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Abstract

Biological pathways underlie the basic functions of a living cell. They are complex
diagrams featuring genes, proteins and other small molecules, showing how they work
together to achieve a particular biological effect. From a technical point of view,
they are networks represented through a graph where genes and their connections are,
respectively, nodes and edges of a graph.

The main research objective of this thesis is to develop a framework for simulating
effects of gene silencing. To this end, we propose a three step approach. First, we refine
the structure of a pathway via our CK2 algorithm. Next, we assess the uncertainty in
the refined structure. Finally, we simulate gene silencing through intervention analysis
in causal graphical models. The proposed approach showed promising results when
applied to the problem of predicting the effect of the knockdown of the nkd gene in
Drosophila Melanogaster.





Abstract

I pathway biologici sono alla base del funzionamento delle cellule viventi. Tali pathway
sono diagrammi complessi che coinvolgono geni, proteine e altre piccole molecole,
mostrando come essi svolgano un ruolo congiunto nel raggiungimento di uno specifico
effetto biologico. Da un punto di vista tecnico, questi network sono rappresentati
mediante diagrammi dove i geni e le loro connessioni sono, rispettivamente, nodi e
archi.

Il principale obiettivo di questa ricerca è sviluppare una tecnica per simulare gli
effetti del silenziamento genico. A tal fine, proponiamo un approccio basato su tre
passi. Nel primo passo, raffiniamo la struttura di un pathway attraverso il nostro
algoritmo CK2. In seguito, nel secondo passo, valutiamo l’incertezza nella struttura
raffinata. Infine, nel terzo passo, simuliamo il silenziamento genico tramite intervention
analysis nei modelli grafici causali. L’approccio proposto mostra risultati promettenti
se applicato al problema della previsione dell’effetto del silenziamento del gene nkd
della Drosophila Melanogaster.
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Chapter 1

Introduction

1.1 Overview

Molecular pathways underlie the basic functions of a living cell. They are elaborate
diagrams featuring genes, proteins and other small molecules, showing how they work
together to achieve a particular biological effect. From a technical point of view, they
are networks with explicit biological interactions and can be represented through a
graph where genes and their connections are, respectively, nodes and edges. Path-
ways are often identified piecemeal over extended periods of time, by a variety of
researchers, and stored in public databases such as KEGG (Ogata et al., 1999) or
Biocarta (Nishimura, 2001).

One of the key questions pertaining to pathways is the importance of individual
participating genes. What happens if one gene is switched off? To answer this ques-
tion, scientists perform experiments called gene silencing, in which an expression of a
particular gene is forced to a minimal non-lethal level. Although a gold standard in
functional genomics, this technique is still not in widespread use due to the high costs
both in terms of financial and time resources. The need to find a theoretical surrogate
to gene silencing is the motivation of this work.

In this thesis, we argue that a theoretical surrogate might be found by relying on
proper statistical modelling. The statistical components of such an approach should
comprise a statistical model for the biological pathway (including the gene to be si-
lenced) and data on expression levels of genes appearing in the pathway. The issue of
quality of such data is, obviously, crucial, as reliability of results highly depends on
good estimation of the model. Having these ingredients, our solution boils down to
modelling biological pathways by means of graphical models (Lauritzen, 1996), and
simulating gene silencing as external interventions in directed graphical models.



2 Introduction

In developing such an approach, we faced numerous problems, of different nature
and relevance with respect to the main aim of the work. One of the first problems that
we experienced is that graphical models derived from pathways are often poorly sup-
ported by experimental data. This finding was confirmed by an extensive exploratory
analysis of real data that led us to propose a new shrinkage estimator of a covariance
matrix for a given graphical model. To improve the graphical model representation,
we followed the route of refining the the pathway information in the light of data. The
prediction of the effects of silencing through intervention analysis needed therefore to
take into account the uncertainty related to the refinement, which we did by resorting
to resampling strategies.

The resulting work appears to be a collection of seemingly unrelated proposals,
but they all bloomed with the purpose of finding a suitable statistical framework
to perform gene silencing. The reader might, at times, feel confused or even lost
as to how different pieces fit together and how they contribute to the big picture.
It might be reassuring for the reader to know that the same feelings were author’s
loyal companions throughout the development of this project. The overwhelming
complexity of the underlying biological problem calls for careful and time requiring
interdisciplinary work, and this thesis, hopefully, makes the first steps of that journey.
A discussion of some of the issues to be tackled in the future is given in Chapter 7.

The outline of the thesis is as follows. Chapter 2 covers the biological background
of our motivating problem: gene silencing. In Chapter 3, we give a description of the
key experiment used throughout this thesis: the nkd gene silencing in fruit flies. A
brief introduction to graphical models, for readers not familiar with the topic, is given
in Chapter 4. Chapter 5 covers the proposed solutions to various problems that we
faced. They can all be framed within the big topic of learning in graphical models.
First, in Section 5.1, we introduce a new algorithm, that we call CK2, for refining
the graphical structure of a pathway. In Section 5.2, we empirically compare CK2 to
a number of different structure learning algorithms, and offer guidelines as to when
a particular approach might be preferred over its alternatives. Next, we propose a
method for evaluating uncertainty in the refined structure in Section 5.3. Finally, we
cover the guided penalized estimation of the covariance matrix in a Gaussian graphical
model by proposing a novel shrinkage estimator in Section 5.4. In Chapter 6, we turn
our attention to simulating gene silencing through intervention analysis. We first
recall general notions about causal models, and then focus on the estimation of the
effects of silencing. In Section 6.2, we apply our approach to the data from the fruit
fly experiment. We demonstrate how different parts described in the thesis come
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together in the task of simulating effects of nkd gene silencing. Chapter 7 contains
main conclusions drawn from this project up to date and possible directions for future
research.

1.2 Main contributions of the thesis

Main contributions of the thesis can be summarized as follows.

1. Definition of a partially supervised learning algorithm of directed acyclic graphs,
CK2, applicable in situations when some prior information pertaining to the
topology of the graph is available. An application to the refinement of the
existing graphical structures obtained from molecular pathways is provided.

2. Comparative study of predictive accuracy of different structure learning algo-
rithms applied to gene expression data. Proposal of a data driven categorization
of the expression measurements.

3. Definition of a consensus DAG.

4. Introduction of a new penalized approach for the estimation of the covariance
matrix in the Gaussian graphical models in “p > n” setting. Numerical evalua-
tion of the proposed estimator.

5. Definition of a three step procedure for the estimation of effects of an intervention
when prior information on the ordering of variables is available. Application to
the gene silencing experiments.

6. Application and validation of the novel approach on real data from Drosophila
Melanogaster silencing of gene nkd. To this aim, a tailored experiment was
performed and a new dataset created.





Chapter 2

The motivating problem

2.1 Gene silencing

Nearly a decade ago, Craig Mello and Andrew Fire were honored the Nobel prize for
their discoveries related to gene silencing, a process that allows cells to selectively turn
off specific genes. Research in this area jumpstarted a new biological field, termed RNA
interference, by opening up previously inaccessible areas of research. Today, scientists
routinely use this powerful method to study the functions of specific genes and gene
silencing is being successfully used as a tool for functional genomics. One of the most
exciting applications of such methodology is in biomedical research. Scientists are
using manipulation of genes to study the progress of thousands of genetically based
diseases at the molecular level. The hope is that by better understanding how a certain
gene contributes to a particular disease, researchers can then take the knowledge a
step further and look for drugs that act on that gene. Another essential application
is in drug development. The silencing technology may lead to the discovery of the
next generation of blockbuster therapies for curing numerous diseases based on novel
targets from the human genome.

Although gene silencing is highly advantageous for both biomedical research and
drug development, it also contains a number of limitations, some of which related
to technical aspects and some to the costs of the experiments. Recent years have
witnessed constantly growing efforts for producing technologies that break down the
costs and provide high quality results. Clearly, in the everyday lab practice, if potential
effects of silencing could be investigated before physically performing the experiment,
this could enable a more efficient design and organization of the experiment leading
to considerable savings in terms of time and money.

To be able to simulate or predict effects of gene silencing, a model describing
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well the relationships between genes is essential. Technological advances seen in the
ultimate two decades, related to high throughput analysis, resulted in a vast amount of
data that are used in an attempt to elucidate the mechanisms underlying the complex
interplay of different genes. Some of that information is stored in the form of diagrams
of biological pathways. In other words, pathway diagrams capture (a part of) our
knowledge about the interactions between genes (and proteins and other metabolites)
and for our purposes, they provide valuable information that is used in addition to
the gene expression data to build a model for the system of considered genes.

2.2 Biological pathways

Biological pathways can be described as sets of linked biological components interact-
ing with each other over time to generate a single biological effect, such as a change
in enzyme activity, a change in gene expression or a change in ion channel activ-
ity. A number of diseases are associated with defects in these pathways, motivating
a growing body of research that aims to deepen our understanding. In fact, path-
ways are often identified piecemeal over extended periods of time and by a variety
of researchers. Figure 2.1 represents an example of such pathways, the Prostate can-
cer pathway taken from the Kyoto Encyclopedia of Genes and Genomes (KEGG).
It is composed by edges and nodes, which have the following meanings. Rectangles
represent gene products, mostly proteins, but also RNA and complexes. The edges
between rectangles represent functional interactions. They can be both directed and
undirected. Circles are other types of molecules, mostly chemical compounds, while
the large white rectangles are the links to other pathways. We note that in the thesis
we will consider only signalling pathways; the interpretation of the diagram might be
different for metabolic pathways, and thus the methods that we consider would have
to be adapted accordingly.

A vast variety of databases containing information such as that shown in Fig-
ure 2.1 exist. They present biological interactions in a graphical format comparable
to the representation present in text books, as well as in standard formats allowing
the exchange between different software platforms and further processing by network
analysis, visualization and modeling tools. The Pathguide resource serves as a good
overview of current pathway databases (Bader et al., 2006). It lists more than 200
pathway repositories; over 60 of those are specialized on reactions of the human species.
However, only half of them provide pathways and reactions in computer-readable for-
mats needed for automatic retrieval and processing. Pathway annotations comprise
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a myriad of interactions, reactions, and regulations which is often too rich for the
conversion to a graph. In particular, challenges are posed by the presence of chemical
compounds mediating interactions and by different types of gene groups (e.g. protein
complexes or gene families) that are usually represented as single nodes. Moreover,
different databases are characterized by different annotations and only a part of the
whole set of reactions are confirmed by all the repositories.

Among the widely used databases, we find Biocarta (Nishimura, 2001), KEGG
(Kanehisa and Goto, 2000), NCI/Nature Pathway Interaction Database (Schaefer
et al., 2009) and Reactome, (Joshi-Tope et al., 2005; Vastrik et al., 2007). Reac-
tome (Vastrik et al., 2007), backed by the European Bioinformatics Institute (EBI),
is one of the most complete repositories; it is frequently updated and provides a se-
mantically rich description of each pathway. KEGG Pathways (Kanehisa and Goto,
2000) provides maps for both signaling and metabolic pathways, supplemented by 19
highly interconnected databases with genomic, chemical and phenotypic information.
BioCarta (www.biocarta.com) and NCI (Schaefer et al., 2009) are available from the
NCI/Nature Pathway Interaction Database database web page.

2.3 From pathways to graphical models

Initially, models translating gene regulatory networks into mathematical structures
were deterministic, most prominent examples include systems of differential equa-
tions (Glass and Kauffman, 1973) and Boolean models (Thomas, 1991). Deterministic
models, built on detailed biological knowledge, have proven useful for testing existing
theories about biological systems. The last two decades saw a significant change of
course: the rapid development of novel technologies triggered interest in approaches
that would enable one to go beyond testing existing theories. One would like to make
the full use of the newly available experimental data, and to formulate new testable
theories. This notion shifted attention towards probabilistic models.

Graphical models seem especially suitable for the task and Friedman et al. (2000)
first introduced the idea of using directed acyclic graphs (DAGs) for the purpose
of modelling gene networks. Embracing a graphical models paradigm, in addition to
capturing inherent variability present in biological systems, enables one to learn models
from experimental data and to formulate new hypotheses about relations between
genes.

In order to incorporate pathways into graphical models, a descriptive diagram
needs to be translated into a mathematical graph, either directed or undirected. The
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choice of the type of graph depends on the goal of the statistical study. Due to
the descriptive nature of pathways and their inherent complexity, there is no simple
recipe for conversion that can be applied in every situation. For this reason, close
collaboration with biologists is preferred at this step (Djordjilović et al., 2013). Here,
we address some most common issues and for possible solutions we refer the reader to
Chapter 7.

First of all, gene expression experiments rarely measure expression values for all
genes in a given pathway. Therefore, a preliminary action is to construct a subpathway
obtained by the intersection of the nodes in the pathway and the genes in the dataset.
This suggests that the topological properties of the obtained graph can be considered
dataset-specific, and that links in the subpathway might lofse the functional meaning
characterizing the links in the pathway. Secondly, biological pathways may contain
cycles. This presents a problem if a pathway is to be converted to a directed graph,
since almost all approaches based on directed graphs do not allow loops. Finally, an
additional difficulty is represented by compounds and complexes. Compounds are not
measured in the microarray experiment, and should be removed. As for complexes,
some are protein complexes (proteins linked by protein-protein interactions) and some
contain alternative members (gene families, genes that share similar biological func-
tions). They need to solved on a case to case basis.

2.4 Uncertainty in the graphical structure

Although pathways represent our up-to-date knowledge of the cellular processes, we
can not always assume that the obtained mathematical graph will be the optimal
structure of a graphical model. There are a number of reasons to consider this graph
a tentative model and we describe some of them here.

First of all, most of the interactions featured in pathways are interactions between
proteins rather than genes. It has been a common practice so far to assume that mRNA
levels determine with high accuracy the cellular protein abundance. Researchers would
use gene expression level as a proxy for the protein level, tacitly assuming the linear
relationship between the two. However, recent technological advances have allowed for
measuring protein abundance directly. Experiments that investigated both the mRNA
and protein levels showed that the relationship between the two is less strong than
anticipated. In other words, the role of post-transcriptional mechanisms involved in
turning a mRNA into a protein is substantial (Vogel and Marcotte, 2012).

Secondly, pathway representation, although detailed, is by no means exhaustive; in
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part because there are still many undiscovered features and in part because the most
realistic model is usually too cumbersome to be useful. Every graphical representation
of a signaling pathway can be seen as a compromise between accuracy and complexity.
Furthermore, as already stated, pathways represent joint work of the global scientific
community, and most of the information is obtained experimentally, which implies
that the possibility of errors cannot be excluded.

Lastly, it should be kept in mind that signalling pathways represent the trans-
duction of a signal; signals that coordinate cell actions. They are, thus, inherently
dynamic systems and by measuring gene expression levels at a single time point, we
obtain a snapshot of a cell profile, neglecting the time aspect.



