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Sommario

Isolata per la prima volta da Friedrich Miescher nel 1869 ed identificata nel 1953 da

James Watson e Francis Crick, la molecola del DNA (acido desossiribonucleico) umano ha

richiesto più di 50 anni perché fosse a disposizione della comunità internazionale per studi

e analisi approfondite.

Le prime tecnologie di sequenziamento sono apparse attorno alla metà degli anni 70, tra

queste quella di maggiore successo è stata la tecnologia denominata Sanger rimasta poi lo

standard di fatto per il sequenziamento fino a che, agli inizi degli anni 2000, sequenziatori

battezzati di nuova generazione (Next Generation Sequencing (NGS)) sono comparsi sul

mercato. Questi ultimi hanno velocemente preso piede grazie ai bassi costi di sequenzia-

mento soprattutto se confrontati con le precedenti macchine Sanger. Oggi tuttavia, nuove

tecnologie (ad esempio PacBio di Pacific Biosciences) si stanno facendo strada grazie alla

loro capacità di produrre frammenti di lunghezze mai ottenute prima d’ora. Nonostante

la continua evoluzione nessuna di queste tecnologie è ancora in grado di produrre letture

complete del DNA, ma solo parziali frammenti (chiamati read) come risultato del processo

biochimico chiamato sequenziamento.

Un trend ricorrente durante l’evoluzione dei sequenziatori è rappresentato dalla cres-

cente presenza di errori di sequenziamento, se nelle read Sanger in media una lettura su

mille corrisponde ad un errore, le ultime macchine PacBio sono caratterizzate da un tasso

di errore di circa il 15%, una situazione più o meno intermedia è rappresentata dalle read

NGS all’interno delle quali questo tasso si attesta su valori attorno al 1%. È chiaro quindi

che algoritmi in grado di processare dati con diversi caratteristiche in termini di errori

di sequenziamento stanno acquisendo maggiore importanza mentre lo sviluppo di model-

li ad-hoc che affrontino esplicitamente il problema degli errori di sequenziamento stanno

assumendo notevole rilevanza. A supporto di queste tecniche le macchine sequenziatrici

producono valori di qualità (quality scores o quality values) che possono esser messi in

relazione con la probabilità di osservare un errore di sequenziamento.

In questa tesi viene presentato un modello stocastico per descrivere il processo di se-

quenziamento e ne vengono presentate due applicazioni: clustering di read e il filtraggio di

read. L’idea alla base del modello è di utilizzare i valori di qualità come fondamento per

la definizione di un modello probabilistico che descriva il processo di sequenziamento. La

derivazione di tale modello richiede la definizione rigorosa degli spazi di probabilità coin-

volti e degli eventi in essi definiti. Inoltre, allo scopo di sviluppare un modello semplice e

trattabile è necessario introdurre ipotesi semplificative che agevolino tale processo, tuttavia

tali ipotesi debbono essere esplicitate ed opportunamente discusse.

Per fornirne una validazione sperimentale, il modello è stato applicato ai problemi di

clustering e filtraggio. Nel primo caso il clustering viene eseguito utilizzando le nuove misure

D
q
2 ottenute come estensione delle note misure alignment-free D2 attraverso l’introduzione

dei valori di qualità. Più precisamente anziché indurre un contributo unitario al conto della



frequenza dei k-mer (come avviene per le statistiche D2), nelle misure D
q
2 il contributo di

un k-mer coincide con la probabilità dello stesso si essere corretto, calcolata sulla base

dei valori di qualità associati. I risultati del clustering sono poi utilizzati per risolvere

il problema del de-novo assembly (ricostruzione ex-novo di sequenze) e del metagenomic

binning (classificazione di read da esperimenti di metagenomica).

Una seconda applicazione del modello teorico è rappresentata dal problema del filtraggio

di read utilizzando un approccio senza perdita di informazione in cui le read vengono

ordinate secondo la loro probabilità di correttezza. L’idea che giustifica l’impiego ti tale

approccio è che l’ordinamento dovrebbe collocare nelle posizioni più alte le read con migliore

qualità retrocedendo quelle con qualità più bassa. Per verificare la validità di questa nostra

congettura, il filtraggio è stato utilizzato come fase preliminare di algoritmi per mappaggio

di read e de-novo assembly. In entrambi i casi si osserva un miglioramento delle prestazione

degli algoritmi quando le read sono presentate nell’ordine indotto dalla nostra misura.

La tesi è strutturata nel seguente modo. Nel Capitolo 1 viene fornita una introduzione

al sequenziamento e una panoramica dei principali problemi definiti sui dati prodotti. In-

oltre vengono dati alcuni cenni sulla rappresentazione di sequenze, read e valori di qualità.

Alla fine dello stesso Capitolo 1 si delineano brevemente i principali contributi della tesi

e la letteratura correlata. Il Capitolo 2 contiene la derivazione formale del modello prob-

abilistico per il sequenziamento. Nella prima parte viene schematicamente presentato il

processo di produzione di una coppia simbolo qualità per poi passare alla definizione di

spazi di probabilità per sequenze e sequenziamento. Mentre gli aspetti relativo alla dis-

tribuzione di probabilità per la sequenza di riferimento non vengono considerati in questa

tesi, la descrizione probabilistica del processo di sequenziamento è trattata in dettaglio

nella parte centrale del Capitolo 2 nella cui ultima parte viene presentata la derivazione

della probabilità di correttezza di una read che viene poi utilizzata nei capitoli successivi.

Il Capitolo 3 presenta le misure Dq
2 e gli esperimenti relativi al clustering i cui risultati sono

frutto del lavoro svolto in collaborazione con Matto Comin e Andrea Leoni e pubblicato in

[CLS14] e [CLS15]. Il Capitolo 4 presenta invece i risultati preliminari fin qui ottenuti per

il filtraggio di read basato sui valori di qualità. Infine il Capitolo 5 presenta le conclusioni

e delinea le direzioni future che si intendono perseguire a continuamento del lavoro qui

presentato.



Abstract

First isolated by Friedrich Miescher in 1869 and then identified by James Watson and

Francis Crick in 1953, the double stranded DeoxyriboNucleic Acid (DNA) molecule of

Homo sapiens took fifty years to be completely reconstructed and to finally be at disposal

to researchers for deep studies and analyses.

The first technologies for DNA sequencing appeared around the mid-1970s; among

them the most successful has been chain termination method, usually referred to as Sanger

method. They remained de-facto standard for sequencing until, at the beginning of the

2000s, Next Generation Sequencing (NGS) technologies started to be developed. These

technologies are able to produce huge amount of data with competitive costs in terms

of dollars per base, but now further advances are revealing themselves in form of Single

Molecule Real Time (SMRT) based sequencer, like Pacific Biosciences, that promises to

produce fragments of length never been available before. However, none of above tech-

nologies are able to read an entire DNA, they can only produce short fragments (called

reads) of the sample in a process referred to as sequencing. Although all these technologies

have different characteristics, one recurrent trend in their evolution has been represented

by the constant grow of the fraction of errors injected into the final reads. While Sanger

machines produce as low as 1 erroneous base in 1000, the recent PacBio sequencers have

an average error rate of 15%; NGS machines place themselves roughly in the middle with

the expected error rate around 1%.

With such a heterogeneity of error profiles and, as more and more data is produced every

day, algorithms being able to cope with different sequencing technologies are becoming

fundamental; at the same time also models for the description of sequencing with the

inclusion of error profiling are gaining importance. A key feature that can make these

approaches really effective is the ability of sequencers of producing quality scores which

measure the probability of observing a sequencing error.

In this thesis we present a stochastic model for the sequencing process and show its

application to the problems of clustering and filtering of reads. The novel idea is to

use quality scores to build a probabilistic framework that models the entire process of

sequencing. Although relatively straightforward, the developing of such a model goes

through the proper definition of probability spaces and events on such spaces. To keep the

model simple and tractable several simplification hypotheses need to be introduce, each of

them, however, must be explicitly stated and extensively discussed.

The final result is a model for sequencing process that can be used: to give probabilistic

interpretation of the problems defined on sequencing data and to characterize corresponding

probabilistic answers (i.e., solutions).

To experimentally validate the aforementioned model, we apply it to two different

problems: reads clustering and reads filtering. The first set of experiments goes through

the introduction of a set of novel alignment-free measures Dq
2 resulting from the extension



of the well known D2-type measures to incorporate quality values. More precisely, instead

of adding a unit contribution to the k-mers count statistic (as for D2 statistics), each k-

mer contributes with an additive term corresponding to its probability of being correct

as defined by our stochastic model. We show that this new measures are effective when

applied to clustering of reads, by employing clusters produced with D
q
2 as input to the

problems of metagenomic binning and de-novo assembly.

In the second set of experiments conducted to validate our stochastic model, we applied

the same definition of correct read to the problem of reads filtering. We first define rank

filtering which is a lossless filtering technique that sorts reads based on a given criterion;

then we used the sorted list of reads as input of algorithms for reads mapping and de-

novo assembly. The idea is that, on the reordered set, reads ranking higher should have

better quality than the ones at lower ranks. To test this conjecture, we use such filtering

as pre-processing step of reads mapping and de-novo assembly; in both cases we observe

improvements when our rank filtering approach is used.

This thesis is organized as follows. Chapter 1 gives a brief introduction of sequencing

and of the main algorithmic challenges related to the sequencing data. In the same chapter

are also briefly discussed issues about representation of: sequences, reads and quality

values. At the end of Chapter 1 the thesis contribution and related works are outlined.

Chapter 2 is devoted to the development of the probabilistic model for the sequencing

process. It starts by schematically describing the physical process of producing a single

pair symbol-quality and continues by defining probability spaces for the sequencing and for

the reference. While aspects related to the sequencing processing are discussed and modeled

in terms of these spaces, prior stochastic models for the sequence are not considered in

this thesis. The last part of Chapter 2 derives a closed form for the probability of a

read to be correct which is then extensively used in the subsequent chapters. Chapter

3 presents the result of the application of our model to the problem of reads clustering

as implemented in our software qCluster; these results are based on a joint work with

Matteo Comin and Andrea Leoni published in [CLS14] and [CLS15]. Chapter 4 presents

the result obtained for the application of probabilistic model to reads filtering by using read

correctness probability as sorting criterion on rank filtering defined in the same Chapter 4.

Finally Chapter 5 gives conclusions and delineates the future direction we will investigate.
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Chapter 1

Introduction

Learning medicine consists in part of

learning the language of medicine

(Daniel Kahneman)

Since the publication of On the origin of species by Charles Darwin and even before,

humankind has always tried to answer questions about its origins and evolution.

Such inquiry drove scientific research through both huge spaces of universe and mi-

croscopic hidden corners of tissues and cells. One of the most important milestones

of this journey has been the stunning discovery of the DeoxyriboNucleic Acid (DNA)

molecule and the identification of its paramount role in biological processes. First

isolated by Friedrich Miescher in 1869 and then identified by James Watson and

Francis Crick in 1953 [WC53], the double stranded DNA molecule of Homo sapi-

ens took fifty years to be completely reconstructed and to finally be at disposal

to researchers for deep studies and analyses. Today, more than 150 years after its

first observation, DNA molecule still remains the center of many projects aiming to

fully understand the biology of different organisms. Many biologists, and specifically

molecular biologists, all over the world are searching answers to many interesting

questions about macroscopic phenomena (e.g., chronic diseases, genetic disorders,

. . . ) by observing this microscopic molecule which contains all of our genes. The

amount of data they need to process at any time, combined with the complexity

of the DNA, poses new challenges to biologists and, nowadays, simple expert data

analysis is no more feasible leaving the usage of automatic tools for data processing

the only available option.

1



2 Chapter 1. Introduction

1.1 Shotgun sequencing

As computational power became cheaper and extensively available, scientific com-

munities of various fields began to take full advantage of it by developing innovative

approaches and techniques to exploit such advances within their own research fields.

Life sciences were no exception in this gold rush. What before was only theoreti-

cally possible, suddenly became feasible and many techniques started to gain interest

and importance; as a result ambitious projects, like the reconstruction of the whole

human genome, became more in handy than ever before.

A key role in this process has been played by the development of technologies

able to produce a digitalized form of genetic material (DNA, RNA, . . . ) contained

in biological samples (e.g., cells, tissues, . . . ). From the computational standpoint,

the DNA molecule can be described as an ordered sequence (string) of symbols

(characters); each of these symbols represents one of the four possible nucleotides

(or bases): Adenine, Cytosine, Guanine and Thymine (A,C,G and T) composing

the molecule.1

In an early work Rodger Staden [Sta79] introduced shotgun sequencing method-

ology which uses biochemical reactions to read the nucleotides of small fragments

(often called reads) obtained from the original sequence (often called reference).

Shotgun sequencing, more precisely, refers to the process of preparing DNA sam-

ples for a sequencer that physically performs the read operations. Since these se-

quencer machines are based on biochemical reactions that limits the amount of con-

secutive nucleotides that can be read, the entire process outputs a whole collection

of fragments. When considered isolated, each fragment covers a tiny fraction of the

original sample, however, when considered as a whole set, the reference sequence is

represented on average γ times, the parameter γ is called coverage.

What made shotgun sequencing really appealing was the development of ad-hoc

algorithms able to process many of such fragments in a small amount of time. As

shotgun sequencing began to be investigated and studied in detail, it was observed

that, despite the increasing power of available supercomputers, the presence of repet-

itive and “complex” structures on genomic sequences, makes brute-force approaches

too complex when not impossible to implement. A possible solution to this problem

relies on biology experts that, by spending many hours on sequence analysis, identify

zones of the genome that may be of particular interest in order to classify and tag

interesting parts of the sequence under investigation and focus the computational

efforts only on these parts. Although still useful and successful, such an approach

1In RNA Uracil (U) is present in place of thymine.
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can not scale with the ever increasing amount of available sequencing data, especially

after a recent study by Djebali et al. [DDM+12] showed that the human DNA con-

tains important and essential information in almost all of its parts (including those

previously named junk DNA). It is now clear that the task of manually classifying

different portions of the sequence can not be used anymore to reduce the amount of

data to be processed. It is therefore necessary to develop effective, efficient and scal-

able algorithms to, first reconstruct sequence from sequencing data and then process

it. An accurate and smart design of such algorithms has become even more im-

portant recently thanks to the explosion of shotgun sequencing experiments ignited

by the advent of Next Generation Sequencing (NGS) technologies. As new data be-

comes available, the request of automated analysis tools increases; the bioinformatics

community is continuously facing the thrilling challenge of developing and designing

new methods to process data in a faster and more effective way than ever before.

1.1.1 Sanger sequencer, the first generation

The genomic era started around the mid-1970s with the development of the first

sequencing technologies; among them the most successful has been chain termination

method usually referred to as Sanger method, after Frederick Sanger, one of the

authors of the original paper [SNC77].

The process starts by separating the two DNA strands by means of heating; a

synthetic nucleotides fragment called primer is then attached to one of the strand.

This primed template is successively inserted into a mixture containing the necessary

reagents to start the chain reaction. The result of such reaction is then excited using

gel capillary electrophoresis and, by means of either dyeing or radio labeling, the

sample is read and translated into a sequence of bases.

Despite being one of the first available methods for DNA sequencing, Sanger

technology possesses several desirable properties. Thanks to the relatively long reads

(between 600 and 900 bases) and the high reliability (less than 1% error rate), this

technology is still the first choice when high quality data is needed like, for example,

in the completion of complex parts of genomic sequences. The main problem of

Sanger methods is represented by its high costs (few thousands dollars per one million

bases) especially when compared with next generation sequencing methods.

1.1.2 Next Generation Sequencing (NGS)

Sanger technology remained the de-facto choice for sequencing for more than thirty

years, during this period huge projects were successfully completed. One of the most
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Figure 1.1: Growth rate for the Sequence Read Archive (SRA) 2

important of them has been the whole human genome project that culminated with

the first non-draft version of the human (Homo sapiens) genome resulting from the

joint work of many research groups all over the world (Lander et al. [LLB+01]).

At the beginning of the 2000s new sequencing methods started to be developed

by several life science and bioengineering companies; as a result of this competitive

market several novel methods for shotgun sequencing were available, all of them were

(and still are) called Next Generation Sequencing (NGS) and sometimes referred to

as High Throughput Sequencing (HTS).

Such new technologies rapidly gained popularity within the scientific community,

thanks to their low cost; by using NGS sequencers, it is currently possible to produce

one million bases for as low as 0.1$, five order of magnitudes cheaper than Sanger

sequencers. Such new methods have really changed the way the scientific community

tackles at genomic projects (Metzker [Met09]); since their introduction the amount

of massive sequencing projects initiated have increased day by day and, as groups

all over the world started to share their experiments, the amount of data available

rapidly increased as shown in Figure 1.1.

Among all of these projects it is worth mentioning the 1000 Genome Projects3

2http://www.ebi.ac.uk/ena/about/statistics accessed January 12th, 2015
3http://www.1000genomes.org/
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which aims to sequence a total of 1000 human individuals belonging to different

races; as the project’s site reports [...] the goal of the 1000 Genomes Project is to

find most genetic variants that have frequencies of at least 1% in the populations

studied [...]. Finding such variants as a whole is much harder than the barely re-

construction of 1000 individuals genome which, in fact, is the first necessary step

to be completed prior to data analyses. Tasks with such a complexity, unfeasible

before NGS technologies appeared, pose new challenging problems to the computer

science community which is today committed to the problems of efficiently storing,

retrieving and analyzing huge amount of sequencing data.

One of the key feature of NGS methods is the ability of producing very large

amount of data during a single experiment; this reduces the total cost of both reagents

and experts needed to supervise the entire sequencing process and the combination

of these two factors allows NGS sequencers to attain competitive costs in terms of

dollars per base.

Although different NGS technologies apply different chemistry and different prin-

ciples to obtain reads from sample(s), they all share the same high level procedure

which is here summarized.

1. A collection of fragments of the sample DNA (i.e., library) is prepared and

ligated to the ends of a synthetic DNA fragment (i.e., adapter). Different

technologies use different adapters, this is one of the main source of differences

of error models and biases between technologies.

2. The fragments are then immobilized into a solid surface in order to produce

massive copies of the original fragments. The immobilization aspect is the

key feature allowing NGS machines to produce millions of copies per single

experiment.

3. Finally the copies are sequenced using platform specific methods and the final

dataset is then created. During this step the machine must assess the actual

bases of the sample; this operation is usually performed by dyeing or radio tag-

ging and it’s another discriminant between different sequencing technologies.

If on the one hand NGS technologies supply researchers with overwhelming amount

of data, on the other hand this does not come for free, NGS sequencers have several

drawbacks that complicate data analysis and processing.

When NGS sequencers were first introduced, they were able to produce fragments

with length at most few hundreds of bases, back then this was a huge disadvantage

when compared with Sanger method which was (and still is) able to produce frag-

ments of length up to 700 bases; nowadays NGS methods can compete with Sanger
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in terms of read length (although short reads still represent an important fraction of

whole data publicly available). A second negative aspect of NGS data regards their

reliability; next generation reads are known to be noisier than Sanger in terms of

error rate defined as number of incorrectly sequenced bases over the total number of

produced bases. If Sanger method has an average error rate below 1%, NGS meth-

ods, on average, produce data with a rate that is roughly one order of magnitude

bigger (i.e., reads with 1% errors or above are not uncommon). With such an error

rate, the chances of miscalled bases within a single read become really high and,

while designing and developing algorithms for NGS data, researchers must take this

aspect into account.

