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One of the primary capabilities required by autonomous robots is recognizing the sur-

rounding environment with high responsiveness, often combined with object recognition

and grasping tasks. Moreover robots acting in mutable scenarios are also required to

be capable of learning new object models online. Along with peculiar requirements the

robotics offers to the object recognition task some unique advantages, such the robot

capability to move in the environment. Moreover, usually an autonomous robot can

relax the recognition precision obtained at the beginning of its exploration and favour

the speed at which this results are obtained. The aim of the work presented in this

thesis is to explore a new object recognition method able to exploit this advantages in

order to fulfil the features required by autonomous robotics.

In order enhance pose estimation the proposed algorithm prioritize the keeping of the

geometrical information from the objects shape and texture. Since the object models

also need to be as much lightweight as possible this algorithm relies on local 6 DoF

features extraction to describe the object appearance without load the final model of

unnecessary information. Once the 6 DoF keypoints are obtained, the proposed method

makes the use specifically designed probability distribution, namely the the Mixture

of Projected Gaussian (MoPG) in order to learn their spatial distribution. A Bag of

Words (BoW) technique has been introduced after the feature detection in order make

feature descriptors more invariant to small appearance changes, due to light conditions

or perspective distortions.

The choice of using the MoPG distribution lies in one algebraic property of the Gaussian

function, namely its closure over the convolution operator. In this thesis this property

is exploited in order to obtain a closed form formula for calculating the cross-correlation

of MoPG. The recognition algorithm makes use of the cross-correlation between MoPG

in order to both identify and localize objects in the scene.

The recognition and localization performances of the proposed technique was validated

on two different publicly available datasets, namely the RGB-D Dataset and the Big-

BIRD Dataset. An analysis of both category and instance recognition results is presented

and the emerged advantages or the issues of the proposed technique are discussed. The

localization error (cos(∆R) = 2◦) and the instance recognition rate (91%) resulted being

aligned of the state of art thus justifying a further exploration of the proposed method.

The topics presented in this thesis was further explored in some related works. In par-

ticular a collaboration with the Intelligent Systems Research Institute (Sungkyunkwan

University, Republic of Corea) led an adapted version of the proposed method that has

been successfully integrated in an autonomous domestic robot.
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Chapter 1

Introduction

One of the primary capabilities required by autonomous robots is to recognize the sur-

rounding environment with high responsiveness, often along with object recognition and

grasping tasks. Moreover robots acting in mutable scenarios are also required to be

capable of learning new object models online. Contrary to the simplicity with which

humans deal with this task the scientific research has tried to solve this problem for

many years and is still far from achieving solutions that are precise and general enough

to be useful for autonomous robotics.

Along with some peculiar requirements robotics offers some unique advantages to the

object recognition task, such as the robot capability to move in the environment or the

high number of different sensors usually present in autonomous robots. In addition usu-

ally an autonomous robot can lower the recognition precision obtained at the beginning

of its exploration and favor the speed at which this results are obtained. The aim of

this thesis is to explore a new object recognition method that is able to exploit these

advantages in order to fulfill the requirements of autonomous robotics.

The object recognition task has been studied widely in Computer Vision but, although

several fast and robust algorithms are able to detect the presence of object instances, the

majority of these cannot precisely locate these instances in the analyzed scene. Indeed

a robot’s need to being able to grasp object requires that the detected objects are being

precisely located with a 6 Degrees of Freedom (DOF) pose.

In order to enhance pose estimation the proposed algorithm prioritizes the keeping of

geometrical information from the objects shape and texture. Since the object models

also need to be as lightweight as possible this algorithm relies on local feature extrac-

tion to describe the object appearance without loading the final model with unnecessary

1



Chapter 1. Introduction 2

information. Since robots deals with 3D objects, the extracted features need to be pro-

vided with a 6 DoF pose, with respect to a predefined reference inside the object. Once

the position and orientation of these local features is obtained, the proposed method

makes use of a novel variant of the Mixture of Gaussian in order to learn their spatial

distribution. One of the main issues addressed in the learning process of the poses Mix-

ture of Gaussian (MoG) distribution comes from the need to adapt the EM algorithm

to 6 DoF pose points. Indeed, this points lies in the 3rd order Special Euclidean SE(3)

group which is a manifold rather than an Euclidean space. The classical EM algorithm

[5] requires operations (i.e. taking the mean of a point set) that may be undetermined in

the SE(3) space. To overcome this issue, the proposed method makes use of the Mixture

of Projected Gaussian (MoPG) distribution [6]: in this distribution the components of

the mixture are learned in the 6D tangent space of the SE(3), thus allowing to obtain

Gaussian components in a similar way to the classical approach.

Keeping a probability distribution of the feature poses allows the proposed method to

be more robust to the high detection error that usually burdens robots RGB-D sen-

sors. Moreover keeping in the models such probability distribution requires far less data

than keeping the full set of poses from which it is learned. This aspect becomes par-

ticularly important in case the robot needs to learn or integrate its object models with

new information, obtained while it moves and sees the objects from previously unseen

viewpoints.

The choice of using the MoPG distribution lies in one algebraic property of the Gaussian

function, namely its closure to the convolution operator. In the recognition process the

proposed algorithm exploits the strict relation between the convolution and the cross-

correlation in order to compare two models. The MoPG Probability Density Function

(PDF) is a linear combination of Gaussian functions, thus obtaining the cross-correlation

of two MoPG PDF is a fast operation and its result is another MoPG. Given the cross-

correlation (f ? g)(x) of two signals f(x) and g(x), the value (f ? g)(x̂) at a given point

x̂ expresses the overlap of f(x) and g(x − x̂). The proposed algorithm exploits this

property in order to find the optimal registration between the two models: once the

cross-correlation MoPG is obtained, a fast mode-finding algorithm [4] is used to find the

peaks in the cross-correlation; the SE(3) point of these peaks represents the guessed

instance poses and their PDF values are proportional to registration overlapping. One

of the great advantages of using the proposed cross-correlation based technique is that

the recognition and localization tasks are performed at the same time and have low

computational requirements.

This novel algorithm is further analyzed and some variants are proposed in order to make

it even more robust to environment and sensor noise. A Bag of Words (BoW) technique
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[7] is introduced in the feature detection phase in order make feature descriptors more

invariant to small appearance changes and aid the object classification. In collaboration

with the Intelligent Systems Research Institute (Sungkyunkwan University, Republic of

Corea) an adapted version of the proposed method has been successfully integrated in

an autonomous domestic robot [8].



Chapter 2

Acquisition

Raw data acquisition may seem a trivial task in which effort is mostly focused on col-

lecting and organizing as much information as possible from different sources. This idea

may be correct in many recognition tasks but in the autonomous robotics the processing

of raw data is a key task: the multiplicity of sensors present in most robots produce a

huge data flow that must be efficiently handled. In our scenario the data acquisition is

an open loop and the raw data must be processed in a real-time context. To this pur-

pose particular attention is given to the efficiency of the data flow processing in order to

maintain real-time performances despite the limited robot computational power. The

information contained in the frames of the data stream usually presents high redundancy

that should be eliminated in order to reduce computational requirements of the data

analysis. To this end the detection of the visual correspondences among consecutive

frames is a great aid in the information extraction process. Similarly, knowing the point

of view from which each frame is shot allows for an efficient integration of the data

collected by the robot during its motion.

The information extraction and the viewpoint detection are two core requirements for

the recognition algorithm presented in this thesis. In the following sections a more

detailed analysis of the requirements is presented along with the issues and the solutions

inherent to the acquisition process.