Chapter 3

The data

Within the scientific method, the experiments are the gold standard for studying
causal relationships. Not surprisingly, experiments are also the method of choice when
testing approaches related to causal inference. In particular, in order to evaluate an
approach that aims to predict effects of gene silencing, one would compare the model
based predictions against the “truth”, represented by the silencing experiment. The
problem is that gene silencing or knockdown experiments are costly and involve a
lot of time and effort. For that reason, this type of data is not easily available. In
order to allow us to test our approach to predicting the effects of gene silencing, the
Department of Biology of the University of Padova performed one such experiment.
They silenced the naked cuticle gene (nkd) in a fruit fly (Drosophila Melanogaster).

The data consist of expression levels of 15 genes measured in the treatment (knock-
down of the nkd) and the control (sometimes also referred to as wild type) group. The
number of observations in both groups is 15. The experiment has been performed
so that both a measure of technical and biological variability in gene expression are
obtained. To measure technical variability, in both groups there were 5 different cell
lines and 3 measurements per each cell line. Given that within a cell line there are
no biological differences, differences in gene expression can be attributed to technical
artifacts.

The common concern regarding expression data is that they are inherently noisy.
We note that compared to the microarray sequencing, the technique used in this
experiment, the real time PCR, is more specific and precise, and is often considered a
gold standard for detection and quantification of the gene expression.

The technical details concerning the experiment are given in the experimental
protocol below, while in Section 3.2, we take a look at some initial exploratory analysis.
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3.1 Protocol

Cell cultures The Drosophila S2R+ cell line were derived from a primary cul-
ture of late stage (20-24 h old) D. melanogaster embryos (Schneider, 1972), obtained
from Drosophila Genomics Resource Center (DGRC) (http://dgrc.cgb.indiana.edu/).
S2R+ cells grow at 25◦C without CO2 in Schneider’s medium (Life Technologies)
with 10% heat-inactivated fetal bovine serum (FBS) (Sigma-Aldrich) as a loose, semi-
adherent monolayer, showing a doubling time of about 48 h.
dsRNA production and RNAi procedures
dsRNAi synthesis was performed employing the T7 Megascript kit (Life Technologies)
(Flockhart et al., 2012; Ni et al., 2009). The oligonucleotides primers used to synthe-
size dsRNA starting from cDNA were nkd_T7 forward (F) and reverse (R) (primer
sequences are reported in Table 3.1). These primers give two complementary 650 bp
RNA products that anneal as temperature decreases, forming a final 650 bp dsRNA.
About 2× 106 cells suspended in 1 ml of serum-free medium were mixed with 2 µg/ml
dsRNA, plated in a 24 wells plate and incubated at room temperature (RT) for 1 h.
Subsequently, one volume of complete medium 2X was added and cells were grown in
the presence of dsRNA for 4 days at 25 ◦C.

Table 3.1 Sequence primers.

Gene Sequence
nkd_T7-F 5’-TTAATACGACTCACTATAGGGAGATGT

ACAAGCACGGCAAATACTCAA-3’
nkd_T7-R 5’-TTAATACGACTCACTATAGGGAGATGT

ATTTTCGCTGTTGCTGTCATC-3’
nkd-F 5’-ACCCGAACCATCAAATGC-3’
nkd-R 5’-GTTTCGAGGCAGTGGTCCT-3’
Rp49-F 5’-TCGGTTACGGATCGAACAA-3’
Rp49-R 5’-GACAATCTCCTTGCGCTTCT-3’

RNA isolation and qRT-PCR experiments to determine Nkd silencing
Total RNA was extracted from approximately 2 × 106 cells using Trizol (Life Tech-
nologies). RNA samples were checked for integrity by capillary electrophoresis (RNA
6000 Nano LabChip, Agilent Technologies). For each sample, 1 µg of RNA was used
for first-strand cDNA synthesis, employing 10 mM deoxynucleotides, 10 µM oligo-dT
and SuperScript II (Life Technologies). qRT-PCRs were performed in triplicate in
a 7500 Real-Time PCR System (Life Technologies) using SYBER Green chemistry
(Promega). The 2−∆Ct (RQ, relative quantification) method implemented in the 7500
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Real Time PCR System software was used to calculate the relative expression ratio
(Livak and Schmittgen, 2001). The nkd oligonucleotides primer used were nkd F and
R. Rp49 was used as endogenous control and the oligonucleotides employed were Rp49
F and R.
RNA isolation and qRT-PCR experiments to determine Nkd silencing
Experiments were performed using the TaqMan probes for selected genes (Table 2
and Figure 1) in the 7500 Real-Time PCR System (Applied Biosystems). PCR were
performed in triplicate for each sample (five samples) for a total of 15 data point for
each gene. Ribosomal protein L32 (Rpl32) and RNA polymerase II 140kD subunit
(RpII 140) were used as reference genes. After the RNA retrotrascription using a mix
of oligod(T) and random primers 10 ng of cDNA were used in each PCR amplification.
The original expression level for each gene in each well was expressed as 2−∆Ct where
∆Ct indicates Ct( gene of interest)− Ct(average of reference gene).

Table 3.2 Selected genes involved in WNT pathway.

Gene Description
arr or CG5912 low density lipoprotein receptor-related protein 5/6
pont or CG4003 RuvB-like protein 1 (pontin 52)
nkd or CG11614 naked cuticle
daam or CG14622 Dishevelled Associated Activator of Morphogenesis
dco or CG2048 discs overgrown or casein kinase 1, epsilon
fz3 or CG16785 frizzled 3
dally or CG4974 division abnormally delayed
sgg or CG2621 shaggy or glycogen synthase kinase 3 beta
arm or CG11579 armadillo or catenin beta 1
psn or CG18803 presenilin 1
rho1 or CG8416 Ras homolog gene family, member A
rok or CG9774 rho-associated kinase
por or CG6205 porcupine
dsh or CG18361 segment polarity protein dishevelled
wg or CG4889 wingless-type MMTV integration site family, member 1

3.2 Exploratory analysis

After preliminary examination of the data, the expressions of the three genes, arr, dsh
and wg, were deemed too low by biologists (signaling that the corresponding genes
were not expressed in neither condition), and thus they are excluded from further
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analysis.
There were two missing values in our dataset, one in each group. Both missing

values belonged to the silenced gene, nkd. Since missing values greatly complicate
further analysis, and in addition, the nkd gene has a prominent role in the experiment,
we excluded the incomplete observation from each group. That left us with n = 14
observations of p = 12 genes in two experimental conditions, and this is the dataset
that will be considered in the remainder of the thesis.

Figure 3.2 shows if and how the mean expression values of considered genes change
in response to the silencing of the nkd. We see that the change in mean is most
visible in the dally gene, whose expression is higher in the knockdown group. We
discuss this observation in greater detail in Chapter 6. The remaining genes either
change slightly or barely so (arm, por, dco), at least in terms of the mean value. To
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Fig. 3.2 Drosophila Melanogaster experiment: Mean expression values of the twelve
genes in the knockdown and control group.

see the effect of silencing on the whole distribution, we can have a look at Figure
3.3. It shows estimated densities for the knockdown and the control group for each
gene. The plot corresponding to the silenced gene, nkd, provides a clear visual idea
of how the intervention shifted its mean towards zero and drastically reduced its
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variance. Another interesting observation is that genes dally, fz and pont have very
well separated distributions in the knockdown and control group, suggesting they are
closely related to, or perhaps regulated by nkd.

3.3 A note about technical variability

As mentioned in the introductory section, the design of the experiment was such to
allow for estimation of the technical variability. The observations in both the control
and the knockdown group consist of five groups of two or three measurements on one
sample. To model gene expression measurements obtained in this way, we can employ
a random effects model that we specify so as to be as close as possible to the technical
realization of the experiment. To illustrate this notion, we restrict our attention to
one generic gene in an arbitrary, but fixed, treatment group (control or knockdown).
With the treatment group being fixed, groups in the following refer to the groups of
replicate measurements of the same biological sample. We model the underlying data
generating process as a two step procedure: in the first step, a mean value of each
of the five samples is drawn from a normal distribution whose variance corresponds
to the biological variability; in the second step, the additional, independent noise is
added to these group means. Let Xij denote the jth replicate in the ith group of that
particular gene in our dataset, where i = 1, . . . , I and j = 1, . . . , ni, where ni is the
number of replicate measurements of the ith sample (2 or 3 according to i), and I = 5
is the number of samples. If we adopt notation ∼ (µ, σ2) to denote a random variable
with mean µ and variance σ2, we set

µi ∼ (µ, σ2
µ)

Xij = µi + ϵij, ϵij ∼ (0, σ2); µi ⊥⊥ ϵij, i = 1, . . . , I; j = 1, . . . , ni,

where µi is the mean of the ith group, while µ, the mean expression, σ2
µ, the biological

variability, and σ2, the technical variability, are model parameters.
An unbiased estimate of µ is the sample mean X̄ = ∑I

i=1
∑ni

j=1 Xij/n. The estimates of
the two variance parameters are usually found by the moment method, by equating the
mean squares in the analysis of variance to the means of their sampling distributions.
The well-known decomposition of the total residual variance is

I∑
i=1

ni∑
j=1

(
Xij − X̄

)2
=

I∑
i=1

ni∑
j=1

(
Xij − X̄i

)2
+

I∑
i=1

ni

(
X̄i − X̄

)2
,
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where X̄i is the mean of the ith group. The terms on the right hand side are usually
referred to as within group variance (SSW ) and between groups variance (SSB). The
mean square of the within group variance is exactly the estimate of the technical
variability σ2

σ̂2 = SSW

n− I
,

where n = ∑I
i=1 ni is the total number of observations. As for the between group

variance, its expected value is

E
[

I∑
i=1

ni

(
X̄i − X̄

)2
]

= n2 −∑I
i=i n2

i

n
σ2

µ + (I − 1)σ2.

An unbiased estimate of σ2
µ is, therefore

σ̂2
µ = n(I − 1)

n2 −
I∑

i=1
n2

i

(
SSB

I − 1 −
SSW

n− I

)
.

The estimates of the mean and variances in the dataset are provided in Table
3.3. It shows estimated model parameters for each gene. Figure 3.4 shows estimated
coefficients of biological and technical variation for each gene in the two treatment
groups.
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Fig. 3.4 Drosophila Melanogaster experiment: Coefficients of biological (left) and tech-
nical variation (right) of the twelve genes in the knockdown (red) and the control group
(blue).

We note that the silencing of the nkd lowered the sample variance for all genes
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(except already mentioned dally). This might seem counter-intuitive, since the knock-
down group was affected by an external intervention, and we might expect the inter-
vention to introduce an additional source of variability. However, the cells responded
by lowering the variability of (almost all) the remaining genes. We can also note
that the mean level of expression is very different across genes: this is to be expected,
since the expressions vary according to the varied biological functions of the respective
genes.

Table 3.3 Drosophila Melanogaster experiment: Estimated mean expression values (µ̂)
of the twelve genes in the knockdown and control group and respective biological (σ̂µ)
and technical (σ̂) standard deviations.

Knockdown Control
µ̂ σ̂µ σ̂ µ̂ σ̂µ σ̂

psn 5.02 0.63 0.34 5.37 1.79 0.72
nkd 0.03 0.01 0.00 0.40 0.10 0.05

dally 5.46 0.94 0.35 1.61 0.60 0.10
por 0.79 0.10 0.06 0.79 0.26 0.05

daam 3.55 1.01 0.41 4.00 1.36 0.33
fz 0.55 0.02 0.03 0.41 0.12 0.04

rho1 43.26 5.99 4.24 41.96 19.13 7.51
dco 4.58 0.95 0.46 4.76 1.66 0.54
rok 3.91 0.42 0.62 3.11 1.03 0.35
sgg 5.24 0.63 0.61 6.02 2.50 0.64

arm 37.34 6.26 6.27 37.16 8.99 4.56
pont 2.49 0.23 0.24 1.40 0.39 0.13

We can use these estimates to test the hypothesis of equality of mean expression
values in the knockdown and control group on the univariate level. Under the hy-
pothesis of equality of the means and normality of the random quantities involved in
the model, the test statistic will be asymptotically distributed as a standard normal
variate. The p-values associated with these test statistics for each gene are given in
Table 3.4. We can see that the silenced nkd gene, as expected, has the most significant
p-value. The other genes that demonstrate significant difference in the mean between
the two groups are dally, fz and pont.
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Table 3.4 Drosophila Melanogaster experiment: p-values of tests of equality of means
in the knockdown and control group.

p-value
psn 0.35
nkd 2.4× 10−15

dally 3.4× 10−14

por 0.47
daam 0.28

fz 6.4× 10−3

rho1 0.45
dco 0.42
rok 0.07
sgg 0.26

arm 0.49
pont 4.2× 10−07



Chapter 4

The statistical background

This section is a review of the key concepts in graphical modelling. The main termi-
nology and the notation are collected in the appendix.

4.1 Conditional independence and graphs

The link between graphs and statistical models is the concept of conditional indepen-
dence whose properties were first studied in a formal fashion by Dawid (1979). The
author showed that many concepts central to statistical inference, such as sufficiency
or ancillarity, can be defined in terms of generalized conditional independence. Con-
ditional independence is defined for random events, for σ-algebras of events and for
random variables. Here, we limit our attention to random variables.

Definition 4.1.1 We say that random variables X and Y are conditionally indepen-
dent given Z and write X ⊥⊥ Y | Z if and only if

P(X ∈ A, Y ∈ B | Z) = P(X ∈ A | Z)P(Y ∈ B | Z), (4.1)

for any A and B measurable in the sample space of X and Y , respectively.

Equivalently, we can say that X and Y are conditionally independent given Z if and
only if P(X ∈ A | Y, Z) = P(X ∈ A | Z). This alternative definition has an intuitive
interpretation: once we know the value of Z, the distribution of X does not further
depend on the value of Y . Unconditional independence can be seen as a special case
of the above definition for Z trivial.

When X, Y and Z are all discrete random variables the condition 4.1 simplifies to

P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z),
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where the equality holds for all z such that P(Z = z) > 0. When all three variables
are continuous we have

f(x, y | z) = f(x | z)f(y | z),

where the equality holds almost surely.
Pearl and Paz (1985) discovered the connection between the relation of conditional

independence of random variables and a ternary relation defined on the sets of vertices
of an undirected graph induced by a certain separation criterion. This led them to
study conditional independence of variables with the help of graphs, where each vari-
able is associated to a node, and edges of a graph describe the possibility of conditional
dependence. Their work was largely motivated by the idea of probabilistic reasoning
in expert systems (Pearl, 1988) and in fact, it is this application of graphical methods
that has rendered graphical models popular in the artificial intelligence community
from the late 1980s to this day.

In what follows, we will consider a collection of random variables {Xv, v ∈ V }, so
that each random variable corresponds to a node of the graph G = (V, E). We will
assume that the cardinality of V is p, and when no ambiguity may arise, the same
notation Xi will be used for both random variables and nodes of a graph.