Most of the NGS sequencers are able to produce mate pairs which are pairs of

reads sequenced using the same sample but starting from the opposite ends of the

same fragment. The advantage of mate pairs is the possibility of using different

libraries with different fragment length. This allows sequencers to produce pair of

reads with an approximately known spacing, called insert size, much larger than

the actual read length. When repetitive parts of a reference sequence are longer

than the read length, mate pairs represent the only possible way of solving them.

Another problem where mate pairs have successfully been used is scaffolding where a

collection of subsequences (usually contigs produced by an assembler software) need

to be oriented and positioned with respect to each other.

A detailed survey on next generation sequencing technologies and on their appli-

cation can be found in [Met09].

1.1.3 Future generation sequencing: PacBio

NGS methods are now the standard in sequencing technologies, however further

advances are now revealing themselves. The most promising future generation se-

quencer has been introduced by Pacific Biosciences and is based on a new sequencing

procedure known as Single Molecule Real Time sequencing (SMRT) introduced by

Eid et al. in [EFG+09]. The commercial product, usually referred to as PacBio and

recently presented and discussed by Carneiro et al. in [CRR+12], produces reads

with characteristics that are considerably different from both NGS and Sanger ones.

PacBio reads can be as long as ten thousands bases, a size never been available

before, but the error rate on such reads is as high as 15% with 12% insertions, 2%

deletions and only1% substitutions.

Reads of a never available before length and with a unique and peculiar profile

of error distribution, make algorithms developed for all previous technologies not

feasible or not effective for this type of data, therefore, while some approaches could
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simply be adapted to work with newer datasets, in some other cases a design from

scratch becomes necessary.

1.2 Algorithmic challenges

The available variety of sequencing technologies, each having its own reads profile

(in terms of error, length, biases, . . . ), makes the task of designing and developing

efficient and effective algorithms very challenging. In this scenario it is not true

that one size fits all and approaches designed for one technology may be completely

useless with another one. Each feature of the produced reads has an impact on the

development of algorithms and it is important to be aware of all such aspects before

starting design of new methods.

High coverage

As already mentioned, a big role in the success of NGS technologies can be attributed

to their ability of performing massive sequencing at a relative low cost. Although

desirable, high coverage generates huge amount of reads that need to be stored and

processed, the choice of data structures and algorithms used is therefore crucial when

it comes to NGS data.

Even when the most efficient approaches are adopted, datasets may still be too

big and the only remaining solution relies on either filtering high and low quality data

or reducing the size of the set by computing a new dataset that somehow maintains

the important information of the original one.

Short reads

Genomic sequences are the result of the evolution process which the corresponding

species experienced, while some organisms (like humans) have a relatively short

history, many others (like plants), have gone through several millions years of history

and evolution. Each time the DNA replicates, there is a small chance that the process

creates mutations of the nucleotides sequence. There are several types of mutations

that can happen during the replication process, most of them have the net effect

of replicating portions of the sequence in other position of the genome itself, this

creates complicated structures generically called repeats.

The characteristics of repeated structures on a real genomic sequence, are quite

variable, the same sequence (like, for example, the human one) can contain few bases

as well as thousands bases long repeats. The amount of copies of the same repeated

sequence is also a variable factor, we may find structures that are repeated few times
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as well as sequences that appear thousands of time in the same genome, finally the

relative position of repeated regions can be adjacent (like tandem repeats) or far a

part from each other.

Short reads make the process of discovering and resolving repeats really hard,

when not impossible. For example, a read sequenced inside a repeat longer than the

read itself, can not uniquely mapped into either of the positions where the repeat

occurs on the reference. NGS technologies can currently be used to resolve short to

mid long repeats, but some structures need to be resolved using different data (like,

for example, mate pairs or PacBio reads).

Errors

Noisy data may look like a minor problems especially for rates 1% or below; however

combining this with the issues already discussed (short reads, repetitive structures,

. . . ) creates a challenging mix that complicates the design of algorithms. Methods

for error correction are often part of the processing pipeline (i.e., the chain of succes-

sive tools applied to the input set) and may rely on pre-processing (e.g., filtering) or

on “online” procedures that try to identify errors as “unexpected” behaviors of the

algorithms (e.g., divergence from a specific path). Moreover, with the new technolo-

gies (like PacBio) gaining interest, newly developed algorithms should be designed

to work with new error profiles.

Although each single challenge may not seem that difficult to cope with (with the

possible exception of repeats that in some situation make the solution not unique);

the combined effect of all of them makes bioinformatics problem really hard when not

impossible to solve without resorting to heuristics or approximate algorithms (Tre-

angen and Salzberg, [TS11], Nagarajan and Pop [NP09] Pop and Salzberg [PS08]).

1.2.1 Assembly

As already mentioned, the biggest success obtained so far has been the reconstruc-

tion of the whole human genome sequence. The process of reconstructing a genetic

sequence starting from fragments of thereof (i.e., reads) is called assembly. Assem-

bly can be carried without any knowledge of the sequence (e.g., sequencing a newly

discovered organism) in which case the problem is named de-novo assembly. When

the sequence is reconstructed using another related sequence as guide, the problem

is called comparative assembly. Since the former is a harder, more interesting and a

prerequisite to the latter, in this thesis we will focus only on de-novo assembly.

Giving a formal definition of the problem of assembly is not straightforward; an
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easy and correct definition states that the assembly is the problem of reconstructing

the (unknown) reference sequence from a collection of (known) reads. This definition

is, for all practical purposes, useless because of its recursive nature arising from the

mention to the solution itself (i.e., the reference sequence).

Several attempts to formalize the problem of assembly have been made; some-

times (especially in theoretical analyses) assembly is defined as the problem of short-

est common superstring (SCS) where the unknown reference is the shortest string

containing all the reads as subsequences (with possibly mismatches to account for

sequencing errors). It easy to construct an example containing (simple) repeated

structures that makes this definition incorrect for the problem of the assembly.

With the knowledge available today the only model sufficiently precise to describe

a DNA, is the entire sequence of nucleotides or, in other words, the output of the

assembly process. As a consequence, we can not have a precise definition of the

solution of the assembly problem, at least from a mathematical standpoint, but we

must deal with the fact that the assembly problem can only be described heuristically.

Notwithstanding these technicalities, assembly is a fundamental problem in the field

of biology, in fact it is probably the most important problem which need to be

solved before starting the analysis of genetic material of an organism. Moreover

there is abundant evidence that the problem is solvable in practice as attested by

the increasing of the number of assemblies publicly available.

Reconstructing a sequence with millions or even billions of bases, using frag-

ments no longer than 1000 bases, is a hard task regardless the sequencing technology

used. The problem is even worse because of the complex structures that genomic se-

quences contains (e.g., repeats, mutations, . . . ). sequencing data make the problem

even harder especially when performed using very short reads nowadays accessible.

Even with the advent of the future generation sequencing technologies, the assem-

bly problem will still remain challenging because the reads length will remain much

shorter than the genomic sequence to reconstruct and the errors within reads can

only complicate the problem and its solution.

When NGS data became massively available, existing assembly algorithms turned

out to be no more suitable; with hundreds of millions of reads it was impractical to

perform pairwise overlaps between reads which was a necessary step of all of the

assembly algorithms since then developed. Consequently the community started

to develop new approaches with the main goal of designing algorithms and methods

able to efficiently process NGS data. A survey on current most successful approaches

for assembly using NGS data has been published by Miller et al. in [MKS10]; we

give here a brief introduction and discussion of the most important aspects of these
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methods.

According to [MKS10] assembly algorithms can be classified into three different

categories: greedy algorithms, Overlap Layout Consensus and De Bruijn graphs.

Greedy

Greedy algorithms start by selecting a seed read (or set of reads), which represents

the initial assembly and proceed by finding the best alignment to extend it. At each

iteration the read giving the best extension is chosen and removed from the original

set; the process continues until either the set is empty or no good enough alignment

can be obtained with the remaining reads. This approach is clearly greedy since, once

a read is used to extend the current assembly, it is removed from the input reads set

and every successive extension will not roll-back the current decision. The advantage

of greedy strategies is that they are fast and easy to implement but, on the other

hand, it is very likely that the algorithm stops on a suboptimal solution (especially

with big and noisy sets). Attempts to escape local maxima using randomized initial

seeds, does not help because of the size of the solution space which contains O(4N)

elements with N being size of the sequence to be reconstructed.

Overlap Layout Consensus (OLC)

Overlap Layout Consensus algorithms divide the task of producing an assembly into

three subsequent phases. During the first overlap phase an all-against-all pairwise

read comparison is performed to determine the best possible overlaps. Since this

phase could require a lot of computational time, usually seed overlaps are detected

using k-mer sharing (i.e., identification of pairs of reads that share at least a certain

amount of k-mers) which is easier to compute than an actual alignment, only for

those pairs of reads that satisfy the k-mer requirement the actual alignment is then

computed. In the second phase alignment relation between reads is laid out on a

graph where each node represents a read and an arc between nodes exists if a valid

alignment has been detected between the corresponding reads. After the graph has

been simplified (e.g., redundant structures are removed), the third step, consisting

of a path detection algorithm, is run to identify a consensus sequence that is finally

outputted as a candidate assembly.

De Bruijn graphs

There are two major problem with OLC algorithms, the first one is related to all-

against-all pairwise alignment which is a time consuming operation and the second
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problem is that the phase of path discovery requires to find a hamiltonian path which

is known to be an NP-hard problem (Cormen et al. [CLR+01]). This last problem

has been one of the main motivation to the development of assembly algorithms based

on De Bruijn graphs where the idea is to create a so called k-mers graph, which is

a simplified version of De Bruijn graph.4 On k-mer graphs each node corresponds

to a k long sequence called k-mer and edges represent all the (k − 1)-mers that has

been observed (e.g., in a set of reads or in a long sequence).

The k-mer graph used by assemblers is constructed by scanning the collection of

reads inputted, for each k-mer encountered in, at least one, read a node is created.

Contrarily to the original definition of De Bruijn graphs, in k-mer graphs not all

possible k-mers have a corresponding node. If the reads were sequenced without

error and with perfect coverage (i.e., sufficient to make the problem solvable), then

the graph constructed from the read set and the (hypothetical) graph constructed

from the reference sequence would be identical and would contain an Eulerian path

representing the original reference sequence. One of the strength of this approach is

that computing eulerian is an easy task in the sense that an eulerian path can be

discovered in linear time. The problem is that we have no guarantee that the path

we can identify in linear time corresponds to the desired assembly.

De Bruijn graph based approaches to the problem of assembly were first in-

troduced by Pevzner et al. in [PTW01] and have since then considerably evolved

[MKS10]. The experimental part of this thesis (chapters 3 and 4) uses VELVET soft-

ware (Zerbino and Birney [ZB08]) which is a popular tool for de-novo assembly based

on De Bruijn graphs.

1.2.2 Comparative genomics

Comparative genomics is the biology field that studies genetic sequences with the

goal of identifying and classifying biological features shared by different organisms

or by different individuals of the same species. Practically this can be achieved us-

ing genome analysis techniques to test the correlation between sequences. There

are many known correlation structures for which specific algorithms exist: variant

detection, rare variation and burden testing, identification of de-novo mutations are

few of them and a detailed survey is given by Koboldt et al. in [KSL+13]. With

the introduction of NGS data, the number of organisms that can be simultaneously

compared has substantially increased, as a consequence of this, also the overall com-

plexity of the problems increased. Moreover, using High Performance Computing

4De Bruijn graphs were originally proposed by De Bruijn and Erdos [dBE46] to represent all
possible overlaps between k long sequences.
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(HPC) techniques, we can nowadays perform comparative genomics analysis at the

genome scale and Genome-Wise Association Studies (GWAS) are now becoming

fundamental steps for all comparative genomics projects.

For many years genome assembly and sequence alignment have been essential

primitives to perform comparative genomics studies however, with the advent of

massive sequencing and NGS technologies, many of the approaches based on these

primitives became no longer practical. When looking for variations between se-

quences, (short) reads need to be aligned to a reference allowing non perfect match-

ing that are, indeed, the variation to be discovered. When performed on millions (or

even billions) of reads, this task becomes compute intensive and standard alignment

tools may not be the best choice.

Comparative genomics as a whole includes many different biological problems

like: genome comparison, metagenomic binning, variant discovery, phylogenetic tree

reconstruction and many others. Most of them, however, require mapping between

sequences which is often implemented using alignment techniques described in the

next paragraph.

Alignment of sequences

Since the beginning of the genomic era, researchers have mostly been interested in

finding coding sections (i.e., parts containing genetic information) of the human

genome. More generally one of the main task has been (and still is) finding recurrent

patterns (i.e., substrings) and classifying them according to the role they have in

the regulation of human biology. Pattern identification and reconstruction as well

as many other problems at the heart of bioinformatics, resort to the fundamental

algorithmic primitive of alignment (or mapping). Informally alignment is the process

of superimposing two different sequences in order to obtain the best possible match

between the two of them.

Alignment can be performed with or without mismatches which means that a

certain degree of difference between superimposed sequences may be tolerated; due

to mutations induced by evolutionary events, alignment is almost always performed

allowing mismatches; how the mismatches are treated, is a matter of the specific

algorithm.

One of the most popular methods for sequence alignment relies on a dynamic

programming approach named Smith-Waterman, after the authors the original pa-

per [SW81] published more than thirty years ago. The idea is to define a recurrence

that assigns scores to: matches, mismatches, insertions and deletions. The algorithm

starts with an empty alignment and, recursively, extends it using a scoring function
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that penalizes mismatches, insertions and deletions. Given two sequences x and y

with size n and m respectively, the Smith-Waterman algorithm computes an n×m

matrix. This matrix is then used to derive the optimal sequence of string operations

(i.e., substitutions, insertions and deletions) that transforms x into y. The complex-

ity of this approach is O(nm) for time while the space (still O(nm) with a näıve

implementation) can be kept O(m + n) using proper techniques. Another popular

approach, first proposed and implemented by Altschul et al. in a tool called BLAST

[AGM+90], relies on hash maps to perform fast alignment of sequences based on their

k long subsequence (i.e., k-mers). The alignment obtained using hash maps may be

refined using dynamic programming algorithms or other algorithms if needed. With

the advent of NGS data dynamic programming approach started to become imprac-

tical, the main reason does not lay on the complexity of a single alignment itself,

rather on the number of alignments required when the input set contains millions of

reads. Moreover the shorter the reads are the more likely they map in more than a

single position of the reference sequence, this means that multiple positions can give

the same (optimal) score for one given read.

Consequently, new alignment algorithms have been devised to specifically work on

NGS data and, at the same time, alignment-free approaches to sequence comparison

and pattern discovery have started to gain interest in the scientific community.

Alignment-free sequence comparison

The use of alignment tools like BLAST to assess the degree of correlation between two

sequences is currently the dominant approach. Alignment-based methods produce

good results only if the biological sequences under investigation share a reliable

alignment, however there are cases where these methods cannot be applied. This

can happen, for example, when the sequences being compared do not share any

statistical significant alignment, a case that can occur when sequences come from

distant related organisms, or they are functionally related but not orthologous (i.e.,

coming from a common ancestor). Moreover, as discussed above, alignment methods

are usually time consuming, thus they can not be applied to large-scale sequencing

data produced by NGS technologies.

For these reasons alignment-free techniques are rapidly gaining interest, the basic

idea is to avoid alignment (as the name suggests) and assess correlation using proper

statistics measures that can be computed efficiently.

Alignment-free sequence comparison methodology was introduced during the mid

80s with the seminal paper of Edwin Blaisdell [Bla86] where the D2 statistic was

proposed to correlate different sequences based on the frequency of their constituent
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k-mers, with k being an adjustable parameter. The idea, although simple, proved to

be effective especially after several improvements have been developed by Reinart et

al. [RCSW09] and by Wan et al. [WRSW10]. Recently, alignment-free techniques

have been used to perform assembly-free sequence comparison using NGS data (Song

et al. [SRZ+13], Comin and Schimd [CS14]), a good survey on the most recent

advances in alignment-free techniques can be found in [SRR+13].

1.2.3 Clustering

Clustering (sometimes called cluster analysis) is the process of partitioning a set

into κ disjoint subsets called clusters, in such a way that elements belonging to same

cluster share some common features while being distinguishable from elements on a

different partition. More precisely, given a distance measure (sometimes referred to

as dissimilarity function) clustering constructs a partition such that distance between

elements on the same cluster is minimized among all clusters. Note that the distance

measure does not need to be a distance in the mathematical sense (in fact most of the

alignment-free, like D2, measures are not mathematical distances). A good survey

on many different clustering techniques can be found in Xu and Wunsch [XW05].

Centroid based clustering In centroid based clustering the idea is to associate

to each of the κ clusters a point of the input space called centroid. The partition is

iteratively produced starting from κ seed centroids that are randomly generated. At

each iteration the input set is scanned and each element is assigned to the cluster

associated to the centroid that minimizes the distance; after all elements have been

reassigned, a new set of centroid is computed using this new assignment (typically

the new centroid is the average over all the elements assigned to the cluster). The

procedure iterates until a stopping condition is reached (for example the maximum

execution time is exceeded or there are no significant changes on the clusters between

two consecutive iterations). This algorithm, and centroid based clustering in general,

is usually referred to as k-means.

One weakness of k-means is represented by the initial random generation of the

seed partition; to overcome as much as possible biases related to this generation,

k-means is usually run several times and a function (e.g., average) of the all different

clusterings is computed as final output. This solution mitigates (but does not elimi-

nate) the possibility of k-means producing local optima, however it has been shown

that finding an optimal solution to k-means clustering is a NP -hard problem (Aloise

et al. [ADHP09]). Another critics often moved to k-means is that it requires κ (the

number of clusters) to be known in advance which is often an unrealistic hypothe-
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sis. To cope with this problem many different extensions (most notably hierarchical

clustering) have been developed and successfully applied in many different scenarios

([XW05]).

Clustering in bioinformatics Clustering has been successfully used on many dif-

ferent computational biology problems. The idea shared by most of these applications

is that, by defining a proper distance measure between sequences, cluster analysis

should be able to group together sequences that share some common biological fea-

tures. A field where clustering can be profitably used is the one of metagenomics,

for example a simple problem where clustering has been successfully used is the

separation of reads produced by a metagenomics experiment: metagenomic binning.

Such experiments use a single run of a sequencer machine to produce reads from

many different organisms living in the same culture. Unfortunately reads coming

from different organisms are indistinguishable by the sequencers which outputs a

single set containing all (heterogeneous) fragments; as a consequence if the partition

of all reads is needed, it must be inferred using computational tools like clustering

(Solovyov and Lipkin [SL13]). In Chapter 3 our probabilistic quality value based on

model is applied to clustering of reads, results of such experiments have been pub-

lished by Comin et al. in [CLS14] and [CLS15]. Another application of clustering

is as a preprocessing phase of the assembly algorithms, the idea is that assembly

performed only on reads belonging to the same cluster, under certain circumstances,

could give better result than assembling the entire dataset (i.e., without clustering),

as it turns out this is true for reasonably high sequencing coverage [SL13, CLS14].

1.3 Data representation

An aspect of bioinformatics which is often underestimated is the representation of

reads and sequences into files that are stored on public databases available to be

downloaded and processed. For several, equally valid, reasons there is not a unique

standard for such representations. First of all in relatively recent fields, like bioin-

formatics, not enough time have passed for a convention to become a standard and

the lack of a recognized authority further slows down the process of standardization.