2.1 Requirements Analysis

In the last years, the great interest of the academic research in autonomous robotics has

lead to the maturation of some of its core design patterns. By assuming the availability

of some of these common patterns the algorithm presented in this thesis can exploit the

associated advantages without any loss of generality.

4
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Figure 2.1: An RGB-D frame from the RGB-D Dataset [1]. Every frame consists
of a RGB image and a Depth image containing information about the distance of the
observed surfaces. An RGB-D frame can be converted to an organized point cloud by
assigning the 3D coordinates of the observed point to each pixel in the RGB image.

Figure 2.2: The transformation between an object and the rgbd sensor reference
frames, namely the viewpoint, is required in order to incrementally integrate the point
cloud of each frame. The result is a cloud containing keypoints observed by all views.

The first assumption is represented by the presence of an RGB-D sensor. Exploiting

the depth information associated to an RGB frame is extremely useful for the object

recognition task so that most state of art algorithms [9, 10] already have the same

requirement. The availability of an RGB-D sensor represents a very weak constraint

since the cost reduction and the quality improvement of these devices has made them

very common in autonomous robotics [11, 12].

The second assumption comes from one of the most distinctive features of the au-

tonomous robotics: the capability to move in the environment and, often, manipulate

objects too. The mobility allow such robots to observe a scene or an object from many

different viewpoints thus overcoming occlusions or other visual artifacts that may affect

some viewpoints. The second requirement is the knowledge of the viewpoint from which

each frame is shot.

A more detailed overview of these two requirements is presented in the next sections.
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Figure 2.3: Bumblebee stereo camera. The depth of observed surfaces is triangulated
from the slight visual differences in the two camera frames. The depth image quality of
passive stereo cameras is inferior with respect to cameras that exploit active structured

light projection but unlike these can work outdoor without issues.

Figure 2.4: Kinect sensor. This infra-red image shows the invisible pattern projected
by the kinect sensor. From the deformation of the projected pattern an RGB-D sensor

can infer the depth of the observed surfaces.

2.1.1 RGB-D Devices

By RGB-D device we mean all sensors able to produce a video stream in which each

frame provides both an RGB image IRGB and the associated depth image ID. Each

pixel IRGB(u, v) = [ir ig ib]
T contains information about the color intensities and the

correspondent pixel in the depth image ID(u, v) = d provides the distance of the observed

point from the RGB-D sensor (see figure 2.1). There are actually several families of

sensors that fulfill this specific but the most common are based on stereo vision, often

aided by structured light projection.

The stereo vision is a wide class of 3D reconstruction techniques whose underlying

concept is retrieving the distance of an observed area by the slight difference in its

projection over two different camera frames. The original approach only assumes two

RGB sensors (see figure 2.3) that shot the same area from a known and slightly different

point of view. While very simple and low cost, this technique does not produce very

accurate results and the reconstruction is usually computationally expensive for mobile

robots.
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In order to increase the reconstruction quality it is possible to exploit the projection of

a known structured light pattern in the observed scene. Usually this kind of devices are

composed of a structured infra-red light projector along with two sensors, one is a normal

RGB camera and the second is an infra-red camera. The depth of the RGB frames taken

from the first camera is retrieved by observing the deformation of the projected pattern

over the surfaces it hits, see figure 2.4. The most commonly used RGB-Sensors (e.g.

Microsoft Kinect) are based on this technique and are able to provide good quality

results at high frame rates. The downside of this technique is its inability to work on

areas hit by direct sunlight or with highly reflective surfaces.

Once RGB and depth images are obtained, it is common to convert RGB-D information

into an organized point cloud C. Through the intrinsic sensor parameters each pixel in

the depth image ID(u, v) = d is projected to the 3D point of the corresponding pixel

C(u, v) = [x y z]T of the organized point cloud.

2.1.2 Viewpoint

In order to incrementally improve the recognition results the presented algorithm aims

to integrate RGB-D data acquired from different viewpoints while the robot moves or,

alternatively, rotates an object in its manipulation arm. Since the coordinates of the

point cloud obtained through the RGB-D sensor are referred to the sensor reference frame

an additional technique is needed in order know the spatial transformations between each

different viewpoint.

Thanks to the high frame rates of the RGB-D sensors, the visual changes between two

temporally close frames are usually small. This allows us to simplify the given problem

to finding the spatial transformation that better aligns two similar point clouds. This

latter problem is a widely studied topic in 3D vision literature [12–14] and hereafter are

presented the techniques that better fit as a solution to our needs. Since the best solution

for this problem is still open topic, the strengths and the weakness with respect to an

autonomous robotic scenario are also presented with each of the described techniques.

Iterative Closest Point Iterative Closest Point (ICP) [15] is a general purpose tech-

nique whose purpose is find the optimal registration between two point clouds. The

underlying concept of the many variants of this algorithm is an iterative search for the

optimal rotation and translation that minimizes the mean squared distance between the

clouds (see figure 2.5).

One possible application for ICP in our scenario is finding the transformation occurred

to the sensor pose during the robot motion. This objective can be achieved by using
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Figure 2.5: The Iterative Closest Point (ICP) algorithm is used to find the transfor-
mation that best registers two point clouds. Closest points are iteratively associated in
order to find the best transformation that minimizes distance between the clouds. This
technique can be exploited to find the transformation occurred to the RGB-D sensor

(or to the object of interest) between two RGB-D frames.

ICP to find the optimal registrations between a small set of timely close RGB-D frames:

the RGB-D sensor pose is iteratively updated by aligning each new frame with its pre-

decessors. Although there exists several optimization specifically designed to this end

this process remains computationally expensive. By now most state of art techniques

[13, 16] exploit GPU computing in order to maintain good frame-rates.

In order to reduce the computational burden ICP can also be used to align a smaller

portion of the original RGB-D frames, focusing the effort on the part that the robot

should learn or recognize [17]. This case fits well with the scenario in which the robot is

analyzing an object being held in the manipulation arm. In this case the RGB-D sensor

is still and only ICP can be applied to the portions of the RGB-D frames that refer

to the object being rotated by the robot arm. Unfortunately this scenario is not very

effective in practice due to its bad performances on small or symmetrical point clouds.

In the experiments conducted using the RGB-D Dataset (see section 2.1.3) a great part

of the commonly used household objects are too small or noisy if seen from medium

distance and ICP fails in the alignment of their point clouds.

Odometry Approaches based on visual or geometrical appearance of the object suf-

fer from some intrinsic difficulties connected to the alignment of consecutive frames.

In particular great issues usually come in the registration of clouds relative to highly

symmetrical objects or objects with large reflective parts.

An easy way to overcome these issues is to exploit other sources of information such

as the robot odometry or its joint positions. Most autonomous robots are capable of
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Figure 2.6: The encoder on robot joint motors can be exploited to retrieve the pose
of the hand in respect to the RGB-D sensor.

estimating their position relative to a global reference frame in various ways, from motors

encoders to inertial measurement units. Since the robot geometry is usually well known,

once the robot position is known, the RGB-D sensor position and orientation can be

roughly guessed. While this approach is usually less precise than ICP it can be used to

obtain an initial estimate for ICP or to maintain reasonable results during periods in

which ICP fails for any reason.

In case the robot is equipped with a manipulation arm the robot encoders on its joints

can be exploited to obtain the hand pose in respect to the RGB-D sensor (see figure

2.6). This approach is usually more precise and reliable than ICP in case the robot is

learning or recognizing an object in its hand. A similar approach can also be used to

train object models offline: by using a turntable an object can be observed by an RGB-D

sensor from various known point of views in order to create the object model and then

provide it to a robot.