4.1.1 Markov properties on undirected graphs

Here, we report briefly three Markov properties associated with undirected graphs; for
a detailed treatment we refer the interested reader to Lauritzen (1996). A distribution
of {Xv, v ∈ V } is said to obey the

1. pairwise Markov property relative to G if for any par X, Y ∈ V non-adjacent

X ⊥⊥ Y | V \ {X, Y };

2. local Markov property relative to G if for any vertex X ∈ V

X ⊥⊥ V \ cl(X) | bd(X);

3. global Markov property relative to G if for any triple (A, B, C) of disjoint subsets
of V , such that C separates A from B

A ⊥⊥ B | C.
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It is not difficult to show that the global Markov property implies a local Markov
property, which in turn implies the pairwise Markov property. Markov properties
are closely related to the factorization of the joint density. A density f(x) is said to
factorize according to G if for all complete subsets a ⊂ V there exists non-negative
functions φa that depend on x only through xa, and there exists a product measure
µ = ⊗α∈V µα on the sample space of X, such that X has a density f with respect to
µ, where f is of the form

f(x) =
∏

a complete
φa(x).

Since this factorization is not unique, one can without loss of generality assume that
only cliques appear among sets a

f(x) =
∏
c∈C

φc(x),

where C represents the set of cliques of G.
It can be shown that if f factorizes then it satisfies the global Markov property

(and thus all other weaker Markov properties). In the case when {Xv, v ∈ V } has a
strictly positive and continuous density, it can be shown that all of these properties
are equivalent.

The undirected graphical models for multivariate normal distribution are called
Gaussian graphical models. Given an undirected graph G, the Gaussian graphical
model for X assumes that X follows a multivariate normal distribution and further
obeys conditional independence properties implied by the graph. Since in this case
the density is continuous and strictly positive, the global, local and pairwise Markov
property, as well as the factorization property are equivalent.

Conditional independence relations implied by the graph G are easily represented
by parameters of the normal distribution, more precisely by the structure of the inverse
of the variance matrix. To see this, consider the density of the normal distribution
with mean vector µ and concentration matrix K

f(x) = 1
(2π)

p
2 |K| 12

exp
−1

2

p∑
i=1

p∑
j=1

kij(xi − µi)(xj − µj)
 , (4.2)

where kij are elements of K. From here, we can see that whenever kij is zero, the
joint density factorizes into two components of which one contains xi and the other
xj. In this case, according to the factorization criterion, the variables Xi and Xj are
conditionally independent given the remaining ones. Therefore, a normally distributed
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random vector X obeys the pairwise Markov property with respect to G if and only
if kij = 0 for all pairs (Xi, Xj) non-adjacent in G.

If we denote by S+(G) the set of all p × p symmetric positive definite matrices
with null elements corresponding to the missing edges of G, we can define the family
of Gaussian graphical models as

M(G) =
{
X ∼ Np(µ, K−1) : µ ∈ Rp, K ∈ S+(G)

}
.

4.1.2 Markov properties on directed acyclic graphs

Directed acyclic graphs have a long history in statistics dating back to the work of
Wright (1934) and his method of path coefficients. Statistical models based on DAGs
(sometimes referred to as Bayesian networks) have proved useful in a number of inter-
esting applications, including probabilistic expert systems, genetics, forensics, causal
inference, and machine learning.

Although all three Markov properties defined for undirected graphs have their
counterparts in directed acyclic graphs, the local directed Markov property has proved
to be most useful. This is not limiting in practical applications, since the condition
under which the three properties are equivalent (strictly positive joint density) is
usually satisfied. The local Markov property on the directed acyclic graph states that
Xv is conditionally independent of its non descendants given its parents

Xv ⊥⊥ {nd(Xv) \ pa(Xv)} | pa(Xv), v ∈ V.

This property is equivalent to the factorization of the joint density. We say that
the joint density f factorizes with respect to the graph G if it can be written as a
product of |V | univariate conditional densities

f(x) =
∏
v∈V

f [xv | pa(xv)] .

An instance of a DAG on five nodes is shown in Figure 4.1. If the joint density
f(x1, . . . , x5) factorizes with respect to this graph, then it can be written as

f(x1, . . . , x5) = f(x1)f(x2 | x1)f(x3 | x1)f(x4 | x3)f(x5 | x3, x4),

where f(·) denotes a generic probability function. Local Markov property applied to
this graph gives the following conditional independence relations: X2 ⊥⊥ {X3, X4, X5} |
X1; X3 ⊥⊥ X2 | X1; X4 ⊥⊥ {X1, X2} | X3 and X5 ⊥⊥ {X1, X2} | {X3, X4}. Clearly,
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Fig. 4.1 An example of DAG
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Fig. 4.2 Non uniqueness of conditional independence properties entailed by a DAG

these relations entail other conditional independence properties, such as X1 ⊥⊥ X5 | X3

and X1 ⊥⊥ X4 | X3. In order to obtain an exhaustive list of relations, one can apply
the d-separation criterion, see Pearl (1988) or an alternative moralization criterion,
see Lauritzen et al. (1990).

If density f(x) of {Xv, v ∈ V } is normal and factorizes according to a DAG G,
we say that the {Xv, v ∈ V } is a Gaussian Bayesian network. Since all conditional
densities are themselves normal we have that, for every variable Xv, the conditional
distribution given its parents, pa(xv), is normal

Xv | pa(Xv) ∼ N(αv + βv
T pa(Xv), σ2

v), v ∈ V,

where σ2
v is the residual variance, independent of pa(Xv), and βv is the vector of

regression coefficients.
Every DAG determines a set of conditional independence relations among variables.

It turns out that different graphs can lead to the same set of independencies. As a
simple illustration consider a DAG on 3 nodes with two arrows. By applying the local
Markov property on the first, second and fourth graph, we obtain X1 ⊥⊥ X2 | X3.
We say that these three graphs are equivalent from the probabilistic point of view.
The term is adequate since it can be shown that DAGs entailing the same set of
conditional independence properties form an equivalence class. The non uniqueness
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of the graphical representation has important practical consequences in statistical
inference: in the problem of inferring the graphical structure from data, the underlying
DAG is not identifiable; we cannot distinguish between DAGs in the same equivalence
class.

Characterization of the graphs that determine the same set of conditional inde-
pendencies has been proposed in Bonissone et al. (1991) and is reported in Theorem
4.1.1.

Theorem 4.1.1 (Verma and Pearl, 1991.) Two DAGs defined over the same set
of vertices induce the same set of conditional independence relations if and only if they
have the same skeleton and the same set of V-structures.

4.2 Appendix: Lexicon and notation

Graph. A graph G is a pair (V, E), where V is a finite set of nodes (or, equivalently,
vertices) and E ∈ V ×V is the set of edges. Edges can be undirected (both (X, Y ) and
(Y, X) are in E) and undirected (exactly one of the edges {(X, Y ), (Y, X)} is in E). If
a graph has only undirected edges it is called an undirected graph, whereas if all the
edges are directed it is called directed. A subset of graphs containing both directed
and undirected edges, the so-called chain graphs, will be defined in the following.

Subgraph. If A ⊂ V is a subset of a vertex set it induces a subgraph GA = (A, EA),
where EA ⊂ E is obtained from E so that only edges with both endpoints in A are
kept. A graph is complete if all its edges are joined by an edge. A subset is complete
if it induces a complete subgraph. A complete set that is maximal (with respect to
⊂) is called a clique.

Neighbours of a node. If there is an edge between X and Y , they are said to be
neighbors or adjacent. The set of neighbors of a vertex X is denoted ne(X). If there
is neither edge nor arrow between X and Y they are said to be non-adjacent. If there
is an arrow pointing from X to Y , then X is said to be a parent of Y and Y is said to
be a child of X. The set of parents of Y is denoted pa(Y ) and the set of children of
X is denoted ch(Y ).

The expression pa(A), ch(A), ne(A) denote the parents, children and neighbors of
veritces in A that are not themselves elements of A. The boundary bd(A) of a subset
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X1 // X2

X4

OO ??

X3oo

Fig. 4.3 Paths and cycles. A sequence (X1, X2, X3, X4) is a partially directed path. A
sequence (X3, X4, X1, X2) is a directed path. (X1, X2, X3, X1) is a 3-cycle. An example
of a chain is sequence (X1, X2, X4).

A is a subset of V \ A of parents and neighbors of vertices in A

bd(A) = ne(A) ∪ pa(A).

The closure of A is defined as cl(A) = A ∪ bd(A). We say that a set of nodes C

separates sets A and B in an undirected graph G if every path from a node in A to a
node in B contains at least one node from C.

Paths and cycles. A path of length n from X to Y is a sequence of distinct vertices
X0 = X, X1, . . . , Xn = Y , such that (Xi, Xi+1) belongs to E, for i = 0, 1, . . . , n − 1.
Thus, a path can never cross itself and it can never go against the direction of the
arrows. In general, we can distinguish undirected, partially directed and directed
paths. If all edges are directed, we call it a directed path. A partially directed path
is such that it can contain directed and undirected edges (see Figure 4.3). Clearly,
a directed path is a special case of a partially directed path. An undirected path
has all edges undirected. A chain of length n from X to Y is a sequence X0 =
X, X1, . . . , Xn = Y of distinct vertices, such that Xi → Xi+1 or Xi ← Xi+1 for all
i = 0, . . . , n− 1. A n-cycle is a path of length n, such that X = Y . The cycle is said
to be directed if it contains an arrow.

Directed acyclic graph. Directed graphs without cycles (called directed acyclic
graphs or DAGs) play an important role in statistics and will be used throughout
this work. In addition to graph theoretic objects already defined, a few additional
terms will prove useful when dealing with DAGs. For a node X, we define the set
of its descendants, de(X), as a set of all nodes Y , such that there is a directed path
between X and Y . We further define the set of non-descendants of X as nd(X) =
V \ {de(X) ∪ {X}}. The skeleton of a DAG G is an undirected graph obtained from
G by replacing all the arrows with undirected edges. A V-structure (or an unshielded
collider) is a three nodes structure consisting of a child node and two unmarried
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Fig. 4.4 V-structure.

parents, see Figure 4.4.

Topological ordering of nodes. Topological ordering of vertices of a directed
acyclic graph is such that if a variable X is an ancestor of a variable Y in a graph
G, then X precedes Y in that ordering. Obviously, such an ordering is generally non
unique but always exists, see for example Bondy and Murty (2010).

Chain graph. Chain graphs contain both directed and undirected edges and can be
seen as a generalization of both directed and undirected graphs. The vertex set V of
the chain graph is partitioned into numbered subsets, the so-called chain components
V = V1 ∪ . . . ∪ VT such that all edges between nodes belonging to the same subset
are undirected while all edges between different subsets are directed, pointing from
the set with a lower number toward the set with a higher number. Such graphs are
characterised by having no partially directed cycles. An undirected graph is a special
case of a chain graph when there is a single chain component, while a directed acyclic
graph is a special case of a chain graph, when all chain components consist of a single
vertex.

Moral graph. For a chain graph G, we define its moral graph GM as the undirected
graph with the same vertex set but with X and Y adjacent in GM if and only if either
X → Y or Y → X or if there are Z, W in the same chain component such that X → Z

and Y → W . In the special case of a DAG, moralization consists of first marrying the
unmarried parents (see Figure 4.4) and then replacing arrows with undirected edges.



Chapter 5

Guided learning in graphical
models

As stated in the previous chapters, we are motivated by the need of defining a statistical
framework for gene silencing. We intend to develop such framework within graphical
modelling. The first step is therefore eliciting a graphical model for a set of interacting
genes. Information about interactions among genes is present in the pathway diagram,
so one could simply translate this diagram into a graph (directed or undirected). It
is often the case, however, that this structure can be significantly improved upon
in the light of experimental data. In this Chapter, we discuss this issue, with the
aim of combining available biological knowledge with the data on gene expression
measurements. This aim falls within the scope of learning in graphical models.

When talking about learning in graphical models, we distinguish two broad classes
of problems: estimating the parameters of a model when a graphical structure is given,
and learning the structure of the model from data. While the former is usually consid-
ered a traditional problem of statistical inference, the latter is usually covered in the
machine learning literature. In Section 5.1, we propose a method for guided structure
learning in situations when some prior information is available, but somehow vague
to be fully trusted. In Section 5.2, we look at various structure learning algorithms
and empirically compare their performance to that proposed in 5.1. In Section 5.3,
we propose to assess the uncertainty in the learned structure via resampling. Finally,
in Section 5.4, we tackle a guided penalized estimation of large dimensional matrices
in Gaussian graphical models.
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5.1 Guided structural learning

The problem of inferring the network of genes from gene expression data (commonly
referred to as “reverse engineering”) has received much attention in the computational
biology literature in the last two decades (see Bansal et al., 2007, for a comparative
review). Here, we do not aim at inferring a network from data only; instead, we want
to inform the learning strategy about the relations among genes that are described in
a pathway.

Our solution is based on a modification of a very popular structure learning algo-
rithm, the so-called K2 algorithm (Cooper and Herskovits, 1992). K2 algorithm is one
of the first solutions to the problem of learning DAGs from data. Before, DAGs were
usually constructed by hand, in close collaboration with domain experts. Obviously,
that approach had limitations associated with the size of the considered network and
the availability of the domain knowledge. This motivated the search for a procedure
that would construct DAGs automatically. In their highly original work, Cooper and
Herskovits (1992) proposed a new Bayesian score function, the K2 score, that scores
individual DAGs reflecting how well they fit the observed data. The task is then re-
duced to finding the structure that maximizes the considered score. Unfortunately,
the search is not trivial, since the number of possible structures grows exponentially
with the number of nodes. To reduce the search space, the K2 algorithm takes as an
input in addition to the data, the ordering of variables.

Although specification of the topological ordering of variables might seem limiting
in some cases, in our context it proves to be a desirable property as it provides an
opportunity to include prior knowledge about the graphical structure. We therefore
transform the pathway into a DAG and then pass its ordering to the algorithm. The
main strength of this proposal is its simplicity and low computational cost: biological
knowledge is incorporated without specifying a prior distribution on the space of all
possible graphs, which proves to be very difficult in practice. Our proposal uses prior
information without relying on a fully Bayesian approach.

5.1.1 Background on the K2 algorithm

The K2 algorithm belongs to the score based approaches to structure learning. It
uses a Bayesian scoring function to score individual graphs and indicate how well they
fit the data. One of the main results presented in the paper Cooper and Herskovits
(1992) is the analytical expression giving, under very mild conditions regarding the
uniform prior distribution, the posterior probability of a DAG structure. The K2 score
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is based on that result.

Theorem 5.1.1 Let there be n i.i.d observations of p discrete variables X1, . . . , Xp,
where Xi has ri possible values (vi1 , . . . , viri

). Let G be a DAG containing these vari-
ables. Let pai denote the set of parents of Xi in G. Let wij denote the jth unique
realization of pai. Suppose there are qi such unique realizations. Define Nijk to be the
number of observations in which Xi assumes the value vik and pai has the value wij.

Let
Nij =

ri∑
k=1

Nijk.

