what about error-recovery? A first good idea

is in [Honnibal, Goldberg, and Johnson, 2013] but there is a lot of other

possibilities that I would like to explore.

5. Recently I work a little in CCG parsing. The analogies between the predi-

cate argument relation in CCG and dependency grammars are evident. The

logical form that can be extracted from a CCG derivation is a powerful se-

mantic representation. But one of the problem of a CCG parser is the early

commitment in choosing the categories. Otherwise in dependency parsing

we do not have such problem until we attach a node. There must be a way

to define a formalism that take the best of both worlds.
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