2.1.3 Datasets

In order to maintain a higher level of generality and result significance the experiments

conducted to test the algorithms presented in this thesis (see chapter 6) used two publicly

available RGB-D datasets. Although there exist several datasets for RGB-D object

recognition only a few of them provide informations about the viewpoints from which
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Figure 2.7: The RGB-D Dataset [1] is a large dataset of 300 common household ob-
jects. The objects are organized into 51 categories arranged using WordNet hypernym-

hyponym relationships (similar to ImageNet).

Figure 2.8: The BigBIRD dataset [2] offers a very high quality set of RGB-D frames
for 100 common objects. For each object they provide 600 3D point clouds and 600

high-resolution (12 MP) images spanning all views.

object images have been taken. Among these the two dataset used in this thesis are

presented below.

RGB-D Dataset The RGB-D Dataset [1] (see figure 2.7) is a large dataset of 300

common household objects. The objects are organized into 51 categories arranged using

WordNet hypernym-hyponym relationships (similar to ImageNet). This dataset was

recorded using a Kinect style 3D camera that records synchronized and aligned 640x480

RGB and depth images at 30 Hz. Each object was placed on a turntable and video

sequences were captured for one whole rotation. For each object, there are 3 video

sequences, each recorded with the camera mounted at a different height so that the

object is viewed from different angles with the horizon. Although very complete, this
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dataset is quite challenging: the objects region of interest in the RGB-D frames is very

small and several object instances (i.e: vegetables) look very similar to each other. A

further difficulty is represented by the low accuracy in the turntable rotation angles

and the absence of the pose of the Kinect in respect to the turntable reference frame.

The lack of full 6 DoF viewpoints has been handled by exploiting the ICP algorithm

presented in section 2.1.2.

BigBIRD The BigBIRD dataset [2] offers a very high quality set of RGB-D frames for

100 common objects (and growing). For each object they provide 600 3D point clouds

and 600 high-resolution (12 MP) images spanning all views. The acquisition system

(see figure 2.8) exploits a novel method for jointly calibrating a multi-camera system in

order to provide an accurate pose for all RGB-D frames. For our purpose the BigBIRD

dataset fits better than the RGB-D Dataset but offers much less comparative recognition

results due to its recent publication. The point clouds provided by this dataset are not

organized preventing the detection and the exploitation of 2D features like SIFT (see

section 3.1).
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Description

One of the main issues when dealing with object recognition is how to separate useful

information from the raw source data. Images contain a huge amount of data in respect

to the portion that could really be informative to the recognition task and considering

unnecessary data usually increase the computational effort and decrease the recognition

rate. This phenomenon is even more marked when dealing with the frames provided by

a robot RGB-D sensor, especially considering the limited computational power of mobile

robots.

The description process tries to extract as much useful information as possible from the

whole data flow. In our case each RGB-D frame is individually processed and the output

of the description step is a set of low level features that are then used in higher levels of

the recognition flow to describe the analyzed frame. The next sections briefly presents

the adopted description techniques.

3.1 Features

The feature detection is the process performed in order to locate and extract useful

information from images. The concept of how useful an information is depends on the

specific use case but some simple visual patterns, such as curves or planes, are able to

synthesize the content of an image (see figure 3.1) while being very general purpose.

The features collected in the description process belong to this set and are referred as

low-level features; the aim is providing numerical values for characteristics that could

be used to describe every object well. The value assigned to these features is referred

as descriptor d ∈ Rn; each object will be lately described as a set {(F,d)i} of these

feature-descriptor couples.

12
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Figure 3.1: The contour extraction is a simple yet effective feature extraction tech-
nique. While most of the color data is discarded during the process the remaining

contours still contains most of the information useful for the object recognition.

Different features try to describe different aspects but there are some general charac-

teristics that every feature aims to meet. First of all, features that refers to visually

similar areas should be retrieved with similar descriptor values. We will refer to this

characteristic as robustness of the descriptor with respect to various sources of noise or

alterations that may affect the feature.

A first classification of features is the distinction between local or global features. Local

features describe only a small portion of the whole image and are provided with an asso-

ciated keypoint, namely the spatial coordinates of the described point. Global features

instead refer to a characteristic of the whole object such as its height.

The proposed algorithm is designed for the use of local features. In addition, since the

presented method deals with 3D point clouds, the keypoints associated to these features

are composed by a 3D location and a 3D orientation. Thus each detected feature Fi will

be associated to a full 6 DoF reference frame ki = [R|t].

Even if the proposed algorithm does not require specific features the two that performed

best during our test will be described in more detail in the next paragraphs.

SIFT In the proposed scenario the RGB-D frames provided by the robot sensor are

composed by a an RGB image and a depth image thus allowing the use of 2D features,

detected on the RGB image. Among other 2D features, SIFT [3] are one of the most

diffused tanks to its descriptor robustness: SIFT are invariant to rotations on the image

plane, are very robust to light changes and are robust to small geometrical distortions

in the detection area; through pyramidal detection a partial scale invariance can be

achieved too.
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Figure 3.2: Global features (left) describe a property of the whole object like its
width or its height. Local features (right) describe the appearance of a small part of
the image and are associated with a keypoint, namely the position and the shape of

the described area.

Figure 3.3: SIFT [3] are local 2D features whose descriptor is given by the histograms
of the color gradients of the described image area. SIFT keypoints includes the detection
location (u, v), the dimension of the described area and, since SIFT are invariant to
rotation, the angular orientation α corresponding to the principal gradient direction.
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The detection of most 2D features, SIFT included, takes much less computational effort

than the 3D alternatives but requires an extension of their 2D keypoints to 6 DoF

reference frames. The SIFT 2D keypoint

k = {(u, v), α}

is composed by a 2D point (u, v) in image coordinates and a rotation α on the image

plane. Most SIFT detection algorithms usually perform the feature detection process on

several image scales thus varying the actual feature sizes; in the use case presented in

this thesis this behaviour is undesired since it complicates the back-projection process

hereafter described, for this reason the multi scale detection has been disabled during

the presented experiments. Exploiting the organized point cloud C associated to the

RGB-D frame a SIFT 2D keypoint can easily be back-projected to a 6 DoF keypoint.

The translation part t = [tx ty tz]
T of the keypoint reference frame is retrieved from the

organized point cloud

t = C(u, v).

The rotation can be obtained from the cross product of two orthogonal vectors; for the

SIFT case the feature orientation α can be used to obtain a first vector nα, which lies on

the SIFT patch plane P , and the second can be the normal nP to this plane, as shown

in figure 3.4

R =


nα

nP

nα × nP

 .

ISS 3D Despite their worst performances, in respect to the 2D alternatives, 3D fea-

tures can provide some peculiar advantages. The most relevant for our application is

that most 3D features can work with unorganized point clouds, namely the point clouds

where points have lost the information about their projection coordinates ID(u, v) on

the depth Image. In our work this property is particularly useful since many dataset do

not provide organized point clouds. Moreover 3D features are usually oriented in the

description of a local 3D shape making them more robust to the lack of texture in the

described area.

In the presented work the ISS 3D keypoints [18] has been adopted due to their good

performance and low computational effort.
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{(u,v),α} np nα
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Figure 3.4: After its detection a 2D feature is back-projected from its 2D keypoint
{(u, v), α} in image coordinates to a 6 DoF keypoint in the sensor reference frame. The
organized point cloud is exploited to retrieve the 3D translation coordinates of the point
(u, v); the normal to the projection surface nP and the gradient direction nα are used

to obtain the 6 DoF keypoint orientation.