If the prior distribution is uniform over a set of all possible DAGs on p nodes, then
K2 score of the structure G corresponds up to a constant to its posterior probability
and is given by

g(G) =
n∏

i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk!. (5.1)

For the proof, we refer the interested reader to the original article.
The K2 algorithm searches for the graph that maximizes the K2 score among all

DAGs. To explore the space of possible structures, it makes use of the one step greedy
search strategy (the justification for this strategy is given in Section 5.1.2). It also
requires a topological ordering of the variables. We recall, a topological ordering of a
directed graph is an ordering of its nodes, such that for every directed edge Xi → Xj,
Xi precedes Xj in the ordering.

The algorithm looks for an optimal parent set for every variable starting from
the first one in the topological ordering. For a fixed node, the algorithm starts from
the empty parent set, and considers the set of candidate parents consisting of all the
variables that precede the fixed node in the ordering. The parent whose addition
most increases the score of the resulting structure is added to the parent set. When
no addition of a single parent can increase the score, it stops adding parents to the
variable and moves to the next variable in the ordering. Since an ordering of the nodes
is known beforehand, the search space under this constraint is much smaller than the
entire space. The following pseudocode expresses this heuristic search approach.

K2 algorithm is designed for discrete data, while our gene expression measurements
are continuous. To bypass this issue, we can make our observations categorical (we
pursue this in the next Section) or modify the algorithm to allow for continuous data.
Here, we focus on the latter.
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Algorithm 1 K2 algorithm
{Input: n observations of p variables X1, . . . , Xp, a topological ordering, an upper
bound for the number of parents u}
for i = 0 to p do

pai ← ∅
Pold ← g(i, pai)
OKToProceed← true
while OKToProceed and |pai| < u do

let z be the node in Pred(xi) \ pai that maximizes g(i, pai ∪ {z})
Pnew ← g(i, pai ∪ {z})
if Pnew > Pold then

Pnew ← Pold

πi ← pai ∪ {z}
else OKToProceed← false
end if

end while
print “parents of the node: ”, xi, “are”, pai

end for

5.1.2 The CK2 algorithm

Our strategy consists of specifying the ordering of nodes according to the considered
biological pathway (more precisely, according to a DAG derived from the said pathway)
and using the K2 algorithm. However, one limitation of the K2 score is that it is
defined only for discrete, or more precisely, categorical variables. Gene expression
measurements are usually continuous. One possibility is categorization, which is the
direction that we take in the next Section. However, in some instances this is not
the best course of action (see 5.1.3) and so, in what follows, we extend the algorithm
allowing for continuous data. We call our proposal CK2.

To extend the method to continuous data one would need to modify the scoring
function. We thus considered alternative scoring criteria applicable to continuous data.
When considering alternatives, we restricted our attention to criteria that balance
the goodness of fit and model parsimony. The first one is the Bayesian information
criterion, which is, in its most general form, given by

log(maximized likelihood)− log(n)
2 × (n. of estimated parameters).
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In the case of a Gaussian bayesian network, this becomes

BIC = n
[
log |K̂| − tr(SK̂)

]
− log(n)

p∑
i=1

pai, (5.2)

where S is the sample covariance matrix and K̂ is the maximum likelihood estimate of
the concentration matrix. The BIC criterion belongs to the Bayesian scoring metrics
family and can be seen as an asymptotic approximation of the posterior probability of
the structure, i.e., the approximation of the full posterior probability integrated over
all possible parametrizations of the conditional densities for the given structure.

The second scoring criterion that we consider is the Akaike information criterion
differing in the multiplicative factor of the penalization term

AIC = n
[
log |K̂| − tr(SK̂)

]
− 2

p∑
i=1

pai.

In Section 5.2, we will consider further possibilities based on the quantity

log(maximized likelihood)−multiplier×
p∑

i=1
pai.

The asymptotic properties of the K2 algorithm, which depend on the consistency
of the scoring criterion and on the search strategy, are not affected in CK2. To see
this, we first recall the consistency of a scoring criterion.

Definition 5.1.1 (Consistency of a scoring criterion.) Assume that data are gen-
erated by some distribution P ∗ whose underlying DAG is G∗ (in other words, the set of
conditional independence relations that hold in P ∗ coincides with the set of conditional
independence relations implied by G∗). We say that scoring function is consistent if the
following properties hold as the number of observations goes to infinity, with probability
that approaches 1:

• the structure G∗ will maximize the score;

• all structures that are not equivalent to G∗ will have strictly lower score.

Haughton et al. (1988) showed that both BIC and AIC are consistent scoring
criteria. Chickering and Meek (2002) and Chickering (2003) derived optimality results
stating that the greedy search used in conjunction with any consistent scoring criterion
will, as the number of observations goes to infinity, identify the true structure (up to
an equivalence class, see 5.1.3). Therefore, asymptotic properties are preserved.
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Two aspects are also worth mentioning when choosing a search strategy: the com-
putational cost and the ease of implementation. The greedy search, that we use in
CK2 algorithm, allows to comfortably deal with the number of DAGs that grows
exponentially with the number of nodes, and is also easy to implement.

5.1.3 Notes and observations

Equivalence of DAGs. We have seen earlier in Section 4.1.2 that different DAGs
can encode the same set of conditional independence relations and cannot thus be
distinguished on the basis of observations alone. In statistical terms, this means that
the true DAG is identifiable up to an equivalence class. As a consequence, structure
learning algorithms usually output an object representative of the whole equivalence
class. A CPDAG (complete partially directed acyclic graph) contains both directed
and undirected edges. An edge between nodes i and j, present in the skeleton, is
directed in a CPDAG if and only if the orientation of that edge is the same across all
DAGs in the equivalence class. Otherwise, it remains undirected.

The approaches that work with a given ordering of variables (such as CK2), avoid
identifiability issue: the information provided by the topological ordering orients all
the edges, so that output is a unique DAG.

The topological ordering assumption. In some cases, the ordering is clearly
determined by the temporal aspect; in the majority of others, the need to specify the
ordering of variables beforehand is limiting. In our setting, it represents an opportunity
to include the biological knowledge about the system of studied genes. Neverthelss,
all results and inferences drawn on the basis of the refined pathway are then, as a
consequence, conditional on that topological ordering. Several issues might arise.
First of all, the topological ordering may be misspecified due to a number of reasons,
such as inaccuracy of pathway representation or the choices made in a translation
from a pathway diagram to a fully directed graph. Secondly, a DAG induces only a
partial order on the set of nodes, that is, not every pair of nodes is necessarily ordered
with respect to the relation of precedence (the most evident example is the set of
nodes of having no ancestors in a given DAG). In order to apply the algorithm we
need to extend it to a total order. The number of topological orderings of a given
DAG is a # P complete problem. In other words, while finding a single topological
ordering of a DAG is a simple task, finding all of them is anything but simple; in fact,
the # P complete class is sometimes referred to as the class of easy problems with
hard counting solutions. This greatly complicates the sensitivity analysis designed to
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address the issue of the uncertainty pertaining to a single chosen topological ordering.
We return to this issue in Section 5.2.4 and Chapter 7.

Discrete vs. continuous observations. Gene expression measurements are usu-
ally continuous. Nevertheless, it is still a debated issue whether one should analyze
these measurements directly or only after a categorization procedure. This question
boils down to: are there only a limited number of states a gene can assume (for in-
stance, “not expressed”, “under-expressed”, “normally expressed”, “over-expressed”)
that are then affected by a number of noise sources; or the gene expression values can
be considered inherently continuous? In any case, we believe that both approaches
are worth pursuing. In some cases, it might be more reasonable to categorize the mea-
surements. One such situation arises when the spectrum of possible states of genes
is wide enough, usually because gene expression is measured across different experi-
mental conditions. We can then safely assume, that at least some of the genes will be
affected by the change and will vary considerably (so that we observe different underly-
ing states). On the other hand, when expression is measured only in wild type samples
(steady state without any external intervention) it might be possible that the scale of
variation is too limited to assume that different underlying states are present in the
data. In that case, we can probably learn more by analyzing directly the continuous
measurements, assuming that even moderate variations in expression are informative,
and can help us gain some insight about relationships between studied genes.

Software availability. We note that, to the best of our knowledge, K2 algorithm
has not been implemented in R to date. For that reason, we implemented the original
version, along with the proposed CK2 in the form of R functions.
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5.2 Empirical comparison with alternative learning
strategies

Here, we compare our CK2 approach to a number of popular structure learning algo-
rithms by applying them to the experimental data from the Drosophila Melanogaster
experiment (see Chapter 3). Taking into account our primary aim, i.e., predicting the
effects of gene silencing, we evaluate different algorithms on the basis of the predictive
accuracy of the DAGs that they produce. Such DAGs need not necessarily provide a
good description of the underlying biological mechanism, but this is not an issue of
concern, since our goal is finding a good basis for making predictions in the presence
of possibly incomplete or inaccurate biological information.

Structure learning algorithms can be roughly divided into two major approaches:
search and score methods and constraints based methods. The first approach consists
of a score function that evaluates each structure with respect to the data, and a
search strategy employed to find the optimal structure according to this score. The
CK2 algorithm, that we proposed, belongs to this class. The second approach to
structure learning uses statistical tests such as chi-square or mutual information to
find conditional independence relations among the variables; these are then used in
conjunction with causality-driven orientation rules to construct DAGs (Pearl et al.,
1991). The PC algorithm (Spirtes et al., 2000) is the most popular representative of
this class of methods.

Most methods work with categorical variables, so in Section 5.2.1, we describe how
the gene expression measurements could be categorized prior to the application of the
structure learning algorithms. In Section 5.2.2, we explain how we assess the predictive
accuracy of considered algorithms. A brief description of the algorithms compared in
this study is given in Section 5.2.3. Finally, results are presented in Section 5.2.4, and
some final remarks are given in Section 5.2.5.

5.2.1 Categorization of expression measurements

As most structure learning algorithms make use of categorical variables, an extensive
empirical comparison requires to categorize our measurements. In the work that first
introduced the idea of using DAGs for representing gene regulatory networks, Fried-
man et al. (2000) considered both discrete and continuous models. In the first case,
they categorized the gene expression values to three categories (“under-expressed”,
“normally expressed”, and “over-expressed”) prior to the analysis; in the second case
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they assumed a multivariate normal distribution for the gene expression measure-
ments. They demonstrated strengths and weaknesses of both choices. It is clear that
the first strategy attenuates the effect of the technical variability. On the other hand,
it might lead to information loss, and is also sensitive to the choice of the categori-
sation procedure. The second strategy incurs no information loss, but is incapable of
capturing non-linear relationships between genes. In particular, combinatorial rela-
tionships (one gene is over-expressed only if a subset of its parents is over-expressed,
but not if at least one of them is under-expressed) can be modeled only with a discrete
Bayesian network. The two approaches thus seem complementary and we believe that
both can help researchers obtain the biologically relevant results, at least as a means
of postulating testable scientific hypothesis.

When the goal of categorization is to obtain categories which are meaningful from
the biological perspective, one would ideally have the control group (a previous exper-
iment) which would serve as a reference for comparison; if the measured expression
is significantly higher with respect to the control, it is labeled over-expressed. The
threshold point for significance has to be set in advance, based on subject matter con-
siderations and previous experiments. In Friedman et al. (2000) the ratio of the two
measurements was considered significant if greater than 20,5. Similar considerations
apply for “under-expressed” genes, the threshold being 2−0,5.

When control data are not available, we propose to perform categorization based
solely on data at hand. It is assumed that genes can assume only a few functional
states, for example “under-expressed”, “normal”, and “over-expressed”. The actual
measurements depend on these functional states and the amount of biological vari-
ability and technical noise. A plausible model for such data is a mixture of K normal
distributions, each centered at one of the K functional states

Xi ∼
K∑

k=1
τikN(µik, σ2

ik), i = 1, . . . , p,

where Xi is an expression of the considered gene, µik and σ2
ik are parameters corre-

sponding to the k-th functional state, τik the probability that an observation belongs
to the k-th component (τik ≥ 0,

∑K
k=1 τik = 1) and p is the number of considered genes.

In the example above shown K = 3. However, it is not always plausible to assume
that all K states are present in a single experiment, for example, certain genes remain
normally expressed in a wide range of conditions, others can only be downregulated,
etc. This led us to propose a data driven approach to categorization: a number of
components, that can vary from one (corresponding to a gene with only one observed
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state) to K (all functional states are present in the data) is estimated from the data
for each gene independently. The assumed model for the i-th gene is thus

Xi ∼
K̂i∑

k=1
τikN(µik, σ2

ik), i = 1, 2, . . . , p,

where K̂i is the estimated number of components for the i-th gene, τik are, as before,
the weights of individual components, µik, σik are component specific parameters. The
approach that simultaneously estimates the number of components in the mixture and
parameters pertaining to different components and then classifies each observation
according to the estimated model is called Model Based Clustering and was introduced
by Fraley and Raftery (2002). We used its implementation in the R package mclust
(Fraley et al., 2012). In what follows, we will denote Yi = (Yi1, . . . , YiK̂i

) the variable
obtained from Xi through the proposed categorization, where Yij = 1, if Xi falls to
category j, and zero otherwise.

5.2.2 Evaluation of predictive accuracy

As anticipated, we compare different algorithms in terms of their predictive accuracy.
Given the small sample size, to assess the predictive accuracy we adopt a “leave-one-
out” approach, where in each step the chosen learning algorithm is applied to the
data from which the single observation j has been removed. In the second step, the
removed observation is used to evaluate the predictive accuracy: prediction of the
value of every variable is computed given the values of all other variables.

It is worth noticing that when considering conditional distributions of individual
variables given the remaining ones in the context of DAGs, it is sufficient to restrict
attention to the Markov blanket. The Markov blanket of a given node in a DAG,
denoted mb(·), consists of the nodes’ parents, children and other parents of its children.
It is the set of variables which shields the given variable from the rest of the network.
More formally, considering without loss of generality the variable Y1, we have

P(Y1 | Y2, . . . , Yp) = P[Y1 | mb(Y1)]

Given that the networks of genes are typically sparse, this offers a considerable com-
putational relief, especially when the number of genes is large.

To measure the distance between the observed value and the predicted value
for variable Yi fixing all remaining variables to the values observed on the removed
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observation j, we use the Brier score, introduced in Brier (1950). Originally em-
ployed to assess the quality of rain forecasts, due to its simplicity and interpretability,
this criterion found its application in various other fields. In general, if we denote
jyi = (jyi1, . . . , jyiK̂i

) the observed value of variable Yi in the jth observation, the
Brier score is defined as

jbi = 1
2

K̂i∑
k=1

(jπ̂ik − jyik)2, (5.3)

where jπ̂ik is the predicted probability that Yi falls into the category k. The Brier
score measures the squared distance between the forecast probability distribution and
the observed value. It can assume values between 0 (the perfect forecast) and 1 (the
worst possible forecast).

In this empirical comparison, we will consider data from the fruit fly silencing
experiment. To make the comparison less dependent on the small sample size, we
use jointly the control and the knockdown data. We thus have n = 28 observations
of p = 12 genes denoted Y1, . . . , Yp. Adopting a “leave-one-out” approach, for every
algorithm we have n predictions, one for each observation that is being left out. We
measure the predictive accuracy of the algorithm with a scalar measure B

B =
n∑

j=1

p∑
i=1

jbi. (5.4)

Obviously, algorithms having lower score are preferred.