Also, in a rapidly changing field, the process of defining standards is complicated by

the rapid technological evolution that may not be compatible with already defined

formats and needs, therefore, to define new ones.

Remarkably the trend is now moving toward a more standardized approach, new

technologies and tools (e.g., sequencers, algorithms, . . . ) tend to adopt common
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formats and the entire industry is embracing a more interoperable approach. Nowa-

days e relatively low number of different formats are becoming de-facto standards

for the representation of genetic and sequencing data, we give in this section a brief

introduction to some of these conventions.

IUPAC nucleotides representation For the representation of nucleotides and,

more generally, of any possible subset of them, an almost universally adopted conven-

tion has been proposed by the International Union of Pure and Applied Chemistry

(IUPAC), Kozl and Listy [KL78]. More specifically the IUPAC standard defines, for

every possible subset of the 4 nucleotides {A,C,G, T}, a letter that represents it.

Trivially A,C,G and T are assigned to the corresponding nucleotides while other

sets are encoded with different letters, for example the letter N stands for aNy of

the 4 nucleotides.

1.3.1 Fasta and Fastq

Before being able to be automatically processed by algorithms, genomic sequences

and sequencing data need to be stored in digital format. There are two main file

formats for storing sequences data: fasta and fastq. These two formats have

been developed to convey all the needed information about sequences. While fasta

provides a structure to store information about the sequence and possibly meta data

(e.g., organism, public database reference number, length, . . . ), fastq format adds

support to quality scores. Even if the two formats look similar, they have some

minor, yet subtle, differences. Since this thesis presents methods and models that

rely on quality scores, only fastq format is here briefly presented.

The general form of a fastq entry contains four lines:

1 @Header

2 Sequence

3 +Repeat Header (optional)

4 Qaulities

@ and + symbols are used to identify header(s) (the header after + is optional and,

usually, is a repetition of the header found after the character @). The sequence is

represented as a string of characters from the IUPAC standard but most frequently

only the four bases A, C, G and T are used with the special symbol N used to indicate

a position that the sequencer has not been able to reliably identify.

Since fastq files are used to store reads, they have several of entries each of them
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Format Offset qoff Range [qmin, qmax]
fastq-sanger 33 [0, 93]
fastq-solexa 64 [−5, 62]6

fastq-illumina 64 [0, 62]

Table 1.1: Summary of parameters for different quality scores encoding used in fastq

files

representing a single read.5

1.3.2 Representation of quality scores

Quality scorse are integer values in the interval Q = [0, qmax] with qmax < +∞

(usually qmax = 50), they are encoded in the fourth (and last) field of a fastq entry.

The usual way of listing qualities is by encoding the actual integer value q with an

ASCII character enc(q) = q + qoff with qoff being a quality offset.

For example if qoff = 64 and q = 30 then the character enc(q) would be the one

with ASCII value 94 which is the ^ character.

Unfortunately there is no unique encode and different manufacturers use different

convention, luckily there are three similar converging standards: fastq-sanger,

fastq-solexa and fastq-illumina, the difference between all these representations

is on the value of the offset qoff and on the range of values that are defined, Table

1.1 gives a summary of these parameters [CFG+10].

1.3.3 Color space

Most of the sequencing technologies produce as output files in either fasta or fastq

format, where sequences are represented using nucleotide encoding as defined by the

IUPAC standard. A notable exception is represented by the SOLiD technology of

Applied Biosystems which uses a different sequence coding called color space or 2

base color code discussed by Breu in [Bre10].

Color space defines an alphabet Σ = {0, 1, 2, 3} of so called colors. Colors arise

from the sequencing process implemented in SOLiD sequencers where each dimer

(pair of bases) is sequenced in a single atomic operation. Given an initial base b, the

5This most of the times creates redundancy because part of the header (e.g., the name of the
sequenced organism) is usually shared by all reads.

6Solexa allows negative qualities because it uses a different equation to translates probability
into scores, more precisely the equivalent of equation (2.3) for solexa model is given by

Pe(q) = (10−q/10 + 1)−1
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A C G T
A 0 1 2 3
C 1 0 3 2
G 2 3 0 1
T 3 2 1 0

Table 1.2: The di-base encoding matrix for SOLiD reads

base sequence can be reconstructed from a color sequence using the di-base matrix

reported on Table 1.2. Let, for example, consider the sequence of colors 01120232

with the initial base A.

A 0 1 1 2 0 2 3 2

A A C A G G A T C

The first A corresponds to the one given as initializer of the color space while the

remaining bases are obtained via inversion of the di-base matrix.

The di-base coding has been derived to resemble the physical sequencing process

(as mentioned earlier) but also to give a coding with specific symmetry properties

that are extensively discussed in [Bre10].

Also SOLiD sequencer, as all the modern NGS machines, produce one quality

score for each of the called color, however if one wants to use such scores in a

probabilistic model, proper events (in terms of colors rather than bases) must be

defined. In principle the model presented in Chapter 2 could be used with color

space data provided that the proper interpretation of quality scores is used and that

the alphabet Σ is always assumed to be the alphabet of colors rather than the one

of bases.

csfasta and qual files Given the different nature of SOLiD data, the files out-

putted by these sequencers follow a slightly different convention. More specifically

SOLiD sequencers output a pair of files. The first file is a so called color space fasta

(csfasta) which is a fasta file where, instead of using IUPAC encoding for bases,

the sequences are given in color space. The second file (qual file) contains the list

of quality scores usually given as a list of integer.

A read in a csfasta file looks like follows

>487_14_960_F3

T11001333 [...]

and the corresponding quality scores entry in the qual file looks like
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>487_14_960_F3

33 32 4 8 2 31 31 2 [...]

Note that, at the beginning of read an initializing base is always given, this, however,

is not an actual sequenced base but just a necessary information supplied to allow

conversion from color to base space.

From now on color space will not explicitly considered in our models, however,

in principle it could be applied without major modifications; for this reason we will,

as much as possible, refer to a generic symbol whenever either base or color could be

used.

1.4 Thesis contributions

The main contribution of this thesis is the development of a stochastic model for the

sequencing process and its application to the problems of clustering and filtering of

reads. The idea is to use quality scores produced by sequencing machines to build

a probabilistic framework that models the entire process of producing a set of reads

each of which contains a sequence of symbols (e.g., bases), as well as a sequence

of quality scores. Although modeling sequencing process is not a new idea, in our

opinion the inclusion of quality values has not received enough attention, to the best

of our knowledge this is the first model that describes whole sequencing experiments

incorporating quality values. We think that our model can be successfully used in

many application, either to improve performance of already existing approaches, or

to develop new methods and algorithms for bioinformatics problems.

We will present our model in Chapter 2 where we start from the interpretation of

quality scores as phred scaled values of the probability of corresponding base being

correct and arrive to the description of the process of producing an entire set of

reads.

Generally speaking, each time a hypothesis is introduced, the model looses some

of its expressiveness, unfortunately this cannot be avoided when describing complex

phenomenon such as a sequencing experiment. Some of the hypotheses introduced

throughout chapter 2 can be relaxed while other have been introduced with the only

goal of assuming specific probability distribution and can be replaced by others (e.g.,

with maximum likelihood estimators).

Notwithstanding the nature of these assumptions, we believe that proving a model

to be effective and useful, even in a very restrictive environment, always gives a tool

that can be used to solve specific problems.
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The second part of thesis (corresponding to chapters 3 and 4) presents an ex-

perimental validation of the stochastic model with its application to two specific

bioinformatics problems: clustering and filtering respectively. As mentioned above,

proving a model to be effective is desirable and also necessary in a Ph.D. thesis,

these two chapters present results which indicates that our model can be effectively

used in real world problems. More precisely, Chapter 3 presents an application of the

model to the problem of reads clustering using a quality value based alignment-free

statistics, the approach is tested using standard measures (e.g., recall) and with its

application to de-novo assembly and metagenomics binning; these results have been

published in a joint work with Matteo Comin and Andrea Leoni ([CLS14, CLS15]).

In chapter 4 we will present a rank filtering approach where reads are sorted

based on their quality, the main advantage of this technique is that all reads are

still available to subsequent algorithms and, moreover, they are sorted so that algo-

rithms can access the higher quality first and use the lower quality ones only if really

needed. We then present preliminary results on such filtering approach applied to

reads mapping and de-novo assembly.

1.5 Related works

The development of stochastic models for sequencing has been explored in several

works, however none of them gives comprehensive description of a whole experiment

nor they include quality values.

An approach very similar to the ours has been presented by Li et al. in [LRD08]

where a software for read mapping called MAQ is presented. MAQ defines a probabilistic

model for mapping based on quality values; it assigns a quality score to an entire read

that generalizes the concept of quality value defined for single symbols. Although the

model implemented in MAQ has some common ideas with the one we present in this

thesis, there are major differences. First of all MAQ proposes a model for single reads

rather than for an entire collection of reads, moreover MAQ considers only quality

values associated with mismatches, while we will present a model that takes into

account quality scores for all the called symbols. Finally MAQ has been developed

with the specific goal of performing fast reads mapping using quality values while

our model aims to be a more general framework that can be used to define different

problems (including but not limited to mapping).

Another model similar to one presented in Chapter 2 is used in the Genome

Analysis ToolKit (GATK) (McKenna et al. [MHB+10]), where quality values are

used to perform genotype inference using NGS and Bayesian inference.
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Zhai et al. [ZRS+12] proposed a model for NGS data when the reference is

given, the goal is to study the pattern distribution on sequencing data. They defined

a simple model where the sampling of reads occurs accordingly to a probability

distribution estimated from empirical data. The model proposed does not include

quality values and is developed and tested only for estimation of pattern occurrence

in NGS data.

Chapter 3 presents an application of our stochastic model to the problem of clus-

tering of reads using alignment-free techniques. The Dq
2-type statistics presented are

a generalization of the D2-type statistics proposed by Reinert et al. [RCSW09] and

by Wan et al. [WRSW10]. D2-type were originally developed to measure dissimilar-

ity between pair of sequences and only recently they have been extended by Song et

al. [SRZ+13] to measure dissimilarity between pairs of sets containing NGS reads.

Centroid based clustering using alignment-free measures has been extensively

tested by Solovyov and Lipkin [SL13] using afcluster which is the starting point

of the qCluster software presented by Comin et al. [CLS14] and used to obtain the

results of Chapter 3.

Predominant approaches to reads filtering partition the input set into two differ-

ent subsets: one with high quality reads and the other with low quality ones. After

the pre-processing step of filtering is performed, usually, the low quality set is dis-

carded and the subsequent algorithms of the pipeline (i.e., downstream algorithms)

use only high quality reads set.

Dohm et al. [DLBH07] proposed SHARCGS de-novo assembler which includes a

preprocessing filter where reads are considered by the actual assembler only if a

minimum length exact match is found. Li et al. [LZR+10] proposed SOAP de-novo

assembler that filters reads based on observed k-mer frequencies. Some approaches

to filtering make use of quality values, Sasson and Michael [SM10] apply complicated

heuristics based on quality values to filter SOLiD reads, the idea is to use the qualities

on the first part of a read (e.g., the first 10 quality values) as predictor of the overall

read quality. Petel and Jain [PJ12] developed QC Tool a toolkit that can be used to

filter 454 and Illumina reads. Users can set the minimum percentage of a read that

must have quality scores higher then a user defined value, afterwards the software

performs several platform specific heuristics to trim and possibly discard reads. MAQ

software [LRD08] can be used to filter reads based on quality values.

To the best of our knowledge, all approaches to filtering are boolean in the sense

that reads are either high or low quality, therefore they substantially differ from the

rank filtering approach which we will introduce in Chapter 4.
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Chapter 2

Probabilistic model

Essentially, all models are wrong, but

some are useful

(George E. P. Box)

In this chapter we present the derivation of a probabilistic model for sequencing.

Starting from the interpretation of quality values given by Ewing and Green [EG98],

where qualities relates to the error probability of bases, we develop a model for the

whole sequencing by means of successive generalization and with the support of

proper hypotheses.

At the end of the chapter a simple application of this model is presented; more

precisely we will present a form for the probability of observing a correct read or,

equivalently, the probability for a read to be produced without sequencing errors.

In chapters 3 and 4 this model is experimentally validated by applying it to the

problems of reads clustering and reads filtering respectively.

Notation The derivation of a probabilistic model for a complex process, involves

many equations and formula most of which represent intermediate results. To keep a

clear presentation, we adopted a consistent notation throughout this entire chapter.

We use the following conventions: Ω denotes a sample space, F the associated event

space and P the probability function. To differentiate spaces, we will use subscripts,

for example the sample space ΩX will induce the event space:1

FX = {e : e ⊆ ΩX}

1All our spaces are finite

23
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on which the probability function

PX : FX −→ [0, 1]

is defined.

The formal notation for probability PX can become really cumbersome, in order

to maintain as clear presentation, we will often resort to the shortened notation

pX(e1, . . . , en) := PX(E1 = e1 ∩ . . . ∩ En = en)

to represents the joint probability of the events (Ei = ei) with ei ∈ FX . Consistent

subscripts and usage of a lower p for such short version should guarantee that no

confusion or ambiguity arise.

Since many spaces and parameters are used throughout the development of the

model, it may help a quick reference to keep track of them; to this extent the reader

may refer to Appendix A for the summary of conventional notation and meanings of

variables commonly adopted in this chapter.

When referring to sequences and strings, we use the same notation adopted by

Hopcroft et al. in [HMU06], more specifically

Σ0 = {ε} ΣN = {s1 . . . sN : sj ∈ Σ} Σ∗ =
∞⋃

n=0

Σn

where ε indicates the empty string. Substrings will be indicated using a subscript

notation; that is, for a string s1 . . . sN , substring from si and sj (i ≤ j) included will

be indicated with

si,j = sisi+1 . . . sj−1sj.

When confusion may arise, sequences are indicated with bold fonts and single

character with regular font, s = s1s2 . . . sN .

2.1 Sequencing process

Sequencing is the process of producing a collection of fragments called reads from

a properly prepared genetic sample called reference. The physical processes used to

obtain such fragments differ between sequencing technologies and has been briefly

described in Chapter 1.

A sequencer machine takes as input a biologic sample of the reference S and
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Base caller (c, q)

Figure 2.1: A simplified description of the physical process of producing the pair
(c, q) of symbol quality from an input symbol S

produces as output a collection R of M reads.2 Each read contains m pairs (c, q)

with c a symbol over the alphabet Σ and q a quality score from the set Q. As already

discussed in section 1.3 Σ could be either the IUPAC alphabet (or some subset of it)

or the set of four color, the set of quality Q is a set of non-negative integers [0, qmax].

The reads produced are encoded into a fastq file for most of the sequencing

technologies or in csfasta and qual files for SOLiD sequencers which uses color

space encoding.

A simplified description of the sequencing for a single pair (c, q) of symbol c ∈ Σ

and quality score q ∈ Q is schematically depicted in Figure 2.1. Since sequencers

produce reads instead of single symbols as output of a single fragment sequencing,

the process described in Figure 2.1 introduces a slight simplification that helps un-

derstanding the overall process.

A sequence S = s containing only the symbol s ∈ Σ is measured, details of such

measurement are beyond the scope of this thesis, but we can assume that physical

measurements (e.g., intensities at predefined wavelength) are numerical encoded into

a vector x. Once the vector x is completely filled the sequencer has, strictly speaking,

concluded its operation on s and, moves to next position to possibly sequence the

next symbol.

The production of the pair (c, q) from the vector x is performed by a software

component named base caller and included in all sequencers. The base caller takes

as input x and computes c and q as functions of x: σ(x) and π(x) respectively.

For example in [EHWG98] Ewing et al. describe in detail the software phred

and the algorithm to compute σ(x) and in [EG98] Ewing and Green describe the

algorithm to compute π(x). In these works authors use raw traces outputted by

sequencer to construct what they call the parameters vector x which is then used

to compute c = σ(x) and q = π(x). Another example of base caller is included in

PacBio sequencers and uses GATK software (McKenna et al. [MHB+10]) to compute

2We will often refer to R as either reads set or input dataset, note, however, data R is not a set
in the mathematical sense of the term.
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((Σ×Q)m)M

noise
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Figure 2.2: A schematic representation of the sequencing process, the input is a a
sample reference S and the output is a collection R of reads.

σ(x) and π(x).

A real sequencing experiment produces M reads from the a sample S = s1 . . . sN

containing N symbols sj ∈ Σ. Figure 2.2 gives a schematic representation of the

input output relation of the sequencing process. That is, the sample sequence S

defined over the set ΣN is properly prepared and inputted to the sequencer which

produces M reads; all reads, each containing m pairs (c, q), are inserted into an

unordered collection R which is encoded and written in the output file(s) and comes

from the space ((Σ×Q)m)M .

2.1.1 Quality values

A fundamental aspect of our model is the usage of quality values; we will use the

definition of quality scores given in [EG98] to build a probabilistic model of the se-

quencing. This approach differs from the ones commonly adopted where qualities are

used to define heuristics assessing the quality of sequenced data (e.g., MAQ [LRD08]).

The phred software was introduced in [EHWG98] as an alternative to the ABI

base caller, a remarkable innovation it introduces is represented by the unique cal-

culation and encoding of quality scores. The idea is to use tracing data to compute

a parameter vector x from which is then computed a measurement of the likelihood

of a base to be incorrectly sequenced.

The space where measures x are defined is partitioned into 50 cuts each of which

is associated to a particular error rate r. In [EG98] authors experimentally showed

that the function π(x) implemented by phred is a good estimator the real rate r

defined as the number of incorrect bases divided by the total number of sequenced

bases.

To better represent the domain of low error rate base calls, phred uses a non

linear (i.e., logarithmic) scale for the representation of r. More precisely for a given
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error rate r, the corresponding score is given by

qr = [−10 log10 (r)]int (2.1)

where [·]int represents the rounding to the nearest integer.

2.2 Probabilistic model

The first step toward the development of a stochastic model is the definition of the

sample space associated to the sequencing process. In Section 2.1 we described the

process in terms of an input reference S and the output collection of reads R, Figure

2.2 also shows associated domains for input and output which we will now formally

introduced as the probability spaces.

2.2.1 Reference sequence

The reference S is a sequence of symbols s1s2 . . . sN each coming from the alphabet

Σ. For given N the set of all sequences with length N is

ΩG = Σ× Σ× . . .× Σ︸ ︷︷ ︸
N times

= ΣN

which is also the sample space for the input reference S. Elements of the space ΩG

are ordered N -tuples (s1, s2, . . . , sN) that can be put in one-to-one correspondence

with strings in ΣN .

There are many reasons for representing reference S as a random variable. First,

in most of the cases, this sequence is unknown (e.g., de novo assembly) or known

only partially (e.g., comparative assembly). Second the model we present in this

thesis stochastically describes relation between the input reference S and the output

collection R, to give this model the higher possible flexibility, a stochastic description

of both input and output is the best choice. To keep the model simple, however,

some aspects of both input S and output R must be deterministically defined. In

particular one fundamental assumption is that the length of the reference |S| = N

is a finite and deterministic quantity.

Hypothesis 2.1 (Deterministic Reference Length). The length |S| = N of the ref-

erence sequence S is known and does not stochastically vary, moreover N <∞.

With this hypothesis the set ΩG is deterministically defined and Since finite,

therefore the probability PG(S = s) for all s ∈ ΣN are a sufficient do characterize
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the probability function PG(E = e) for every possible e ∈ FG (Papoulis and Pillai

[PP02]).