3.2 Bag of Visual Words

The Bag of Wordss is a recognition technique originally designed for text classification

and lately successfully adapted to 2D object recognition [7]. The core concept of this

latter technique is the description of objects through a weighted set of visual words

chosen from a fixed vocabulary. The vocabulary V = {w1 ... wN} is a set of N represen-

tatives of all possible feature descriptors that the robot is likely to detect in its typical

environment. The vocabulary is trained by collecting all feature descriptors detected

in the environment and by clustering them in order to obtain the representatives; each

representative wi is called visual word and the centroid ci ∈ Rn of the cluster it represent

is used as its descriptor.

Once the vocabulary has been trained the world observed by the robot is described by

means of visual words. Whenever the robot detects feature the vocabulary is checked

in order to substitute it with one of the visual words. One feature {F,d} is always

substituted by its closest visual word ŵ where the distance is given by the euclidean

norm of the descriptors difference:

ŵ = arg min
wi∈V

‖d− ci‖ .

In order to limit the ambiguity, features whose word assignment is ambiguous are dis-

carded. An assignment is considered ambiguous when the distance ratio rij between the
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feature {F,d} and its two closest words {wiwj} is higher than a predefined threshold

(i.e. 0.8)

rij =
‖d− ci‖
‖d− cj‖

> r̄ .

During the training phase of a Bag of Words model all visual words detected for an

object are collected in a histogram. The histogram of an object counts the number

of detections for each each visual word in the vocabulary, this represents a simple yet

effective discriminator for objects category.

It is important to notice that the size of the vocabulary is a key parameter of this

technique, an insufficient number elements limits the discriminative power of the visual

words but having too many elements leads to noisy histograms.

In the presented work has been introduced in order to aid the recognition process but

also to enhance the detection robustness at the same time: since each visual word is

the representative of a large set of original descriptors, small variations in a detected

descriptor are likely to lead to the same visual word.
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Modeling

The process that aggregates the features collected for an object in order to distinguish

it from others, namely the modeling, is a key topic in the object recognition research.

Object models may be interpreted as high-level descriptors and share many of the re-

quired characteristic with the simpler visual features. In particular a model should be as

much robust to noise as possible, this includes small occlusions, light changes or sensors

noise. Some additional requirements may be posed by the particular use case, this is

also the case of the autonomous robotics and these key modeling aspects will be briefly

discussed below.

In the analyzed scenario the set of objects the robot will be required to recognize is

not fixed and object models needs to be learned or refined at run-time. This implies

object models need to be integrated with newly detected features in a scalable manner

while the robot observe the associated object from different point of views. Moreover,

since mobile autonomous robots are often equipped with a manipulation arm, the only

recognition of objects present in the observed scene is not sufficient: in most cases the

correct interaction with a recognized object requires the identification of its pose with

respect to the robot. Models created in this phase should not only provide a tool to

recognize visible objects but also to localize them with a full 6 DoF pose.

Autonomous robots are usually expected to fulfill assigned tasks with time performances

comparable to humans. Along with the limited computational power this severely limits

the amount of computation time available for the processing of each frame provided by

the robot sensors. Although this fact is likely to limit the quality in the recognition

results mobile robots can overcome the issue by refining these results while new data is

acquired. The recognition quality requirements can be lowered in a first instance to favor

the response time as long as these results can be efficiently improved by an integration

of newly acquired frames.

18
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Figure 4.1: Model training flow diagram. The modeling input is a set of RGB-D
frames, the viewpoint viewpoint of each frame and a region of interest that specify the
learned object bounds. The keypoints of all detected features are transformed from the
sensor reference frame to the object reference frame in order to allow an incremental
update. Each feature is then substituted with its closest visual word by exploiting a Bag
of Words paradigm. The set of visual words along with their keypoints is integrated
in the words spatial distributions that compose the output object model. Precisely,
all keypoints associated with the same visual word are used to train a probability

distribution over the pose space, namely the Mixture of Projected Gaussian.

Object Modeling The algorithm proposed in this thesis is focused in the fulfillment of

these peculiar requirements. The model designed in order to identify an object is based

on learning the spatial distribution of its detected features in respect to its assigned

reference frame. The keypoints at which an object features are observed directly reflects

the object geometry and appearance (see figure 4.2) thus only visually similar objects

are likely to produce similar models. Maintaining this strong link between an object

model and its geometry also aids in its localization in terms of position and orientation.

The flow diagram of an object modeling process is shown in figure 4.1 and each its

part will be exhaustively presented in the next sections of this chapter. As described

in section 2.1 the input of the proposed algorithm consists on a RGB-D video and the

sequence of the poses from which the RGB-D sensor shot each frame. Additionally,

during the model training a region of interest on each frame is also needed in order to

specify the learned object bounds. The keypoints of the features detected on each frame

are transformed from the sensor reference frame to the object reference frame in order

to allow an incremental update of the model. Each feature is then substituted with its

closest visual word by exploiting a Bag of Words paradigm as described in section 3.2.

The set of visual words along with their keypoints is then integrated in the words spatial

distributions that compose an object model. Precisely, all keypoints associated with the

same visual word are used to incrementally train a probability distribution over the 6

DoF pose space, namely the Mixture of Projected Gaussian described in section 4.1.1.
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Figure 4.2: The keypoints point cloud (right) can represent an object appearance
well (left). An efficient alternative of collecting and keeping all keypoints is to learn

their spatial distribution as described in section 4.1.

Scene Modeling As previously discussed the proposed models contain the keypoint

distribution of modeled objects hence the localization process is connected to finding

an area in the scene with a similar keypoint distribution. For this reason the scene

model is created through the same process used for object models. The techniques

adopted in order to efficiently learn such features spatial distribution are described in

the following sections, while the methods developed for comparing these models are

described in chapter 5 .

4.1 Statistical Modeling

A model is built by the integration of the features collected by the robot as long as

an object is observed by the robot, possibly from different points of view. In order to

maintain the process scalable, the proposed model does not keep every single keypoint

found in memory but instead learns and keeps only a few parameters of the spatial

probability distribution of all these keypoints. A statistical modeling not only limits

the amount of data kept in memory but also improves the robustness of the system to

sensors noise.

One of the desired properties for local features is the repeatability, that is, its capacity

to be detected on the same point of an object regardless of changes in the viewpoint,

light conditions or minor deformations. In practice even with a good repeatability
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visual words keypoint bins

visual words keypoint distribution

Figure 4.3: The keypoints point cloud (right) can represent an object appearance
well (left). An efficient alternative to collecting and keeping all keypoints is learning
their spatial distribution as described in section 4.1. Each keypoint is first referred to
the object reference frame then all keypoints found are clustered by visual word value

and integrated in the associated MoPG distribution.

the keypoint of a feature is always affected by random noise and its location slightly

varies among different frames. The best distribution for modeling the spatial error in

the keypoints detection is difficult to generalize with respect to the wide range of the

possible RGB-D sensors but the Gaussian distribution is a common choice that fits most

cases well.

As discussed in section 3.2, the method presented in this thesis describes objects by

means of a small set of visual words so that each word can be detected in several

locations of the same object. The natural choice to approximate the spatial distribution

of visual words spatial distribution is the Mixture of Gaussian (see section 4.1.1). This

distribution fits the purposes of the presented algorithm well not only thanks to some

of its algebraic properties (see paragraph 5.1) but also because it can be incrementally

learned.

Since our model tracks the spatial distribution of every visual word independently, one

different Mixture of Gaussian is learned for every different word that has been detected

during an object modeling. In order to fully exploit the Bag of Words method every

visual word is also associated to a counter that tracks its detection rate in respect to the

others. These counters have the same purpose of the Bag of Words histogram and can

be exploited in order to guess an object category thus aiding its recognition process.
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4.1.1 Gaussian Mixtures

The Mixture of Gaussian (MoG) is a widely used probability distribution whose proba-

bility distribution function (PDF) is given by the following equation:

x,µi ∈ Rn, Σi ∈ Rnxn

f(x) =

n∑
i=1

wiN (x |µi,Σi) with

n∑
i=1

wi = 1 (4.1)

where

N (x |µ,Σ) =
1√

(2π)k|Σ|
e
−

1

2
(x−µ)T Σ−1(x−µ)

(4.2)

is the PDF of the Normal distribution.