We compare algorithms designed for categorical and continuous data. The learn-
ing algorithms that work with continuous data produce predictions on the continuous
scale. In order to make them comparable with categorical predictions, we combine
discriminant analysis with the proposed categorization procedure. We classify con-
tinuous predictions into one of the gene specific components estimated in the initial
categorization. More precisely, we apply the discriminant analysis to the prediction
jX̂i; the output is the estimated vector of probabilities (jπ̂i1, . . . , jπ̂iK̂i

) that jX̂i falls
into associated categories. We can then plug this vector in the expression for the Brier
score (5.3).

5.2.3 Learning algorithms

Here, we introduce the algorithms that we consider in this empirical comparison.
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PC algorithm

The PC algorithm (named after its inventors Peter Spirtes and Clark Glymour), is a
popular constraint based algorithm, introduced in Spirtes et al. (2000). It starts from
the full undirected graph on p variables, and then moves sequentially to remove edges
not supported by the data.

• For each pair of variables Yi and Yj test whether they are independent. If so,
remove the edge between them.

• For each pair of variables that are still connected, test Yi ⊥⊥ Yj | Yk, for each
k ∈ {1, 2, . . . , p} \ {i, j}. If for some k the hypothesis is not rejected, remove the
edge between Yi and Yj.

• For each pair of variables that are still connected, test the conditional indepen-
dence given all possible sets of two variables. If for some conditioning set the test
does not reject the independence hypothesis, remove the edge between them.

• For each pair of variables that are still connected, check whether they are condi-
tionally independent given all possible sets of three variables. If so, remove the
edge between them.
...

• Finally, for any pair of variables that are still connected check whether Yi is
conditionally independent of Yj given all p− 2 other variables. If so, remove the
edge between them.

The PC algorithm, as every other constraint based learning algorithm, relies on the use
of conditional independence tests. The choice of which conditional independence test
to use depends on the nature of considered variables. In the case of discrete variables,
the most usual choice is the χ2 test of independence in contingency tables, and this is
our choice in this study. We note, however, that PC algorithm can be combined with
any consistent statistical test of independence. The sparsity of the obtained structure
depends on the chosen significance level of the tests: the higher the significance level
the lower is the number of edges. Here, we used two levels, i.e., 5% and 20%.

According to what has been stated so far, the output of the PC algorithm seems to
be an undirected graph that is a skeleton of the underlying DAG. However, the final
step of the algorithm uses simple probabilistic considerations, as well as the property
of acyclicity, to orient some of the edges. The output is thus a partially directed
acyclic graph, representative of a certain equivalence class. The PC algorithm is freely
available in the pcalg package (Kalisch et al., 2012), but is also implemented in the
commercial software Hugin. In this work, we rely on the latter implementation.
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Gobnilp

Recently a number of approaches to structure learning that do not rely on a search
strategy, but explore the entire space of DAGs, have been proposed. Two major
directions are dynamic programming and integer linear programming (ILP). For the
former, see for instance Koivisto and Sood (2004). We consider a representative of
the latter: the approach of Cussens (2011). Here, the problem of structure learning is
translated into an optimization problem with a linear objective function and a set of
linear constraints (including integrality constraints on the variables).

The approach is implemented in the freely available C program Gobnilp (Glob-
ally optimal Bayesian Network learning using Integer Linear Programming). Gobnilp
works fairly fast with moderately sized problems, and is allowing the user to specify
a large number of options and restrictions, such as the upper limit for the parent
set size, prior knowledge about probabilities of different parent sets, etc. Currently,
the default score is the BDeu: a particular case of the likelihood equivalent Bayesian
Dirichlet score. We opted for the BIC, for reasons of comparability with competing
approaches. We also employed two modifications of the BIC criterion, acting on the
penalty term. In particular, we considered two alternative multipliers of the penalty,
i.e., 10−3 and 10−9. In the former, the penalty is considerably smaller than in the BIC,
while in the latter the penalization is negligible so that this scoring criterion behaves as
the likelihood function. Given the small sample size, many structures approximately
maximize the likelihood, so a small but a non-zero penalty favours sparser structures.
The output of the GOBNILP algorithm is the globally optimal structure; when more
than one structure maximizies the score, the sparser one is preferred.

Detailed descriptions of K2 and CK2 are given in Section 5.1. Both of these
algorithms, along with gene expression measurements and a topological ordering, have
an additional input, i.e., the upper limit for the set of parents, which in this study
was set to two.

To summarize, in this empirical study, we consider the following options.

PC The PC algorithm using χ2 test of independence at the 5% significance level.

PC20 The PC algorithm using χ2 test of independence at the 20% significance level.

K2 The original K2 algorithm.

K2-BIC A modified K2 algorithm, where the criterion used to score competing DAGs
is BIC, while the search strategy remains the one step greedy search.
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G-BIC The Gobnilp algorithm with the BIC scoring criterion.

G-BICm The Gobnilp algorithm with the modified BIC criterion (the penalty term
is multiplied by a factor of 10−3).

G-BICl The Gobnilp algorithm where the modified BIC criterion (the penalty term
is multiplied by 10−9).

CK2 The CK2 algorithm proposed in 5.1.2. The only algorithm in this study that is
applied to the continuous measurements.

Full graph Corresponds to the complete directed acyclic graph, which is a directed
acyclic graph whose skeleton is a complete graph. In other words, the set of
conditional independence relations entailed by such a DAG is empty.

Empty graph Corresponds to the DAG containing no arrows. In other words, the
variables of such a graph form a system of independent random variables. This
is a very naive prediction method, but it may serve as a reference for comparison
with more advanced methods.

5.2.4 Results

In Table 5.1, we report the B score for each of the considered methods. Variables arm
and rok were excluded from the analysis, since in the categorized dataset they assumed
only one value. In our study K2 reaches the minimal B score, followed by the Gobnilp’s
likelihood method G-BICl. The K2 algorithm with the BIC score, K2-BIC, together
with the remaining Gobnilp methods, G-BICm and G-BIC, also perform reasonably
well with a slightly inferior score with respect to the leading twosome. On the other
hand, the PC algorithm in this study gives significantly less accurate predictions. One
possible explanation is that on the level of 5% optimal structures have too few edges
(see Table 5.3), which led us to consider the version with a higher nominal significance
level of 20% (PC20). The B score improves, but is still unable to approach the best
performing algorithms. The CK2 algorithm, seems to fail in this case. Its B score
is almost comparable to the one of the full graph (Full). A closer look suggests that
the gene dally, i.e., the gene that changes most dramatically between the conditions
of wildtype and knockdown, is responsible for a large part of the cumulative B score.

It is interesting to note that of the two methods on categorized variables using the
BIC score, K2-BIC and G-BIC, it is the former that minimizes the B score. This is a
little surprising, since Gobnilp finds globally optimal structures, while K2-BIC uses the
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ordering of variables, and thus might suffer from misspecification. In addition to that,
K2-BIC relies on the greedy search, possibly restricting the search space enough to
miss the global optima. In fact, structures found by Gobnilp have a lower BIC criterion
(and thus a better fit to the data), but are inferior when it comes to prediction. This
observation, together with a success of the K2, suggests that possibly the subject
matter knowledge employed to specify the ordering of variables is the reason behind
their good performance. To test this hypothesis, we generated 20 random orderings
and passed them to the K2 algorithm. Computed B scores for the first 10 of them
are presented in the Table 5.2. We see that for the ordering number 8, the B score
equals the one corresponding to the pathway ordering. Nevertheless, none of the ten
reported (and twenty computed) scores manages to outperform it, providing support
for the practice of using the prior information in the form of a topological ordering.

Figure 5.1 shows how the B score deteriorates with the addition of arrows to the
optimal structure found by K2. Here, the B score is a function of the number of
arrows present in the graph. It starts from the K2 structure, containing 15 arrows,
and ends with the full graph, containing 66 arrows. Structures in between are obtained
sequentially, by randomly adding a single arrow to the current structure. Obviously,
the order of addition of arrows plays a role, and thus this is only one possible way
in which the score might evolve between the two extreme points. Nevertheless, the
increasing trend of the dependence is informative and independent of the order of
arrow inclusion.

One of the reasons behind the success of the K2 algorithm might also be that it
identifies DAGs with a relatively high number of edges. To examine this possibility,
we computed the average size of the Markov blanket for all considered methods. The
results are reported in Table 5.3. We see that K2 indeed has a comparatively large
average Markov blanket size, but it is second to the Gobnilp’s likelihood method. The
ranking of methods with respect to their prediction accuracy suggests therefore that
the density of the graphs inferred by K2 is not the only reason for its good performance.

5.2.5 Conclusions

We compared a number of different approaches of inferring a network of genes on
the basis of gene expression measurements. In terms of prediction accuracy the most
promising one seems to be the K2 algorithm that, in addition to the experimental
data in the form of categorized measurements, requires information regarding the
topological ordering of genes. K2 is followed by the Gobnilp’s exact method with a
likelihood scoring criterion. The possible reasons for the success of K2 are twofold:
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its inferred graphs are more dense with respect to graphs inferred by other methods
(the property related to the K2 scoring criterion), and the use of prior information
that seems to point the search towards “better” models, at least when it comes to
prediction considerations. On the other hand, we attribute the somewhat surprisingly
low performance of CK2, in large part, to the use of the continuous measurements
that makes predictions much more sensitive and less robust. In fact, as already noted,
the gene dally is mostly responsible for its poor performance. The change of dally
between controls and knockdowns is mitigated in the categorization process, resulting
in a less dramatic impact on prediction. This suggests that the best course of action
might be a data driven categorization proposed in 5.2.1.

The results are obviously sensitive to the categorization procedure. When the range
of expression states is wide enough (which usually translates into observing samples
in different experimental conditions, such as wild type vs. perturbations), we prefer
the model based clustering approach to to the simpler quantile based approach, the
former being more justified from the biological perspective.

An important aspect of this study is the small sample size (n = 28), atypical in
machine learning applications, but very common in genomics setting. To overcome
this issue, most authors propose approaches Bayesian in nature. For instance, Fried-
man et al. (2000) focus on local features of the network regarding two or three nodes
and then use model averaging to find posterior probabilities of the features of interest.
Imoto et al. (2004) use prior biological knowledge in addition to data on gene expres-
sion levels to obtain more reliable estimates of the gene regulatory networks. Even
though the adequacy of this sample size for the goal of elucidating biological mech-
anisms at play is questionable, from the prediction perspective the results reported
here are encouraging: learned graphs manage to bring considerable improvement over
the procedure that does not assume or look for any conditional independence rela-
tions between genes (represented by the full graph). This is an important empirical
conclusion that we draw from this study.

All considered approaches assume there are no missing values in the data, which is
true of our experiment. Unfortunately, in many real life datasets this is not the case.
In gene expression experiments the percentage of missing values is usually small, so
that incomplete observations can be ignored without introducing a serious bias. When
the percentage of incomplete observations is not negligible, the course of action should
be based on a careful investigation of the nature of the missing values.
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Fig. 5.1 B score as a function of the number of edges in the DAG.
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Table 5.2 The (B) score for ten randomly generated orderings passed to K2.

Ordering of variables B

6, 5, 2, 8, 4, 1, 12, 7, 3, 9, 10, 11 22.87
6, 11, 9, 5, 2, 7, 1, 4, 8, 10, 12, 3 17.38
4, 7, 11, 3, 8, 2, 1, 10, 9, 6, 12, 5 15.38
9, 3, 12, 8, 11, 6, 1, 5, 4, 10, 7, 2 19.87
9, 10, 7, 8, 6, 4, 11, 3, 2, 5, 12, 1 15.38
6, 2, 11, 5, 8, 3, 12, 9, 4, 10, 1, 7 19.87
8, 3, 4, 11, 1, 12, 9, 7, 6, 5, 10, 2 19.87
7, 2, 3, 5, 11, 8, 6, 10, 4, 12, 1, 9 14.38

10, 12, 1, 2, 6, 5, 9, 7, 4, 8, 3, 11 20.38
9, 7, 8, 11, 1, 6, 10, 5, 2, 3, 12, 4 16.10

Table 5.3 Average size of the Markov Blanket for different algorithms.

Average size
PC 0.98
PC20 1.32
K2-BIC 2.30
K2 2.64
G-BIC 2.15
G-BICm 2.49
G-BICl 2.71
CK2 4.10
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5.3 Model uncertainty

An important question that arises when learning graphical structures from data is
the degree of confidence we have in the learned graph. Asymptotic results guarantee
that, in the limit, the “true” structure will be identified. In practice, we deal with
finite samples, and so usually several networks have similar scores. This is particularly
true when the sample size is limited. Unfortunately, this is the typical situation when
learning biological networks. In a standard gene expression experiment, the number
of genes is of the order of hundreds, while the number of biological samples is of the
order of tens. For purposes of comparison, we note that in other applied settings,
such as engineering or social sciences, the situation is quite different: either thousands
of observations of a particular system are available (see, for example, the ALARM
network featured in Cooper and Herskovits, 1992), or the number of considered vari-
ables is much lower (see, for example, The causes of publishing productivity study in
Spirtes et al., 2000, chap. 5).

Especially when the sample size is small, whatever approach to structure learning
is chosen, it is the case that many different structures will fit the data almost equally
well. In case of a score based algorithm, one structure will usually maximize the scoring
function, but many others will have only a slightly inferior score. Is it then justifiable
to base our inference on a single “best” model? Many would respond negatively. Here,
we propose a simple method to evaluate the level of uncertainty of the model learned
by the chosen structure learning algorithm.

In what follows, we will consider the network features, which are simply aspects of
interest of the underlying network. We will denote them by f(G), to highlight that
they are functions of the considered network. For instance, we might be particularly
interested in a presence of a specific edge X → Y , so that f(G) = 1, when such edge
is present in G, and f(G) = 0 otherwise. Another interesting example is the relation
of ancestry between two nodes, so that f(G) = 1, whenever there is a directed path
between X and Y . Network features are not limited to pairwise relations, but for now,
for reasons of simplicity, we consider binary features.

If we adopt a Bayesian approach to the problem, the quantity of interest is the
posterior probability of the chosen feature

P(f | X) =
∑
G

f(G)P(G | X),

where the sum is taken over the set of all possible structures G. Obviously, as we
saw earlier, given the number of possible structures, summing over all of them is not
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feasible, save the special case of networks of up to five nodes. One possibility is to
approximate this probability by considering a sample of size M from the posterior
distribution on the space of structures

P(f | X) =
∑M

m=1 f(Gm)P(Gm | X)∑M
m=1 P(Gm | X)

. (5.5)

The question is how to obtain the sample G1, . . . , GM . One possible answer is to use
the general tool of Markov chain Monte Carlo (MCMC) simulation. In that case, we
need to define a Markov chain over the space of possible structures whose stationary
distribution is the posterior distribution P(G | X). A simpler and computationally
inexpensive solution is offered by bootstrap. To apply the bootstrap approach, we
resample observations with replacement from the original dataset many times, and
we learn the graphical structure for each generated dataset. In this way, we obtain a
number of DAGs which are all reasonable models for the data at hand. We apply the
bootstrap approach as follows:

• Sample data with replacement from the original dataset M times, to obtain M

samples Xm, m = 1, . . . , M .