Since we will focus on modeling sequencing process, we will assume that the

probability distribution function PG(S = s) = pG(s) is given for each s ∈ ΣN .

The probability pG is sometimes referred to as prior probability for the sequence s.

For several (more or less simple) models the reader can consult few bibliographic

references: Churchill [Chu89], Durbin [Dur98].

2.2.2 Sample space for sequencing

As described in Section 2.1, the output of the sequencing processing is a collection

R of M reads

(c,q)1(c,q)2 . . . (c,q)M .

Each read (c,q)h is a pair of vectors ch = ch,1ch,2 . . . ch,m and qh = qh,1qh,2 . . . qh,m

with ch,ℓ being symbols in Σ and qh,ℓ being qualities in Q. The sample space for M

reads of length m is defined as

ΩR = [(Σ×Q)m]
M
.

which assumes that the following hypothesis holds.

Hypothesis 2.2 (Deterministic Constant Read Length). The length m of a read

(c,q) is known and does not stochastically vary, moreover, for a set R of M reads,

m is the length of all of them.

Also in this case the hypothesis of m not being a random variable is assumed to

keep the model tractable.

Combining ΩG and ΩR Once the spaces for reference S and reads R are defined,

we can combine them into a single one

ΩG,R = ΩG × ΩR = (ΣN)× ((Σ×Q)m)M (2.2)

which is the space where events describing sequencing experiments are defined. That

is, if a reference S = s is inputted to the sequencer and this produces the collection

of reads R = R, the corresponding of FG,R is (S = s ∩R = R).

Although this event is well defined, it is more interesting and useful to look at

the probability of the event (S = s | R = R). This is the event of S being the

sequence s, conditioned by the fact that the sequencer produced the R when s is
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given as input. More generally, we will put more emphasis to the probabilities

P (reference | reads)

characterizing the probability of a reference given the reads. The idea is that, being

process of producing R dependent from the input s, our model describes such de-

pendency in terms of conditional probability. For example let say that we want to

find the most likely (i.e., with highest probability) sequence s∗ given a set of reads

R. This problem has a straightforward description in terms of events in the space

ΩG,R

s∗ = arg max
s∈ΣN

P (S = s | R = R).

This is a simple way of using our model to define the problem of assembly. Note

that, for a given length N of s∗, the candidate assemblies are well defined and can

be computed with a näıve with time exponential in N . This implementation simply

enumerates all the 4N sequences s and computes P (S = s | R = R) for all of them.

A preliminary work on de novo assembly with this model has been carried out by

Baruzzo in [Bar13].

2.2.3 Single base call

We start developing our stochastic model from the probabilistic interpretation of

quality scores given in [EG98] and briefly described in Section 2.1.

The process of producing a pair (c, q) from the sequence S = s is defined on the

space

ΩG,C = Σ× (Σ×Q)

equivalent to (2.2) when N,M,m = 1. For convenience we defined ΩC = Σ×Q, this

is the space representing all possible pairs (C = c ∩ Q = q). Events on ΩG,C have

the form

(C = c ∩ Q = q ∩ S = s)

corresponding to the sequencer producing the symbol C = c with an associated

quality Q = q when the input is the sequence S = s.

In [EG98] quality values are related to the probability of correct symbol according

to equation (2.1), in terms of the space just introduced this probability becomes:

Pe(q) := P (C 6= s | Q = q ∩ S = s) = 10−q/10. (2.3)

sometimes referred to as phred function for brevity. Equation (2.3) formalizes, in
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terms of the space ΩG,C the commonly accepted interpretation of the quality score

Q = q as the probability of the corresponding bases C = c being wrong (c 6= s) when

the symbol S = s is sequenced.

Equation (2.3) is not sufficient to describe the probability function PG,C, because

the probabilities of events (C = c | Q = q ∩ S = s) when c 6= s are not specified. To

fill this gap we assume that the error probability Pe(q) is uniformly split among all

the bases c 6= s formally this assumption is given in the following hypothesis.

Hypothesis 2.3 (Uniform Error Probability Model). The probability of the reference

sample S being the actual sequence s given the output of the sequencer (c, q) is

PG,C(C = c | Q = q ∩ S = s) =





1− Pe(q) s = c
Pe(q)

|Σ| − 1
s 6= c

. (2.4)

Where Pe(q) is the phred function defined in (2.3).

Note that, assuming Hypothesis 2.3, the function

pUe (c, q, s) := PG,C(C = c | Q = q ∩ S = s)

defines a proper probability space

∑

c∈Σ

PG,C(C = c | Q = q ∩ S = s) =
∑

c∈Σ

pUe (c, q, s) = 1

which is the conditioned space with (Q = q ∩ S = s) being the conditioning event.

Let consider, for example, a machine producing the pair (A, 20)

P (C = A | Q = 20 ∩ S = A) = 0.99

which says that the sequencing receiving the symbol S = A and observing a reading

interference components corresponding to quality q = 20 has a 99% chance of out-

putting the symbol C = A while has 0.01/3 chance of outputting each of the other

3 symbols C,G and T .

Hypothesis 2.3 reflects the lack of information about how sequencing errors are

distributed; this information is sometimes heuristically incorporated but often it is

just ignored. Future sequencers may be able to supply more detailed information

about such events, we may also use empirical error distribution to slightly modify

Hypothesis 2.3, in all these cases our model still remains valid and useful.

A notable exception to this is represented by insertions and deletions which are
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not considered by our model (in fact it is not even possible to define them in the

probability space ΩG,Cas it is now). One of the future extensions to our stochastic

model should tackle this problem especially as future generation sequencers like

PacBio start to gain popularity.

So far we gave a probabilistic description of events conditioned by the measured

quality q and the input s. Most of the bioinformatics problems, however, aim to

characterize S in terms of R, therefore a more interesting probability is

pG|C(c, q, s) := PG,C(S = s | C = c ∩Q = q) (2.5)

which, with a simple application of the Bayes’ theorem, can be turned into

pG|C(c, q, s) =
PG,C(Q = q ∩ S = s)

PG,C(C = c ∩Q = q)
PG,C(C = c | Q = q ∩ S = s)

=
pG,C(s, q)

pG,C(c, q)
pUe (c, q, s).

As we see, our model requires the knowledge of the marginal distributions pG,C(s, q)

and pG,C(c, q). A possible simplification for pG,C comes from the following hypothesis.

Hypothesis 2.4 (Quality sequence independence). The events S = s and Q = q

are statistically independent on the space ΩG,C

PG,C(Q = q ∩ S = s) = pQ(q) pG(s).

This hypothesis reflects the, reasonable, assumption that the sequencing machine,

while calculating the quality score of a given position, does not take into account

the actual value of the base. Another way of interpreting this assumption is that

the machine does not change its prior distribution of quality scores pQ(q) based on

the current symbol s.3 Note that for the phred software this hypothesis has been

experimentally validated, in fact in [EG98] and [EHWG98] authors emphasize that

all quality schemes should satisfy Hypothesis 2.4 as a property they call predictivity.

Using Hypothesis 2.4, we have

pG|C(c, q, s) =
pG(s) pQ(q)

pC(c, q)
pUe (c, q, s) (2.6)

3When events S = s and Q = q are independent we have

PG,C(Q = q | S = s) = PG,Q(Q = q).
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As one would expect assuming a independent and identically distributed (i.i.d.)

for prior distribution of all marginal probabilities PG, PQ and PC, allows to simplify

Equation (2.6) leaving the only pUe (c, q, s). However, if we have some prior knowledge,

such distributions can be adjusted to it; as an extreme example consider the situation

where we know that s 6= A, then pG(A) = 0 and pG|C(c, q, A) = 0.

This example shows the ability of our model to properly describe events based

on the prior knowledge we have on the sequencing process.

As a final remark note that event (c, q) must have prior pC(c, q) 6= 0 otherwise

Equation (2.6) is not defined. Practically this means that every pair (c, q) produced

by the sequencer is a plausible output of the machine. Note that if the input dataset is

used as an estimator for the distribution pC(c, q), then this consistency is guaranteed

to be satisfied by definition.

Let us shortly come back to the simple example of the pair (A, 20), let us assume

that the i.i.d. model holds so that pG|C(A, 20, s) = pUe (A, 20, s) this will give a

probability of S = s for each possible s ∈ {A,C,G, T} and, once this is known, we

could solve the problem of the maximum probability sequence described above

s∗ = arg max
S∈{A,C,G,T}

pUe (A, 20, s) = A

with probability

P (S = s∗ | C = A ∩Q = 20) = 0.99 .

Entropy of quality values

Chapters 3 and 4 present experimental validation of the model presented in this

chapter, to provide a different justification for usage of quality values, we propose

in this paragraph an information theoretic interpretation of quality values. Our aim

is to quantify the information conveyed by a dataset when: quality scores are given

for each sequenced symbol and when qualities are not given or, in other words, to

quantify the information of quality scores. In both cases we will suppose that the

prior distribution of quality scores is known.

The measures we are going to derive here are based on the concept of entropy as

defined by Shannon in [Sha48] and here briefly recalled.

Definition 2.5 (Entropy). Given a discrete probability distribution function pX(x)

over the space ΩX the entropy HX (or Shannon entropy) is

HX = −
∑

x∈ΩX

pX(x) log2 pX(x) (2.7)
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where it is conventionally assumed that 0 log2 0 = 0.4

Informally the entropy HX measures the uncertainty of a random process that

generates symbol of ΩX with probability distribution pX . Entropy can also be inter-

preted as the minimum number of bits needed to code outcomes of the process. A

more detailed discussion on entropy and its properties is given in Shannon [Sha48]

and Cover and Thomas [CT06].

We use the entropy to measure the uncertainty contained on a symbol call per-

formed by a sequencer; to this extent we compute two different entropies. The first

one is the average entropy HΣ when quality value q is given and the second is the av-

erage entropy H̃Σ when qualities are not known. In both cases we average using the

prior probability pQ of quality scores; we will use Equation (2.4) for the probability

pΣ(c) of symbols where Pe(q) is the usual phred function (2.3)

To compute HΣ we first need to calculate the entropy HΣ(q) representing the

entropy of a pair (c, q); as observed in [Sha48] the entropy is not dependent from the

actual symbol c nor it depends from the the sequenced symbol S = s.

HΣ(q) = −
∑

c∈Σ

pΣ(c) log2 (pΣ(c))

= −(1− Pe(q)) log2 (1− Pe(q))− Pe(q) log2

Pe(q)

(|Σ| − 1)
.

For example for q = 20 corresponding to a probability Pe(q) = 0.01 the entropy

H(q) ≈ 0.097; for q = 5 (which is considered very low quality) H(q) ≈ 1.401. The

maximum entropy is attained for pΣ uniform [CT06]; in our model this corresponds

to Pe(q) = 3/4 and (according to Equation (2.1) ) q ≈ 1.25. This shows that high

values of entropy (i.e., close to the maximum) arise only for low qualities, this trend

is further amplified by the non linear nature of the phred scale. Usually real datasets

have distribution with average quality score between 25 and 35, the number of bits

we would ignore if we discarded quality scores should be relatively small, however

we expect the combined effect of all of them to be significant.

The entropy HΣ is the obtained as the average HΣ(q) over weighted over all

qualities q ∈ Q:

H =
∑

q∈Q

pQ(q)HΣ(q).

In the case where qualities q are not given , but the prior distribution is pQ(q)

4This can be formalized with a continuity argument.
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Dataset HΣ H̃Σ ∆HΣ

SRR023794 (H. pylori) 0.1184 0.1865 0.0681
SRR017901 (Z. mobilis) 0.0243 0.0359 0.0115
ERR164429 (L. pneumophila) 0.1276 0.2917 0.1642
SRR959247 (E. coli) 0.0352 0.0955 0.0604
Mason (P = 0.01 M = 105) 0.0031 0.0319 0.0281

Table 2.1: Entropy of single symbol calculated when qualities are known HΣ and
when qualities are not given H̃Σ for all the different datasets used throughout the
thesis.

known; we calculate the average error probability

P̃e =
∑

q∈Q

pQ(q)Pe(q)

and use this to compute the entropy

H̃Σ = −(1− P̃e) log2 (1− P̃e)− P̃2 log2

P̃e

|Σ| − 1

To estimate the amount of information that quality scores bring when they are given

we simply use the difference between HΣ and H̃Σ:

∆HΣ = |H̃Σ −HΣ|.

Entropy for real datasets We computed HΣ and H̃Σ for many of the datasets

used throughout the chapters 3 and 4, results are presented in Table 2.1. We used

|Σ| = 4, Equation (2.4) for pΣ and pQ(q) estimated from the dataset itself. That is,

for a given dataset R with M reads (c,q)h each with length m, let occ(q,q) be the

number of values q in the scores vector q, the prior distribution is defined as

pQ(q) =

∑
(c,q)∈R

occ(q,q)

Mm

or, in other words, pQ(q) is the frequency of q observed in the dataset R.

2.2.4 Single read

In this section we model the experiment of producing one m pairs read (i.e., M = 1)

from sequencing the reference S containing m ≥ 1 total positions (i.e., N = m),

extension to general N will be given at the end of this section. Each position of the
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read contains a pair (cℓ, qℓ), ℓ ∈ [1,m], the read is represented as a pair of vectors

(c,q) with c = c1 . . . cm and q = q1 . . . qm. The reference is a sequence s = s1 . . . sm

of m symbols from the alphabet Σ.

The probability space (2.2) becomes (N = m,M = 1)

ΩG,r = Σm × (Σ×Q)m

where we look at the probability

pGr(c,q, s) = PG,r(S = s | C = c ∩Q = q)

=
PG,r(C = c ∩Q = q | S = s)pG,r(S = s)

PG,r(C = c ∩Q = q)

=
pG(s)

pr(c,q)
PG,r(C = c ∩Q = q | S = s)

We now introduce two hypotheses which allow us to greatly simplify the derivation of

a closed form for pG|r. The first assumes that two different pairs are independently

sequenced, given the reference sequence; a similar assumption has also been done

in MAQ [LRD08]. The second hypothesis assumes that a given pair is sequenced

independently from all the positions other than the current one.

Hypothesis 2.6 (Symbol conditional independence). Given a read (c,q) of length

m, the events of sequencing the two pairs (ci, qi) and (cj, qj) are statistically inde-

pendent for i 6= j.

PG,r((Ci = ci ∩Qi = qi) ∩ (Cj = cj ∩Qj = qj))

= PG,r(Ci = ci ∩Qi = qi)PG,r(Cj = cj ∩Qj = qj)

Hypothesis 2.7 (Local Sequencing). The production of the pair (cℓ, qℓ) from position

j of the reference sequence S is statistically independent from all symbols si with

i 6= j:

PG,r(Cℓ = cℓ ∩Qℓ = qℓ | S = s) = PG,r(Cℓ = cℓ ∩Qℓ = qℓ | Sj = sj)

As a consequence of Hypothesis 2.6 we can write

PG,r(C = c ∩Q = q | S = s) =
m∏

ℓ=1

PG,r(Cℓ = cℓ ∩Qℓ = qℓ | S = s).
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and, combining it with Hypothesis 2.7 we get

pG|r(c,q, s) =
pG(s)

pr(c,q)

m∏

ℓ=1

pC(cℓ, qℓ)

pG(sℓ)
pG|C(cℓ, qℓ, sℓ). (2.8)

Note that when i.i.d. model is assumed for all marginal distributions pG, pC and

pr and the uniform model of pUe (Hypothesis 2.3) is used for pG|C Equation (2.8)

becomes

piidG|r(c,q, s) =
m∏

ℓ=1

pUe (cℓ, qℓ, sℓ) (2.9)

which is extensively used in the next chapters and briefly discussed in Section 2.3 at

the end of this chapter.

General N

Sequencers are not able to reproduce a copy of the entire input sequence S into one

single read; they can only generate fragments with length m≪ N .

A model can not ignore this crucial aspect of the sequencing and this paragraph,

first describe and then include into what developed so fa, the process of positioning.

There are many factors that influence the position where sequencers perform the

actual reading operations. Some of these are: Polymerase Chain Reaction (PCR)

amplification, DNA cloning, library preparation. In general different technologies

have different limitations that induce biases in the sequencing process. Keeping

track of the all possible aspects related to positioning is not easy, we try here to give

a model flexible enough to be used in as many cases as possible.

Let start by defining the space for positioning as the set of any possible position

j of the reference S. For reads with length m, we will consider valid positions

only the ones in the interval Ωpos = [1, N̄ ], where N̄ = N − m + 1. With this

definition we avoid limit cases where either reads are shorter than m bases (which

would violate Hypothesis 2.2) because sequenced at the edges of S or reads come

from fictitious reference because of reading process exceeding the actual sequence. A

possible exception (which will not be considered here) is represented by prokaryotes

DNA where the reference sequence wraps around itself and S is a circular sequence,

in this case the space of allowed positions is represented by any of the position of S,

[1, N ].

A probability space where both reads and positioning are modeled as a random
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variables is defined by5

ΩG,P := ΣN × [1, N̄ ]× (Σ×Q)m.

Let now consider the event

(C = c ∩Q = q | S = s ∩ J = j)

which represents the production of read (c,q) once the probe is attached to position

J = j of the reference sequence S. In principle the sequencing operation is not

limited to the only positions Sj, . . . , Sj+m−1, however with the goal of keeping the

model simple we now introduce a hypothesis that restrict the sequencing process to

be dependent from only the actual sequenced positions. The following hypothesis is

similar to Hypothesis 2.7 and, in some sense, extends to the whole read the concept

of local sequencing. 2.7).

Hypothesis 2.8 (Read Local Sequencing). For a given position j ∈ [1, N̄ ] the se-

quencing of a m symbols read (c,q) from j, only depends only from symbols of S at

positions j, j + 1, . . . , j + m− 1.

PG,P(C = c ∩Q = q | S = s ∩ J = j)

=PG,P(C = c ∩Q = q | Sj,...,j+m−1 = sj,...,j+m−1) (2.10)

Note that the right hand side of (2.10) is equivalent to (2.8) except for the proba-

bility space on which it is defined. What Hypothesis 2.8 is stating is that the sample

space ΩG,P , conditioned to the event J = j (sequencer positioning the probe on Sj),

is equivalent to the event of a sequencer having to produce one read of length m

from the m long sequence Sj . . . Sj+m−1.

Unfortunately when a sequencer produces the read (c,q) does not give any clue

about the position j, when considering a single read, therefore, we must assume that

every possible position j ∈ [1, N̄ ] could be the origin of the sequencing, in other

words the event (C = c ∩ Q = q ∩ S = s) is the marginal distribution of PG,P over

5The equation implicitly defines the space

ΩP = Ωpos × Ωr = [1, N̄ ]× (Σ×Q)m

.
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all the possible positions j. This gives

pG,P(c,q, s) =
N̄∑

j=1

pG,P(c,q, s|j)pG,P(j)

=
N̄∑

j=1

pG,r(c,q, sj,...,j+m−1)ppos(j). (2.11)

2.2.5 Set of reads

We now extend our model to describe the entire sequencing; that is, the production

of M reads (c,q)h, h = 1, . . . ,M from a reference sequence s. We will suppose

constant size m for all the reads (see Hypothesis 2.2), the sample space is the one

defined in Equation (2.2)

ΩG,R = ΣN × ((Σ×Q)m)
M
.