As discussed at the beginning of this chapter, the presented method aims to approximate

the spatial distribution of 6 DoF keypoints by means of a MoG but there are some issues

when dealing with such data points. The 6 DoF keypoints are comprehensive of both the

position and orientation and lie inside the SE(3) that is the roto-translation manifold.

The definition of many algebraic operations, like the sum, have different definitions and

behavior when they are applied to points in SE(3) rather than in an Euclidean group.

For this reason several core tools of statistical analysis are not compatible with data

lying on a manifold, most training algorithms are among these (see section 4.2).

In literature some solutions have been proposed to overcome this issue but the solution

that best fit with the purpose of the presented work is the approximation of the MoG

to a Mixture of Projected Gaussian (MoPG). The MoPG has been proposed by Feiten

et al. [6] and exploits a projection the SE(3) points to a tangent space in R6. The

distribution of a set of projected points can be parametrized by a Normal distribution

through classical approaches thus leading to an approach for creating a distribution

similar to the MoG. In the following paragraph the MoPG is briefly presented.

Mixture of Projected Gaussian Following the original work [6] of Feiten et al. our

approach adopted Dual Quaternions (DQ) as representation for the 6 DoF keypoints of

the detected features. Quaternions are a well known algebraic object used to calculate

the product and the sum of points in the rotation group; dual quaternions extend the

quaternions in order to handle points in the roto-translation group. The dual quaternions
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Figure 4.4: The figure represents a Gaussian PDF over the plane tangent to a point
(green dot) of the manifold. The probability density (blue line) of a point in the
manifold (red dot) is evaluated in the Gaussian PDF; the evaluation point is obtained

through central projection.

ring HD is defined as

HD = {dq|dq = q1 + ε · q2; q1, q2 ∈ H}

dqA + dqB = (qA1 + qB1 ) + ε · (qA2 + ε · qA1 )

dqA ∗ dqB = (qA1 + qB1 ) + ε · (qA2 ∗ qB1 + qA1 ∗ qB2 )

dq∗ = q∗1 + ε · q∗2 (4.3)

where H is the quaternions ring and ε is a dual unit with the following properties

ε · 1 = 1 · ε and ε2 = 0. Any rigid 3D transformation can be represented as a DQ; given

a transform T with rotation expressed as a quaternion qr and translation embedded in

a quaternion qt = [0 tx ty tz] the dual quaternion dqT = qr + ε · 0.5qt ∗ qr represents the

transform. The unit quaternion qr that represent the rotation of a DQ lies on the unit

sphere S(3) embedded in R4. Accordingly with the procedure described by Feiten at al,

a 6D space TSqr tangent to dqT is constructed by taking the tangent space of S(3) in

qr and extending it to include the translation coefficients of qt.

Given a projection point qr Feiten and Lang propose a procedure in order to create a

mapping from SE(3) to TSqr (see figure 4.4)

Πqr : TSqr −→ S(3)× R3 ∼ SE(3)
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and given a transform m defines the Projected Gaussian (PG) PDF as

N (m | qr, µ, Σ) :=
1

C
pTS

(
Π−1
qr (m)

)
C :=

∫
S(3)×R3

pTS
(
Π−1
qr (m)

)
dm (4.4)

where pTS(m) is the PDF of a Normal distribution N (µ, Σ) on the tangent space. The

probability on SE(3) of a transform m0 with a rotation orthogonal to qr is defined as

zero for smooth completion.

4.2 Model Training

Given a set of N keypoints K = {ki}N , the parametrization of their distribution through

a Mixture of Projected Gaussian is a key aspect of the presented algorithm. Although the

projection of SE(3) data to an Euclidean tangent space simplifies the determination of

the parameters for each projected Gaussian component the optimal convex combination

of projected Gaussians poses further issues. Training a Mixture of Projected Gaussian

is a problem similar to the non projected version and algorithms originally designed for

Mixture of Gaussian can be easily adapted for this purpose. The methods that gave

the best results for both the on-line and batch training scenarios are described in the

following section.

4.2.1 Batch Training

In [19] , Feiten et al. propose a variant of the classical EM algorithm [5] adapted in

order to train a MoPG with M components:

1. Set the initial value for the means µi, covariance matrices Σi and weighting coef-

ficients λi and evaluate the log likelihood with these values.

2. E step: Evaluate the responsibilities γ(kn, i) using the current parameter values:

γ(kn, i) :=
λiN (kn | qi, µi, Σi)∑
k λkN (kn | qr, µk, Σk)
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3. M step: Estimate the new parameters using the current responsibilities:

µnewi =
1

Ni

N∑
j=1

γ(kj , i) · kj

Σnew
i =

1

Ni

N∑
j=1

γ(kj , i)(kj − µnewi )(kj − µnewi )T

λnewi =
Ni

N

where Ni =
∑N

j=1 γ(kj , i).

4. Evaluate the log likelihood:

N∑
j=1

ln

(
M∑
i=1

λiN (kj | qi, µi, Σi)

)

and check the convergence of either the parameters or the log likelihood. If the

convergence criterion is not satisfied return to the E step.

Similarly to EM this algorithm is not suitable for on-line integration of new data but

in our experiment gave the best results. A possible use case scenario is the training of

the model relative o an object that is being manipulated in the robot arm or through a

turn-table: in these cases the training could be started as a batch process only after the

acquisition of sufficient data.

Like EM the the algorithm proposed by Feiten at al. requires a prior knowledge of the

optimal number of components for Mixture of Projected Gaussian. This information

can be estimated through common entropy based criteria like AIC or BIC.

4.2.2 Online Training

In a realistic scenario some objects are only partially visible to the robot when it first

learns them. The need to integrate the already learned models with new data comes

as soon as the robot sees these objects from additional view points. In our work the

IGMM algorithm [20] proposed by Engel et al. has been exploited in order to adapt

the parameters of a previously learned MoPG accordingly to incoming new data. The

IGMM algorithm automatically tries to estimate the optimal components number by

adding new components whenever the support of the newly added keypoint is lower

then a threshold specified by a novelty factor τ . According to this definition, given an

MoPG of M components a newly added keypoint kj is integrated as new component if
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Figure 4.5: The white dots represent the top part of the 6 DoF keypoints cloud shown
in figure 4.2. The small reference frames are the subset of keypoints relative to a single
visual word and the large reference frames are the mean values of the associated MoPG

components, learned through the IGMM algorithm.

and only if

N (kj | qi, µi, Σi) <
τ√

(2π)6|Σi|
∀i = 1..M

otherwise ki is integrated in the MoPG as described in [20].

4.3 Global Features Modelling Approach

The modeling technique proposed in this chapter is designed to make use of local features

in order to track the keypoints distribution. Global features refer to properties that

are related to the whole object (i.e. its height) thus it would be conceptually wrong

considering their spatial distribution. Nevertheless, in practice the perception of some

global features may be affected by the observer viewpoint. To this end the MoPG

presented in section 5.1 can be adapted in order to track the change of a global feature

in respect to the viewpoint; the following paragraph explores a use case related to

this variant [8], developed during as part of the collaboration between the Intelligent
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Figure 4.6: Example of the changes that may affect a global feature descriptor in
respect to the observer viewpoint. The measured height of the milk box varies according
to its orientations as the thin panel at the top may not be detectable at the particular

orientations of the milk box.