• Apply the structure learning algorithm to each Xm, to obtain Ĝm, m = 1, . . . , M .

• Approximate the probability of the feature by

P̂(f) = 1
M

M∑
m=1

f(Ĝm).

Simulation studies by Friedman et al. (1999) show that bootstrap based estimates
are very reliable, so that features with high estimated probabilities are rarely false
positives. Moreover, they correlate very well with the Bayesian posterior probabilities,
shown in (5.5), even though structures are not weighted in proportion to their posterior
probability.

We now turn our attention to our specific problem: the assessment of uncertainty
in structure learning. We consider a set of variables X1, . . . , Xp. We are motivated by
the pathway refining algorithm CK2. In particular, we use aforementioned strategy to
address the issue of confidence in the learned structure. In order to do that, we define
as the feature of interest the adjacency matrix

A = {aij}p
i=1,j=1 =

 1 if Xi ∈ paj;
0 otherwise.
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There is a one to one correspondence between DAGs and adjacency matrices. In fact,
the 1s in the columns of the matrix A correspond to parent sets; the column j gives
parents of variable Xj. So, we set f(G) = A, and apply the bootstrap approach. We
obtain a matrix Â = {pij}, where pij gives the proportion of the learned graphs in
which the edge Xi → Xj is present. We can use this result to form the so-called
consensus (or, average) DAG Ĝ. We choose a threshold value c, and then include in
Ĝ edges for which pij > c. The question is how to choose the threshold level in an
optimal way. The high levels of c ensure the high reliability of the included edges,
but might lead to missing some important links. On the other hand, by lowering c,
we permit more spurious edges. One possible solution is to take into consideration
the expected number of edges in the underlying biological network. It is common to
assume that biological networks are sparse, and we are usually able to quantify this
assumption rather accurately. This is the approach that we take in Section 6.2.

We interpret the consensus DAG as a graph that shows relationships that are robust
with respect to small perturbations in the input data. It should be kept in mind that,
as with a refined graph, the arrows lose a part of their physical interpretation. However,
this is not worrisome, given that the structural discovery of the underlying mechanism
is not our primary goal. Instead, we use this DAG as basis for the intervention
analysis for simulating effects of gene silencing. We note that the similar idea of using
a consensus network is also present in Shojaie et al. (2014). The main difference is
that in their approach the resulting average graph is not necessarily a DAG, given that
they consider multiple topological orderings when learning the structure from data.
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5.4 Shrinkage

The starting point of many statistical procedures in graphical modelling is the esti-
mation of the structured covariance matrix of a normally distributed random vector.
In this Section, we tackle the estimation of the covariance matrix when the number
of variables under consideration is of the same order of magnitude as the number of
available statistical units, a situation encountered often in genomics data.

It is a well known fact that in high dimensional settings the usual estimate of
the covariance matrix, the maximum likelihood estimate, or closely related sample
covariance, may not be invertible. Even when it is invertible, it might be ill conditioned
(the estimation error is amplified after inversion), a feature especially worrisome in
graphical models where the concentration matrix plays a crucial role. To obtain an
estimator that will be both invertible and well conditioned, Ledoit and Wolf (2004)
proposed a shrinkage approach. In this case, the shrinkage estimator is a weighted
average of the sample covariance matrix and the identity matrix (sometimes referred
to as the target). By choosing the optimal shrinkage intensity (the weight given to
the identity matrix), undesired properties of the two individual estimators, a high
variance of the sample covariance and a bias of the identity matrix are balanced out. In
addition to that, the estimate is always invertible, even when the sample covariance is
a singular matrix. The strength of their approach lies in a theoretical result concerning
the optimality of their estimator in the general asymptotics framework. While in a
standard asymptotics framework, the number of variables p is fixed and the number
of observations n goes to infinity, in general asymptotics both n and p go to infinity.
The only condition is that the ratio p/n remains bounded. The authors note that
this framework is more relevant to most real world applications where p and n are of
comparable size, and report simulation studies showing that even for 20 observations
and 20 variables asymptotic results apply.

We adapt the approach of Ledoit and Wolf to the graphical models setting. We do
that by replacing the identity matrix with a different target, a target that encodes the
presumed graphical structure. In other words, we propose to estimate the covariance
matrix as an optimally weighted average of the the sample covariance matrix (the
unconstrained estimate) and a target reflecting the graphical structure (constrained
estimate). There are a number of ways to choose a target matrix encoding a graphical
structure. We will propose three choices, each characterized by a different number of
parameters.

Clearly, choosing the right weight (shrinkage intensity) to give to the target is
essential. We follow the asymptotic approach of Ledoit and Wolf. Intuitively, when
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the sample covariance and the target estimate differ slightly the weight of the latter
should be higher, while the large difference indicates that the lower dimensional target
is misspecified.

The outline is the following. In Section 5.4.1, we review the standard results
concerning estimation of a covariance matrix in Gaussian graphical models. In Section
5.4.2, we propose a new penalized estimator and discuss the estimation of the shrinkage
parameter, while in Section 5.4.3, we study its properties via simulations.

5.4.1 Background

Let us assume that we have n observations, x1, x2, . . . , xn, of a p-variate normal ran-
dom vector X, where possibly p > n, and, in addition, assume that there is an
undirected graph G = (V, E), such that the distribution of X is Markov with respect
to G. Then the model assumed for the data is

(X1, . . . , Xp)′ ∼ Np(µ, Σ), µ ∈ Rp, Σ−1 ∈ S+(G),

where S+(G) is the set of all p × p symmetric positive definite matrices with null
elements corresponding to the missing edges of G (see Lauritzen, 1996). In that
case, the smaller the number of edges of G is, the greater is the number of zeros in
the concentration matrix and thus the smaller is the number of free parameters to
estimate.

Our goal is to estimate the covariance matrix Σ. We report the result concerning
the maximum likelihood estimate.

Theorem 5.4.1 The maximum likelihood estimate of Σ exists if

S = 1
n

n∑
i=1

(xi − x̄)(xi − x̄)′

is positive definite, where x̄ is the sample mean vector. This happens with probability
one when n > p . In the case it exists, the estimate is determined as the unique
solution of the system of equations

σ̂ii = sii, σ̂ij = sij, i ∈ V, {i, j} ∈ E,

which also satisfies model constraints Σ−1 ∈ S+(G) .

Note that the condition n > p is sufficient, but not necessary for the existence
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of the maximum likelihood estimate of Σ. On the other hand, necessary, but not
sufficient condition is n > max {|c|, c ∈ C}, where C is the set of cliques of G.

The above theorem specifies which equations to solve to find Σ̂ but does not give
any advice on how to do so. In general, the system of equations needs to be solved
by iterative methods. The algorithm usually employed is the Iterative Proportional
Scaling (IPS), introduced by Dempster (1972), which iteratively adjusts the concen-
tration matrix until the right zero pattern of the concentration matrix is obtained,
all the while maintaining the equalities pertaining to the elements of the covariance
matrix.

5.4.2 The proposal

In the situation when the sample size is small, so the maximum likelihood estimate
of the covariance matrix either does not exist, or is expected to exhibit very high
variance, we propose a shrinkage approach that incorporates explicitly information on
the graphical structure. It amounts to shrinking the sample covariance matrix towards
a constrained estimate embedding the conditional independence properties stored in
the graphical structure. The proposed estimator is of the following form

U = λT + (1− λ)S, (5.6)

where S is the sample covariance matrix, T is a target matrix and λ is the shrinkage
parameter. In Ledoit and Wolf (2004) T is taken to be an identity matrix I.

Our choice of matrix T is guided by two criteria: it should be positive definite, so
that U, being a convex combination of a positive semidefinite and a positive definite
matrix, is also positive definite; and it should reflect the graphical structure of the
considered distribution.

To define the first target, we consider first a matrix T0
1 parametrized by two pa-

rameters, one for the common variance and one for the common covariance

T0
1 =


v c · · · c

c v · · · c
... ... . . . ...
c c · · · v

 .

Then, we impose constraints on its inverse such that (T0
1)−1 ∈ S+(G). As a result, we

obtain a matrix T1, which satisfies both of our conditions.
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A second target T2 could be obtained starting from the following initial matrix

T0
2 =


v1 r

√
v1v2 · · · r

√
v1vp

r
√

v2v1 v2 · · · r
√

v2vp

... ... . . . ...
r
√

vpv1 r
√

vpv2 · · · vp

 ,

which assumes constant correlation between variables but permits different variances.
It requires estimation of p + 1 parameters.

To obtain targets in practice, we estimate initial matrices from data and then pass
them to the IPS algorithm to ensure that their inverses have the right zero structure.

The matrix U resulting from (5.6) will be invertible, but its inverse, in general, will
not have the desired zero structure corresponding to the missing edges of G. Therefore
in the last step, we apply the IPS algorithm to U to ensure that the model constraints
are satisfied.

A key question in this procedure is the choice of the shrinkage parameter λ. If no
prior knowledge is available to motivate a specific choice, it is not obvious what strategy
should be adopted in eliciting the optimal value. We define the optimal value the one
that leads to the estimator minimizing the expected distance from the true covariance
matrix. As a measure of distance between two matrices we might consider, for example,
the Frobenius distance, ∥A − B∥F /p, where ∥A − B∥F =

√
tr[(A−B)′(A−B)]

Consider the squared distance between the shrinkage estimate and the true covariance
matrix:

tr[(U− Σ)′(U− Σ)] = tr[(λT + (1− λ)S− Σ)′(λT + (1− λ)S− Σ)]

=
p∑

i=1

p∑
i=1

[λtij + (1− λ)sij − σij]2

=
p∑

i=1

p∑
i=1

[λ(tij − σij) + (1− λ)(sij − σij)]2

where we used the proposition on the trace of a product tr(AB) = ∑ ∑
aijbji, and

in particular tr(A′A) = ∑ ∑
a2

ij. Let R(λ) denote the expected value of the squared
Frobenius distance from the true covariance matrix. We have:

R(λ) = E {tr[(U−Σ)′(U−Σ)]}

=
p∑

i=1

p∑
i=1

{
λ2

[
var(tij) + bias2(tij)

]
+ (1− λ)2var(sij)+

2λ(1− λ)cov(tij, sij)} .
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The value of λ that minimizes the above function can be found by setting the first
derivative of R(λ) to zero. We obtain:

λ∗ =
∑p

i=1
∑p

j=1 [var(sij)− cov(tij, sij)]∑p
i=1

∑p
i=j

[
var(tij) + bias2(tij) + var(sij)− 2cov(tij, sij)

]
=

∑p
i=1

∑p
j=1 [var(sij)− cov(tij, sij)]∑p
i=1

∑p
j=1 E (tij − sij)2 . (5.7)

We make a few observations about how the optimal shrinkage intensity, shown in (5.7),
behaves.

• The smaller the variance of the elements of the sample covariance matrix, the
smaller is the shrinkage intensity λ∗, implying that with an increasing sample size
the effect of the target matrix diminishes and the shrinkage estimator converges
to the maximum likelihood estimator.

• The smaller is the difference featured in the denominator, between the elements
of the sample covariance and the target matrix, the more weight is given to
the target matrix. Conversely, when the difference between the two is high,
the shrinkage intensity decreases. This implicitly protects against a misspecified
target.

• Finally, we note that λ∗ is translation invariant but not scale invariant. The
dependence on the scale, which is a general property of many regularization
procedures (such as lasso or ridge regression), should be taken into account.
When variances of variables are of different orders, the effect of shrinkage might
vary considerably depending whether it is applied to a covariance or a correlation
matrix.

The expression for the optimal shrinkage intensity λ∗ contains quantities related
to the distribution of the elements of the sample covariance matrix (var(sij)), as
well as the joint distribution of the sample covariance and the constrained estimate
(cov(tij, sij) and E (tij − sij)2). To estimate these quantities we can adopt a bootstrap
approach. We draw 200 samples with replacement from the original data and for each
sample we compute both the sample covariance and the constrained estimate. On
the basis of the bootstrap sample, we compute the variance of the elements of the
sample covariance, as well as the covariance of the corresponding elements of the two
estimators. By plugging in these estimates in (5.7), we can obtain the estimate of the
optimal shrinkage intensity.
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In some high dimensional datasets the cost of the bootstrap might be prohibitive.
In those instances, we can consider a different target matrix containing no parameters
to be estimated. This approach is closer to the standard shrinkage approach, where
the sample covariance is shrank toward the identity matrix. Consider a simple initial
matrix that reflects the presumed graphical structure. One can start from the matrix

T0
3 =


1 0.1 · · · 0.1

0.1 1 · · · 0.1
... ... . . . ...

0.1 0.1 · · · 1

 .

As before, one then passes T0
3 to the IPS algorithm to obtain T3. Since the target

matrix is now deterministic, the expression (5.7) simplifies to

λ∗ =
∑p

i=1
∑p

j=1 [var(sij)]∑p
i=1

∑p
j=1 E (tij − sij)2 .

The expression in the denominator, featuring the expected value of the squared dis-
tance can be replaced with ∑p

i=1
∑p

j=1 (tij − sij)2 without affecting significantly the
value of λ. As for the estimation of the variances featuring in the numerator, we
proceed in the following way. Without loss of generality, we assume that considered
variables have zero means. We define product random variables Wij = XiXj, for
i, j = 1, . . . , p. We then have E(Wij) = cov(Xi, Xj). Let wkij be the kth observation of
the variable Wij, k = 1, . . . , n, and W ij the corresponding sample mean. The sample
covariance sij equals n/(n− 1)W ij. We thus have

var(sij) = n2

(n− 1)2 var(W ij)

= n

(n− 1)2 var(Wij).

Substituting var(Wij) with its unbiased estimate we obtain

v̂ar(sij) = n

(n− 1)3

n∑
k=1

(
Wkij −W ij

)2
.

5.4.3 Simulation studies

Performances of the proposed approach are studied via simulation in a number of
different scenarios. For each scenario, we will compare three novel shrinkage estimators
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based on targets T1, T2 and T3 with the standard shrinkage estimator (where the
target is the identity matrix I). For purpose of comparison, we also include the sample
covariance matrix S. In fact, in a standard asymptotics framework, with increasing
sample size the weight given to the shrinkage target should vanish, and so all considered
shrinkage estimators should converge to the sample covariance. The sample covariance
thus serves an additional purpose of a quick check of the convergence.
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Fig. 5.2 DAGs used in the first simulation study (ordered clockwise from the upper left
corner): the true structure used to generate data, the first misspecified structure with
the added edges shown in blue, the second misspecified structure with the deleted edges
shown in red, the third misspecified structure corresponding to a randomly generated
DAG.