For notational reasons we define the event of producing M reads as

R := {(C,Q)h : h = 1, . . . ,M},

the collection of reads as

R = {(c,q)h : h = 1, . . . ,M}

so that we can write the probability of producing M reads as

PG,R

(
M⋂

h=1

(Ch = ch ∩Qh = qh)

)
= PG,R(R = R)

These events can represent the input-output relation of sequencing process as

described in Section 2.1 and depicted in Figure 2.2. In the space ΩG,R we concentrate

our attention to the probability

pG|R(R, s) := PG,R(S = s | R = R) =
PG,R(R = R | S = s)PG,R(S = s)

PG,R(R = R)

which is the probability of the input sequence S being equal to s = s1 . . . sN , given

that the output reads collection is R = (c,q)1 . . . (c,q)M .

Similarly to what done for the sequencing of m symbols (see Hypothesis 2.6) we

assume the following hypothesis.
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Hypothesis 2.9 (Read Conditional Independence). The events of producing two

reads (c,q)i and (c,q)h are statistically independent given the reference sequence

S = s.

This assumption allows us to simplify pG|R,

pG|R(R, s) =
M∏

h=1

PG,R((C,Q)h = (c,q)h | S = s)PG,R(S = s)

PG,R(R = R)

which can be expanded using all results of previous sections since

PG,R((C,Q)h = (c,q)h | S = s) = pG|r(ch,qh, s).

In other words, the probability of the event (C,Q)h = (c,q)h (i.e., producing read

(c,q)) of the space ΩG,R given the reference sequence S = s can be viewed as the

restriction to the case with M = 1 and can be explicitly obtained using equations

(2.8) and (2.11).

A final adjustment needs to be done before giving the final form of pG|R. The

above probability describes the event of observing the following ordered sequence of

reads

((c,q)1, (c,q)2, . . . , (c,q)M)

however we are interesting in the unordered list 6

〈(c,q)1, (c,q)2, . . . , (c,q)M〉 .

It easy to prove that we need to adjust the probability above by using the multinomial

coefficient (
M

µ1, µ1, . . . , µM

)
=

M !

µ1!µ2! · · ·µM !

where µh represent the number of occurrences of the read (c,q)h in r. In most

cases this correction factor can be approximated with M ! because the chance of

observing two identical reads (i.e., containing the same symbols sequence c and the

same qualities sequence q) is negligible (and decreases as m increases), therefore, the

terms µh, usually, are all equal to 1.

6Although sequencers usually give reads as numbered sequences, such numbering is only a con-
venient index.
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We can finally give a closed form for the probability pG|R

pG|R(R, s)

=

(
M

µ1 . . . µM

)
pG(s)

pR(R)

M∏

h=1

N̄∑

j=1

ppos(j)pG(s)

pr((c,q)h)

m∏

ℓ=1

pC(ch,ℓ, qh,ℓ)

pG(sj+ℓ−1)
pUe (ch,ℓ, qh,ℓ, sj+ℓ−1)

2.3 Case study: error probability of a sequence

In the previous sections we derived a probabilistic model for the sequencing process

which can be used to characterize problems in terms of a probabilistic framework.

In this section we discuss the problem of finding the probability of a read (or more

generally a sequence) to be correct. Although simple, this problem arises very often

and can be applied to many different scenarios (see chapters 3 and 4).

Informally a read (c,q) is correct if the sequence of symbols c = c1 . . . cm does

not contain any sequencing error. In other words, if j is the position of the reference

S = s where the read is sequenced, then

c1c2 · · · cm = sjsj+1 · · · sj+m−1

To give a more formal definition of the event read correct, we first need to define

the sample space properly. The space involves a read (c,q) and a reference sequence

S; with the same convention used in previous sections, such space is

ΣN × [1, N̄ ]× (Σ×Q)m.

In this space the probability of a read (c,q) correctly sequenced from position J = j

of the reference S = s is given by

P (Sj,...,j+m−1 = c ∩ J = j | C = c ∩Q = q).

Since we want this probability regardless the actual position of sequencing J = j,

the correctness probability is defined as the marginal distribution

pC(c,q) :=
∑

j∈[1,N̄ ]

P (Sj,...,j+m−1 = c ∩ J = j | C = c ∩Q = q). (2.12)

We now assume that positioning is statistically independent from all remaining events
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and all position are equiprobable

pC(c,q) =
∑

j∈[1,N̄ ]

P (Sj,...,j+m−1 = c ∩ J = j | C = c ∩Q = q)

=
∑

j∈[1,N̄ ]

P (Sj,...,j+m−1 = c | C = c ∩Q = q)P (J = j)

=
1

N̄

∑

j∈[1,N̄ ]

P (Sj,...,j+m−1 = c | C = c ∩Q = q).

if the prior distribution for S is also assumed to be i.i.d. we can further simplify pC :

pC(c,q) = P (Sj,...,j+m−1 = c | C = c ∩Q = q)

and now we can use the results of previous sections and Equation (2.9) to give a very

simple form

pC(c,q) = piidG|r(c,q, c) =
m∏

ℓ=1

(1− Pe(qℓ)). (2.13)

which assumes i.i.d. distribution for all prior marginal distributions. Note how, with

this hypotheses, the read correctness probability is equivalent to the probability of

the sequence S being equal to c given that the read produced is (c,q).

Finally recall that

Pe(qℓ) = 10−qℓ/10

is the phred function as defined in Equation (2.3).

Next chapters will use this formulation to derive improved version of clustering

algorithm in Chapter 3 and filtering of reads in Chapter 4.
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Chapter 3

Quality value based clustering

God does not play dice

(Albert Einstein)

In this chapter we present a reads clustering approach based on the application of

our stochastic model to alignment-free measures. To the best of our knowledge this

is the first study that performs comparison of reads data by combining quality value

information and k-mers count. A family of alignment-free measures called Dq
2-type

is presented and proved superior to other statistics through a set of experiments on

simulated and real sequencing data.

Experimental results show improvements in terms of precision and also show that

our novel measures Dq
2 can be used to boost performance of de novo assembly and

metagenomic binning.

This chapter is based on a joint work with Matteo Comin and Andrea Leoni pre-

sented during the 14th Workshop on Algorithms in Bioinformatics (WABI) (Wroc law,

Poland, September 8 – 10, 2014) [CLS14, CLS15]; qCluster software is freely avail-

able to be used for research purposes (http://www.dei.unipd.it/~ciompin/main/

qcluster.html).

3.1 Alignment free techniques

Alignment-based methods (e.g., BLAST [AGM+90]) have been used for quite some

time to establish similarity between sequences, in some cases, however, they are

not suitable for this task. For example if two genes with a substantial different

evolutionary history are found in the same genome, they can not be mapped back to

the same common ancestor using alignment based techniques due to the divergence

between them.

43
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Furthermore, because of mutation events (e.g., rearrangements) alignment based

techniques can not be used for the comparison of whole genomes even between se-

quences belonging to different specimen of the same species (Sims et al. [SJWK09],

Comin and Verzotto [CV12b, CV12a]). Despite the considerable research conducted

to develop heuristics to speed-up the process, alignment methods are still excessively

time consuming, which makes them not appropriate for large-scale sequencing data

like the one produced by Next Generation Sequencing (NGS) technologies (Song et

al. [SRZ+13], Comin and Schimd [CS14]). For these reasons a number of alignment-

free techniques have been proposed over the last decades (Vinga and Almeida [VA03],

Song et al. [SRR+13]).

The idea of alignment-free techniques is to use simple summary statistics cal-

culated over the entire sequence without performing any alignment operation. For

example many popular statistics are based on the count of k-mers contained in a

given genetic sequence. Since similar sequences share similar k-mer count statistics,

they can be used to define distance measures to compute similarity between the two

sequences.

To prove that alignment-free techniques can effectively be used, the scientific

community has derived many different measures that have been successfully applied

to several bioinformatics problems. For example, researchers have obtained interest-

ing results (especially for distant related species) on the construction of phylogenetic

trees, a task traditionally conducted using multiple-sequence alignment tools (Dai

and Wang [DW08]). Alignment-free measures have also been used to: study evo-

lutionary relationships among different organisms (Sims et al. [SJWK09], Gao and

Qi [GQ07], Qi et al. [QLH04]), reconstruct phylogenies of whole genomes (Sims

et al. [SJWK09], Comin and Verzotto [CV12b, CV12a]), detection of enhancers

in ChIP-Seq data (Göke et al. [GSLV12], Kantorovitz et al. [KRS07]) and entropic

profiles (Comin and Antonello [CA13]); for a comprehensive review of alignment-free

measures and applications we refer the reader to [VA03] and [SRR+13].

All above approaches apply alignment-free methods to genomic sequences, there-

fore they require the actual sequences to be known prior to their execution. If such

reference is not available, reads coming from sequencing experiments must be as-

sembled into contigs and then scaffolded into a candidate reference. As discussed

in the introduction (Section 1.2.1), de-novo assembly is one of the most challenging

problem in bioinformatics, this makes assembly-free approaches more appealing and,

sometimes, necessary. As a consequence, comparison of genomes based on NGS data

has recently become an important research topic (Song et al. [SRZ+13], Comin and

Schimd [CS14]).
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3.1.1 D2 alignment-free measures

One of the first paper introducing alignment-free method was published in 1986 by

Blaisdell [Bla86]. Back then approaches to calculate similarity between sequences,

without requiring any alignment, were promising alternatives used to speed-up database

searches. In his seminal paper, Blaisdell proposed a statistic, called D2, to compute

the correlation between sequences based on their k-mers count. More specifically D2

measures the correlation between the number of occurrences of all k-mers appearing

in two sequences.

Formally, let X and Y be two sequences from an alphabet Σ∗, for a given word

w of length k we define Xw as the number of times word w appears in the sequence

X when overlaps are allowed (Yw is defined analogously). For example, given the

sequence X = ATCGAGAG and the word w = GAG, Xw = 2 since w occurs on

positions 4 and 6 of X.

For a fixed k ≥ 1 all the Xw define a vector X with 4k components, the D2

statistic is the inner product of the word vectors X and Y:

D2 = X ·Y =
∑

w∈Σk

XwYw.

The D2 measures is based on the idea that the more similar two sequences are,

the higher its numeric values is due to the high number of shared occurrences of k-

mers. However, it was shown by Lippert et al. [LHW02] that such a statistic can be

biased by the stochastic noise of each sequence and, in extreme cases, the statistical

power decreases so much that D2 becomes meaningless.

To address this issue another statistic, called Dz
2, was introduced by Kantorovitz

et al. in [KRS07], the idea is to compute a normalization of D2 as

Dz
2 =

D2 − µD2

σD2

where µD2
and σD2

are the expectation and the standard deviation of D2, respectively.

Although the Dz
2 similarity improves D2, it is still dominated by the specific variation

of each pattern from the sequences. To account for different distributions of the k-

mers, Reinert et al. [RCSW09] and Wan et al. [WRSW10] defined two new statistics

named D∗
2 and Ds

2.

Let X̃w = Xw − (NX − k + 1)pw and Ỹw = Yw − (NY − k + 1)pw where pw is

the prior probability of w and NX and NY are the lengths of X and Y respectively.
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Under the assumption that NX = NY = N the statistics D∗
2 and Ds

2 are defined as

D∗
2 =

∑

w∈Σk

X̃wỸw

(N − k + 1)pw

Ds
2 =

∑

w∈Σk

X̃wỸw√
X̃2

w + Ỹ 2
w

.

extensions also considering different length sequences (i.e., NX 6= NY ) has been given

by Ren et al. in [RSS+13]. but usually this case is not considered.1

3.1.2 Quality value extension to D2 statistics

This section introduces our extension of D2 statistics that incorporates quality values,

the idea is to assign a weight to each observed k-mer using the probability of a

sequence (c,q) to be correct according to Equation (2.13):

pC(c,q) =
m∏

ℓ=1

(1− Pe(qℓ)).

from now on, we will assume that the function Pe(qℓ) corresponds to the phred

function (2.3)

Pe(q) = 10−q/10

because it reflects the interpretation of quality scores as produced by modern se-

quencers and extensively discussed in Chapter 2 (Section 2.1) and in [EG98, EHWG98].

More formally, let (c,q) be a pair of k long vectors of symbols c = c1 . . . ck

and qualities q = q1 . . . qk. We indicate with (c,q)ℓ,ℓ+k−1 the restriction of (c,q) to

positions ℓ, ℓ + 1, . . . , ℓ + k − 1; that is,

(c,q)ℓ,ℓ+k−1 = (cℓ . . . cℓ+k−1, qℓ . . . qℓ+k−1) .

Let also define the function 1(a, b) as the indicator function

1(a,b) =

{
1 if a = b

0 otherwise

where two words a and b are equal (i.e., a = b) if and only if |a| = |b| = k and

1Since we are going to derive measures for a collection of reads rather than sequences, this case
is even less interesting since the normalization are usually given as a function of the size for reads
set.
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ai = bi for all i = 1, 2, . . . , k.

For a word w ∈ Σk and a sequence X ∈ ΣN , we define the weighted k-mers count

Xq
w as

Xq
w =

N−k+1∑

ℓ=1

1(cℓ,ℓ+k−1,w)pC((c,q)ℓ,ℓ+k−1)

or, equivalently:

Xq
w =

∑

i∈{i| w occurs in X at position i}

pC((c,q)ℓ,ℓ+k−1)

In other words each occurrence of word w in the sequence X contributes with a

value pC(w, c) to the final computation of Xq
w, where q is the associated quality

scores vector.

Next we define

X̃q
w = Xq

w − (N − k + 1)pwE[Pw] (3.1)

where N = |X| is the length of X, pw is the prior probability of the word w and the

expected number of occurrences (N−k+1)pw is multiplied by E[Pw] which represents

the expected probability of k-mer w based on the quality scores (discussed later).

For two sequences X and Y with same length N , we define our quality value based

alignment-free statistics as follows

Dq
2 =

∑

w∈Σk

Xq
wY

q
w

D∗q
2 =

∑

w∈Σk

X̃q
wỸ

q
w

(N − k + 1)pwE[Pw]
(3.2)

Dsq
2 =

∑

w∈Σk

X̃q
wỸ

q
w√

X̃q
w
2

+ Ỹ q
w
2
.

we call these three alignment-free measures Dq
2-type.

3.1.3 Calculation of E[Pw]

In the definition of Dq
2-type statistics (3.2) and in the definition of the auxiliary

weighted k-mer frequency (3.1), we introduced the normalization factor E[Pw], this

quantity can be interpreted as the prior probability of observing the word w; using

the notation of Chapter 2

Pw := Pr(C = w) =
∑

q∈Qk

Pr(C = w ∩Q = q)
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where k = |w| is the length of the word w. In practice this quantity is not easy

to estimate for several reasons. First the distribution of events (C = w ∩ Q =

q) and the same also holds for events (Q = q) (i.e., the marginal distribution of

PQ). Furthermore, as k increases, the number of terms in the summation increases

exponentially with it; therefore this definition of Pw can only be used for small values

of k.

If the set R of all the reads is large enough, we can estimate the prior probability

using the posterior relative frequency (i.e., frequency observed on R); a similar

approach is also implemented in MAQ [LRD08].

We defined two different approximations for E[Pw], the first one is the average

error probability of the k-mer w among all reads x ∈ R:

E [Pw] ≈

∑
x∈R

Xq
w

∑
x∈R

Xw

(3.3)

we call this Average Word Probability (AWP). The second approximation defines the

average quality for positions ℓ in w over all the occurrences of w in R:

qw[ℓ] =

∑
x∈R

∑
{i:xi=w}

qi+ℓ

∑
x∈R

Xw

and uses it compute E[Pw]

E[Pw] ≈
k∏

ℓ=1

(1− Pe(qw[ℓ])) (3.4)

we call this second approximation Average Quality Probability (AQP).

3.1.4 Accounting for erroneous call

We have seen that, for a k bases long word w with quality vector q, the corresponding

weight added to Xq
w is given by the pC(w,q). Given the probabilistic nature of the

pair (w,q), the same word should add to all the wighted frequencies Xq
c a (possibly

small) contribution given by pC(c,q) for all c ∈ Σk.

For example let consider the case where k = 1, suppose that Σ = {A,C,G, T},

w = w1 = A and q = q1 satisfies Pe(q1) = 0.3. With the model given so far the pair

(w,q) would only contributes to the term Xq
A (and precisely with the additive term

1 − Pe(q1) = 0.7). A slightly more complex model is the uniform error probability
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which has been defined in Hypothesis 2.3, Equation (2.4) and assumes that all sym-

bols other than A receive the same 0.1 contribution, in other words the current read

(w1, q1) would induce the following contributions to Xq
w

Xq
A Xq

C Xq
G Xq

T

0.7 0.1 0.1 0.1

where (using the terminology of Comin et al. [CLS14]) the missing quality is redis-

tributed among all the neighbor words of w.

The extension to the case where k > 1 is straightforward, but, in principle, it

would require to compute pC(c,q) for each possible c ∈ Σk a task feasible only when

k is small. We decided to limit the adding contributions only to words that differ

on one single base for each position. That is, for each position ℓ of a pair (w,q), we

consider all the words w̃ such that w̃ℓ 6= wℓ, compute the corresponding pC(w̃,q)

and we it to Xq
w̃.

For example, given w = TGACCA and assuming that 1−Pe(q3) = 0.3 we would

have that w̃ = TGxCCA would contribute to Xq
w with 0.1 for all x 6= A.

We also tested a different model for redistribution (i.e., a slightly modified version

of (Equation 2.4) ) where value Pe(qℓ) is completed to a probability space based on

the relative frequency of bases:

pprope (c, q, s) =

{
1− Pe(q) if c = s

Pe(q) fw(c)∑
ci 6=s

fw(ci)
otherwise

where fw(c) is the relative frequency of symbol c ∈ Σ within the word w.2 This gives

the same contribution of piide when c = s while, when considering neighbor words w̃,

the redistribution for base x 6= cℓ is proportional to the frequency of x in w.

Considering again example, w = TGACCA, we have: fw(A) = fw(C) = 1/3 and

fw(G) = fw(T ) = 1/6, if pprope is used then the induced weights are:

T G A C C A

X X 0.7 X X X

T G C C C A

X X 0.15 X X X

T G G C C A

X X 0.075 X X X

T G T C C A

X X 0.075 X X X

2The subscripts ℓ here has been removed to avoid cumbersome notation, but what is actually
used to compute the contribution is pprope (cℓ, qℓ, cℓ).
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which is slightly different then the previous case.

We tested quality redistribution with pprope and result (presented in [CLS14]) are

discussed later in this chapter.

3.2 Alignment-free based reads clustering

In [SL13] Solovyov and Lipkin presented one of the first comparison of alignment-free

measures when applied to reads clustering. They focused their attention to k-mer

counts-based clustering of reads coming from different genes and different species.

They showed that D2-type measures, in particular D∗
2, can effectively and efficiently

detect and cluster reads from the same gene or species. In [CLS14] we presented an

extension to this approach that incorporates quality values through the usage of the

Dq
2-type measures presented above.

Clustering is the process of partitioning a given input set into κ distinct disjoint

subsets, called clusters, in such a that elements of the same cluster have minimum

distance between them and maximum distance with elements of different clusters.

Centroid clustering associates to each cluster one point on the space of input elements

called centroid. Each element is then assigned to the cluster for which the distance

to the centroid is minimized. One of the most commonly used centroid clustering

algorithm is k-means (in fact centroid clustering and k-means are often used as

synonyms, although the former refers to the mathematical problem and the latter to

one possible algorithm to solve it).