Autonomous Systems Laboratory (IAS-Lab) at Padua University and the Intelligent

Systems Research Institute (ISRI) in Sungkyunkwan University.

Similarly to what proposed by Lee et al. in [21], in the presented case study the consid-

ered global features consist of object height, width and aspect ratio. The descriptor of

these features that may take different values in respect to the orientation as well as to

the distance, due to the complexity of the 3D shape of the object. This is illustrated in

the left side of figure 4.6, where the measured height of the milk box varies according

to its orientations as the thin panel at the top may not be detectable at the particular

orientations of the milk box. This leads to a singularity in measurements for the given

sensor and sensing algorithm. The proposed MoPG overcomes this representation prob-

lem by providing a multi-modal likelihood distribution of the descriptor over the pose

space.
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Recognition

The models created with the technique in chapter 4 contain information about the

keypoint spatial distribution of object features. The recognition process exploits this

information in order to distinguish objects from each other or localize them in the scene.

In general the object recognition task is independent from the localization of the object

which often involves an onerous search, such as sub-windowing or scene segmentation,

in order to find the candidate objects. Instead of running the recognition and the

localization processes separately the algorithm presented in this thesis unifies the two

tasks in order to exploit their strict correlation.

As discussed in chapter 4 the localization task is connected to finding an area in the scene

with a similar keypoint distribution (see figure 5.1). Finding the optimal registration

points of a pattern over a larger image is a very common task for 2D object recognition

Object Model

Scene Model

Figure 5.1: An object instance (red dot) is guessed at a point in which the words
spatial distribution is similar to the the one learned for the instance model. The search
for the optimal registrations is performed separately for each of the words MoPG; the

final recognition score is given by the sum of individual words registration scores.

28
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Figure 5.2: Model detection flow diagram. The MoPG of corresponding visual words
are cross-correlated together in order to find the registration hypothesis contribution
of each visual word. Thanks to the closure of the MoPG under the cross-correlation
operator, the result is still a set of MoPG. All the components of these MoPG are then
fused together exploiting the BoW histogram in the weighted merging process. The
peaks in the resulting MoPG are then retrieved by an efficient mode finding algorithm;
the peaks are SE(3) and represent the location hypothesis of the model, the peak value

is proportional to the confidence of the instance detection.

and the presented algorithm is inspired to one of the most used template matching

techniques namely cross-correlation (see section 5.1). Since both scene and object models

are composed by a set of MoPG the registration point of these two entities will be in

the MoPG PDF space, that is, a dual-quaternion in SE(3). A given model MT can

be registered in the scene model MS in several locations {dqi} (see figure 5.1); a good

registration represents an instance guess ITi = (dqi, li) for the template object T and is

associated with a registration quality li which represents the detection likelihood.

Although the recognition process of the presented models may result more complex than

other black-box algorithms (i.e.: SVM or Neural Networks) the strong link between a

model and the object geometry allows several optimizations. If an instance likelihood is

insufficient for the robot needs the scene model can be incrementally refined by moving

the robot around the instance location in order to add RGB-D data from different

viewpoints. Moreover, if in a given registration some areas of the object and scene do

not overlap, the robot will gain insight of how the scene should be observed in order

to increment the result likelihood. Another simple strategy to improve guess confidence

is to exploit the word detection counters associated with each model (see section 3.2):

the word distribution of a guessed object can be compared to the word histogram of the

candidate model and their distance can be used to rise or lower the result confidence.

Although the cross-correlation is in general computationally expensive the presented

recognition method exploits some algebraic properties of the Gaussian function in order
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Figure 5.3: The point in which the cross-correlation function (MoGCC) presents a
peak corresponds to the translation at which the source MoG (MoGB) is best registered
over the destination MoG (MoGA). The height of the peak is proportional to the

registration quality of the two source signals.

to provide an efficient solution for the cross-correlation of MoG or MoPG distributions.

Section 5.1 presents the algebraic basis of this solution. Once the cross-correlation

function is obtained a peak detection method is needed in order to find the guessed

instance locations, an efficient algorithm that fits well with our purposes is described in

section 5.2.

5.1 Cross-Correlation

The efficiency of the proposed method derives from the closure of the Gaussian function

under the convolution operator. Given the PDFs of two Multivariate Normal distribu-

tions

x,µi ∈ Rn, Σi ∈ Rnxn

X1 = N (µ1,Σ1), X2 = N (µ2,Σ2)

fXi(x) =
1√

(2π)k|Σi|
e−

1
2

(x−µi)
T Σ−1

i (x−µi)
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their convolution

(fX1 ∗ fX2)(x) =

∫ Rn

f1(τ ) f2(x− τ ) dτ

=
1√

(2π)k|Σc|
e−

1
2

(x−µc)T (Σc)−1(x−µc) (5.1)

is another Multivariate Normal distributed PDF, with µc = µ1 +µ2 and Σc = Σ1 + Σ2.

The cross-correlation of any two real continuous functions f1, f2 can be computed in

terms of their convolution as follows

(f1 ? f2)(x) = f1(−x) ∗ f2(x) . (5.2)

This strict relation can be exploited along with (5.1) in order to obtain a closed form

solution for the cross-correlation of a Normal distributed functions. Recalling the Mul-

tivariate Normal PDF (4.2) we can can define a Normal distributed variable X̄1 such

as

fX1(−x) = fX̄1
(x) (5.3)

where X̄1 = N (−µ1,Σ1).

From equation (5.2) and (5.3), we can define a Normal distributed variable C1,2 whose

PDF is the cross-correlation of fX1 and fX2 :

fC1,2(x) := (fX1 ? fX2)(x) = (fX̄1
∗ fX2)(x)

where

C1,2 = N (µ1,2,Σ1,2)

µ1,2 = µ2 − µ1

Σ1,2 = Σ2 + Σ1. (5.4)

These results can be extended from Gaussian functions to Mixture of Gaussian or to

Mixture of Projected Gaussian distributions. Let A and B be two MoGs:

fA(x) =

N∑
i=1

wAi fXA
i

(x),

N∑
i=1

wAi = 1, XA
i = N (µAi ,Σ

A
i )

fB(x) =
M∑
j=1

wBj fXB
j

(x),

M∑
j=1

wBj = 1, XB
j = N (µBj ,Σ

B
j ) .
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Exploiting the distributive property of the convolution we obtain

(fA ? fB)(x) =
N∑
i=1

M∑
j=1

wAi fXA
i

(x) ? wBj fXB
j

(x)

and from (5.3) we can express it in terms of convolutions

(fA ? fB)(x) =
N∑
i=1

M∑
j=1

wAi w
B
j fX̄A

i
(x) ∗ fXB

j
(x)

=

N∑
i=1

M∑
j=1

wi,jfCi,j (x) (5.5)

where from (5.4)

wi,j = wAi w
B
j ∀i, j

fCij (x) = N (x |µBj − µAi ,Σ
B
j + ΣA

i ) ∀i, j . (5.6)

Since
∑N

i=1

∑M
j=1w

CC
ij = 1, the cross-correlation CA,B := (fA ? fB)(x) is still an MoG

with NM components. Since the MoPG is a convex sum of Gaussian function the same

results can be derived for the MoPGs with a slight modification: the convolution of two

projected Gaussian PDF must be done in the same tangent space thus the tangent point

of the second operand must be changed prior to the tangent point of the first.