In the first simulation study, we consider a DAG whose structure is shown in Figure
5.2 in the upper left corner. This DAG, of 10 nodes and 21 edges, was taken from
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Rau et al. (2013). Data were simulated according to equation (6.2). Parameters of
the distribution are chosen as follows. Without loss of generality, variables have zero
means. Non zero regression coefficients of the matrix B are drawn uniformly from
(−1,−0.25) ∪ (0.25, 1). Residual variances are set to σ2

j = j, j = 1, . . . , 10. The
variance matrix is then computed according to (6.2). Once the parameters are chosen,
1000 datasets are simulated for four different sample sizes n = 20, 30, 50, 100. We
consider the covariance matrix corresponding to the moralized graph and compute
the root mean square error based on the Frobenius distance for each estimator. In
this case target matrices T1, T2 and T3 are reflecting the true underlying structure.
The shrinkage estimator based on the identity matrix I is computed via cov.shrink
function of the corpcor R package (Schäfer et al., 2013). The results are shown in
Table 5.4.
Table 5.4 Root mean square error (and standard deviation) of different covariance
estimators; correctly specified structure

n T1 T2 T3 I S
20 2.64 (0.82) 2.75 (0.80) 2.79 (0.82) 2.84 (0.75) 2.83 (1.02)
30 2.18 (0.68) 2.27 (0.67) 2.28 (0.68) 2.36 (0.67) 2.27 (0.75)
50 1.73 (0.55) 1.79 (0.55) 1.78 (0.55) 1.83 (0.54) 1.78 (0.60)

100 1.20 (0.36) 1.23 (0.36) 1.22 (0.35) 1.26 (0.36) 1.22 (0.36)

The best performing estimator in this scenario is the shrinkage estimator based
on T1, characterized by two parameters. Interestingly enough, the second and the
third target give comparable results, even though the latter involves considerably less
computation. The third target, as well as the standard shrinkage target I perform only
slightly better than the sample covariance S in terms of the expected loss, but their
standard deviation is significantly lower. With 50 and 100 observations all estimators
give similar results, implying that shrinkage approaches place almost no weight on the
shrinkage target.

Next, we look at how the proposed shrinkage estimators perform when the target
is misspecified. We consider the same datasets as above, but the three estimators
shrink the sample covariance towards the “wrong” graphical structure. In the first
instance, that structure is obtained by randomly adding seven edges to the true DAG
(see the upper right corner of the Figure 5.2). The expected loss in this case is shown
in Table 5.5. The results are almost identical as before demonstrating that adding
edges does not burden the shrinkage estimators. This is not too surprising, since
it is missing edges that carry information in graphical models; they characterize the
conditional independence relations. By adding edges, we allow for dependence between
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Table 5.5 Root mean square error (and standard deviation) of different covariance
estimators: the first misspecified structure (additional edges).

n T1 T2 T3 I S
20 2.65 (0.82) 2.72 (0.82) 2.76 (0.83) 2.84 (0.75) 2.83 (1.02)
30 2.20 (0.68) 2.24 (0.67) 2.25 (0.68) 2.36 (0.67) 2.27 (0.75)
50 1.73 (0.55) 1.77 (0.55) 1.77 (0.55) 1.83 (0.54) 1.78 (0.60)

100 1.21 (0.35) 1.23 (0.36) 1.22 (0.35) 1.26 (0.36) 1.22 (0.36)

conditionally independent variables, which amounts to passing to a broader family of
models.

The exact opposite happens when we delete edges from a graph: we are forcing
conditional independence between dependent variables (assuming that the distribu-
tion is faithful to the graph). In this case, we are dealing with a truly misspecified
model. One such structure (see the lower left corner of the Figure 5.2) is obtained by
randomly deleting six edges from the true DAG. Results are shown in Table 5.6. As

Table 5.6 Root mean square error (and standard deviation) of different covariance
estimators: the second misspecified structure (missing edges).

n T1 T2 T3 I S
20 2.74 (0.79) 2.85 (0.77) 2.88 (0.78) 2.84 (0.75) 2.83 (1.02)
30 2.32 (0.64) 2.41 (0.63) 2.41 (0.64) 2.36 (0.67) 2.27 (0.75)
50 1.92 (0.51) 1.97 (0.50) 1.96 (0.51) 1.83 (0.54) 1.78 (0.60)

100 1.48 (0.30) 1.50 (0.31) 1.49 (0.31) 1.26 (0.36) 1.22 (0.36)

expected, in this case the effect of misspecification on the three shrinkage estimators
is visible, especially for larger sample size. Since the standard deviation remains the
same (or slightly decreases), all the additional error comes from the bias caused by
the misspecified model.

The last scenario investigating the effects of a misspecified target considers a ran-
domly generated graph on 10 nodes shown in the lower right corner of the Figure 5.2.
Given that the target in this scenario is completely misspecified, we expect the worst
behaviour of the novel estimators. The results in Table 5.7 confirm our intuition, but
nevertheless, the mean square error is still reasonably low, implying that the choice of
the shrinkage parameter λ is guarding us from giving too much weight to the target
when data do not support its structure.

In the second simulation study, we consider a DAG describing a particular bio-
logical pathway, the B cell pathway. The DAG derived from this pathway contains
35 nodes and is shown in Figure 5.3. This graph, alongside measurements of the ex-
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Table 5.7 Root mean square error (and standard deviation) of different covariance
estimators: the third misspecified structure.

n T1 T2 T3 I S
20 2.73 (0.73) 2.77 (0.76) 2.87 (0.72) 2.84 (0.75) 2.83 (1.02)
30 2.38 (0.61) 2.39 (0.61) 2.47 (0.61) 2.36 (0.67) 2.27 (0.75)
50 2.01 (0.47) 2.01 (0.47) 2.04 (0.47) 1.83 (0.54) 1.78 (0.60)

100 1.62 (0.28) 1.63 (0.28) 1.63 (0.28) 1.26 (0.36) 1.22 (0.36)

pression levels of the participating genes, is an example featured in the R package
topologyGSA (Massa and Sales, 2013). We use these expression measurements to es-
timate the parameters of the DAG, and then use the estimated model to simulate 100
datasets for each of the considered sample sizes. As before, we compare three novel
shrinkage estimators to the standard shrinkage estimator and the sample covariance
matrix. The results are shown in the Table 5.8.

Table 5.8 The B cell pathway model: root mean square error (and standard deviation)
of different covariance estimators, multiplied by 102.

n T1 T2 T3 I S

10 4.33 4.69 5.29 4.88 12.53
(0.51) (0.74) (0.68) (0.45) (1.59)

20 3.38 3.38 4.25 4.03 8.67
(0.41) (0.40) (0.38) (0.25) (0.77)

30 3.10 3.04 3.86 3.77 7.11
(0.40) (0.43) (0.41) (0.30) (0.72)

50 2.55 2.47 3.16 3.29 5.38
(0.35) (0.32) (0.28) (0.22) (0.37)

100 2.02 2.05 2.39 2.82 3.84
(0.27) (0.23) (0.20) (0.16) (0.28)

500 0.86 0.97 0.92 1.56 1.70
(0.12) (0.14) (0.12) (0.09) (0.10)

1000 0.57 0.64 0.60 1.14 1.20
(0.08) (0.09) (0.08) (0.06) (0.06)

2000 0.40 0.44 0.42 0.84 0.85
(0.05) (0.06) (0.06) (0.04) (0.04)

The first shrinkage estimator seems to give the best results in this simulation study
as well. The estimator based on the second shrinkage target performs comparably
well, sometimes slightly better than the first one. An interesting observation is that
for the small sample sizes the standard shrinkage estimator outperforms the competing
shrinkage estimator (the third target). This might be due to the very low sample size
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compared to the number of free parameters. Nevertheless, it would be of interest to
study the conditions under which it is recommendable to apply the standard shrinking
towards the identity matrix, even when considering structured matrices.

5.4.4 Discussion

In this Section, we studied the problem of estimation of structured covariance matri-
ces associated with Gaussian graphical models. We proposed three novel shrinkage
estimators, applicable in p > n setting. We performed simulation studies that showed
that they perform very well when the underlying structure is correctly specified, as
well as when the true structure is a subgraph of an assumed graph. Their performance
is affected when an underlying structure is misspecified. Nevertheless, the data driven
procedure for eliciting the tuning parameter guards against placing a lot of weight on
the misspecified target. Moreover, one of the conclusions drawn from the reported
simulation studies is that using shrinkage estimators is recommended even when the
sample covariance matrix is regular. Shrinkage estimators introduce bias, but when
the sample size is small, the error is usually smaller than the one caused by the high
variance of an unbiased estimator.
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Chapter 6

Intervention analysis

In the previous chapter, we studied the problem of finding a graphical structure,
coherent with biological knowledge and reasonably supported by the data, able to
provide a framework for gene silencing. Here, we deal with performing gene silencing
and measuring its effects. To this aim, we will consider gene silencing as an intervention
in a directed acyclic graph.

An intervention is an external manipulation of a subset of variables. Generally
speaking, the interest usually lies in predicting how the system will change in response
to the manipulation. In our case, the system is described through a suitable DAG. It
is tempting to interpret directed arrows as implications of cause and effect relations,
but this interpretation is not warranted in the standard graphical models framework.
To illustrate this point, consider two dependent variables X and Y and assume that
X precedes Y in time. The natural representation of their joint distribution would
be X → Y . However, there is nothing in the definition of the graphical model that
disqualifies the model X ← Y . Despite it going against our intuition, the two models
are on equal standing when it comes to representing their joint distribution. If the
graphical representation is in line with a potential causal explanation, intervention
becomes a key ingredient of causal inference. In fact, it is the natural causal inter-
pretation of edges that made DAGs central to much of the work in causal inference.
According to Lauritzen (2001) the connection between graphical models and causal
concepts brought up a renewed interest in the study of causality. But, it should be al-
ways clear that whether such an interpretation is justifiable depends on subject matter
considerations and should be addressed on a case to case basis.

For a detailed treatment of causal inference based on graphical models we refer the
reader to Pearl (2000), Spirtes et al. (2000), Shafer (1996). We conclude with a quote
from the highly interesting book by Shipley (2002):
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“In fact, with few exceptions, correlation does imply causation. If
we observe a systematic relationship between two variables, and we
have ruled out the likelihood that this is simply due to a random
coincidence, then something must be causing this relationship. . . A
more accurate sound bite for introductory statistics would be that
a simple correlation implies an unresolved causal structure, since we
cannot know which is the cause, which is the effect, or even if both
are common effects of some third, unmeasured variable.”

In Section 6.1, we give a brief overview of intervention calculus and in Section
6.2, we apply the proposed approach of simulating gene silencing to the data from
Drosophila Melanogaster experiment.

6.1 Intervention calculus

We define a DAG G to be causal for a set of random variables {Xv, v ∈ V }, if the
joint density factorizes with respect to G

f(x) =
∏
v∈V

f [xv | pa(xv)]

and it further holds for any A ⊂ V that

f(x || x∗
A) =

∏
v∈V \A

f [xv | pa(xv)]
∣∣∣∣∣∣
xA=x∗

A

= f(x)∏
a∈A f [x∗

a | pa(xa)]

∣∣∣∣∣∣
xA=x∗

A

,

where the notation f(x || x∗
A) denotes the post-interventional distribution, i.e., the

density of the distribution of X after manipulating XA, forcing it to assume the value
x∗

A.
The above formula is usually referred to as the intervention formula and can be

found in various forms in Pearl (2000) and Spirtes et al. (2000). Note that this is only
one possible definition of a causal DAG, see Spirtes et al. (2000) for an alternative
definition in terms of direct causes.

The so-called intervention formula provides a recipe for determining the effects of
interventions. Under the assumption that a DAG underlying the joint distribution
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is causal, the post-intervention distribution of the system can be found in terms of
the pre-intervention distribution. As was noted before, the assumption that a DAG
is causal is strong and not verifiable mathematically. It has to be justified in every
particular instance using subject matter knowledge. In fact, much of the controversy
about causal inference is not associated to the technical aspect of mathematical calcu-
lus, but, rather, to the underlying assumptions crucial for validity and interpretation
of the obtained results.

The intervention that is most commonly considered is the one that manipulates a
certain variable and sets its value to a constant. In general, we could be interested in
more general types of interventions, be that a simultaneous acting on more than one
variable or changing the distribution of the target variable, not necessarily setting it
to a specific value. Here, we will focus on the latter.

Consider random variables {Xi, i = 1, . . . , p}, so that V = {1, 2, . . . , p} and that
their joint normal density factorizes with respect to a DAG G,

f(x1, . . . , xp) =
p∏

i=1
f [xi | pa(Xi)] ,

Further, assume that G is causal for this system of variables. Let there be an inter-
vention targeting variable Xk, k ∈ {1, 2, . . . , p}, changing its marginal distribution to
f ∗(xk). According to the intervention formula, we can obtain the post-intervention
distribution in terms of the pre-intervention conditional distributions and the changed
marginal distribution of the targeted variable:

f ∗(x1, . . . , xp) = f ∗(xk)
∏
i ̸=k

f [xi | pa(Xi)].

Sometimes it might be useful to express post-intervention joint distribution f ∗(·) in
terms of the pre-intervention distributions f(·) and the post-intervention marginal
distribution of the variable affected by the intervention, i.e., f ∗(xk)

f ∗(x1, . . . , xp) = f ∗(xk)
f [xk | pa(Xk)]f(x1, . . . , xp).

We now look at estimation of effects of interventions. DAGs can be equivalently
defined in terms of structural equations

Xi = αi + βi
T pa(Xi) + ϵi, i = 1, 2, . . . , p;
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where ϵ ∼ N(0, σ2
i ) is the random disturbance, βi is the vector of regression coefficients,

and αi is the base level or an intercept. Assume that variables are topologically ordered
with respect to G. Then, the matrix of regression coefficients B = {βij}p

i,j=1 will be
strictly upper triangular. The matrix representation of the model thus is

X = α + XB + ϵ, (6.1)

where α = (α1, . . . , αp)′ and ϵ = (ϵ1, . . . , ϵp)′. By substituting this equality recursively
p− 1 times on the right hand side of (6.1), we obtain

X = α(I + B + . . . + Bp−1) + XBp + ϵ(I + B + . . . + Bp−1).

Since matrix B is strictly upper triangular, the power matrix Bp will be a zero matrix.
This further implies that the sum ∑∞

k=0 Bk has finitely many non zero terms (and
equals I + B + . . . + Bp−1). An established result in matrix algebra states that when
such a sum converges, its sum equals (I−B)−1 (Harville, 2008). Let L = (I−B)−1.
We can then express (6.1) as

X = αL + ϵL.

and can specify the model as

X ∼ N(µ, Σ), where µ = αL, Σ = L× diag
{
σ2

i

}p

i=1
× L′. (6.2)

This model representation is useful when investigating effects of interventions in terms
of effects on the mean and variance. To find parameters of the post-intervention distri-
bution, it is sufficient to replace an equation specifying the distribution of the variable
Xk with an intervention specification and then recompute the model parameters ac-
cording to the preceding formula.