In [SL13] authors presented afcluster software which uses k-means to com-

pute the clustering of reads based on several distance measures: euclidean norm L2,

Kullback-Liebler divergence (KL) and its symmetrized version (Symm KL) and D2

statistics. Starting from this software we developed qCluster [CLS14] by incorpo-

rating the computation of the Dq
2-type statistics using both AWP and AQP prior

probability estimators and the redistribution of quality values (q-red).

The software takes as input a fastq file and performs centroid-based clustering

(k-means) of the reads based on the counts and the quality of k-mers. 3

To avoid as much as possible biases due to the initial random generation of

centroids, the final results is constructed as the consensus cluster over several runs;

that is, k-means is run L times and a consensus is compute from the L results (e.g.,

average, maximum, . . . ). Since some of the implemented distances (symmetrized

KL, D∗
2) do not guarantee to converge [SL13], we implemented a stopping criterion

3Reader should pay attention that the parameter k determining the length of k-mers is com-
pletely unrelated to the number of cluster κ.
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that stops execution if the number of iterations without improvements exceeds a

certain threshold; in this case, the best solution found is returned.

All implemented measures can be computed in linear time and space, this com-

plexity is desirable with large datasets (like the one produced by NGS sequencers).

3.3 Experimental results

3.3.1 Evaluation model

To evaluate the performance of Dq
2-type and all other measures, we preformed several

experiments on both simulated and real data.

Assessing performance of clustering algorithm requires us to measure how good

clusters are constructed and to which extent they agree with a hypothetical perfect

clustering. Unfortunately in most cases such ideal result is not available, we decided

therefore to use simulated and real data which allow us to compute such information

(i.e., the ideal clustering). The most used measures for clustering evaluation are:

recall, precision and a combination of the two called f-measure which are briefly

discussed next.

When clustering is performed each input element ends up in either the wrong or

the right cluster (according to the ideal clustering). Moreover a given cluster may

contain elements that belong to it as well as elements that were intended to belong

to another cluster. For any cluster κi let define the following sets.

True Positive (TP) contains all the elements that have been correctly clustered

on κi,

False Positive (FP) contains all elements that have been inserted in cluster κi,

but they were intended for some other cluster,

True Negative (TN) contains all the elements that are not in κi and were sup-

posed to be on some other cluster and

False Negative (FN) contains all elements that are not in κi, but they should

have been in it.

The cardinalities of these sets are used to define the aforementioned measures.
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Definition 3.1 (Precision, Recall and F -measure). For a given cluster κi define

P =
|TP |

|TP |+ |FP |
Precision

R =
|TP |

|TP |+ |FN |
Recall

F = 2
P ·R

P + R
F -Measure

In other words the precision indicates the fraction of elements that were correctly

clustered among all the clustered elements while the recall indicates the fraction of

correctly clustered elements among all the elements that were supposed to be inserted

in that cluster, finally the F -measure is a summary measure of both precision and

recall.

Note that is necessary to use both recall and precision measure to obtain mean-

ingful results because account must be taken of the fact that the recall itself doesn’t

reveal unbalancing between different clusters. For example in the extreme case where

one cluster gathers all the reads while the other clusters are empty, the recall would

be 1 for the first clusters, even though the overall clustering would very poor (in fact

all other clusters would have no elements for which precision, recall and F -measure

would not even be defined).

For brevity and to avoid the presentation of redundant data, the results presented

here are only given in terms of recall. Since the recall (as well as the precision and

F -measure) is defined for each cluster, we need to find a way of producing a single

recall for the whole clustering (i.e., a recall that is representative of all clusters

rather then of a single one). For each clustering κ1 . . . κK we searched the clusters

with highest true positives TP count and returned the recall of this cluster as the final

recall R, moreover, in order to have a more robust measure, we performed the same

experiments several time and average the obtained recalls. In all our experiments

elements of the input set are reads sequenced from a reference S, these reads could

be either simulated or taken from public databases. On datasets for which we don’t

have the ideal cluster, we need a method to construct the various sets necessary to

the calculation of recall (i.e., true positive TP and false negative FP), in other words

we need a way to labeling reads with the cluster they belong to. To this extent, we

first identified the cluster in which the reads from the sequence S are more numerous

and labeled it as the official cluster for S. Reads of a sequence inserted in the correct

official cluster are true positives, an reads of the same sequence grouped into other

clusters are false negatives; we then use Definition 3.1 for the calculation the recall.
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3.3.2 Experimental setup

For simulations we used the dataset of human mRNA genes downloaded from NCBI4,

which has also been used in [SL13]. We randomly select 50 sets of 100 sequences with

length ranging between 500 and 10000 bases. From each sequence, M = 10000 reads

of length m = 200 were generated using mason5 reads simulator (Holtgrewe [Hol10])

with different parameters, (e.g., percentage of mismatches, read length, . . . ). We

applied qCluster using different distances, to the whole set of reads and then we

measured the quality of the clusters produced in terms of recall.

Experiments have been conducted with varying values for: length of k-mers, num-

ber of clusters, length of reads and average error rate (substitutions only). Clustering

were produced using the following distance types: D∗
2, D2, L2, KL, Symm KL and

compared with D∗q
2 in all its variants, using both AWP (3.3) and AQP (3.4) forms

for E[Pw], with and without quality redistribution (q-red). In order to avoid as much

as possible biases due to the initial random generation of centroids, each algorithm

was executed 5 times with different random seeds and the clustering with the lower

distortion6 (as defined in [SL13]) was chosen.

3.3.3 Results

We discuss here some of the results obtained on simulated and real data, a more

comprehensive presentation can be found in [CLS14].

Table 3.1 reports the recall while varying error rates, number of clusters and k-mer

length. As expected, for all distances, the recall decreases with the number of clusters

(in fact recall would be 1 with only one cluster i.e., no clustering). Interestingly,

quality value based measures performs better than any other distance with both

low and high error rates (with the possible exception of error free reads where D∗
2

shows slightly better perform, not shown here); this confirms that the use of quality

values can improve clustering accuracy. In these set of experiments the use of AQP

for E[Pw] estimation is more stable and better performing compared with formula

AWP. We also noted that contribution of quality redistribution (q-red) is limited,

although it seems to have some positive effect. This empirically shows that (unless

high accuracy is needed) the computational effort necessary to compute the quality

redistribution could be saved without compromising the quality of produced clusters.

An extension of Table 3.1 including the same measures with no sequencing errors

4http://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/
5 http://seqan.de/projects/mason.html
6In centroid base clustering the distortion is the sum of squared distances of clustered elements

from the associated centroid, in [SL13] this definition is extended to reads clustering.
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and 5% error rate (published in [CLS14]) confirms the trend summarized here.

A second set of experiments were performed to test the sensitivity of different

measures when different error profiles are used. That is, we tested how the distri-

bution of substitutions, insertions and deletions affects the clustering and robust it

is against sensibly different error profiles exposed by future generation technologies

(like PacBio [CRR+12]).

Table 3.2 shows the recall of all the tested measures with different error profiles;

we observed performance similar to the one of Table 3.1. It is interesting to note that,

among the different types of sequencing errors, deletions seem to cause a drop of recall

more evident than mismatches and insertions (regardless the distance measure used).

Surprisingly, our Dq
2 statistics performed well even when insertions and deletions are

massively inserted (third and fourth columns of Table 3.2), despite the fact that the

model does not explicitly consider such events.

3.3.4 Clustering and assembly

Assembly is one of the most challenging computational problems in bioinformatics; it

time-consuming with highly variable outcomes for different datasets (Birney [Bir11],

Miller et al. [MKS10]). Currently large datasets can only be assembled on high

performance computing systems equipped with large number of powerful CPU and

huge chunks of memory.

Clustering has been used as preprocessing, prior to assembly, to improve memory

requirements as well as the quality of the assembled contigs [SL13, BJKG11]. Here

we test whether the quality of assembly with real read data can be improved by

using alignment-free based clustering with the goal of validating our Dq
2 measures.

We used VELVET assembler (Zerbino and Birney [ZB08]) which is one of the most

popular assembly tool for NGS data. We considered two different genomes: Heli-

cobacter pylori and Zymomonas mobilis and used the reads datasets SRR023794 (for

the former) and SRR017901 (for the latter), with about 117 and 23.5 millions bases

respectively (corresponding to about 10× coverage for both species). We applied

clustering algorithm, with k = 3 (k-mers length), and grouped reads into two and

three clusters. For each output of clustering algorithm, we run VELVET to produce a

set of contigs that is then merged into a single output sequence.

In order to evaluate the quality of clustering, we compare this merged sequence

to the assembly obtained without clustering (i.e., using of the whole set of reads).

Commonly used metrics such as number of contigs, N50 and percentage of mapped

contigs are presented in Tables 3.3 and 3.4. When merging contigs from different

clusters, some contigs might be very similar or they can cover the same region of
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Distance 3% 10%
2 clusters

D∗
2 0,813 0,801

D∗q
2 AQP 0,815 0,810

D∗q
2 AQP q-red 0,815 0,810

D∗q
2 AWP 0,806 0,802

D∗q
2 AWP q-red 0,806 0,802

L2 0,806 0,801
KL 0,809 0,802
Symm, KL 0,809 0,802
D2 0,807 0,801

3 clusters
D∗

2 0,689 0,662
D∗q

2 AQP 0,696 0,689
D∗q

2 AQP q-red 0,696 0,691
D∗q

2 AWP 0,646 0,638
D∗q

2 AWPq-red 0,646 0,637
L2 0,673 0,657
KL 0,687 0,672
Symm, KL 0,686 0,669
D2 0,668 0,654

4 clusters
D∗

2 0,613 0,574
D∗q

2 AQP 0,621 0,602
D∗q

2 AQPq-red 0,622 0,605
D∗q

2 AWP 0,563 0,535
D∗q

2 AWP q-red 0,560 0,533
L2 0,551 0,540
KL 0,548 0,536
Symm, KL 0,549 0,538
D2 0,547 0,538

5 clusters
D∗

2 0,539 0,500
D∗q

2 AQP 0,545 0,532
D∗q

2 AQP q-red 0,54 0,533
D∗q

2 AWP 0,475 0,463
D∗q

2 AWP q-red 0,475 0,461
L2 0,472 0,453
KL 0,488 0,468
Symm, KL 0,488 0,468
D2 0,464 0,449

3% 10%
2 clusters

0,819 0,794
0,822 0,809
0,822 0,807
0,807 0,802
0,807 0,802
0,806 0,801
0,809 0,802
0,808 0,802
0,806 0,800

3 clusters
0,707 0,668
0,711 0,679
0,712 0,681
0,662 0,646
0,662 0,644
0,677 0,663
0,689 0,675
0,688 0,673
0,671 0,655

4 clusters
0,616 0,551
0,617 0,572
0,617 0,573
0,571 0,555
0,570 0,555
0,565 0,543
0,558 0,537
0,554 0,539
0,549 0,540

5 clusters
0,534 0,462
0,544 0,489
0,545 0,487
0,494 0,470
0,494 0,470
0,495 0,465
0,501 0,476
0,500 0,474
0,482 0,455

k = 2 k = 3
(a) (b)

Table 3.1: Recall of clustering of mRNA simulated reads (10000 reads of length 200)
for different measures, error rates, number of clusters and parameter k.
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Distance NO ERRS SUB = 10% INS = 10% DEL = 10%
SUB = 10% SUB = 10%

D∗
2 0.862 0.832 0.793 0.809

D∗q
2 AQP 0.862 0.864 0.864 0.861

D∗q
2 AQP q-red 0.862 0.856 0.851 0.853

D∗q
2 AWP 0.863 0.852 0.842 0.848

D∗q
2 AWP q-red 0.863 0.855 0.848 0.851

L2 0.863 0.852 0.844 0.849
D2 0.861 0.852 0.843 0.848
KL 0.868 0.855 0.844 0.85
Simm, KL 0.865 0.853 0.843 0.848

Table 3.2: Recall of clustering of mRNA with 5000 simulated reads (reads of length
200, k = 2 and 2 clusters) using different errors distribution for substitution (SUB)
insertion (INS) and deleetion (DEL).

Distance Mapped Contigs N50 Number of Contigs Genome Coverage
No Clustering 93.55% 112 22823 0,828
D∗

2 93.97% 138 28701 0,914
D∗q

2 AQP 94.09% 141 29065 0,921
D∗q

2 AQP q-red 94.13% 141 29421 0,920
D∗q

2 AWP 94.36% 137 28425 0,907
D∗q

2 AWP q-red 94.36% 137 28549 0,908
L2 94.24% 135 28297 0,904
KL 94.19% 135 28171 0,903
Symm, KL 94.27% 134 27999 0,902
D2 94.33% 134 28019 0,903

Table 3.3: Comparison of assembly with and without clustering preprocess (k = 3,
2 clusters). The assembly with Velvet is evaluated in terms of mapped contigs, N50,
number of contigs and genome coverage. The dataset used is SRR017901 (23.5M
bases, 10x coverage) that contains reads of Z. mobilis.

Distance Mapped Contigs N50 Number of Contigs Genome Coverage
No Clustering 96.97% 122 16724 0.729
D∗q

2 AQP q-red 98.49% 175 41086 0.994
D∗

2 98.38% 174 40156 0.994
L2 98.16% 175 36798 0.986
KL 98.28% 178 37717 0.990
Simm, KL 98.30% 182 37217 0.990
D2 98.22% 186 34866 0.987

Table 3.4: Comparison of assembly with and without clustering preprocess (k = 3,
3 clusters). The assembly with Velvet is evaluated in terms of mapped contigs,
N50, number of contigs and genome coverage. The dataset used is SRR023794
(117MBases) that contains reads of H. pylori.
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Distance 4 cluster 3 cluster
D∗

2 0.798 0.791
D∗q

2 AQP q-red 0.798 0.769
D∗q

2 AWP q-red 0.801 0.826
L2 0.643 0.734
KL 0.787 0.805
Simm, KL 0.772 0.792
D2 0.739 0.771

Table 3.5: Metagenomic reads classification of H. pylori (SRR023794 ), Z.s mobilis
(SRR017901 ), E.coli (FXAWNEV04 ) and L. pneumophila (ERR164429 ). The recall
for different measures with k = 4 and 3 and 4 clusters.

the genome, this can artificially increase these measures. We compute therefore a

less biased measure as the percentage of the genome covered by the contigs (last

column).

The introduction of clustering as a preprocessing step increases the number of

contigs and the N50; we think that a more relevant result are represented by the in-

crements of the genome coverage with an improvement up to 10% with respect to the

assembly without clustering. The relative performance between the distance mea-

sures is very similar to the case observed with simulated data (previous section) and

D∗q
2 with expectation AQP and quality redistribution is again the best performing.

More experiments should be conducted in order to prove that assembly can benefit

from the clustering preprocessing; however this first preliminary tests show that, at

least for some configuration, a 10% improvement on the genome coverage can be

obtained.

3.3.5 Metagenomics classification with clustering

Clustering algorithm for sequencing reads data can be effectively used to group to-

gether reads coming from the same organism [CLS14, SL13]. A natural application

of clustering is, therefore, the classification of reads coming from metagenomics ex-

periments, this task is usually referred to as metagenomics binning or just binning.

The problem can be formally stated as follows, given a set of reads R containing

sequencing data coming from a (possibly unknown) number K of different organ-

isms, produce a partition of R into K subsets in such a way that reads sequenced

from the same organism end up in the same set while reads coming form differ-

ent organisms, are assigned to different sets. We performed few preliminary tests

on metagenomic binning, we constructed a set R with M = 100000 reads coming

from different organism: Helicobacter pylori, Escherichia coli, Zynomonas Mobilis



58 Chapter 3. Quality value based clustering

and Legionella Pneunophila, R is constructed by sampling the reads set for different

organisms such that the proportion of reads is uniform between all the species. We

run qCluster with 3 and 4 clusters, few preliminary results are presented in Table

3.5. Quality value based measures perform better with respect to other distances,

the other two Dq
2 measure not indicated on the table (i.e., without quality redistri-

bution) give results similar suggesting that redistribution of quality values can be

skipped if computational time becomes an issue.

This chapter showed that the stochastic model developed in Chapter 2, when

applied to alignment-free measures, can be used to define similarity measures (i.e.,

what we called Dq
2 measures) which can then be used to improve performance of

clustering.

We have also seen that the model is robust against some complications that

naturally arose during the development of a tractable model. For example we have

seen that, although not explicitly considered, insertions and deletions have, at least

for the purpose of clustering, minor impact on the overall performance.



Chapter 4

Quality value based filtering

God always takes the simplest way

(Albert Einstein)

In this chapter we apply the stochastic model presented in Chapter 2 to the problem

of reads filtering which is the process of classifying reads based on their quality. More

specifically we will use the correctness probability pC derived in Chapter 2 (Section

2.3) and defined in Equation (2.13) as sorting key for reads; the sorted collection is

then passed to subsequent (downstream) algorithms.

To appraise the effectiveness of this approach we used sorted and sorted sets as

input of: de novo assembly and reads mapping, experimental results are presented

and discussed throughout this chapter. We observed general improvements of down-

stream algorithms when quality values based filtering is applied as preprocessing

step. Both de-novo assembly and reads mapping seem to benefit from our filtering

approach and we think that further experiments will confirm this claim.

This chapter starts by giving a little introduction to reads filtering and to our

rank filtering approach, we then move to its application to reads mapping first and

de-novo assembly afterwards.

In this chapter the contribution of quality values is conveyed by the probability of

a read being correct defined in Equation (2.13). For this reason we prefer, whenever

possible, to use a lighter notation in this chapter, more specifically to refer to a single

read we will often r instead of (c,q).

When several subsequences are involved the subscript notation ci,...,j could be-

come unclear, in such cases we will a square bracket notation; that is,

ci,...,j = cici+1 . . . cj = c[i, . . . , j].

59
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4.1 Reads filtering

As discussed in the introductory chapter, modern sequencers provide researchers

with huge amount of data that need to efficiently processed. The task of analyzing

data to infer properties of corresponding genetic sequence, involves many steps that

all together constitute what is often called a processing pipeline or simply pipeline;

one of the first of steps is this chain is represented by reads filtering.

Informally filtering is the process of classifying reads based on their quality, how

such quality is defined and computed depends on specific filters. For example reads

may be labeled as high quality if a minimum amount of match is found (Dohm et

al. [DLBH07]) or when certain constraints on quality scores are met (Sasson and

Michael [SM10]).

Boolean filtering Once a classification criterion for read quality is defined, the

input collection of reads R = {r1, . . . , rM} can be partitioned into two subsets RH

and RL, the first containing high quality reads and the second containing low quality

ones, we call this approach boolean filtering.1 Usually only the set RH is passed to

subsequent algorithms while RL is simply discarded; this behavior is usually accepted

because removal of lower quality reads do not appreciably change the final results;

this is mainly due to the overwhelming amount of sequencing data available.

4.2 Rank filtering

Boolean filters usually rely on certain constraints that are either met or not by a

given read, based on this test reads are classified as high or low quality reads and

accordingly inserted into one of the set RH and RL. Even in the rare cases when

set RL is not discarded, reads within the same set do not have any reciprocal order.

In other words given two reads r1, r2 we have no way of deciding which of the two

is better than the other or (possibly) if they are “equally good” or, more formally,

there isn’t a total ordering between reads.