5.2 Mode Finding

Let A, B be two MoPGs and CA,B their cross-correlation, the peaks {dq1, ..., dqn} in the

PDF of CA,B represent the 6 DoF poses for which A is best registered over B (see figure

5.3). As discussed in section 5.1 MoPG are closed under cross-correlation so CA,B is

another MoPG. This property is exploited in order to provide the proposed recognition

method with an efficient mode finding technique based on Carreira and Perpinan [4]

algorithm.

In [4] Carreira and Perpinan provide several important results in order to constrain the

search for modes in a MoG. In particular Carreira et al. provide a partial proof that the

number of modes cannot be more than the number of components, and are contained in

the convex hull of the component centroids. These results along with a derivation of the

exact Hessian and gradient formulas for the MoG has been exploited in order to obtain

an efficient gradient ascending algorithm for MoG mode finding.
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Figure 5.4: The modes (triangles) in a MoG distribution are always located inside
the convex hull (green line) of its component centroids. In [4] Carreira et al. provide
Hessian and gradient formulas for the MoG and describe an efficient gradient ascend

algorithm in order to find these modes.

The Hessian and gradient formulas provided by Carreira et al. are valid also for the

components of a MoPG since in its tangent space a Projected Gaussian is similar to a

Normal distribution (see section 4.1.1).

The downside of the cross-correlation procedure explained in section 5.1 is that the

number of components in CA,B is quadratic with respect to the input, namely NM

where N and M are the size of A and B. It is important to notice that the variability

in the CA,B weights is greatly accentuated in respect to the source mixtures due to their

multiplications in (5.6). This variability can be exploited by removing from CA,B all the

components whose weight is less than a threshold θ > 0 (e.g. θ = 0.01) in order to speed

up the mode-finding process. This practical approximation has been first proposed by

Carreira et al. in [4] and is justified by the really low impact that these low-probability

components have in the modes position.
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Results

6.1 Experimental Setup

The experiments presented in this section have been run over two different dataset,

namely the BigBIRD and the RGB-D Dataset presented in section 2.1.3. Both these

two dataset provide the viewpoint information required by the presented method but

its presentation differs and the two dataset required a slightly different setup.

The point clouds associated to the RGB-D frames provided by the BigBIRD dataset

are not organized (see section 2.1.1) thus the SIFT back-projection method described

in section 3.1 is not suitable; the natively 3D features are the only practical option, to

this end the PFHRGB features [22] have been used for their ability to take into account

both the shape and the color information. For the RGB-D Dataset the organized point

clouds allowed to use 2D features so, in order to test the proposed algorithm with

different description methods, the SIFT back-projection has been used.

6.1.1 Training

The output of the modeling process described in chapter 4 is a collection of Mixture of

Projected Gaussian (see section 4.1.1); each of these MoPGs approximates the spatial

distribution of the locations in which its associated Visual Word (see section 3.2) has

been observed during the model training. Thus the training phase involves a preliminary

batch phase in order to train the Visual Vocabulary and a run-time process for the MoPG

training.

Vocabulary Training The visual vocabulary is a set of representatives chosen among

all possible feature descriptors that the robot is likely to observe in the environment.

34
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It’s important to notice that the set of descriptors used to train the visual vocabulary

should not be limited to the ones found in known objects since the deriving visual words

may not be general enough to describe new unknown objects. Thus in the presented

work both objects and scenes have been processed in order to extract the set feature

descriptors used in the vocabulary training.

The vocabulary trained in the experiments associated with the presented results consists

of 200 visual words obtained through a k-mean clustering among all collected descriptors.

As described in section 3.2 whenever a feature is later detected in the environment its

two closest visual words are retrieved from the vocabulary through a KNN search; if

the distance ratio between the first and the second closest visual words is over 0.8 the

feature is discarded otherwise it is substituted with its closest visual word.

Model Training As previously discussed a model is a collection of MoPGs whose

parameters are trained incrementally through the IGMM algorithm exposed in section

4.2. As explained in section 2 a fundamental prerequisite for training these spatial

probability distributions is that all added keypoints are referring to the same reference

frame. There exist several ways for recovering the viewpoint of an RGB-D frame (see

section 2.1.2) but the most suitable for testing purposes is the exploitation of a turntable.

By knowing the RGB-D sensor pose in respect to the turntable center and by controlling

table rotation it is possible to compute the 6 DoF viewpoint with precision.

Although both dataset contain the information regarding the rotation angles of the turn

table, only the BigBIRD dataset provided the full 6 DoF pose of the camera sensors

in respect to the turntable. In order to retrieve the pose of the camera in the RGB-

D Dataset an approach based on ICP has been exploited among consecutive frames.

Although the ICP method worked quite well on some objects the majority of the regions

of interest in the RGB-D frames were too small or noisy to get good results thus often

only some parts of an object have been reconstructed. Since the development of a robust

SFM or ICP method is out of the scope of this thesis the instance recognition tests have

been focused on the objects form the BigBIRD dataset.

6.2 Results

The results presented in the following sections have been collected during the experi-

ments and rely only on the information provided by the cross-correlation of the models

MoPG described in section 5.1. Although the exploitation of the Bag of Words his-

togram could enhance the confidence of these results the aim of the presented thesis is
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Figure 6.1: Example of some issues affecting the proposed recognition method on the
RGB-D Dataset. On some objects the light reflections (A) produce a consistent number
of SIFT whose keypoints are not consistent with the object rotation, the integration
of those keypoints in the model degrade the recognition performances. The absence of
texture (B) or the small size (C) of some objects severely limit the number of SIFT

keypoints found for the model training.

to evaluate the recognition and localization performances of the cross-correlation when

applied to MoPGs. For better generality, independent tests have been evaluated for both

the BigBIRD and the RGB-D Dataset but since the two dataset do not allow a similar

modeling setup (see section 6.1.1) the strengths of each dataset have been exploited in

order to evaluate different aspects.

In order to test the method robustness to sensor noise, the classification experiments

have been repeated in three different modalities. In the first mode models were created

by using the RGB-D frames of the BigBIRD dataset without any alteration; in the

second mode a white noise (µ = 4mm,σ = 1) was added to all keypoints in order to test

robustness to sensor noise; in the third mode the keypoint noise was combined with the

sub-sampling of the RGB-D frames used to train the models, the 50% of overall frames

are discarded in order to simulate occlusions.

6.2.1 RGB-D Dataset

The good category and instance organization of the RGB-D Dataset has been exploited

to test the category recognition performances (see figure 6.2). The model training for

object categories followed the classic leave-one-out procedure: for each category an in-

stance has been selected as query and the other served as training set, the procedure

has been repeated varying the query object at each iteration. All keypoints found on
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Figure 6.2: RGB-D Dataset Category Recognition results. The variability of the
results in respect to the category shows a strong dependency to the underlying feature
choice: the SIFT keypoints used in the RGB-D Dataset setup rely on the object texture

and did not perform well on reflective or untextured objects.

the training objects of a learned category were integrated together and the resulting

category models were compared to test object models.

Category Recognition Despite the advantage of allowing the use 2D features this

dataset revealed some weaknesses of the modelling setup based on back-projected SIFT

(see figure 6.1). Many of the household objects contained in the dataset present strong

light reflections or low texture thus compromising the keypoint spatial stability or pro-

ducing an insufficient number features. For this reason, although on many categories

the recognition rate was satisfying, the overall classification rate has been only been of

78%, compared to a 90% of the state of art.