For us, it will be useful to summarize intervention effects by a set of univariate
measures, the so-called silencing effects. The silencing effect δi gives the change in the
mean of Xi given the unit decrease in the mean of the targeted Xk

δi = E(Xi | Xk = α + 1)− E(Xi | Xk = α).

Since we assume a multivariate normal distribution, δi is independent of α. The vector
of silencing effects can be easily found through matrix algebra. Matrix

L = (I−B)−1 (6.3)
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is upper triangular having 1s on the main diagonal. The mean of the variable Xi is
now expressed as a linear combination of components of α

EXi =
p∑

j=1
αjlji

=
i−1∑
j=1

αjlji + αi

= αklki +
i−1∑

j=1,j ̸=k

αjlji + αi. (6.4)

If we assume that the intervention affects only the base level of the targeted variable
leaving all other αs unchanged, the silencing effect δi equals lki, where lki stands for
the element of L in the kth row and ith position. The vector of silencing effects
corresponding to an intervention on Xk is thus given by the kth row of the matrix L.

6.2 Application to real data

In this section, we apply the proposed approach for the prediction of effects of gene
silencing to the data from the Drosophila Menalogaster experiment. As already de-
scribed in Chapter 3, the data consist of two sets of 14 observations of 12 genes, the
first set corresponding to the treatment (knockdown) group and the second set cor-
responding to the control group. This experiment provides an excellent opportunity
to access the performance of our approach, since we are able to compare model based
predictions with observed effects of gene silencing. In order to that, we build a sta-
tistical model using only observations from the control group, and then compare our
predictions with the actually observed changes seen in the knockdown group.

Guided structural learning. The first step consists of refining the pathway. We
start from a DAG, containing 12 genes, constructed by hand by biologists on the basis
of the WNT pathway shown in Figure 3.1. We call this a pathway DAG (see left
panel in Figure 6.1). Next, we find a topological ordering of this DAG, using the
topological.sort function of the igraph R package (Csardi and Nepusz, 2006). We
pass the obtained ordering along with gene expression data of the control group to the
CK2 algorithm (see Section 5.1.2). The resulting network is shown in the right panel
of Figure 6.1.

Three issues are worth mentioning. First is the non-uniqueness of the topological
ordering. The result of the refining clearly depends on the chosen order, and so the
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Fig. 6.1 The pathway DAG (left) and the refined DAG obtained by CK2 (right).

conclusions based on the refined DAG are conditional on the ordering. One possible
remedy is to combine results from several orderings compatible with the pathway DAG.
In our study this is not necessary, since the part of the network downstream from the
silenced gene is stable across different orderings, and thus the predictions are not af-
fected by the choice of the initial ordering. The second issue is related to the choice of
the structure learning algorithm. We saw in Section 5.2 that approaches working with
categorized variables showed more promise than CK2 algorithm. However, we believe
that the biological intervention is more precisely reproduced on continuous measure-
ments. This statement was verified by performing intervention analysis on pathways
refined by different algorithms considered in Section 5.2. The results obtained by CK2,
not reported here, were superior with respect to the results of approaches that used
categorized measurements. Third, refinement can be used to find new hypothesis to
be tested or as a guidance for future silencing experiments. For instance, the refined
graph can signal a possible inaccuracy in the representation of molecular pathways.
In this study, the levels of the dally gene were increased dramatically after silencing,
an effect that could not be explained neither by the original pathway nor by refined
DAG. This led us to look for a possible explanation in the literature. It happens that
this gene, a participant of the WNT pathway, is itself regulated by the WNT path-
way, so that there is a feedback loop not depicted in the KEGG representation. This
explains its behaviour in the knockdown group, and inability of our models to predict
its values.
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Fig. 6.2 The consensus DAG.

Model uncertainty - the consensus DAG. To account for the variability in the
learned model structure, we resort to the bootstrap strategy as described in Section 5.3.
We sample 2000 samples with replacement from the original data and then estimate
the structure for every sample using the CK2 algorithm. This allows us to assign an
empirical measure of uncertainty to every plausible edge (an edge is plausible when it
is in line with the topological ordering) by counting how many times out of 2000 it
is discovered by the algorithm. On the basis of this result, we construct a consensus
DAG, which consists of all the edges that were discovered at least c% of times, where
c is an appropriately chosen threshold level. Obviously, the threshold level controls
the number of edges in the resulting DAG. Subject matter considerations tell us that
networks of genes are expected to be sparse, and in this particular case the number
of edges is expected to approximately match the number of genes. The choice c = 0.5
leads to a structure with 11 edges, shown in Figure 6.2.

Prediction of gene silencing effects. To predict the effects of silencing, we applied
intervention calculus to the consensus DAG. To this aim, we assume that the consensus
DAG is causal. We already mentioned that such DAG cannot fully represent the
underlying biological system. Despite this considerations, discussions with biologists
confirmed that orientation of edges is consistent with biological expectations, up to
the feedback loops not representable in this structure.

After estimating the parameters of the consensus model, the vector of silencing
effects was computed according to (6.3). We recall that the intervention is assumed to
have a direct effect only on the mean of the targeted gene. Under this assumption, the
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Fig. 6.3 The predictions based on the consensus DAG. We mark as successes the genes
in which the hypothesis of equality of the predicted mean after intervention and the
mean in the knockdown condition is not rejected.

distribution of genes after the knockdown remains multivariate normal with a shifted
mean, and an unchanged diagonal of the covariance matrix. To compute the mean of
each gene after the intervention, we plug in (6.4) for αk the sample mean of the nkd
gene in the knockdown group. To evaluate the goodness of prediction, we compare
with a two sample test the mean of each variable after the intervention and the mean
of the same variable in the knockdown condition. We assume the two populations
to be heteroscedastic, and we estimate the variances taking into account technical
variability as in Section 3.3. The asymptotic p-values of these tests are shown in
Table 6.1. We see that predictions of dally and pont have very low p-values, implying
that the predictions of silencing effects did not correspond to that observed in the
knockdowns. The prediction of the remaining 9 genes is successful, in the sense that
the hypothesis of equality of the means is not rejected. This is also shown in Figure
6.3, where we mark as successes the genes for which the hypothesis of equality of
means was not rejected.

We also compute the effects of gene silencing for two other models: the pathway
DAG and the refined DAG. The results are shown in Figure 6.4. We note that by
performing pathway refining the number of successes went from 5 to 9. The important
conclusion from this example is that both refined DAG and the consensus DAG show
considerable improvement in the predictive accuracy with respect to the pathway
DAG.

An alternative way to make use of the bootstrap strategy is the following. Instead
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Table 6.1 Drosophila melanogaster experiment: p-values of tests of the equality of
predicted means and means in the knockdown condition.

pathway average DAG
psn 0.34 0.34

dally 3.2 × 10−14 3.2 × 10−14

por 0.47 0.22
daam 1.3 × 10−5 0.28

fz 6.4 × 10−3 0.30
rho1 8.7 × 10−5 0.45

dco 0.08 0.42
rok 0.06 0.07
sgg 0.17 0.27

arm 0.02 0.49
pont 3.6 × 10−11 8.1 × 10−07

of using a consensus DAG to predict effects of silencing, we can compute the silencing
effects at each bootstrap replication. In this way, we obtain a bootstrap distribution of
silencing effects. That distribution is a mixture of two components, one corresponding
to a random variable degenerate at zero and the other to a random variable with a non
zero mean. An example showing the bootstrap distribution of daam silencing effects
is shown in Figure 6.5. The degenerate component of the distribution corresponds
to the bootstrap replications in which no direct path between the nkd and daam is
estimated (models in which daam is not a descendant of nkd). In these cases, the
silencing has no effect on daam and the silencing effect δ will be zero. In Table 6.2,
for each gene, we give the number of times (out of 2000 replications) in which the
direct path was not present. In addition to that, Table 6.2 also shows the bootstrap
percentile confidence intervals for the mean of each gene after silencing. In constructing
this interval, we took into consideration only the non degenerate component of the
bootstrap distribution. We note, that the psn gene is not included in this Table, since
it is the first gene in the topological ordering, and therefore never a descendent of nkd.
The conclusions as to the prediction of individual genes remain the same as the ones
of the consensus DAG.

To conclude, the bootstrap strategy in this approach offers two distinct and equally
interesting pieces of information: the percentage of cases when no effect was found,
and the interval for the predicted mean when the effect was observed. Nevertheless,
the check about plausibility of the causal interpretation of the DAGs resulting at each
bootstrap iteration becomes impossible, so that the interpretation of results might be
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more delicate.

Table 6.2 Summary of the bootstrap distribution of silencing effects: the number of
bootstrap samples in which the estimated model implied no effect of nkd silencing, the
confidence interval for the mean after silencing, and for reference, estimated means of
the genes in the knockdown group Ȳk.

#δ = 0 confidence interval Ȳk

dally 1590 (1.05, 1.60) 5.46
por 560 (0.68, 0.97) 0.79

daam 1393 (2.49, 4.26) 3.55
fz 82 (0.44, 0.75) 0.55

rho1 1578 (20.30, 63.79) 43.26
dco 1597 (3.09, 6.20) 4.58
rok 1401 (1.90, 3.38) 3.91
sgg 1531 (4.36, 6.37) 5.24

arm 1386 (24.45, 40.70) 37.34
pont 645 (1.21, 1.74) 2.49

6.3 Notes and observations

Causal inference. The language of causal inference has at least three formalisms:
potentials outcomes (Rubin 1974, Holland 1986), functional equations (Pearl 2000) and
graphical models (Dawid 2002, Lauritzen 2001 and Spirtes et al. 2000). None of the
approaches dominates the others in terms of popularity or applicability. Depending
on the particular question at hand, it is usually the case that one of them is more
suitable than the others, providing easier and more elegant representation.

Functional causal models. When causal models were first used in genetics (Wright,
1934) or in econometrics (Haavelmo, 1943), they both relied on functional equations
representation. Pearl (2000) formalised the notion of a functional causal model. In
this specification, the causal model consists of a set of equations of the form

Xv = gv [pa(xv), Uv] , (6.5)

where gv, v ∈ V are deterministic functions associated to physical mechanisms relating
Xv to its immediate causes (its parents) and Uv is a random disturbance, introducing
a stochastic component to the model. When each equation represents an autonomous
mechanism, the system of equations of the form 6.5 is called a system of structural
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Fig. 6.4 The predictions of the mean expression values after the silencing of the nkd
gene based on the pathway DAG (left) and the refined DAG obtained by CK2 (right).
We mark as successes the genes in which the hypothesis of equality of the predicted
mean after intervention and the mean in the knockout condition is not rejected.
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equations. If, in addition, each mechanism determines the value of a single variable, the
system is called a causal structural system. The model is a nonparametric, nonlinear
generalisation of the linear structural equations model SEM

Xv =
∑
k ̸=v

αkvXk + Uv, v ∈ V,

that we use here, and that has become a standard tool in statistical analysis in the
social sciences and econometrics. Here, non zero αkv correspond to the set of parents
of Xv in 6.5.

An important assumption of this model, specifying that individual mechanisms
represented by functions gv are independent or autonomous, implies that changing
one mechanism is not affecting others. This can be seen as a modularity property
which ensures that the behaviour of the system after an external intervention can be
predicted.

In this framework, studying interventions is fairly straightforward: if a mechanism
governing the distribution of a variable Xa is changed, the corresponding function ga(·)
is replaced by a g∗

a(·). Graphically, this can be represented as deleting arrows going into
Xa, since its parents no longer affect its value. Pearl calls this post-intervention graph
a mutilated graph. The new mechanism is not limited to being a constant function, so
more complex interventions are easily implemented in this framework.



Chapter 7

Conclusions

The problem of prediction of the effects of silencing is notoriously complex, as probably
is the majority of problems regarding biological systems. Here, we tackled some of the
issues that we encountered in the past two years in an attempt to provide a suitable
statistical framework to accommodate such problem. Even though not even a double
amount of time would bring us to a closure and a complete solution, our first results,
presented in this thesis, show promise.

In our approach, we first build a graphical model for a set of genes from an under-
lying pathway. We then apply the CK2 algorithm to refine the graphical structure.
Next, we perform intervention analysis on the refined graph, taking into account the
uncertainty in the refined model. Finally, we obtain confidence intervals for the mean
expression values of genes after silencing. Many open problems await future research,
and we mention some of them here.

The first step of the proposed approach consists of building a DAG for the set of
genes on the basis of the information provided in the pathway. Although this might
not seem like a difficult task, it is certainly not an automatic procedure. A close
collaboration with domain experts is necessary so that the chosen DAG faithfully
reflects the relations depicted in the pathway. One difficulty is presented by the cycles.
Cycles and feedback loops are very typical of biological systems, and the assumption
of acyclicity, typical of approaches based on directed graphs, is a simplifying one. One
possible solution is to remove the weakest edge of the cycle based on expression data
with minimum expression profile correlation between nodes (see Edwards et al., 2012).
However, dropping edges usually has a biological cost. A different strategy would
be to replace DAGs with more general graphs. We are currently looking into chain
graphs, for which Lauritzen and Richardson (2002) proposed causal interpretation. An
alternative strategy, when temporal data are available, is offered by dynamic Bayesian
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networks (Perrin et al., 2003).
Another difficulty in translation of pathways to graphs is associated with com-

pounds and complexes. Compounds are not measured by microarray experiments and
thus should be appropriately removed. Nodes composed by multiple elements can be
protein complexes (proteins linked by protein-protein interactions) or groups contain-
ing alternative members (like gene families, genes with similar biochemical functions
Sales et al., 2012). Two different strategies could be followed to solve this issue:

• selection of one variable representative of the complex (the mean of all gene
products, the gene with the highest expression, the first principal component,
etc.);

• expansion of the node into multiple nodes. In general, protein complexes should
be expanded into cliques, while gene families should be expanded without con-
nections among them.

The key ingredient in our approach is the topological ordering of the pathway
DAG. All results drawn from the structure learned by CK2 are thus conditional on
the chosen ordering. In our fruit fly experiment, this did not play a significant role,
since the subgraph downstream from the silenced gene was small and stable across
different orderings. In general, a possible approach could be to consider a sample
of topological orderings consistent with the pathway DAG. In combination with the
bootstrap approach to assess the uncertainty in the graphical structure, this would
lead to a consensus graph that is independent of a particular choice of the topological
ordering.

We mention one potential extension of this approach concerning experimental de-
sign. Careful experimental design could substantially alleviate the cost of silencing
experiments. By jointly modelling intervention and wild type data, we can study
adaptive experimental design, where gene silencing experiments are performed sequen-
tially, so that after every step the gene whose silencing would be the most informative
is chosen for the successive experiment.

One of the biggest challenges when dealing with gene expression data is separating
the technical noise from the biological signal. The ideal way to assess the extent of the
technical artefacts is to perform experiments that allow for estimation of the technical
variability. When such an estimate is available, an open question remains as to how
to take it into account and incorporate in the structure learning procedures.
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