To solve this problem we propose a different approach to reads filtering; that is,

to each read r ∈ R, we assign a numeric value d(r) such that, for two reads r1, r2 ∈

R, if r1 is better than r2 (according to the defined criterion), then d(r1) > d(r2).

This introduces a total ordering between reads which allows us to accordingly sort

the input collection R and use the sorted version Rsort = sort(R) as input to the

downstream algorithms.

1The term boolean is not used in literature to refer this specific approach. We decided to adopt
it to easily distinguish from rank filtering.



4.2. Rank filtering 61

Rank filtering has many advantages over boolean filtering. First reads of the

original set R are all inserted in the set Rsort, in other words rank filtering is a

lossless procedure. In some cases, however, not reducing the size of the input may

not be the most efficient choice. For example, in graph based assembly algorithms,

the size of the graph generally increases with the number of reads inputted. Keeping

the graph compact is generally a goal of assembling algorithms, not discarding reads

may, therefore conflict with this objective and could also worse performance. This

situations, however, can be easily avoided by truncating the set Rsort when certain

constraints are violated. For example we can stop processing reads as soon as the d(r)

drops under a certain threshold (similarly to what happens with boolean filtering) or

we can decide to stop as soon as the algorithm reaches a “critical” point (e.g., graph

occupancy exceeds main memory size). This example reveals a second advantage

of rank filtering; since reads have been ordered in such a way that better reads

rank higher, we can add to processing algorithms stopping criteria that are based

on this order. The idea is that improvements to the final solution should become

less significant as we move downwards the sorted collection Rsort. This approach,

however, is not always viable, algorithms that do not iteratively use reads to construct

the solution, can not be modified to stop at certain point of the input Rsort; in these

cases boolean filtering can still be used.

Rank filtering also comes with some disadvantages. First we need to properly

define the function d(r), a good quality measure for reads must not only be available,

but it must also be computable in reasonable time. Secondly, sorting procedure may

increase the overall complexity of the pipeline (especially when subsequent algorithms

run linearly in the number of reads) and may become a bottleneck of the whole

experiment. For large datasets it may not even be possible to sort reads internally

(i.e., in main memory); in these cases algorithms for external sorting must be used

with a further increase in the total execution time.

4.2.1 Rank filtering based on quality value

We introduce now a quality measure for reads d(r) based on the stochastic model

presented in Chapter 2. Similarly to what done in Chapter 3 for the definition of

Dq
2 measures, we will make use of the correctness probability pC defined in equation

(2.13).

Given a read r = (c,q) with length m, the probability of r being correct is

d(r) := pC(r) =
m∏

ℓ=1

(1− Pe(qℓ))
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where Pe(qℓ) is, as usual, the phred function Pe(q) = 10−q/10 discussed at the begin-

ning of Chapter 2.

In the next sections we will use rank filtering as preprocessing step of reads

mapping and de novo assembly ; preliminary results will be presented and briefly

discussed. Throughout the remaining of this chapter d(r) = pC(r) will be used as

measure of the quality of reads, some alternatives will be discussed in Chapter 5.

4.3 Results on mapping

The first application used to test our rank filtering approach is reads mapping. In-

formally mapping is the process of identifying positions of a reference sequence S

where a given sequence r (e.g., a read) most likely comes from. Mapping can also

be referred to a whole collection R of sequences in which case mapping R refers to

mapping all elements of R separately.

A very common definition of mapping problem is given in terms of a scoring

function. That is, given two sequences x and y with length |x| and |y| such that

|x| < |y| and given a scoring function f(x, y, j) the mapping of x into y is a set of

positions J∗ = {j∗1 , j
∗
2 , . . .}, j

∗
i ∈ [1, |y|] such that,

j∗i = arg max
j∈[1,|y|]

f(x, y, j) ∀j∗i ∈ J∗. (4.1)

That is, the mapping consists of all positions j∗i , i = 1, 2, . . . where the scoring

function f is maximized. Some approaches, however, define the scoring function as

distance between sequences, in this cases the mapping is the set of all positions that

minimize the function f , in general mapping resorts optimization of the function f .

Different mapping tools differ from each other mainly on the definition of the

scoring function f . Most of them define f recursively; that is, the mapping of

subsequence x1,...,i into subsequence yℓ,...,j is defined as a recursive relation:

f(x1,...,i, yℓ,...,j, ℓ) = F (x1,...,i−1, yℓ,...,j, ℓ)

where F is a proper function. Notable example of this approach are represented by:

Levenshtein or edit distance [Lev66], Needleman-Wunsch distance [NW70], Smith-

Waterman distance [SW81] and BLAST tool (Altschul et al. [AGM+90]). In all

cases of practical interest , the defined scoring recurrence can be optimized using

dynamic programming techniques, consequently, all these mapping approaches, can

be computed in time and space O(|x||y|). Unfortunately, in most cases, this time

complexity is also a lower bound in the sense that, every algorithm for global maxima
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calculation, requires time Θ(|x||y|).

In real cases y is the reference sequence (which can contain billions of symbols),

when all reads from the set R must be mapped into y, using dynamic programming

algorithm may require O(M |x||y|) complexity for the whole task; in most cases this

time is quadratic in |y|.2 For large reference sequences quadratic algorithms are

unfeasible and, in some cases, usage of alignment-free techniques (see Chapter 3),

local alignment (e.g., BLAST, [AGM+90]) or approximate solution (e.g., MAQ [LRD08])

may be the only available choice.

Hamming distance To test the effectiveness of our rank filtering approach, we

used a simple scoring function based on the concept of hamming distance (Hamming

[Ham50]). Let x and y be two sequences defined over the alphabet Σ with the same

length m. The Hamming distance H(x, y) between x and y is defined as

H(x, y) =
m∑

i=1

1(xi, yi) (4.2)

where 1 is the indicator function

1(a, b) =

{
1 a = b

0 otherwise
.

In other words Equation (4.2) represents the number of mismatches between se-

quences x and y.

H(x, y) can be used as a simple scoring function for mapping of reads, in this

case Equation (4.1) becomes

j∗ = arg max
j∈[1,|y|]

[
−H(x, yj,...,j+|x|−1)

]
. (4.3)

Note that, being H(x, y) a distance measure, optima can be found by either mini-

mizing H(x, y) or by maximizing −H(x, y).

2For a sequencing experiment with coverage γ

M∑

h=1

|xh| = γ|y|

in particular for constant read length: M |x| = γ|y| and O(M |x||y|) = O(|y|2).
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4.3.1 Evaluation model

Given a read r and a N bases reference S we can use a linear time alignment algorithm

(i.e., pattern matching Cormen et al. [CLR+01]) to compute H(r, S, j) for a fixed

position j, to compute Equation (4.3) we must run this algorithm O(N) times with

an overall complexity O(mN). The task of mapping reads coming from a collection

R with M requires total time O(mMN) = O(N2).

This asymptotic complexity for mapping algorithm can be unacceptable when

either M , N or both are large; we decided to further simplify our evaluation model

and consider only reads that perfectly map (e.g., without mismatches) back to the

reference sequence. More formally we say that a read r = (c,q) ∈ R perfectly match

a position j of S = s1 . . . sN if

H(c, sj,...,j+m−1) = 0.

As a metric for evaluating the effectiveness of filtering, we used the percentage of

reads without mismatches at different ranks. The idea is that, if reads are sorted from

higher to lower quality, this percentage would ideally be a non-decreasing function of

the number of considered reads. An ideal sorting criterion, would rank at the highest

positions the M̃ reads not containing any mismatch. In this case the percentage

of reads without mismatches would be 100% for all the first M̃ points, and then

decreasing according to 1/h as h increases toward M .3 When no sorting at all is

implemented, such a percentage should roughly remain constant to the value M̃/M

which is also the value to which both curves (for sorted and unsorted sets) converge.

Identifying a good measure to test rank filtering was not straightforward; we

wanted such a measure to be independent from any aspect not related to the rank-

ing and, at the same time, giving a numerical indication of reads quality relatively

to the rank of reads. We think that the selected measure is a good trade-off between

expressiveness and simplicity especially given the preliminary nature of these exper-

iments; of course before drawing final conclusions other measures and tests must be

performed to confirm results presented here.

We also appraised rank filtering when used as pre-processor to de-novo assembly,

more specifically we evaluated the produced assembly in terms of: N50, contigs length

and other established measures and observed how they change as the input varies

3More precisely the ideal curve is

g(h) =

{
1 1 ≤ h ≤ M̃
M̃
h M̃ ≤ h ≤M

where M̃ is the total number of reads without errors.
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based on our sorting criterion.

To identify the reads without errors we used a technique based on k-mers mapping

which is described in the next section. This approach has been chosen because can

be easily implemented in time O(N logN) on average (see Proposition 4.1).

4.3.2 Algorithmic approach

Given two reads r1 = (c,q)1 and r2 = (c,q)2 with the same length m, we say that

r1 and r2 perfectly match (or simply match) if c1,ℓ = c2,ℓ for all ℓ = 1, . . . ,m; that is,

H(c1, c2) = 0.

For a constant parameter k, a k-mer is a sequence of length k; when k ≤ m each

of the read r1 and r2 contains exactly m̄ = m − k + 1 k-mers. Let Kk(r1) be the

ordered sequence of k-mers in r1 and let Kk(r2) be defined analogously for r2; that

is, for a read r = (c,q):

Kk(r) = (c[1, . . . , k], c[2, . . . k + 1], . . . , c[m− k + 1, . . . ,m]) .

It is easy to prove that, if two reads r1, r2 perfectly match then Kk(r1) = Kk(r2); in

other words, if two reads match, then the corresponding k-mers list must be identical

(the converse is also true). As trivial corollary is the, if reads r1 and r2 match, then

c1[1, . . . , k] = c2[1, . . . , k]

in other words a necessary condition for r1 and r2 to perfectly match is that they

share the same first k-mer.

If we now consider the sequence S with length N ≥ m ≥ k and a read r = (c,q)

with length m, we say that r perfectly map at position j of S if

H(c, S[j, . . . , j + m− 1]) = 0

and, similarly to the two reads case, a necessary condition for r to perfectly map

at position j is that c[1, . . . k] aligns without mismatches with S[j, . . . , j + k − 1].

Our approach is based on the idea that, for a read r and a sequence S, candidate

mapping positions can be find using seeds positions j of S for which

H(c[1, . . . , k], S[j, . . . , j + k − 1]) = 0
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and, only if this requirements is met, perform the actual computation of the hamming

distance. For constant k the task of finding all reads that perfectly map to some

positions of S can be computed in time O(N logN) on average using proper data

structures. 4

The overall idea is to compute an indexed version IS of Kk(S) which allows

retrieval of S[j, . . . , j + k − 1] in average time O(1). Then, for each of the M reads,

we scan the list of seeds positions j in average time O(logN) and test if the current

read matches the position j.

Computation of the index IS To attain an average O(N logN) complexity for

the mapping, we need to compute the index IS in the same (or better) asymptotic

time. Algorithm 1 shows the pseudocode for the procedure KmerIndex which creates

Algorithm 1 Procedure to map all k-mers of a given sequence

1: procedure KmerIndex(S, k)
2: N ← Length(S)
3: I ← ∅
4: kmer ← S[1..k]
5: repeat ⊲ Scans through all the k-mers of S
6: I[kmer]← I[kmer] ∪ i ⊲ Store every observed k-mer
7: i← i + 1
8: kmer ← kmer[2..k] ∪ S[i]
9: until i > N
10: return I
11: end procedure

IS. This procedure simply scans all the k-mers on a reference sequence S (loop on

lines 5 – 9) and keeps track of the position where they appear (line 6). If the index

IS is implemented using a hash table, the retrieval of an element takes on average

O(1) (Cormen et al. [CLR+01]) and there are an average of O(logN)5 elements to

scan for each retrieved element. Of course these complexities hold as long as the

k-mers are (roughly) uniformly distributed.

Finding seed k-mer Once the index IS is computed, the procedure to map each

read starts. Algorithm 2 gives a possible implementation that, under the hypotheses

of Proposition 4.1, runs in average time O(N logN). Given the read r, its first k-mer

κ = r1 . . . rk is computed (line 4), afterwards the set P of all the occurrences of κ in

4The worst case, however, remains O(N2).
5This complexity is true with high probability as defined in Mitzenmacher and Upfal [MU05] and

holds for implementations of the hash table and for hashing the distributes k-mers in a random
fashion.
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Algorithm 2 Procedure to map k-mers against reference for reads set

1: procedure SeedKmerMapping(S,R, k)
2: IS ← KmerIndex(S, k) ⊲ Maps k-mers of reference S
3: for r ∈ R do
4: κ← r[1 . . . k] ⊲ First k-mer of r
5: P ← IS[κ] ⊲ All position where κ occurs in S
6: for j ∈ P do
7: if Match(S[j . . . j + m− 1], r) then
8: RecordMatch((r, j)) ⊲ We found one match for r
9: break
10: end if
11: end for
12: end for
13: end procedure

S is retrieve from IS (line 5). For each positions j ∈ P , if r perfectly matches with

S[j, . . . , j +m− 1] (line 7), it is recorded and the algorithms move to the next read,

otherwise the next position in P is considered.

The worst case complexity of Algorithm 2 is quadratic, however if we assume that

k-mers of S are (roughly) uniformly distributed on Σk, than the complexity becomes

O(N logN) on average.

Proposition 4.1. Procedure SeedKmerMapping has average time complexity

O(N logN + Mm logN) = O(N logN) (4.4)

if k-mers are uniformly distributed on S and procedure KmerIndex runs in O(N logN)

average time.

Proof. The first term O(N logN) comes from the complexity of KmerIndex for k-

mer are distributed uniformly. The if statement in line 7 can be implemented in

time proportional to m using linear time pattern matching algorithms (Cormen et

al. [CLR+01]), and the loop of line 6 is executed, on average, logN times (because

of the uniformity of k-mers). Therefore the outer loop (line 3) runs i total time

O(Mn logN), using the fact that Mm = γN with constant coverage γ, the claim

follows. �

These algorithms have implemented using C++ language6 and has been used to

conduct experiments presented and discussed in the remaining of this chapter.

6 https://github.com/skimmy/lib-bio/
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4.3.3 Experiments

In this section we present experimental results for the evaluation of rank filtering

described in previous sections.

Reference sequence To keep experiments relatively fast, we decided to use a short

DNA sequence, the Zaire Ebolavirus GenBank number KJ660348.27 with 18959 bases

has been used.

Reads data When aligning real sequencing data against the associated reference

sequence, the number of errors (i.e., mismatches) contained in the read is not nec-

essarily a good measure of the performance of the alignment technique. In partic-

ular evolutionary events like mutations (e.g., Single Nucleotide Polymorphisms –

SNPs) between the reference sequence and the real sequence can induce spurious

mismatches.

The model we are using for filtering reads does not take into account mutations

and the experimental setup should avoid as much as possible the presence of such

events; we therefore decided to use only simulated reads for this first set of experi-

ments. That is, after reference S is chosen, reads are generated using reads simulator

softwares to guarantee that all reads come exactly from S. By doing this we com-

pletely eliminated the problem of spurious errors due to mutation and only detect

mismatches that are caused by sequencing artifacts.

Two reads simulators have been used, one is mason also used during experiments

on clustering (see Chapter 3) and the second one is a custom written generator that

produces reads with a simple Independent and Identical Distributed (i.i.d.) model.

The former has been chosen to reflect as much as possible a real sequencing exper-

iment (while still avoiding mutation issues) and the second has been developed to

test rank filtering when sequencing fits the model assumed by the sorting criterion.

Being central part of the stochastic model under test, quality values have been

generated using specific error profiles; mason simulator has been used with the illu-

mina preset, probability of substitution (-pmm option) set to 0.01 and probabilities for

insertions and deletion (-pi and -pd options) set to 0; all the remaining parameters

have been left to their default values.

Our custom reads simulator takes as input a probability distribution for quality

scores and uses it to generate quality scores for each of the sequenced symbol. Af-

ter having generated a quality score q, the simulator performs a substitution with

probability p = Pe(q) (Equation (2.3) ), the “new” base is chosen at random (i.e.,

7 http://www.ncbi.nlm.nih.gov/nuccore/KJ660348
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with probability 1/3) from any of the bases different from the real one. For ex-

ample after generating the pair (G, 20), a random number ρ ∈ [0, 1) is generated,

if ρ ≤ Pe(20) = 0.01 then a substitution occurs and the sequenced base is chosen

uniformly (i.e., with probability 1/3) from the set {A,C, T}.

To keep the two datasets as much as possible consistent with each other, we

measured the quality value distribution produced by mason (when run with the

aforementioned parameters) and used it as the input of our custom generator.

To evaluate filtering we used the percentage of reads without mismatches as

described in previous sections.

Results Figure 4.1 shows results of rank filtering while varying the number of

generated reads M . These two graphs show the percentage of reads without errors

(y-axis) as we move the sorted collection Rsorted from the top to bottom (toward

positive x direction). As expected, reads at the top of the sorted list are more

0 200 400 600 800 1000
Number of considered reads (sorted list)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 o

f 
e
rr

o
r 

fr
e
e
 r

e
a
d
s

mason IID

(a) Ebola with M = 1000
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(b) Ebola with M = 100000

Figure 4.1: Fraction of reads without errors as a function of the amount of reads
considered within the sorted set Rsort for mason (solid blue curve) and i.i.d. (dashed
red curve) simulators with M = 1000 reads (a) and M = 100000 reads (b).

likely to perfectly match with the reference, as we move down the ranked list (move

toward positive direction of x-axes), the fraction of total reads that have no errors

diminishes. We also observed as i.i.d. generator attains performance significantly

better than using mason (as expected).

Note that mason generates a fraction of perfect matching reads higher than i.i.d.

simulator run with the same quality scores distribution for. This is a little surprising

and indicates that the distribution of quality values generated by mason does not

reflects an i.i.d. model, this, although expected, arise the problem of tweaking our

stochastic model to reflect this aspect.8

8We have not yet done this tests because we want first evaluating the behavior with real se-
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Finally we see (as one would expect) that the size of the set R, does not play a

major role on filtering, the only appreciable difference is represented by the initial

fluctuation which is, however, mostly caused by the measure we are testing.

Figure 4.2 presents result while running the mapping algorithm on the sorted list

Rsort and on the unsorted one R using both simulators. We see how rank filtering

improves mapping of reads with respect to no filtering with both i.i.d. (Figure 4.2

(a) ) and mason (Figure 4.2 (b) ) simulators. As for the previous set of experiments

we observe a remarkable difference between the two simulators suggesting that the

model used to generate reads (i.e., the empirical model for sequencing) plays an

important role in the performance of rank filtering.
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(a) Results for i.i.d. simulator
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(b) Results for mason simulator

Figure 4.2: Fraction of reads perfectly matching with the reference for filtered list
Rsort (blue solid curve) and unsorted list R (red dashed curve) with i.i.d. (a) and
mason (b) reads generators.

4.4 Results on assembly

The second application where we tested rank filtering approach is as preprocessing

step of de novo assembly. De novo assembly is the process of reconstructing a refer-

ence sequence S starting from a set of reads R sequenced from S. More realistically

unique reconstruction of S is not possible when R comes from a real sequencing ex-

periments; sequencing errors and the presence of complex structures (e.g., repeats)

in the reference, make the solution to assembly ambiguous in the sense that more

candidate assembly are usually identified.