Localization The average localization error reported for the RGB-D Dataset has been

cos(∆R) = 5◦ degrees in the orientation (rotation cosine) and ∆t = 3mm in the position

(translation norm). Although these results are comparable to state of art results the

deviation of the average error among different categories is marked and reflects the

considerations done for the category recognition results. It is important to notice how

many of the recognized objects presented significant symmetries (i.e. bowls, balls) that

intuitively led to high rotation errors ∆t ∼ 2cm and cos(∆R) ∼ 30◦.
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BigBIRD Frames (%)
Recognition 100 50

Noise 0 100% 94%
(mm) 4 98% 90%

Table 6.1: BigBIRD Instance Recognition results. Introducing a small white noise on
the keypoints does not significantly affect the results since the noise is almost diminished
by the statistical modeling (see section 4.1). The removal of a frame percentage from

the training has more impact on the results, especially on similar objects.

Query Result ratio

(A) aunt jemima original syrup aunt jemima original syrup 0.82
(B) tapatio hot sauce 0.17

(F) palmolive orange (E) softsoap purple 0.56
palmolive orange 0.44

(C) quaker chewy peanut butter quaker chewy peanut butter 0.64
(D) quaker chewy chocolate chip 0.36

Table 6.2: The table shows the first two results for three sample queries; the confidence
value is shown next to each result. The image associated to the table shows the meshed
model of the involved models. The higher similarity between (C) and (D) in respect
to (A) and (B) reflects in a wider gap in the confidence for the results of (A) and (F).
In some cases the reflective or transparent parts of some objects, i.e. (E) and (F),

compromise the model training and can lead to wrong classifications.

6.2.2 BigBIRD

The use of several and well calibrated RGB-D sensors led to the significantly better

quality of the BigBIRD data in respect to the RGB-D Dataset. The increased size of

the region of interest of the objects in the RGB-D frames along with the availability of a

precise 6 DoF for all point clouds allowed a better evaluation of the instance recognition

capabilities of the proposed method.

Instance Recognition On BigBIRD objects the instance recognition results are pre-

sented in table 6.1 and show a classification rate of 90% in the worst case scenario.

Despite its good quality at the time of writing, the BigBIRD dataset has recently been
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Figure 6.3: Localization result for one sub-sampled object in the BigBIRD dataset.
The green point cloud represents the set of keypoints of the sub-sampled model, its
coordinates are transformed exploiting the localization result in order to register it
with the full object model (red point cloud). The recognized model mesh is shown in

the bottom-right corner.

published so comparison of the results could not be found. Looking at results with

similar dataset, like the RGB-D Dataset, the recognition performances obtained by the

proposed algorithm are aligned with other state of art techniques. For every object the

two most likely results are compared and the ratio between their likelihoods is presented

in order to evaluate the confidence of the instance recognition; three sample results are

proposed in table 6.2.

Localization The average localization error reported for the BigBIRD dataset has

been cos(∆R) = 2◦ degrees in the orientation (rotation cosine) and ∆t = 2mm in the

position (translation norm). These results are similar to the state of the art and are

slightly better than the results obtained for the RGB-D Dataset. The reason behind

this precision improvement is the lower number of low-textured or symmetric objects in

the BigBIRD dataset.

6.3 Gaussian Mixture Library

Most of the the source code developed for algebraic and statistical tools presented in

this thesis has been organized in a general purpose C++ library, namely the Gaussian

Mixture Library (GML). The library is designed focusing the portability, the efficiency
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and the extendibility of the contained tools following an OO paradigm; to this end all core

classes allows templetization for all compile-time parameters. The classes organization

follows the design pattern of the Eigen library, which also represents its only non-optional

prerequisite; as in the Eigen library the polymorphism for template classes is achieved

by exploiting the CRTP pattern.

The GML library is not limited to tools associated to the Gaussian Mixture; indeed

most algorithms are designed to work with generic Mixture objects, whose component

type can be specified as template parameter. Although the GML library provides the

definition for Gaussian or Projected Gaussian components additional distributions can

be easily added by extending the base Component class.

The functionalities provided by this library has already been exploited in some projects.

Among others in [23] the GML library has been extended introducing the Doughnut

distribution as Mixture component. The resulting Mixture, namely the DMM, has been

used as regression tool in a learning by demonstration framework.

The library is organized in several modules as follow:

core This module contains all basic functionalities and its basic structures are orga-

nized as follows:

• Mixture: represents a generic Mixture distribution. This structure is not limited

to Gaussian components and allow the specification of the component type as tem-

plate parameter. The component number can be specified as template parameter

for fixed size mixtures or can be omitted in order to allow run-time component

insertions or deletions.

• ComponentBase: represents the base class of all Mixture components. Accord-

ingly to the CRTP pattern this class can be extended in order to create virtually

any kind of Mixture distribution. Extending classes are only required to provide

a method that compute the associated distribution PDF; the domain of this PDF

needs to be specified as template parameter.

• GaussianComponentBase: represent the base class for all Gaussian compo-

nents. Similarly to ComponentBase this class can be extended following the CRTP

pattern. This class provides to extending objects several methods to handle the

parametrization of any Normal PDF; among these are present some built-in utili-

ties to retrieve or modify the eigenvalues of the covariance matrix.
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• GaussianComponent: represent a sample extension of GaussianComponentBase

that can be used as Mixture component in order to obtain a Mixture of Gaussian

distribution.

train This module provides some tools to infer the parameters of a given Mixture from

a set of sampled points. In current implementation some common training algorithms are

already provided for both MoG or MoPG distributions, namely the Expectation Max-

imization, IGMM and K-Means. Some entropy-based utilities (AIC, BIC) to compute

the optimal number of components are also included.

tools This module provides general purpose tools such as an implementation of the

mode finding algorithm discussed in section 5.2 or a method to compute the cross-

correlation of MoGs or MoPGs.

mopg In this module the the GaussianMixtureBase class is extended to obtain the

Projected Gaussian components, consequently allowing the use of MoPG distributions.

In this module is also include a specialization of all algorithms from the train and tools

modules in order to deal with MoPG. This module contains all necessary structures

needed to handle the projection and back-projection from dual quaternions to the SE(3)

tangent space.

visualization This is the only non-header module and extends the PCL library vi-

sualization functionalities in order to provide a visual UI to represent MoG or MoPG

distributions.

6.3.1 Related Results

The GML library along with some of the modelling tools presented in this paper has

been exploited in some works related to the statistical analysis of angular data through

the Gaussian Mixture Model (GMM). Among them, an MoG regression technique for

EMG signals proposed by Michieletto et al. in [24] is presented in the next paragraph.

GMM-based Signals Regression In [24] Michieletto et al. explored the use of a

Gaussian Mixture Model (GMM) for the estimation of single-joint angle, and in particu-

lar the angular aperture of the knee (see figure 6.4). EMG signals from eight leg muscles

and the knee joint angle were acquired during a kick task from three different subjects.
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Figure 6.4: Actual (in blue) and estimated (in red) angular aperture for the three
subjects. Mean and standard deviation are reported (solid line and bounds, respec-
tively). Vertical black line corresponds to the moment with maximum angular aperture

during each kick.

A GMM was trained in order to model the angle variation with respect to the EMG

signal. The GMM was validated on new unseen data and the classification performances

were compared with respect to the number of EMG channels and the number of collected

trials used during the training phase. A Gaussian Mixture Regression (GMR) technique

was then used to retrieve the data from the trained model. This approach enables an au-

tonomous extraction of the constraints encoded in EMG signals, while still maintaining

an appropriate generalization. Modeling input dataset in terms of Mixture of Gaussians

(MoG) distributions requires only a reduced number of parameters to be kept, resulting

in lightweight models. A GMM/GMR framework was chosen because it usually requires

less training data to achieve good results and provides a faster regression in respect to

other techniques, like Neural Networks (NN). Due to its characteristics, the GMM/GMR

framework is particularly suitable for robotic applications and has been widely adopted

in related state of art methods such as Robot Learning from Demonstration (RLfD).
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