Assemblers try their best to reconstruct as much as possible of the sequence S by

producing the longest subsequences of S that they can infer; these long fragments

are called contigs. Assemblers, can not deduce relative ordering of contigs, this

quencing data in order to avoid over-fitting of our model.
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task is usually performed using long reads or mate pairs in a subsequent step called

scaffolding.

As done in Chapter 3, we used VELVET assembler (Zerbino and Birney [ZB08])

and calculated standard performance measures (in particular contigs N50, see Section

4.4.1) to test how output contigs set changes as the input varies.

4.4.1 Evaluation model

Evaluating assembly algorithms and their result is not an easy task, the main prob-

lem is that we don’t have the real sequence (i.e., the one that we would like to

reconstruct) and, consequently, relating the reconstructed sequence with the real one

is hard when not impossible.9 Another difficulty is represented by the fact that differ-

ent assemblers produce outputs that may significantly differ. Moreover parameters

tuning plays an important role and can significantly influence results of assemblers

even for the same tool and on the same input data. We also need to precisely define

which characteristics of assemblers are desirable and which instead could be over-

seen. For example we may prefer a fragmented assembly that covers most of the

original sequence rather then a less fragmented one that spans a lower fraction of

the reference sequence.

For these reasons many different measures are have been defined to asses perfor-

mance of assembly algorithms. In the previous chapter we tested assembly on clus-

ters using: mapped contigs (percentage of outputted contigs that map back to the

reference), contigs N50 (explained below), number of contigs produced and genome

coverage (fraction of original sequence covered by some contig). Results presented

in this chapter are given as contig N50 which is briefly introduced next.

Contig N50 One of the most used metric to assess assembler’s quality is called

contig N50 (usually simply referred to as N50). According to Miller et al. [MKS10]

The contig N50 is the length of the smallest contig in the set that

contains the fewest (largest) contigs whose combined length represents

at least 50% of the assembly.

Another similar (but more convoluted) definition has been given by Earl et al. in

[EBJ+11].

The N50 of an assembly is a weighted median of the lengths of the

sequences it contains, equal to the length of the longest sequence S, such

9This does not apply to comparative assembly which, however, is not considered in this thesis.
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that the sum of the lengths of sequences greater than or equal in length

to S is greater than or equal to half the length of the genome being

assembled.

The idea is to give higher weight to longer contigs rather than to shorter ones.

This should ensure that assemblers producing less fragmented output, performs bet-

ter (in terms of N50) than those producing more fragmented. This statistics, however,

does not take into account any information about the actual coverage of the contigs

once mapped to the reference (e.g., few long contigs covering the same region may

induce a better N50 than shorter but best covering ones) which is the reason why we

introduced the genome coverage in tables 3.3 and 3.4.

We decided, notwithstanding above critics, to show here results on contigs N50

for several reasons.

• N50 is a de-facto standard measure appearing in most of the studies on assembly

algorithms, as such it is well understood and accepted as a reliable way of

measuring performance of assembling software.

• Our experiments compare outputs produced by the same assembler (i.e., VELVET)

always run with the same parameters, in other words we are not evaluating the

efficacy of the assembler, but the efficacy of our rank filtering.

• The VELVET software used to perform simulations, computes the N50 statistics

off-the-shelf giving a good way for comparing different runs using the same

algorithms and the same definition of N50.

4.4.2 Experiments

This section presents experimental results obtained using VELVET assembler applied

to the sets Rtop and Rbottom both containing all the M reads for the input dataset R

the first sorted according to our rank filtering sorting criterion, the second reversing

such an order. That is, for the quality measure d(r) defined as read correctness

probability pC (Equation 2.13) ), the collection Rtop satisfies

d(Rtop[i]) ≥ d(Rtop[j]) ∀i ≤ j

and Rbottom is the reversed version of Rtop which satisfies

d(Rbottom[i]) ≤ d(Rbottom[j]) ∀i ≤ j.
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α Nodes N50 Max Total Reads Used Reads
1 3927 5493 25265 4422893 1753096 99.21%

0.95 3296 6007 25780 4424905 1665307 99.2%
0.9 3260 5992 25783 4425387 1577701 99.2%
0.75 3292 5889 25368 4425363 1314954 99.22%
0.5 4849 2301 14662 4298977 876484 99.2%
0.25 9103 463 6427 2754771 423257 95.81%
0.1 5162 277 3959 1086962 153884 87.09%
0.05 2845 245 3693 540707 72996 82.62%

Table 4.1: Output of VELVET for the dataset SRR959247 with Rtop input as α varies.

Note that Rtop and Rbottom are ordered collections ; when dealing with sequencing

data, this ordering is enforced by the way reads are stored (e.g., the order of entries

in a fastq file).

Dataset As opposed to experiments conducted on reads mapping, we decided to

use a real (i.e., not simulated) set of reads. This decision is partly motivated by the

fact that we wanted to test rank filtering in a real environment and partly because,

by using only N50, we don’t need to map contigs to the reference and, therefore,

we don’t have to worry about spurious mismatches due to mutations. We used the

library E. coli, AT, S, N accession number SRR95924710 containing about 1.7 millions

reads of average length 176 bases for the Escherichia Coli str. K-12 substr. DH10B

organism (reference available with accession number NC 010473.111) summing to an

approximate coverage of 74×; reads have been produced using Illumina HiSeq 2000

sequencer.

The sets Rtop and Rbottom have been “truncated” so that only the ⌊αM⌋ highest

rank reads are considered (note that in Rbottom higher rank means lower pC). We

used different values of α from 1 (whole dataset) to 0.05 (only the top 5% of the

entire set).

To evaluate the quality of assemblies we relied on the statistics outputted by

VELVET software specifically: the number of nodes contained in the final graph,

the contig N50, the length of the longest contig(s) produced, the total length of all

contigs and the number of reads used to construct the contigs. As an additional

we also calculated the percentage of total input reads used to construct the output

contigs:
aligned reads

total reads
%.

10 http://www.ncbi.nlm.nih.gov/sra/?term=SRR959247
11http://www.ncbi.nlm.nih.gov/nuccore/NC_010473.1
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α Nodes N50 Max Total Reads Used Reads
1 3927 5493 25265 4422893 1753096 99.21%

0.95 4791 5011 25153 4390174 1663150 99.07%
0.9 4890 4644 25151 4376319 1567818 98.58%
0.75 4860 4481 29441 4357874 1308355 98.72%
0.5 5519 3508 21054 4318706 857819 97.09%
0.25 13580 405 10012 3255457 404420 91.55%
0.1 3717 152 2888 346460 65084 36.83%
0.05 1578 137 1397 83681 31723 35.91%

Table 4.2: Output of VELVET for the dataset SRR959247 with Rbottom input as α
varies.

VELVET setup Since the focus of the experiments was on the effectiveness of rank

filtering using quality values, we run all the simulations with the same assembly

parameters with the only exception of the expected coverage (-exp cov) which has

been adjusted based on the number of reads considered (i.e., αM).

More precisely we experimentally estimated the optimal values for the size of

k-mers which has been set to 21 and for the coverage cutoff (-cov cutoff) set to 9.

These values guarantee a relatively high quality due to the high k while the coverage

cutoff (used to discard undercovered k-mers supposedly erroneous) has been chosen

by experimentally determining the optimal value within the interval [3, 15].

Results and discussion Tables 4.1 and 4.2 shows the results on sets Rtop and

Rbottom respectively, they contain the output statistics produced by VELVET as α

varies. A graphic representation of the N50 values is given in Figure 4.3.

As we expected, the value of contig N50 decreases as the number of reads con-

sidered decreases, this reflects the fact that the chosen dataset contains high quality

reads, in fact the measured average quality of the set is 36.4 corresponding to an

average error rate 0.02%.

When Rtop and Rbottom are compared, we observe similar trends for the N50 with

the former underperforming the latter in every experiment with the exception of the

case α = 0.5. This observations enforce our claim that using quality value based

filtering improves the performance of the assembly.

What is more interesting is the percentage of reads used to construct contigs (last

columns of tables 4.1 and 4.2). While these values are comparable in both sets for

α ≥ 0.5, we see that, as predicted, when considering small fraction of the set Rbottom

(i.e., α ≤ 0.1) the percentage of “good” reads dramatically drops. This behavior

reflects the fact that in Rbottom the top α fraction of reads corresponds exactly to the

bottom α fraction of Rbottom.
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Figure 4.3: N50 obtained by VELVET on dataset SRR959247 while using Rtop (blue
solid line) and Rbottom (red dashed line) input sets.

In this chapter we gave preliminary experimental results on rank filtering using

the quality value based model developed in Chapter 2. We shown that this novel ap-

proach to reads filtering helps using sequencing data in a more effective and efficient

way. We also proved that mapping and assembly benefit from a preprocessing step

of rank filtering. This results, although preliminary, represent a further validation of

the model presented in Chapter 2 and, at the same time, give a tool that can already

be used to perform reads filtering by simply sorting reads during the preprocessing

step.
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Chapter 5

Conclusions and future directions

Einstein, don’t tell God what to do

(Niels Bohr)

Drawing conclusions of a scientific work is not easy; every time new results are

presented, they arise new questions that require further investigations with this cycle,

apparently, rolling indefinitely. It is always useful, however, to mark milestones and

check points during the development of a theory; the conclusive chapter of a Ph.D.

thesis is the perfect spot for such considerations.

In this thesis we presented a novel stochastic model for the description of the

sequencing process; the main disruption with previously developed models is in the

incorporation of quality values as part of the model itself. To the best of our knowl-

edge this is the first work that uses these scores to give a stochastic representation

the entire sequencing process.

Starting from the interpretation of quality values as correctness probability of

the associated symbol, we built, step by step, a stochastic model that allows us to

describe, in a formal probabilistic framework, many different aspects of the sequenc-

ing process like: production of a single pair (c, q) of symbol c and quality q, process

of positioning within the reference sequence and many others.

We showed that the model can be effectively used to develop a new family of

alignment-free measure which we called Dq
2-type. We experimentally proved that

these measures can improve performance of the clustering of reads which, in turn,

helps boosting algorithms for de-novo assembly and metagenomics binning. The

experiments performed with qCluster and VELVET softwares, showed that Dq
2-type

statistics perform better than their cousins D2, indicating that the inclusion of quality

values in k-mers frequency count, is effective and improves the overall statistical

power of these alignment-free measures.

We also applied the same model to the problem of reads filtering ; we defined

77
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a new filtering paradigm, which we called rank filtering that, instead of discarding

low quality reads, defines a total ordering between them such that higher quality

reads rank higher than lower quality ones. In a set of preliminary tests, we showed

that this approach is effective when our quality value based probabilist model is

used as ranking criterion. We also observed some limitations of our model while

aligning filtered reads generated by mason software; we think that minor changes to

our model could lead to better in this cases as well, however a set of experiments on

real datasets should be performed to evaluate filtering of real reads.

Overall results show that the usage of quality values has positive impact on many

bioinformatics problem, we think that the approach presented in this thesis can be

further improved in terms of both theoretical model and its application; some of

these future extensions and applications are discussed next.

Future directions

While in Chapter 2 we developed a stochastic model describing the whole process of

sequencing, in chapters 3 and 4 we showed experimental validation of only one part

of this model. What presented in this thesis should be interpreted more as a starting

point for new research rather an endpoint. There are many ways in which our model

could be extended and many situations in which it could be profitably employed.

Moreover some aspects presented in the previous chapters could to be refined and

extended to give the model more descriptive power.

The remaining of this chapter is devoted to briefly summarize the possible future

directions we plan to investigate.

Extension to the model A first, somehow obvious, aspect that can be enhanced

and refined is the definition of the theoretical model presented in Chapter 2. Many

details of the sequencing process have not been considered in the current form of the

model and may be incorporated in future refinements.

A central idea of our approach is the usage of quality values to model the er-

ror in sequencing data. Most of this thesis assumed that distribution of errors is

uniform among uncalled symbols, this has been formalized in Hypothesis 2.3 and

Equation (2.4). This assumption does not include sequencing errors like insertions

and deletions because modeling them would require a more complicated description,

in particular many of the independence hypotheses we assumed should be revisited

to properly consider such errors. Even more importantly, there is no unique interpre-

tation of quality values when insertions or deletions occur; one of the reason for this
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is that major causes of these types of errors can not be detected with data processed

by base callers. We want to include these errors in near future extensions especially

because, as future generation sequencing will become more and more important the

necessity of models fitting new error profiles will increase.

An issue related to sequencing processing, which has not be considered in Chapter

2, is represented by the, so called, reads orientation. A sequenced read could come

from either the forward or the reverse strand of the DNA molecule;1 when it is

outputted no indication is available about the strand it comes from. We think

that this aspect could be easily included to the model, but we also think that the

contribution of this extensions will be limited in those cases (like, for example, k-mers

count) where reads orientation does not play a fundamental role.

Another aspect of the sequencing process related to NGS reads, is the possibility

of using mate pairs. In our first version of the model, we avoid the inclusion of

this feature because their effectiveness becomes really relevant mostly when dealing

with complicated structures of reference sequences (e.g., solving repeats), which is

an aspect we did not directly considered in the applications presented throughout

this thesis (except for assembly which, however, has not yet been directly defined in

terms of our model). Moreover, the two pairs could be separated and used as distinct

reads if needed. This destroys the information of pairing, but maintains constant

the coverage of the whole experiment. Of course inclusion of mate pairing as part

of the model should have benefit in terms of performance although this effect would

probably be only partial for the problems we presented in this thesis (e.g., clustering,

filtering, . . . ).

Further experimental validation In chapters 3 and 4, we presented applications

of our model to problems of clustering and filtering. Both these applications used

the same definition, given in Equation (2.13), of the read correctness probability. In

both cases we observed improvements on the tested scenarios, however, while results

in Chapter 3 have already been published [CLS14, CLS15], the ones presented in

Chapter 4 are still preliminaries and need further investigations. More specifically

we want to test how rank filtering performs on mapping of real data (i.e., not from

simulated reads) and also test the application of our sorting criterion to future gen-

eration sequencing data (especially PacBio). Another aspect we plan to study, is

the comparison of our measure with other quality value based filtering, for example

comparing our model with the one defined in MAQ software for classification of reads

based on quality scores. We think that results in these scenarios combined with the

1Of course this does not apply to single stranded molecules.



80 Chapter 5. Conclusions and future directions

ones presented in Chapter 4 will give a good validation of our quality valued based

approach for reads filtering.

Given the interesting results obtained by our measure of read correctness, we plan

to apply it to new problems. In particular we want to carry out experiments to test

our Dq
2 type alignment-free measures as distance measure between phylogeny trees,

we think that, also in this case, our quality values based measures could outperform

D2-type ones.

All these applications focus on the probability of a single read to be correct,

however the model presented in Chapter 2 gives a more powerful and comprehensive

tool that can be used to describe an entire sequencing experiment.

With the goal of experimentally test our model in all of its parts, we identified

de-novo assembly as interesting application where our model could represent a break-

through with respect to the state of the art. Our goal is to define, in terms of our

stochastic model, the problem of assembly and then use such definition to develop a

novel assembler that takes advantage of it. De-novo assembly is a really challenging

problem, we can already give a rough definition as maximum likelihood assembly, but

currently we don’t have a feasible algorithm to solve it (Baruzzo [Bar13]). We need

to find characterization of the optimal solutions for the assembly such that their

computation becomes feasible.

Other applications In Chapter 2 we concentrated our efforts on finding proba-

bility of a reference given a set of reads. However, if we already know the reference

and, of course the collection of reads, we can apply our model to estimate sequencing

parameters. For example, in many cases we assumed that positioning is uniformly

distributed on the reference; it is known that this assumption is not coherent with

most of the sequencers. If we had a known reference, we could have used our model

to precisely define the distribution of positioning for a particular sequencer and,

possibly, use it to refine our model. This, parameter estimation application will be-

come very important in the near future as new sequencing technology will be widely

adopted and their characteristics need to be determined.

Computational aspects One aspect that has been, mostly, ignored in this thesis

is related to the computational aspects of the algorithms we used throughout the

experimental validation of the model. However, the problem of efficiently processing

sequencing data is still an open field especially as both models for sequencing and

computation paradigms evolve according to technological advances.

Since the advent of next generation sequencers, the cost of producing sequencing

data has dramatically decreased and nowadays this costs are negligible when com-
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pared with the costs of supercomputers needed to process all the generated data.

This is also true in terms of time; it is not uncommon that, to process sequencing

data produced in one day, algorithms need to run for several days on supercomputers.

In this scenario developing fast and scalable algorithms is challenging and requires

careful design of processing algorithms. For example, given the large amount of

data to be processed, it is necessary to develop algorithms able to fully exploit the

hierarchical nature of memory in modern architectures. Moreover parallelism has

become a key aspect more so today with the advent of Graphics Processor Unit

(GPU) that promises very high theoretical performance, but require algorithms to

be re-engineered in order to fully exploit their architectures.

We think that the future of bioinformatics relies on the ability of exploiting the

entire information produced by sequencers (for example by including quality scores)

using the ever increasing computation power available. Bioinformaticians need to

develop expertise on both theoretical modeling of problems and on optimization

strategies, in a situation where both this aspects evolve at astonishing rates, they

must be able to keep the connection between the two aspects and present elegant,

powerful and innovative solutions to old and new problems. What is even more

thrilling and exciting is that, as technologies evolve, this challenging becomes more

and more complicated and, therefore, more and more stimulating.
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Appendix A

Notation

Mathematics is written for

mathematicians

(Nicolaus Copernicus)

This appendix contains a short description of symbols commonly used in the

development of the stochastic model in chapter 2. Although most of this notation

may apply to other chapters, it is possible to encounter some discrepancies when

applied in this other cases. Finally keep in mind that there may be cases (hopefully

rarely) where variables could have different meanings from the one described in this

appendix (even within chapter 2), however they will be clearly identifiable from the

context.

Sequence, read and reads set and reads collection

Σ Alphabet

Q Set of quality scores

S Reference sequence

N Length of the reference sequence S, N = |S|

(c,q) Read as a pair of vectors of symbols c and qualities q

r Read produced by sequencing experiment

m Length of a read, m = |r| = |c| = |q|

R Set or collection of reads, R = {r1, r2, . . .}

M Number of read in a given set, M = |R|

k Length of a k-mer

83



84 Appendix A. Notation

Indexes and other variables

ℓ Usually used to refer a position within a read, 1 ≤ ℓ ≤ m

h Usually used to index reads on a read set, 1 ≤ h ≤M

j Usually used to refer a position within the sequence, 1 ≤ j ≤ N

ch,ℓ Symbol in position ℓ = 1, . . . ,m of h-th read

qh,ℓ Quality score in position ℓ = 1, . . . ,m of h-th read

Probability spaces and probability functions

Ω Sample space (in all cases Ω is a finite set)

F Event space, F = {E : E ⊆ Ω}

P Probability function, P : F −→ [0, 1]

p Shorten version of probability function, p(e) = P (E = e)

Conventions

Reads set and collection Often throughout the thesis a unordered collec-

tion of reads, identified with R is referred to as reads set or dataset,

however they are not sets in a mathematical sense.

Composed spaces The development of stochastic model presented in chapter

2 involves defining sample spaces Ω from previously defined. The space

ΩX,Y usually refers to the cartesian product ΩX × ΩY .

Conditioned spaces Many events assume the form (X = x | Y = y), since

conditional probabilities induce a probability space ([PP02]), in many

cases the space ΩX|Y will be implicitly used by the definition of the

probability function pX|Y (x, y) = PX,Y (X = x | Y = y).
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